Feature learning via mean-field Langevin dynamics: classifying sparse parities and beyond

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Taiji Suzuki, Denny Wu, Kazusato Oko, Atsushi Nitanda

Abstract

Neural network in the mean-field regime is known to be capable of \textit{feature learning}, unlike the kernel (NTK) counterpart. Recent works have shown that mean-field neural networks can be globally optimized by a noisy gradient descent update termed the \textit{mean-field Langevin dynamics} (MFLD). However, all existing guarantees for MFLD only considered the \textit{optimization} efficiency, and it is unclear if this algorithm leads to improved \textit{generalization} performance and sample complexity due to the presence of feature learning. To fill this gap, in this work we study the statistical and computational complexity of MFLD in learning a class of binary classification problems. Unlike existing margin bounds for neural networks, we avoid the typical norm control by utilizing the perspective that MFLD optimizes the \textit{distribution} of parameters rather than the parameter itself; this leads to an improved analysis of the sample complexity and convergence rate. We apply our general framework to the learning of $k$-sparse parity functions, where we prove that unlike kernel methods, two-layer neural networks optimized by MFLD achieves a sample complexity where the degree $k$ is ``decoupled'' from the exponent in the dimension dependence.