DESSERT: An Efficient Algorithm for Vector Set Search with Vector Set Queries

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper

Authors

Joshua Engels, Benjamin Coleman, Vihan Lakshman, Anshumali Shrivastava

Abstract

We study the problem of $\text{\emph{vector set search}}$ with $\text{\emph{vector set queries}}$. This task is analogous to traditional near-neighbor search, with the exception that both the query and each element in the collection are $\text{\textit{sets}}$ of vectors. We identify this problem as a core subroutine for semantic search applications and find that existing solutions are unacceptably slow. Towards this end, we present a new approximate search algorithm, DESSERT ($\text{\bf D}$ESSERT $\text{\bf E}$ffeciently $\text{\bf S}$earches $\text{\bf S}$ets of $\text{\bf E}$mbeddings via $\text{\bf R}$etrieval $\text{\bf T}$ables). DESSERT is a general tool with strong theoretical guarantees and excellent empirical performance. When we integrate DESSERT into ColBERT, a state-of-the-art semantic search model, we find a 2-5x speedup on the MS MARCO and LoTTE retrieval benchmarks with minimal loss in recall, underscoring the effectiveness and practical applicability of our proposal.