Connecting Certified and Adversarial Training

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper

Authors

Yuhao Mao, Mark Müller, Marc Fischer, Martin Vechev

Abstract

Training certifiably robust neural networks remains a notoriously hard problem.While adversarial training optimizes under-approximations of the worst-case loss, which leads to insufficient regularization for certification, sound certified training methods, optimize loose over-approximations, leading to over-regularization and poor (standard) accuracy.In this work, we propose TAPS, an (unsound) certified training method that combines IBP and PGD training to optimize more precise, although not necessarily sound, worst-case loss approximations, reducing over-regularization and increasing certified and standard accuracies.Empirically, TAPS achieves a new state-of-the-art in many settings, e.g., reaching a certified accuracy of $22$% on TinyImageNet for $\ell_\infty$-perturbations with radius $\epsilon=1/255$. We make our implementation and networks public at https://github.com/eth-sri/taps.