Tree-Based Diffusion Schrödinger Bridge with Applications to Wasserstein Barycenters

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper Supplemental

Authors

Maxence Noble, Valentin De Bortoli, Arnaud Doucet, Alain Durmus

Abstract

Multi-marginal Optimal Transport (mOT), a generalization of OT, aims at minimizing the integral of a cost function with respect to a distribution with some prescribed marginals. In this paper, we consider an entropic version of mOT with a tree-structured quadratic cost, i.e., a function that can be written as a sum of pairwise cost functions between the nodes of a tree. To address this problem, we develop Tree-based Diffusion Schr\"odinger Bridge (TreeDSB), an extension of the Diffusion Schr\"odinger Bridge (DSB) algorithm. TreeDSB corresponds to a dynamic and continuous state-space counterpart of the multimarginal Sinkhorn algorithm. A notable use case of our methodology is to compute Wasserstein barycenters which can be recast as the solution of a mOT problem on a star-shaped tree. We demonstrate that our methodology can be applied in high-dimensional settings such as image interpolation and Bayesian fusion.