Universal Gradient Descent Ascent Method for Nonconvex-Nonconcave Minimax Optimization

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper

Authors

Taoli Zheng, Linglingzhi Zhu, Anthony Man-Cho So, Jose Blanchet, Jiajin Li

Abstract

Nonconvex-nonconcave minimax optimization has received intense attention over the last decade due to its broad applications in machine learning. Most existing algorithms rely on one-sided information, such as the convexity (resp. concavity) of the primal (resp. dual) functions, or other specific structures, such as the Polyak-Łojasiewicz (PŁ) and Kurdyka-Łojasiewicz (KŁ) conditions. However, verifying these regularity conditions is challenging in practice. To meet this challenge, we propose a novel universally applicable single-loop algorithm, the doubly smoothed gradient descent ascent method (DS-GDA), which naturally balances the primal and dual updates. That is, DS-GDA with the same hyperparameters is able to uniformly solve nonconvex-concave, convex-nonconcave, and nonconvex-nonconcave problems with one-sided KŁ properties, achieving convergence with $\mathcal{O}(\epsilon^{-4})$ complexity. Sharper (even optimal) iteration complexity can be obtained when the KŁ exponent is known. Specifically, under the one-sided KŁ condition with exponent $\theta\in(0,1)$, DS-GDA converges with an iteration complexity of $\mathcal{O}(\epsilon^{-2\max\\{2\theta,1\\}})$. They all match the corresponding best results in the literature. Moreover, we show that DS-GDA is practically applicable to general nonconvex-nonconcave problems even without any regularity conditions, such as the PŁ condition, KŁ condition, or weak Minty variational inequalities condition. For various challenging nonconvex-nonconcave examples in the literature, including *Forsaken*, *Bilinearly-coupled minimax*, *Sixth-order polynomial*, and *PolarGame*, the proposed DS-GDA can all get rid of limit cycles. To the best of our knowledge, this is the first first-order algorithm to achieve convergence on all of these formidable problems.