Projection-Free Methods for Solving Nonconvex-Concave Saddle Point Problems

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Morteza Boroun, Erfan Yazdandoost Hamedani, Afrooz Jalilzadeh

Abstract

In this paper, we investigate a class of constrained saddle point (SP) problems where the objective function is nonconvex-concave and smooth. This class of problems has wide applicability in machine learning, including robust multi-class classification and dictionary learning. Several projection-based primal-dual methods have been developed to tackle this problem; however, the availability of methods with projection-free oracles remains limited. To address this gap, we propose efficient single-loop projection-free methods reliant on first-order information. In particular, using regularization and nested approximation techniques, we propose a primal-dual conditional gradient method that solely employs linear minimization oracles to handle constraints. Assuming that the constraint set in the maximization is strongly convex, our method achieves an $\epsilon$-stationary solution within $\mathcal{O}(\epsilon^{-6})$ iterations. When the projection onto the constraint set of maximization is easy to compute, we propose a one-sided projection-free method that achieves an $\epsilon$-stationary solution within $\mathcal{O}(\epsilon^{-4})$ iterations. Moreover, we present improved iteration complexities of our methods under a strong concavity assumption. To the best of our knowledge, our proposed algorithms are among the first projection-free methods with convergence guarantees for solving nonconvex-concave SP problems.