
A Lo-Hi benchmark645

Lo-Hi is a practical ML drug discovery benchmark, comprising two tasks: Hit Identification (Hi) and646

Lead Optimization (Lo). Hi corresponds to a binary classification problem, wherein the goal is to647

identify novel hits that differ significantly from the training dataset [10, 11, 16, 27, 28]. This is why648

there are no molecules in the test set with ECFP4 Tanimoto similarity exceeding 0.4 to the training649

set. Models are compared using the PR AUC metric.650

Lo is a ranking problem that pertains to optimizing molecules or guiding molecular generative models.651

The test set consists of clusters of similar molecules that are largely dissimilar from the training652

set, except for one molecule representing a known hit. The task involves ranking the activity of the653

molecules within clusters, hence we use mean intercluster Spearman correlation to evaluate models.654

To ensure that the variation in intracluster activity stems from actual differences in activity rather than655

random noise, we selected clusters demonstrating high variation, as detailed in Appendix B and C.656

The datasets each consist of three folds. We advise using the first fold for hyperparameter selection,657

and then applying these hyperparameters across all folds.658

Datasets are released under the MIT license. Authors bear all responsibility in case of violation of659

rights. Datasets are small .csv files, that is why we are going to keep them in the public GitHub660

repository. Reviewers can find datasets in data folder.661

In this section, we provide further information regarding the datasets and preprocessing steps. The662

size and diversity of the original datasets are displayed in Table 3.663

Table 3: Original datasets

Dataset Size #Circles [69] (0.5) Active fraction

DRD2 (Ki) 8482 837 0.731
HIV 41127 19222 0.035

KDR (IC50) 8826 791 0.643
Sol 2173 1763 0.216

KCNH2 (IC50) 11159 2128 NA

A.1 Data preprocessing664

We began by canonicalizing all SMILES using RDKit 2022.9.5.665

For DRD2-Hi, DRD2-Lo, KDR-Hi, KDR-Lo and KCNH2-Lo we utilized data from the666

ChEMBL30 [74] database. We collected data points that measured Ki (for DRD2) and667

IC50 (for KCNH2 and KDR) with confidence_score ≥ 6. We selected those for668

which standard_units were in "nM". We converted standard_value to logarithmic scale,669

also known as pChembl(https://chembl.gitbook.io/chembl-interface-documentation/670

frequently-asked-questions/chembl-data-questions#what-is-pchembl).671

For binary DRD2-Hi and KDR-Hi we binarized the data such that log activity values greater than 6672

(which is < 10 muM) were designated as 1, and all others as 0. We removed any ambiguous data673

points (e.g. with standard_relation of "<" and an activity value more than 10 muM, because674

those could not be binarized reliably). Following this, we selected data points with identical SMILES,675

discarding any with differing binarized activities.676

For the continuous DRD2-Lo, KDR-Lo and KCNH2-Lo datasets, we selected data points that had677

standard_relation of ’=’ and a log activity value greater than 5 but less than 9. We selected data678

points with identical SMILES, discarding any with activity differences greater than 1.0. For the679

remaining data, we took the median of each group.680

18

https://chembl.gitbook.io/chembl-interface-documentation/frequently-asked-questions/chembl-data-questions#what-is-pchembl
https://chembl.gitbook.io/chembl-interface-documentation/frequently-asked-questions/chembl-data-questions#what-is-pchembl
https://chembl.gitbook.io/chembl-interface-documentation/frequently-asked-questions/chembl-data-questions#what-is-pchembl


Figure 4: DRD2-Hi: Fold 1

Figure 5: HIV-Hi: Fold 1
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Table 4: Hi folds

Dataset Train 1 Test 1 Train 2 Test 2 Train 3 Test 3

DRD2-Hi 2385 1190 2381 1194 2384 1191
HIV-Hi 15696 7847 15695 7848 15695 7848
KDR-Hi 500 3116 500 3125 500 2285
Sol-Hi 1442 721 1442 721 1442 721

Table 5: Lo folds

Dataset Train 1 Test 1 Train 2 Test 2 Train 3 Test 3

DRD2-Lo 2206 267 2128 267 2257 262
KCNH2-Lo 3313 406 3313 406 3313 406
KDR-Lo 500 437 500 520 500 417

DRD2-Hi: Fold 1 train HIV-Hi: Fold 1 train

DRD2-Hi: Fold 1 test HIV-Hi: Fold 1 test

Figure 6: The most similar pairs of molecules between train and test.

Figure 7: Example of Lo cluster in DRD2-Lo

Figure 8: Example of Lo cluster in KCNH2-Lo
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B Lo dataset is not just noise681

Experimental data inherently contain noise. Consequently, selecting similar molecules may result in682

clusters that possess such a small variation that it could be solely attributable to experimental noise,683

thereby invalidating the Lo task. This potential issue underlines the importance of ascertaining that684

the clusters exhibit a significant signal to ensure the validity of the task.685

As reported [87], the standard deviation for the same ligand-protein pair’s pIC50 is σpIC50 ≈ 0.20686

when measured in the same laboratory, and σpIC50 ≈ 0.68 in the ChEMBL database. In similar687

work [88] standard deviation for ChEMBL pKi was found to be σpKi ≈ 0.56. Therefore, based on688

these findings, we opted to select only those clusters that displayed a standard deviation exceeding689

0.70 for pIC50 and more than 0.60 for pKi. These selection criteria enhance the confidence in the690

validity of the Lo task by prioritizing clusters with significant intracluster variation.691

Figure 9: Within cluster variability is higher than noise standard deviation.

C Lo algorithm692

The Python implementation can be found in code/splits.py.693

Algorithm 1 Get Lo Split
Input: List of molecular SMILES S, similarity threshold t, minimum cluster size m, maximum

number of clusters M , activity values V , standard deviation threshold stdt
Output: List of SMILES clusters C, list of remaining training SMILES train_S

1: procedure GETLOSPLIT(S, t, m, M , V , stdt)
2: C, train_S ← SELECTDISTINCTCLUSTERS(S, t,m,M, V, stdt)
3: for each cluster in C do
4: Move central molecule from cluster to train_S
5: end for
6: return C, train_S
7: end procedure
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Algorithm 2 Select Distinct Clusters
Input: List of molecular SMILES S, similarity threshold t, minimum cluster size m, maximum

number of clusters M , activity values V , standard deviation threshold stdt
Output: List of SMILES clusters C, list of the rest training SMILES train_S

1: function SELECTDISTINCTCLUSTERS(S, t, m, M , V , stdt)
2: train_S ← S
3: Initialize list C as empty
4: while length of C <M do
5: Compute fingerprints F from SMILES in train_S
6: Compute total number of neighbors N for each fingerprint in F
7: Compute STD standard deviation of V of neighbors for each fingerprint in F
8: Set central_idx to None
9: Set least_neighbors to max(N )

10: for each idx in 0..|train_S| do ▷ Find the smallest cluster that meets criteria
11: if N [idx] > m and STD[idx] > stdt and N [idx] < least_neighbors then
12: central_idx← idx
13: least_neighbors← N [idx]
14: end if
15: end for
16: if central_idx is None then ▷ Exit if there are no more clusters that meet criteria
17: break
18: end if
19: Add central_idx molecule and its neighbors to list of clusters C
20: Remove the cluster and its neighbors from train_S
21: end while
22: return C, train_S
23: end function

D Additional benchmarks analysis694

Distribution of Tanimoto Similarity between the nearest molecules between train and test.695

Figure 10: ESOL
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Figure 11: HIV

Figure 12: TDC
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We additionally analyzed other ligand-based MoleculeNet datasets.696

Table 6: Fraction of test molecules in various MoleculeNet datasets with a Tanimoto similarity >0.4
to the train set using ECFP4 fingerprints.

Dataset Fraction of Test Molecules Similar to Train Set

QM7 0.93
QM8 0.98
QM9 0.99

FreeSolv 0.8
Lipophilicity 0.67

PCBA >0.93
MUV 0.96
BACE 0.77
Tox21 0.52
SIDER 0.48

E Graph coarsening algorithm697

The Python implementation can be found in code/min_vertex_k_cut.py. We are planning to698

release it as a pip package.699

Algorithm 3 Calculate Neighbors
Input: Graph G = (V,E), similarity threshold θ
Output: List of tuples n_neighbors

1: function CALCULATENEIGHBORS(G, θ)
2: Initialize list n_neighbors as empty
3: for each node v in V do
4: Initialize total_neighbors as 0
5: for each edge e incident on node v do
6: if e[’similarity’] > θ then
7: total_neighbors← total_neighbors+ 1
8: end if
9: end for

10: Append (total_neighbors, index of v) to n_neighbors
11: end for
12: return n_neighbors
13: end function
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Algorithm 4 Cluster Nodes
Input: Sorted list n_neighbors, Graph G = (V,E), similarity threshold θ
Output: Cluster assignment node_to_cluster, number of clusters total_clusters

1: function CLUSTERNODES(n_neighbors, G, θ)
2: Initialize array node_to_cluster of size |V | as −1
3: Initialize total_clusters as 1
4: for each tuple (count, node) in n_neighbors do
5: if node_to_cluster[node] = −1 then
6: node_to_cluster[node]← total_clusters ▷ Assign new cluster
7: for each edge e incident on node node do
8: if e[’similarity’] > θ then
9: adjacent_node← e[1]

10: if node_to_cluster[adjacent_node] = −1 then
11: node_to_cluster[adjacent_node]← total_clusters
12: end if
13: end if
14: end for
15: total_clusters← total_clusters+ 1
16: end if
17: end for
18: return node_to_cluster, total_clusters
19: end function

Algorithm 5 Build Coarse Graph
Input: Cluster assignment node_to_cluster, number of clusters total_clusters, Graph G = (V,E)
Output: Coarsened Graph Gcoarse

1: function BUILDCOARSEGRAPH(node_to_cluster, total_clusters, G)
2: Compute clusters_size, count of each unique element in node_to_cluster
3: Initialize Gcoarse as an empty graph
4: for cluster in 0 to total_clusters− 1 do ▷ Add nodes
5: Add node cluster with weight clusters_size[cluster] to Gcoarse
6: end for
7: for cluster in 0 to total_clusters− 1 do ▷ Add edges
8: Initialize connected_clusters as an empty set
9: Get nodes of cluster as this_cluster_indices where node_to_cluster equals cluster

10: for each node in this_cluster_indices do
11: for each edge e incident on node node do
12: Add node_to_cluster[e[1]] to connected_clusters
13: end for
14: end for
15: for each connected_cluster in connected_clusters do
16: Add edge from cluster to connected_cluster in Gcoarse
17: end for
18: end for
19: return Gcoarse
20: end function

Algorithm 6 Main Procedure
Input: Graph G = (V,E), similarity threshold θ
Output: Coarsened graph Gcoarse

1: procedure COARSEGRAPH(G, θ)
2: n_neighbors← CALCULATENEIGHBORS(G, θ)
3: Sort n_neighbors in descending order of first element of each tuple
4: node_to_cluster, total_clusters← CLUSTERNODES(n_neighbors,G, θ)
5: Gcoarse ← BUILDCOARSEGRAPH(node_to_cluster, total_clusters,G)
6: return Gcoarse
7: end procedure
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F Hi-split predicts virtual screening hit rate better than scaffold split700

For effective virtual screening, predicting experimental outcomes prior to experimentation is701

paramount. In this study, we compare the predictive performance of the novel Hi-split approach702

with the traditional scaffold split method under a Hit Identification scenario. Following existing703

literature [10, 11, 16, 27, 28], we simulate testing on novel molecules with an ECFP4 Tanimoto704

similarity of ≤ 0.4 to the training set. The dataset is partitioned using both splitting methods to705

form separate training and validation sets for hyperparameter selection. Hyperparameter search is706

performed for gradient boosting on ECFP4 fingerprints, identified as the most efficient Hi model that707

facilitates quick training.708

After selecting the optimal hyperparameters, performance metrics are computed on the validation set.709

Subsequently, the model is retrained on the combined training and validation sets, and performance710

metrics for the hold-out test set are calculated to simulate the application of a trained model in virtual711

screening. The results are summarized in Table 7.712

Table 7: Hi-split vs scaffold split

Dataset Validation Test

DRD2-Hi (Hi split) 0.603 0.677
DRD2-Hi (Scaffold split) 0.872 0.663

HIV-Hi (Hi split) 0.069 0.084
HIV-Hi (Scaffold split) 0.189 0.078

The Hi-split method demonstrates superior predictive performance for virtual screening hit rate713

compared to the scaffold split method, which is over-optimistic in the Hit Identification scenario. It714

also improved the test evaluation metric, although the difference is not substantial. The improved715

performance of the Hi-split may be attributed to the selection of more regularized models.716

G Novelty consensus analysis717

We have reproduced the work presented in [43] using binary ECFP4 fingerprints, as calculated by718

RDKit version 2022.9.5. The results can be found in Figure 13. For this particular work, we selected719

0.40 as the novelty threshold.720

Figure 13: Sigmoid fit to [43] data
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H Hyperparameter optimization721

We used random or grid search to optimize hyperparameters for all models except for the Graphormer,722

which was too slow for meticulous hyperparameter search. Here we provide optimization parameters723

and additional commentary on the training.724

We utilized a single NVIDIA RTX 2070 SUPER with CUDA 11.7 and calculated binary 1024 ECFP4725

and MACCS fingerprints using RDKit 2022.9.5.726

H.1 Dummy baseline727

Always predicts the same constant value.728

H.2 KNN729

We used scipy.spatial.distance.jaccard as the distance metric, as it outperformed the stan-730

dard Euclidian distance in our use case. We used grid search with all combinations of parameters.731

For ECFP4 it was:732

params = {733

’n_neighbors’: [3, 5, 7, 10],734

’weights’: [’uniform’, ’distance’],735

}736

and for MACCS:737

params = {738

’n_neighbors’: [3, 5, 7, 10, 12, 15],739

’weights’: [’uniform’, ’distance’],740

}741

H.3 Gradient Boosting742

We used 30 iterations of random search with these parameters:743

params = {744

’n_estimators’: [10, 50, 100, 150, 200, 250, 500],745

’learning_rate’: [0.01, 0.1, 0.3, 0.5, 0.7, 1.0],746

’subsample’: [0.4, 0.7, 0.9, 1.0],747

’min_samples_split’: [2, 3, 5, 7],748

’min_samples_leaf’: [1, 3, 5],749

’max_depth’: [2, 3, 4],750

’max_features’: [None, ’sqrt’]751

}752

H.4 SVM753

We used grid search with these parameters:754

params = {755

’C’: [0.1, 0.5, 1.0, 2.0, 5.0],756

}757

H.5 MLP758

We implemented a feed-forward neural network using Pytorch 2.0.0+cu117 and Pytorch Lightning759

2.0.2. It consisted of several feed-forward layers with optional dropout layers. We used early stopping760
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to prevent overfitting with patience 20 for the Hi tasks, and 10 for the Lo tasks. We used learning761

rate 0.01. We used batch size 32. We conducted 30 iterations of random search. For ECFP4 we used762

these parameters:763

param_dict = {764

’layers’: [765

[1024, 32, 32],766

[1024, 16, 16],767

[1024, 32],768

[1024, 8, 4],769

[1024, 4]770

],771

’dropout’: [0.0, 0.0, 0.2, 0.4, 0.6],772

’l2’: [0.0, 0.0, 0.001, 0.005, 0.01],773

}774

For MACCS we used these parameters:775

param_dict = {776

’layers’: [777

[167, 32, 32],778

[167, 16, 16],779

[167, 32],780

[167, 8, 4],781

[167, 4]782

],783

’dropout’: [0.0, 0.0, 0.2, 0.4, 0.6],784

’l2’: [0.0, 0.0, 0.001, 0.005, 0.01],785

}786

After the selection of the best hyperparameters, we selected a fixed number of the training epochs787

using early stopping. We used the same number of epochs for all the folds.788

H.6 Chemprop789

We used Chemprop 1.5.2 with rdkit features. We found the evaluation metrics to be a little better790

with them, but it was SOTA for Hi even without them:791

’--features_generator rdkit_2d_normalized’,792

’--no_features_scaling’,793

We used 20 iterations of random search with these parameters:794

param_dict = {795

’--depth’: [’3’, ’4’, ’5’, ’6’],796

’--dropout’: [’0.0’, ’0.2’, ’0.3’, ’0.5’, ’0.7’],797

’--ffn_hidden_size’: [’600’, ’1200’, ’2400’, ’3600’],798

’--ffn_num_layers’: [’1’, ’2’, ’3’],799

’--hidden_size’: [’600’, ’1200’, ’2400’, ’3600’]800

}801

We selected the number of epochs using only the first fold. After the hyperparameters were selected,802

we trained the model and did not expose it to the test data. The full command for training Chemprop803

for HIV-Hi dataset:804

chemprop_train --data_path data/hi/hiv/train_1.csv --dataset_type classification \805

--save_dir checkpoints/hi/hiv/ \806
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--config_path configs/hiv_hi \807

--separate_val_path data/hi/hiv/train_1.csv \808

--separate_test_path data/hi/hiv/train_1.csv \809

--metric ’prc-auc’ \810

--epochs 40 \811

--features_generator rdkit_2d_normalized \812

--no_features_scaling813

For the DRD-Hi the best hyperparameters were:814

{815

"depth": 6,816

"dropout": 0.0,817

"ffn_hidden_size": 2400,818

"ffn_num_layers": 1,819

"hidden_size": 2400820

}821

For the HIV-Hi the best hyperparameters were:822

{823

"depth": 6,824

"dropout": 0.2,825

"ffn_hidden_size": 3600,826

"ffn_num_layers": 2,827

"hidden_size": 3600828

}829

H.7 Graphormer830

We used Graphormer with the last commit 77f436db46fb9013121289db670d1a763f264153. We ap-831

plied two fixes, that we found in issues https://github.com/microsoft/Graphormer/issues/832

158#issuecomment-1500311589 and https://github.com/microsoft/Graphormer/833

issues/130#issuecomment-1207316808 that solved our problems. However, we set up an834

in-house Graphormer some time ago and currently, it cannot be reinstalled from scratch due to835

multiple broken dependencies.836

We modified code to calculate and track PR AUC metrics, to add our datasets, and to evaluate trained837

models. We manually optimized the hyperparameters over approximately 10 iterations. We found838

Graphormer to be inferior to Chemprop, which is consistent with our previous experience with839

different datasets.840

We faced numerous technical difficulties in executing and modifying Graphormer [80, 81] due to841

improper dependency pinning by the authors. We found the training to be slow, which limited our842

ability to optimize hyperparameters. Because of technical difficulties, we decided not to test it for the843

Lo task.844

H.8 HIV-Hi balance845

HIV-Hi is a highly unbalanced binary classification problem with only 3% of positive examples. Due846

to this imbalance, we experimented with weighted options of classical ML algorithms and manually847

resampled positive examples for neural networks.848
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I Spearman distribution849

The test set of the Lo datasets is composed of molecular clusters. To evaluate the models, the850

Spearman correlation coefficient is calculated within each cluster, comparing the actual activity851

values to the predicted ones. The final Lo metric is the average of the Spearman coefficients across852

all clusters.853

In the following, we present a histogram of Spearman coefficients for the best models across various854

datasets. Note that the KDR-Lo dataset is more challenging than both DRD2-Lo and KCNH2-Lo.855

Figure 14: KCNH2-Lo Spearman coefficient distribution for SVM-ECFP4

Figure 15: DRD2-Lo Spearman coefficient distribution for SVM-ECFP4
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Figure 16: KDR-Lo Spearman coefficient distribution for SVM-ECFP4

Figure 17: KDR-Lo Spearman coefficient distribution for Chemprop
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