Latent SDEs on Homogeneous Spaces

Part of Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track

Bibtex Paper

Authors

Sebastian Zeng, Florian Graf, Roland Kwitt

Abstract

We consider the problem of variational Bayesian inference in a latent variable model where a (possibly complex) observed stochastic process is governed by the unobserved solution of a latent stochastic differential equation (SDE). Motivated by the challenges that arise when trying to learn a latent SDE in $\mathbb{R}^n$ from large-scale data, such as efficient gradient computation, we take a step back and study a specific subclass instead. In our case, the SDE evolves inside a homogeneous latent space and is induced by stochastic dynamics of the corresponding (matrix) Lie group. In the context of learning problems, SDEs on the $n$-dimensional unit sphere are arguably the most relevant incarnation of this setup. For variational inference, the sphere not only facilitates using a uniform prior on the initial state of the SDE, but we also obtain a particularly simple and intuitive expression for the KL divergence between the approximate posterior and prior process in the evidence lower bound. We provide empirical evidence that a latent SDE of the proposed type can be learned efficiently by means of an existing one-step geometric Euler-Maruyama scheme. Despite restricting ourselves to a less diverse class of SDEs, we achieve competitive or even state-of-the-art performance on a collection of time series interpolation and classification benchmarks.