RevColV2: Exploring Disentangled Representations in Masked Image Modeling

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Qi Han, Yuxuan Cai, Xiangyu Zhang

Abstract

Masked image modeling (MIM) has become a prevalent pre-training setup for vision foundation models and attains promising performance. Despite its success, existing MIM methods discard the decoder network during downstream applica- tions, resulting in inconsistent representations between pre-training and fine-tuning and can hamper downstream task performance. In this paper, we propose a new architecture, RevColV2, which tackles this issue by keeping the entire autoen- coder architecture during both pre-training and fine-tuning. The main body of RevColV2 contains bottom-up columns and top-down columns, between which information is reversibly propagated and gradually disentangled. Such design enables our architecture with the nice property: maintaining disentangled low-level and semantic information at the end of the network in MIM pre-training. Our experimental results suggest that a foundation model with decoupled features can achieve competitive performance across multiple downstream vision tasks such as image classification, semantic segmentation and object detection. For exam- ple, after intermediate fine-tuning on ImageNet-22K dataset, RevColV2-L attains 88.4\% top-1 accuracy on ImageNet-1K classification and 58.6 mIoU on ADE20K semantic segmentation. With extra teacher and large scale dataset, RevColv2-L achieves 62.1 APbox on COCO detection and 60.4 mIoU on ADE20K semantic segmentation.