
Appendix - Community Detection Guarantees using Embeddings Learned by488

Node2Vec489

The Appendix consists of the proofs of the results stated within the paper, along with some extra490

discussions which would detract from the flow of the main paper. We also provide some additional491

simulation results relating to node classification, and further simulated and real data experiments492

examining community detection.493

A Additional Experimental Results494

Here we provide additional details describing the experimental results presented in the main paper.495

We also describe additional experiments. All experiments were run on a computing cluster utilising496

4 cores of an Intel E5-2683 v4 Broadwell 2.1GHz CPU or similar with 2 GB of memory per core.497

Each individual experimental run required at most 2 hours of computing time. All experiments,498

including initial preliminary experiments, required approximately 25k CPU hours. All code required499

to reproduce all results is included in the code repository in the supplemental files.500

Additional Simulation, Node Classification We provide a simple experiment to support the501

theoretical results on node classification demonstrated in Section D of the appendix. We simulate502

data from a SBM(n/κ, κ, p̃, q̃, ρn) as before with q̃ = p̃β as in the main text. We learn an embedding503

of each node using node2vec with embedding dimension of 64 and all other parameters set at their504

default values. We then use the true community labels of 10% of these nodes to train a (multinomial)505

logistic regression classifier, and predict the class label for the remaining 90% of nodes in the network.506

We examine the performance of this classification tool using the node2vec embeddings in terms of507

classification accuracy. We show these results in Figure S1 for ρn = log(n)/n, with 10 simulations508

for each setting, with the mean across these simulations and error bars indicating one standard error.509

This classifier has excellent accuracy at predicting the labels of other nodes.510

Figure S1: Classification accuracy using 10% of the node embeddings to learn a multinomial logistic
regression classifier. Mean and one standard error shown.

Additional Results, Community Detection Here we include additional simulation results which511

were omitted from the main text. In particular, for the simulations considered in the main manuscript512

we now examine the community recovery performance in terms of the normalized mutual information513

[9]. We show the average NMI score across these simulations, along with error bars corresponding514

to one standard error. In each case, the NMI metric is similar to the proportion of nodes correctly515

recovered. As we increase the number of nodes this performance improves.516
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Figure S2: NMI for relatively sparse SBM. Mean and one standard error shown.

Figure S3: NMI for relatively sparse DC-SBM. Mean and one standard error shown.

Rates of Convergence We can also investigate the empirical convergence of these methods. Here,517

we consider the same simulated SBM data as above, and examine the convergence in the proportion518

of nodes correctly recovered, as we increase the number of nodes in the network, for κ = 2, 3, 4, 5.519

We empirically investigate this convergence using a log-log plot, which is shown in Figure S5 for520

a relatively sparse SBM. Our node2vec procedures demonstrates empirical convergence which is521

super-linear for dense networks while being sub-linear for relatively sparse networks.522

Varying the node2vec walk parameters We also wish to examine the performance of our proposed523

clustering procedure when the parameters of the random walk are varied. While p and q are both524

commonly chosen to be 1, resulting in a simple random walk, other values are possible. We consider525

data simulated from the relatively sparse DC-SBM considered previously with κ = 2 communities and526

consider the within between community probability ratio β = .01 and β = 0.2, corresponding to an527

easier and harder setting to recover the communities respectively. We then consider p, q ∈ {0.5, 1, 2},528

the common possible values and vary the number of nodes in each community as before. For each529
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Figure S4: NMI varying α for relatively sparse DC-SBM. Mean and one standard error shown.

Figure S5: Log-Log plot showing the rate of convergence as we increase the number of nodes in the
network. We show a fitted regression for each of the values of β, showing better convergence when
the difference between the within and between community edge probabilities is higher.

of these settings we perform community detection using node2vec and spectral clustering. When530

β = 0.01 weobtain excellent community recovery for all values of p and q, as shown in Figure S6(a).531

When β = 0.2 community recovery is more challenging for small networks for all values of p and532

q. As the number of nodes increases, Figure S6(b) shows that all choices of p and q result in good533

performance.534

A.1 Performance on Real Networks535

We wish to further examine the performance of this community detection procedure for real networks,536

with known community structure. We also wish to compare this procedure to spectral clustering,537

which is widely used in practice for community detection. We use two publicly available networks538

containing known community structure. We first consider a network of emails between 1005 members539
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(a) β = 0.01 (b) β = 0.2

Figure S6: Varying the node2vec sampling parameters for DC-SBMs with β = 0.01 (left) and
β = 0.2 (right). Community recovery is harder when β is larger and this is seen for all values of p
and q for small networks. As the number of nodes increases we get good community recovery for all
choices of p and q.

of a large research institution, available as part of the Stanford Network Analysis Project [30]. There540

are 25571 directed edges between the nodes in this network, with known ground truth communities541

consisting of 42 departments present in this institution. We also consider a widely used dataset of542

directed edges between 1490 U.S political blogs, collected before the 2004 elections [2]. Here the543

directed edges correspond to hyperlinks, with ground truth communities corresponding to whether544

the blogs has been identified as liberal or conservative.545

For each of these datasets we compare the community recovery of Node2Vec and traditional spectral546

clustering, using the normalized graph Laplacian. As is common in the literature, we remove the547

direction from these edges and take the largest connected component, forming symmetric adjacency548

matrices with 986 and 1222 nodes respectively. We then use the previously described procedure549

to perform community detection using Node2Vec. We consider a range of embedding dimensions550

(d = 16, 32, 64, 128, 256) and unigram sampling parameter (α = −1, 0.0, 0.25, 0.5, 0.75, 1.0), while551

keeping all other parameters fixed at the defaults considered before. With the true number of552

communities known, we then compare the estimated communities from 10 simulations for each of553

these parameter settings, along with performing 10 simulations of spectral clustering for each of these554

settings.555

In Figure S7 we compare the performance of Node2Vec and spectral clustering for the Email network556

and in Figure S8 we use the Political Blogs network. We measure community recovery in terms557

of the normalized mutual information (NMI) between the estimated and true communities. Other558

metrics such as the adjusted rand index (ARI) showing similar results. In each case the communities559

estimated by Node2Vec are substantially closer to the true communities than those estimated by560

spectral clustering. As highlighted by Karrer and Newman [22] for the political blog data, models561

which do not account for degree heterogeneity can struggle to recover the underlying community562

structure. As shown in Figure S8, spectral clustering is unable to recover the communities due to563

this heterogeneity, while clustering using the Node2Vec embedding shows strong performance at564

community recovery.565

We also further expand on the role of the embedding parameters in the performance of Node2Vec on566

these real networks. In Figure S9 we examine community recovery for the Email data as we vary the567

embedding dimension d and the unigram sampling parameter α. As we vary each of these parameters568

we see good community recovery in all settings. For this dataset all choices of embedding dimension569

and unigram parameter give good NMI scores.570

B Additional Notation571

We give a brief recap of some of the notation introduced in the main paper, along with some more572

notation which is used purely within the Supplemntary Material. Throughout, we will suppose that573
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Figure S7: Community recovery for the Email data, using both Node2Vec and Spectral Clustering.
Node2Vec can better recover the true communities.

Figure S8: Community recovery for the Political Blog data, using both Node2Vec and Spectral
Clustering. Node2Vec can better recover the true communities.

the graph G = (V, E) is drawn according to the following generative model: each vertex u ∈ V574

have latent variables λu = (c(u), θu) where c(u) ∈ [κ] is a community assignment, and θu is a575

degree-heterogenity correction factor. We then suppose that the edges auv ∈ {0, 1} in the graph Gn576

on n vertices arise independently with probability577

P(auv = 1 |λu, λv) = ρnθuθvPc(u),c(v) (S1)

for u < v, with auv = avu by symmetry for u > v2. The factor ρn accounts for sparsity in the578

network. The above model corresponds to a degree corrected stochastic block model [22]; we579

2To prevent notation overloading when A is used to indicate constants, we use auv to describe the presence
or absence of an edge between nodes u and v in the supplement, rather than Auv which was used in the main
text.
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(a) Varying the embedding dimension used. (b) Varying the Unigram Parameter α.

Figure S9: The effect of different Node2Vec parameters on community recovery, measure in terms of
Normalized Mutual Information (NMI), for the Email Data.

highlight that the case where θu is constant across all u ∈ V corresponds to the original stochastic580

block model [19]. For convenience, we will write581

W (λu, λv) = θuθvPc(u),c(v) so P(Auv = 1 |λu, λv) = ρnW (λu, λv). (S2)

We then introduce the notation582

W (λi, ·) := E[W (λi, λj) |λi], EW (α) := E[W (λi, ·)α] for α > 0. (S3)

Note that under the assumptions that the community assignments are drawn i.i.d from a583

Categorical(π) random variable, and the degree correction factors are drawn i.i.d from a distri-584

bution ϑ independently of the community assignments, we have585

W (λi, ·) = θi · E[θ] · Ej∼Cat(π)[Pc(i),j | c(i)] = θi · E[θ] ·
κ∑

j=1

πjPc(i),j , (S4)

EW (α) = E[θα] · E[θ]α ·
κ∑

i=1

πi

( κ∑
j=1

πjPi,j

)α

(S5)

For convenience, we will write P̃c(i) =
∑κ

j=1 πjPc(i),j .586

Recall that node2vec attempts to minimize the objective587

Ln(U, V ) :=
∑
i ̸=j

{
−P

(
(i, j) ∈ P(Gn) | Gn

)
log(σ(⟨ui, vj⟩))

− P
(
(i, j) ∈ N (Gn) | Gn

)
log(1− σ(⟨ui, vj⟩))

}
where U, V ∈ Rn×d, with ui, vj ∈ Rd denoting the i-th and j-th rows of U and V respectively, and588

σ(x) := (1 + e−x)−1 denoting the sigmoid function. Here P and N correspond to the positive and589

negative sampling schemes induced by the random walk and unigram mechanisms respectively.590

C Proof of Theorems 2 and 3591

C.1 Proof overview592

To give an overview of the proof approach, we work by forming successive approximations to the593

function Ln(U, V ) where we have uniform convergence of the approximation error as n→ ∞ over594

either level sets of the function considered, or the overall domain of optimization of the embedding595

matrices U and V . We break these approximations up into multiple steps:596

1. Theorems S1, S2, S3 and Proposition S4 - We begin by working with an approximation597

L̂n(U, V ) of Ln(U, V ), where the sampling weights P
(
(i, j) ∈ P(Gn) | Gn

)
and P

(
(i, j) ∈598

N (Gn) | Gn

)
are replaced by functions of the latent variables (λi, λj) of the vertices i and j,599

along with aij in the case of fP(λi, λj).600
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2. The resulting approximation L̂n(U, V ) has a dependence on the adjacency matrix of the601

network. We argue that this loss function converges uniformly to its average over the602

adjacency matrix when the vertex latent variables remain fixed; this is the contents of603

Theorem S5.604

3. So far, the loss function only looks between interactions of ui and vj for i ̸= j. For605

theoretical purposes, it is more convenient to work with a loss function where the term with606

i = j is included. This is handled within Lemma S6.607

4. Now that we have an averaged version of the loss function to work with, we are able to608

examine the minima of this loss function, and find that there is a unique minima (in the sense609

that for any pair of optima matrices U∗ and V ∗, the matrix U∗(V ∗)T is unique). Moreover,610

in certain circumstances we can give closed forms for these minima. This is the contents of611

Section C.6.612

5. This is then all combined together in order to give Theorems S13 and S14, which correspond613

to Theorems 1 and 2 of the main text.614

We recap that we consider three scenarios - referred to as Scenario (i), (ii) and (iii) throughout - when615

proving the following result:616

(i) We use DeepWalk (p = q = 1 in node2vec), and the graph is drawn according to a SBM617

with ρn ≫ log(n)/n;618

(ii) We use node2vec, and the graph is drawn according to a SBM with ρn = n−α for some619

α < α′, where α′ depends on node2vec’s hyperparameters;620

(iii) We use DeepWalk and a unigram parameter of α = 1, and the graph is drawn according to a621

DCSBM with ρn ≫ log(n)/n where the degree heterogeneity parameters θu ∈ [C−1, C]622

for some C >∞.623

Generally speaking, the approach is the exact same for all three scenarios. As we have a closed formula624

in the case where we examine DeepWalk, we will consistently provide the details for the DeepWalk625

case first, and then discuss afterwards how the results and proofs change (if at all) when considering626

node2vec in generality. Throughout, we also contextualize the proof by examining what it says for a627

SBM(n, κ, p̃, q̃, ρn) model. This corresponds to a balanced network with π = (κ−1, . . . , κ−1).628

C.2 Replacing the sampling weights629

Before giving an approximation to Ln(U, V ), we need to first come up with approximate forms630

of P
(
(i, j) ∈ P(Gn) | Gn

)
and P

(
(i, j) ∈ N (Gn) | Gn

)
. The next three results give examples of631

this. In this section we prove three main results. The first two give us guarantees for the sampling632

probabilities of vertex pairs (u, v) for node2vec for any choice of the hyperparameters (p, q). In633

particular they will allow us to argue that when the underlying graph arises from a SBM, the sampling634

probabilities asymptotically depend only on the underlying communities. The last specializes this635

to the case of DeepWalk (where p = q = 1), which has enough structure to allow us to get some636

additional information, such as closed formula for these sampling probabilities, which can be used in637

the case where the graph arises through a DCSBM.638

Theorem S1. There exists α sufficiently small, depending on the walk length k, such that if ρn = n−α639

then there exists a symmetric measurable (with respect to the sigma field generated by W ) function640

fP(λ, λ
′) which is bounded below away from zero, and bounded above by Cρ−1

n for some constant641

C <∞, such that642

max
i ̸=j

∣∣∣∣∣n2P
(
(i, j) ∈ P(Gn) | Gn

)
aijfP(λi, λj)

− 1

∣∣∣∣∣ = op(1). (S6)

Theorem S2. There exists α sufficiently small, depending on the walk length k, such that if ρn = n−α643

then there exists a symmetric measurable (with respect to the sigma field generated by W ) function644

fP(λ, λ
′) which is bounded below away from zero, and bounded above by some constant C < ∞,645

such that646

max
i ̸=j

∣∣∣∣∣n2P
(
(i, j) ∈ P(Gn) | Gn

)
fN (λi, λj)

− 1

∣∣∣∣∣ = op(1). (S7)
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The proof of these two results are given in Appendix E.1.1 and E.1.2 respectively. We note that647

while in principle we could give a closed formula for fP and fN in this scenario, they are sufficiently648

intractable to inspection that doing so would not provide any benefit.649

In the case of DeepWalk where p = q = 1, the calculations involved are tractable enough such that650

we can improve the sparsity constraints, give closed forms for the measurable functions discussed651

above, and also provide rates of convergence.652

Theorem S3. Denote653

fP(λi, λj) :=
2k

ρnEW (1)
, (S8)

fN (λi, λj) :=
l(k + 1)

EW (1)EW (α)

(
W (λi, ·)W (λj , ·)α +W (λi, ·)αW (λj , ·)

)
. (S9)

Then we have that654

max
i ̸=j

∣∣∣∣∣n2P
(
(i, j) ∈ P(Gn) | Gn

)
aijfP(λi, λj)

− 1

∣∣∣∣∣ = Op

(( log n
nρn

)1/2)
, (S10)

max
i̸=j

∣∣∣∣∣n2P
(
(i, j) ∈ N (Gn) | Gn

)
fN (λi, λj)

− 1

∣∣∣∣∣ = Op

(( log n
nρn

)1/2)
. (S11)

Proof. This is a consequence of [11, Proposition 26]. We highlight the referenced result supposes655

that for the negative sampling scheme, vertices for which aij = 0 are rejected, whereas this does656

not happen here. Other than for the factor of (1− aij) in the quoted result, the proof is otherwise657

unchanged, which gives the statement above for P
(
(i, j) ∈ N (Gn) | Gn

)
.658

With this, we then get the following result:659

Proposition S4. Denote660

L̂n(U, V ) :=
1

n2

∑
i ̸=j

{
−fP(λi, λj)aij log(σ(⟨ui, vj⟩))−fN (λi, λj) log(1−σ(⟨ui, vj⟩))

}
(S12)

and define the set661

ΨA :=
{
U, V ∈ Rn×d | Ln(U, V ) ≤ ALn(0n×d, 0n×d)

}
⊆ Rn×d × Rn×d (S13)

for any constant A > 1, where 0n×d denotes the zero matrix in Rn×d. Then for any set X ⊆662

Rn×d × Rn×d containing the pair of zero matrices On×d, we have under Scenario i) and iii) that663

sup
(U,V )∈ΨA∩X

∣∣Ln(U, V )− L̂n(U, V )
∣∣ = Op

(
A ·

( log n
nρn

)1/2)
, (S14)

P
(
argmin
(U,V )∈X

Ln(U, V ) ∪ argmin
(U,V )∈X

L̂n(U, V ) ⊆ ΨA ∩X
)
= 1− o(1). (S15)

In Scenario (ii), the Op(·) bound is replaced by an op(1) bound.664

Proof. The proof is essentially equivalent to Lemma 32 of Davison and Austern [11] up to changes665

in notation, and so we do not repeat the details.666

Note that in practice we can choose A to be any constant greater than 1 but fixed with n - e.g A = 10,667

and have the result hold. We will do so going forward.668

C.3 Averaging over the adjacency matrix of the graph669

Following the proof outline, the next step is to argue that Ln(U, V ) is close to its expectation when670

we average over the adjacency matrix of the graph Gn. We begin with showing what occurs in the671
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DeepWalk case (Scenarios (i) and (iii)), and at the end of the section we discuss how the proof672

changes for the more general node2vec case. Note that we have673

E[L̂n(U, V ) |λ] = 1

n2

∑
i̸=j

{
−fP(λi, λj)ρnW (λu, λv) log(σ(⟨ui, vj⟩))−fN (λi, λj) log(1−σ(⟨ui, vj⟩))

}
(S16)

and so674

En(U, V ) :=
EW (1)

2k

(
L̂n(U, V )− E[L̂n(U, V ) |λ]

)
(S17)

=
1

n2

∑
i̸=j

(
ρ−1
n aij −W (λi, λj)

)
· (− log σ(⟨ui, vj⟩)). (S18)

Note that E[En(U, V ) |λ] = 0, and so it therefore suffices to control En(U, V )− E[En(U, V ) |λ]675

uniformly over embedding matrices U, V ∈ Rn×d. This is the contents of the next theorem.676

Theorem S5. Begin by defining the set677

B2,∞(A2,∞) :=
{
U ∈ Rn×d : ∥U∥2,∞ ≤ A2,∞

}
. (S19)

Then we have the bound678

sup
U,V ∈B2,∞(A2,∞)

∣∣En(U, V )
∣∣ = Op

(
A2

2,∞

( d

nρn

)1/2)
. (S20)

In particular, we also have that679

sup
U,V ∈B2,∞(A2,∞)

∣∣L̂n(U, V )− E[L̂n(U, V ) |λ]
∣∣ = Op

(A2
2,∞k

EW (1)

( d

nρn

)1/2)
. (S21)

Proof. Begin by noting that for any set C ⊆ Rn×d × Rn×d for which 0n×d × 0n×d ∈ C, we have680

that681

sup
(U,V )∈C

|En(U, V )| ≤ sup
(U,V )∈C

∣∣En(U, V )− En(0n×d, 0n×d)
∣∣+ |En(0n×d, 0n×d)| (S22)

≤ sup
(U,V ),(Ũ,Ṽ )∈C

∣∣En(U, V )− En(Ũ , Ṽ )
∣∣+ |En(0n×d, 0n×d)|. (S23)

We therefore need to control these two terms. We begin with the second; note that as682

En(0n×d, 0n×d) =
1

n2

∑
i̸=j

(
ρ−1
n aij −W (λi, λj)

)
· 1

n2
(S24)

it follows by Lemma S30 that this term is Op((n
2ρn)

−1/2). For the first term, we make use of683

a chaining bound. Note that if we write Tij = − log σ(⟨ui, vj⟩) and Sij = − log σ(⟨ũi, ṽj⟩) for684

i, j ∈ [n], then we have that685

En(U, V )− En(Ũ , Ṽ ) =
1

n2

∑
i ̸=j

(
ρ−1
n aij −W (λi, λj)

)
· (Tij − Sij). (S25)

Because the function x 7→ − log σ(x) is 1-Lipschitz, it follows that686

∥T − S∥2F ≤ ∥UV T − Ũ Ṽ T ∥2F , ∥T − S∥∞ ≤ ∥UV T − Ũ Ṽ T ∥∞ (S26)

and consequently we have that687

P
(
|En(U, V )− En(Ũ , Ṽ )| ≥ u

)
(S27)

≤ 2 exp
(
−min

{ u2

128ρ−1
n n−4∥UV T − Ũ Ṽ T ∥2F

,
u

16ρ−1
n n−2∥UV T − Ũ Ṽ T ∥∞

})
(S28)
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as a result of Lemma S30. Now, as U, V ∈ BF (AF )∩B2,∞(A2,∞), by Lemma S19 if we define the688

metrics689

dF ((U1, V1), (U2, V2)) := ∥U1 − U2∥F + ∥V1 − V2∥F , (S29)
d2,∞((U1, V1), (U2, V2)) := ∥U1 − U2∥2,∞ + ∥V1 − V2∥2,∞, (S30)

then we have that690

P
(
|En(U, V )− En(Ũ , Ṽ )| ≥ u

)
(S31)

≤ 2 exp
(
−min

{ u2

128ρ−1
n n−4A2

F dF ((U, V ), (Ũ , Ṽ ))2
,

u

16ρ−1
n n−2A2,∞d2,∞((U, V ), (Ũ , Ṽ ))

})
.

(S32)

As a result of Corollary S22, it therefore follows that691

sup
(U,V ),(Ũ,Ṽ )∈T×T

∣∣En(U, V )− En(Ũ , Ṽ )
∣∣ = Op

(
A2

2,∞

( d

nρn

)1/2

+A2
2,∞

d

nρn

)
(S33)

The desired conclusion follows by combining the bounds (S24) and (S33).692

For the more abstract node2vec case under Scenario (ii), we highlight that we can take693

En(U, V ) =
1

n2

∑
i ̸=j

ρnfP(λi, λj)
(
ρ−1
n aij −W (λi, λj)

)
· (− log σ(⟨ui, vj⟩)). (S34)

Now, as fP(λu, λv) is a function of the community assignments only within the SBM case, we694

can replace this by a matrix of constants fP,c,c′ for c, c′ ∈ [κ], and therefore the error term can be695

decomposed into a sum696 ∑
c1,c2

(ρnfP,c1,c2)
∑
i ̸=j

i:c(u)=c1
j:c(u)=c2

(
ρ−1
n aij −W (λi, λj)

)
· (− log σ(⟨ui, vj⟩)), (S35)

where we recall that maxc1,c2(ρnfP,c1,c2) <∞ as guaranteed by Theorem S1. Each of these terms697

(of which there are finitely many) can be controlled using the exact same argument as in Theorem S5,698

and so the conclusion of the Theorem also holds with the same overall rate of convergence in Scenario699

(ii).700

C.4 Adding in a diagonal term701

Currently the sum in E[L̂n(U, V ) |λ] is defined only terms i, j with i ̸= j - it is more convenient to702

work with the version where the diagonal term is added in:703

Rn(U, V ) :=
1

n2

∑
i,j∈[n]

{
− fP(λi, λj)ρnW (λu, λv) log(σ(⟨ui, vj⟩)) (S36)

− fN (λi, λj) log(1− σ(⟨ui, vj⟩))
}
. (S37)

We show that this does not significantly change the size of the loss function.704

Lemma S6. With the same notation as in Theorem S5, we have that705

sup
U,V ∈B2,∞(A2,∞)

∣∣Rn(U, V )− E[L̂n(U, V ) |λ]
∣∣

= Op

( 1

n
A2

2,∞

(
∥ρnfP(λ, λ′)W (λ, λ′)∥∞ + ∥fN (λ, λ′)∥∞

))
.

In particular, in the case of DeepWalk we have that706

sup
U,V ∈B2,∞(A2,∞)

∣∣Rn(U, V )− E[L̂n(U, V ) |λ]
∣∣ = Op

( 1

n
A2

2,∞

(2k∥W∥∞
EW (1)

+
2l(k + 1)∥W∥2∞
EW (1)EW (α)

))
.
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Proof. Begin by noting that707

0 ≤ Rn(U, V )− E[L̂n(U, V ) |λ]

=
1

n2

n∑
i=1

{
− fP(λi, λj)ρnW (λu, λv) log(σ(⟨ui, vi⟩))− fN (λi, λj) log(1− σ(⟨ui, vi⟩))

}
.

(S38)
Note that we can bound708

− log(σ(⟨ui, vj)) ≤ |⟨ui, vi⟩ ≤ ∥ui∥2∥vi∥2 (S39)

and similarly − log(1− σ(⟨ui, vi⟩)) ≤ |⟨ui, vi⟩| ≤ ∥ui∥2∥vi∥2. Moreover, we have the bounds709

fP(λi, λj)ρnW (λi, λj) ≤ ∥ρnfP(λ, λ′)W (λ, λ′)∥∞ <∞, fN (λi, λj) ≤ ∥fN (λ, λ′)∥∞ <∞
(S40)

under our assumptions. As a result, because U, V ∈ B2,∞(A2,∞), we end up with the final bound710 ∣∣Rn(U, V )− E[L̂n(U, V ) |λ]
∣∣ ≤ 1

n
A2

2,∞

(
∥ρnfP(λ, λ′)W (λ, λ′)∥∞ + ∥fN (λ, λ′)∥∞

)
(S41)

which gives the stated result as the RHS is free of U and V .711

C.5 Chaining up the loss function approximations712

By chaining up the prior results, we end up with the following result:713

Proposition S7. There exists a non-empty set Ψn for each n such that, for any setX ⊆ Rn×d×Rn×d714

containing 0n×d × 0n×d, we have for DeepWalk that715

sup
(U,V )∈Ψn∩B2,∞(A2,∞)

∣∣Ln(U, V )−Rn(U, V )
∣∣ = Op

(( log n
nρn

)1/2

+A2
2,∞

( d

nρn

)1/2)
(S42)

and716

P
(

argmin
(U,V )∈B2,∞(A2,∞)∩X

Ln(U, V )cup argmin
(U,V )∈B2,∞(A2,∞)∩X

Rn(U, V ) ⊆ ΨA ∩B2,∞(A2,∞) ∩X
)

= 1− o(1).
(S43)

For node2vec, the same result holds when we replace the (log n/nρn)
1/2 term with an op(1) term717

and add the constraint that d ≪ nρn. The same result also holds when we constrain U = V , but718

otherwise keep everything else unchanged.719

C.6 Minimizers of Rn(U, V )720

Recall that we have earlier defined721

Rn(U, V ) :=
1

n2

∑
i,j∈[n]

{
− fP(λi, λj)ρnW (λu, λv) log(σ(⟨ui, vj⟩))

− fN (λi, λj) log(1− σ(⟨ui, vj⟩))
}
.

(S44)

We now want to reason about the minima of these functions. To do so, note that the optimization722

domain is non-convex - firstly due to the rank constraints on the matrix UV T , and secondly due to723

the fact that the loss function is invariant to any mapping (U, V ) → (UM,VM−1) for any invertible724

d× d matrix M . To handle the second part, we consider the global minima of this function when725

parameterized only in term of the matrix UV T . We will then see that the minima matrix is already726

low rank.727

We first begin by giving some basic facts about the function Rn(U, V ) when parameterized as a728

function of UV T .729

Lemma S8. Define the modified function730

Rn(M) :=
1

n2

∑
i,j∈[n]

{
− fP(λi, λj)ρnW (λu, λv) log(σ(Mij))− fN (λi, λj) log(1− σ(Mij))

}
.

(S45)
over all matrices M ∈ Rn×n. Then we have the following:731
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a) The function Rn(M) is strictly convex in M .732

b) The global minimizer of Rn(M) is given by733

M∗
ij = log

(fP(λi, λj)ρnW (λi, λj)

fN (λi, λj)

)
(S46)

and satisfies ∇MRn(M) = 0.734

c) When restricted to a cone of semi-positive definite matricesM ∈ M⋟0
n , there exists a unique735

minimizer to Rn(M) over this set, which we call M⋟0. Moreover, M⋟0 has the property736

that ⟨∇MRn(M
⋟0),M⋟0 −M⟩ ≤ 0 for all M ∈ M⋟0

n .737

Proof. For part a), this follows by the fact that the functions − log(σ(x)) and − log(1− σ(x)) are738

positive and strictly convex functions of x ∈ R, the fact that fP(λi, λj)ρnW (λi, λj) and fN (λi, λj)739

are positive quantities which are bounded above (see e.g Lemma S6), and the fact that the sum of740

strictly convex functions is strictly convex. For part b), this follows by noting that each of the M∗
ij741

are pointwise minima of the functions742

rij(x) = −fP(λi, λj)ρnW (λu, λv) log(σ(x)))− fN (λi, λj) log(1− σ(x)) (S47)

defined over x ∈ R. Indeed, note that743

drij
dx

= (−1 + σ(x))fP(λi, λj)ρnW (λu, λv) + σ(x)fN (λi, λj), (S48)

so setting this equal to zero, rearranging and making use of the equality σ−1(a/(a+ b)) = log(a/b)744

gives the stated result. Part c) is a consequence of strong convexity, the optimization domain being745

convex and self dual, and the KKT conditions.746

To understand the form of the the global minimizer of Rn(M) in the DeepWalk case, by substituting747

in the values for fP(λi, λj) and fN (λi, λj) we end up with748

M∗
ij = log

( 2Pc(i),c(j)EW (α)

(1 + k−1)E[θ]E[θ]α
(
θα−1
j P̃c(i)P̃

α
c(j) + θα−1

i P̃α
c(i)P̃c(j)

)) (S49)

= log
( 2EW (α)

(1 + k−1)E[θ]E[θ]α
·

Pc(i),c(j)

P̃c(i)P̃c(j) ·
(
θα−1
i P̃α−1

c(i) + θα−1
j P̃α−1

c(j)

)) (S50)

In particular, from the above formula we get the following lemma as a consequence:749

Lemma S9. Suppose that Scenarios (i) or (iii) holds, so that either a) θi is constant for all i, or750

b) α = 1. Then if we write ΠC ∈ Rn×κ for the matrix where (ΠC)il = 1[c(i) = l], and define the751

matrix752

(M̃∗
α)lm = log

( 2EW (α)

(1 + k−1)E[θ]E[θ]α
· Plm

P̃mP̃α
l + P̃α

mP̃l

)
for l,m ∈ [κ], (S51)

then we have that M∗ = ΠCM̃
∗
αΠ

T
C . In particular, as soon as the matrix ΠC is of full rank (which753

occurs with asymptotic probability 1), then the rank of M∗ equals the rank of M̃∗
α. Moreover, as754

soon as d is greater than or equal to the rank of M̃∗
α, (U, V ) is a minimizer of Rn(U, V ) if and only755

if UV T =M∗.756

Under Scenario (ii), the same result applies noting that fP and fN are functions only of the underling757

communities, and so if we abuse notation and write e.g fP(l,m) to indicate the value of fP(λi, λj)758

when c(i) = l and c(j) = m, one can take759

(M̃∗)lm = log
(fP(l,m)ρnPl,m

fN (l,m)

)
(S52)

and have the above result hold.760
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We discuss in Appendix F what happens when we apply DeepWalk in the DCSBM regime when α ̸= 1.761

To give an example of what M∗ looks like, we write it down in the case of a SBM(n, κ, p̃, q̃, ρn)762

model, which is frequently used to illustrate the behavior of various community detection algorithms.763

Such a model assumes that the community assignments πl = 1/κ for all l ∈ [κ], and that764

Pkl =

{
p̃ if k = l,

q̃ if k ̸= l.
(S53)

In this case, we have that765

P̃l =
p̃+ κ(q̃ − 1)

κ
for l ∈ [κ], EW (α) = E[θ]αE[θα] ·

( p̃+ (κ− 1)q̃

κ

)α

. (S54)

Substituting these values into the matrix M̃∗
α gives766

(M̃∗
α)lm = log

( E[θα]
E[θ](1 + k−1)

· κp̃

p̃+ (κ− 1)q̃

)
δlm+log

( E[θα]
E[θ](1 + k−1)

· κq̃

p̃+ (κ− 1)q̃

)
(1−δlm).

(S55)
We highlight this is a matrix of the form αδlm + β(1− δlm), and so it is straightforward to describe767

the spectral behavior of the matrix (see Lemma S31).768

C.6.1 Minimizers in the constrained regime U = V769

In the case where we have constrained U = V , it is not possible in general to write down the closed770

form of the minimizer of Rn(M) over M⋟0
n . However, it is still possible to draw enough conclusions771

about the form of the minimizer in order to give guarantees for community detection. We begin772

with the proposition below. We state the next two results for DeepWalk only, but note that the first773

generalizes to the node2vec case immediately.774

Proposition S10. Suppose that θi is constant across all i. Supposing that M̃ ∈ Rκ×κ is of the form775

M̃ = Ũ ŨT for matrices Ũ ∈ Rκ×d, define the function776

R̃n(M̃) =
∑

l,m∈[κ]

p̂n(l)p̂n(m)
{
−2kPlm log σ(⟨ul, um⟩)−{P̃lP̃

α
m+P̃mP̃

α
l } log(1−σ(⟨ul, um⟩))

}
(S56)

where we define p̂n(l) := n−1|{i : c(i) = l}| for l ∈ [κ]. Then R̃n(M̃) is strongly convex, and777

moreover has a unique minimizer as soon as d ≥ κ.778

Moreover, any minimizer of Rn(M) over matrices M of the form M = UUT where U ∈ Rn×d must779

take the form M = ΠCM
∗ΠT

C where (ΠC)il = 1[c(i) = l] where M∗ is a minimizer of R̃n(M̃). In780

particular, once d ≥ κ, there is a unique minimizer to Rn(M).781

Proof. The properties of R̃n(M̃) are immediate by similar arguments to Lemma S8 and standard782

facts in convex analysis. We begin by noting that if we substitute in the values783

ρnW (λi, λj)fP(λi, λj) =
2kPc(i),c(j)

EW (1)
, (S57)

fN (λi, λj) =
l(k + 1)

EW (1)EW (α)

(
P̃c(i)P̃

α
c(j) + P̃c(j)P̃

α
c(i)

)
, (S58)

for fP(λi, λj) and fN (λi, λj), then we can write that (recalling that Mij = ⟨ui, uj⟩)784

Rn(M) :=
1

n2

∑
i,j∈[n]

{
− 2kPc(i),c(j) log σ(⟨ui, uj⟩) (S59)

− l(k + 1)

EW (1)EW (α)

(
P̃c(i)P̃

α
c(j) + P̃c(j)P̃

α
c(i)

)
log(1− σ(⟨ui, uj⟩))

}
(S60)

:=
∑

l,m∈[κ]

p̂n(l)p̂n(m)
{
− 2kPlm

1

|Cl||Cm|
∑

i∈Cl,j∈Cm

log σ(⟨ui, uj⟩) (S61)

− {P̃c(i)P̃
α
c(j) + P̃c(j)P̃

α
c(i)}

1

|Cl||Cm|
∑

i∈Cl,j∈Cm

log(1− σ(⟨ui, uj⟩))
}
(S62)
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where for l ∈ [κ] we define p̂n(l) := n−1|{i : c(i) = l}|, along with the sets Cl = {i : c(i) = l}.785

Now, note that as the functions − log(σ(x)) and − log(1 − σ(x)) are strictly convex, by Jensen’s786

inequality we have that e.g787

1

|Cl||Cm|
∑

i∈Cl,j∈Cm

− log σ(⟨ui, uj⟩) ≥ − log σ
(〈 1

|Cl|
∑
i∈Cl

ui,
1

|Cm|
∑
j∈Cm

uj

〉)
(S63)

(where we also used bilinearity of the inner product) where equality holds above if and only if the788

ui are constant are across all indices i. In particular, any minimizer of Rn(M) must have the ui789

constant across i ∈ Cl for each l ∈ [κ], which defines the function R̃n(M̃). This gives the claimed790

statement.791

In certain cases, we are able to give a closed form to the minimizer. We illustrate this for the case of792

the SBM(n, κ, p̃, q̃, ρn) model.793

Proposition S11. Let M̃∗ be the unique minimizer of R̃n(M̃) as introduced in Proposition S10.794

In the case of a SBM(n, κ, p̃, q̃, ρn) model, we have that κ−2∥M̃∗ −M∗∥1 = Op((κ log κ/n)
1/4),795

where M∗ is of the form796

(M∗)ij = α∗δij −
α∗

κ− 1
(1− δij) (S64)

for some α∗ = α∗(p̃, q̃) ≥ 0. Moreover, α∗ > 0 iff p̃ > q̃.797

Proof. We begin by arguing that the objective function R̃n(M̃) converges uniformly to the objective798

R̄n(M̃) :=
1

κ2

∑
l,m∈[κ]

{
−2kPlm log σ(⟨ul, um⟩)−{P̃mP̃

α
l +P̃lP̃

α
m} log(1−σ(⟨ul, um⟩))

}
(S65)

over a set containing the minimizers of both functions. Note that this function is also strictly convex,799

and has a unique minimizer as soon as d ≥ κ. To do so, we highlight that as we have that800

max
k ̸=l

∣∣∣ p̂n(l)p̂n(k)− κ−2

κ−2

∣∣∣ = Op

((κ log κ
n

)1/2)
(S66)

by standard concentration results for Binomial random variables (e.g Proposition 47 of [11]), it801

follows that802 ∣∣R̄n(M̃)− R̃n(M̃)
∣∣ ≤ R̄n(M̃) ·Op

((κ log κ
n

)1/2)
. (S67)

Consequently, R̃n(M̃) converges to R̄n(M̃) uniformly over any level set of R̄n(M̃), which neces-803

sarily contains the minima of R̄n(M̃). If one does so over the set (for example)804

A = {M̃ : R̄n(M̃) ≤ 10R̄n(0)} (S68)

(for example), then as R̄n(0) is constant across n, we have uniform convergence of (S67) over the set805

A at a rate of Op

(
(log κ/np)1/2

)
. This argument can be reversed, which therefore ensures uniform806

convergence (over the same set) which contains the minimizers (with the minimizer of R̃n(M) being807

contained within this set with asymptotic probability 1) at a rate of Op

(
(κ log κ/n)1/2

)
.808

With this, we note that an application of Lemma S33 gives that for any matrices M̃1 and M̃2 we have809

that810

R̄n(M̃1) ≥ R̄n(M̃2) + ⟨∆R̄n(M̃2), M̃1 − M̃2⟩ (S69)

+
C

κ2

∑
i,j∈[κ]

min{|(M̃2)ij − (M̃1)ij |2, 2|(M̃2)ij − (M̃1)ij |}. (S70)

where to save on notation, we define811

C :=
1

4
e−∥M̃2∥∞ min

l,m
{2kPlm, P̃mP̃

α
l }. (S71)
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In particular, if M̃2 = M̄∗ is an optimum of R̄n(M̃), then by the KKT conditions (similarly as in812

Lemma S8) we have that813

R̄n(M̃1)− R̄n(M̄
∗) ≥ C

κ2

∑
i,j∈[κ]

min{|(M̄∗)ij − (M̃1)ij |2, 2|(M̄∗)ij − (M̃1)ij |}. (S72)

In particular, if we then let M̃∗ be any minimizer of R̃n(M̃), then we have that814

C

κ2

∑
i,j∈[κ]

min{|(M̄∗)ij − (M̃1)ij |2, 2|(M̄∗)ij − (M̃1)ij |} (S73)

≤ R̄n(M̃1)− R̄n(M̄
∗) ≤ R̄n(M̃1)− R̃n(M̄

∗) + R̃n(M̃
∗)− R̄n(M̄

∗) (S74)

≤ 2 sup
M∈A

∣∣R̃n(M)− R̄n(M)
∣∣ (S75)

on an event of asymptotic probability 1. Consequently, it follows by Lemma S34 that815

1

κ2
∥M̄∗ − M̃∗∥1 = Op

(
(κ log κ/n)1/4

)
. (S76)

We now need to find the minimizing positive semi-definite matrix which optimizes R̄n(M̃). To do816

so, we will argue that one can find α for which817

M̂ij = αδij −
α

κ− 1
(1− δij), ∇R̄n(M̂) = C1κ1

T
κ , 1κ = (1, · · · , 1)T

for some positive constant C, as then the KKT conditions for the constrained optimization prob-818

lem will hold. Indeed, for any positive definite matrix M , as by definition of M̂ we have819

that ⟨∇R̄n(M̂), M̂⟩ = 0 as all of the eigenvectors of M̂ are orthogonal to the unit vector 1κ820

(Lemma S31). It consequently follows that as ∇R̄n(M̂) is itself positive definite, we get that821

⟨−∇R̄n(M̂), M̂ −M⟩ = ⟨∇R̄n(M̂),M⟩ ≥ 0. We now need to verify the existence of a constant α822

for which this condition holds. We note that as M̂ij is constant across i = j, and also constant across823

i ̸= j, to verify the condition that ∇R̄n(M̂) is proportional to 1κ1
T
κ , it suffices to check whether the824

on and off diagonal terms of ∇R̄n(M̂) are equal to each other. This gives the equation825

σ(α) ·
(
kp̃+ l(k + 1)

p̃+ (κ− 1)q̃

κ

)
= k(p̃− q̃) + σ(−α/(κ− 1))

(
kq̃ + l(k + 1)

p̃+ (κ− 1)q̃

κ

)
By applying Lemma S32, this has a singular positive solution in α if and only if k(p̃−q̃) ≥ k(p̃−q̃)/2,826

which holds iff p̃ ≥ q̃. In the case where p̃ < q̃, it follows that the solution has α = 0.827

C.7 Strong convexity properties of the minima matrix828

Proposition S12. Define the modified function829

Rn(M) :=
1

n2

∑
i,j∈[n]

{
− fP(λi, λj)ρnW (λu, λv) log(σ(Mij))− fN (λi, λj) log(1− σ(Mij))

}
.

(S77)
over all matrices M ∈ Rn×n. Then we have for any matrices M1,M2 ∈ Rn×n with830

∥M1∥∞, ∥M2∥∞ ≤ A∞ that831

Rn(M1) ≥ Rn(M2) + ⟨∇Rn(M2),M1 −M2⟩+
C̃e−A∞

2
· 1

n2
∥M1 −M2∥2F (S78)

where C̃ = minl,m{2kPl,m, P̃
α
l P̃m} for Scenarios (i) and (iii), and C̃ =832

min{∥ρnfP(λ, λ′)∥−∞, ∥fN (λ, λ′)∥−∞} > 0 for Scenario (ii). Moreover,833

i) If Rn(M) is constrained over a set X = {M = UV T : U, V ∈ Rn×d, ∥M∥∞ ≤ A∞},834

and there exists M∗ in X such that ∇Rn(M
∗) = 0, then we have that835

1

n2
∥M∗ −M∥2F ≤ 2C̃−1eA∞ ·

(
Rn(M)−Rn(M

∗)
)

for all M ∈ X . (S79)
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ii) If Rn(M) is constrained over a set X≥0 = {M = UUT : U ∈ Rn×d, ∥M∥∞ ≤ A∞ },836

and there exists M∗ in X≥0 such that ⟨∇Rn(M
∗),M −M∗⟩ ≥ 0 for all M ∈ X≥0, then837

we get the same inequality as in part i) above.838

Proof. The first inequality follows by an application of Lemma S33, with the second and third parts839

following by applying the conditions stated and rearranging.840

C.8 Convergence of the gram matrices of the embeddings841

By combining together Proposition S12 and Proposition S7 we end up with the following result:842

Theorem S13. Suppose that the conditions of Lemma S9 hold. (In particular, recall that d ≥ κ.)843

Then there exist constants A∞ and A2,∞ (depending on the parameters of the model and sampling844

scheme) and a matrix M∗ ∈ Rκ×κ (also depending on the parameters of the model and the sampling845

scheme) such that for any minimizer (U∗, V ∗) of L(U, V ) over the set846

X = {(U, V ) : ∥U∥∞, ∥V ∥∞ ≤ A∞, ∥U∥2,∞, ∥V ∥2,∞ ≤ A2,∞}, (S80)
we have that847

1

n2

∑
i,j∈[n]

(
⟨u∗i , v∗j ⟩ −M∗

c(i),c(j)

)2
= C ·

{
Op((

max{logn,d}
nρn

)1/2) under Scenarios (i) and (iii);
op(1) under Scenario (ii);

(S81)
for some constant C depending on the model, the node2vec hyperparameters, A∞ and A2,∞. In the848

case where we constrain U = V , the same result holds provided the conditions of Proposition S10849

hold.850

Proof. We note that by Lemma S9, there exists a minimizer M̃∗ for Rn(M) of the form M̃∗ =851

ΠM∗ΠT for a matrix M∗ ∈ Rκ×κ. We can then take A∞ and A2,∞ as 2∥M∗∥∞ and 2∥M∗∥2,∞.852

We highlight that we can do this even when d > κ, as we can embed M∗ into the block diagonal853

matrix diag(M∗, Od−κ,d−κ), which preserves both the norms above. Lemma S8 and Proposition S12854

then guarantee that855

1

n2
∥U∗(V ∗)T − M̃∗∥2F ≤ C̃ ·

(
Rn(UV

T )−Rn(M̃
∗)
)

(S82)

for some constant C̃ depending only on the quantities mentioned in the theorem statement. As X is a856

subset of B2,∞(A2,∞), and (U∗, V ∗) is a minimizer of L(U, V ), we end up getting that857 (
Rn(UV

T )−Rn(M̃
∗)
)

(S83)

≤ Rn(UV
T )− Ln(U

∗, V ∗) + Ln(M
∗)−Rn(M̃

∗) (S84)

≤ 2 sup
(U,V )∈X

∣∣Rn(U, V )− Ln(U, V )
∣∣ (S85)

from which we can apply Proposition S7 to then give the claimed result.858

We give some brief intuition as to the size of the constants involved here, to understand any potential859

hidden dependencies involved in them. Of greatest concern are the constants A∞ and A2,∞ (as the860

remaining constants are explicit throughout the proof, and depend only on the hyperparameters of the861

sampling schema and the model in a polynomial fashion). Note that in the case where k is large and862

we have a SBM(n, κ, p̃, q̃, ρn) model and we apply the DeepWalk scheme, from the discussion after863

Lemma S9, the minimizing matrix M∗ takes the form864

(M∗)lm ≈ log
( κp̃

p̃+ (κ− 1)q̃

)
δlm + log

( κq̃

p̃+ (κ− 1)q̃

)
(1− δlm). (S86)

Supposing for simplicity that p̃ > q̃, it follows that we can take can take A∞ to be of the order865

O(log(p̃/q̃)) when κ is large. In the rate from Proposition S12, this gives a rate of O(p̃/q̃) from the866

eA∞ factor; note that the dependence on the parameters of the models here are not unreasonable. As867

for A2,∞, we first highlight the fact that868

(κ− 1) log
( κq̃

p̃+ (κ− 1)q̃

)
→ p̃− q̃

q̃
as κ→ ∞. (S87)

By Lemma S31 we can therefore take A2,∞ to be a scalar multiple of | log(p̃/q̃)|1/2, avoiding any869

implicit dependence on κ or the embedding dimension d.870
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C.9 Convergence of the embedding vectors871

We can then get results guaranteeing the convergence of the individual embedding vectors (rather872

than their gram matrix) up to rotations, as stated by the following theorem.873

Theorem S14. Suppose that the conclusion of Theorem S13 holds, and further suppose that d equals874

the rank of the matrix M∗. Then there exists a matrix Ũ∗ ∈ Rκ×d such that875

min
Q∈O(d)

1

n

n∑
i=1

∥u∗i −ũ∗c(i)Q∥22 = C ·

{
Op((

max{logn,d}
nρn

)1/2) under Scenarios (i) and (iii);
op(1) under Scenario (ii);

(S88)

Proof. We handle the cases where U ̸= V and U = V separately. For the case where U ̸= V , we876

note that without loss of generality we can suppose that UUT = V V T , in which case we can apply877

Lemma S23 and Theorem S13 to give the stated result. To do so, we note that by Lemma S25 we have878

that n−1σd(ΠM
∗ΠT ) ≥ cσd(M

∗) for some constant c with asymptotic probability 1, as a result879

of the fact that nk(Π) ≥ 1/2nπk with asymptotic probability 1 uniformly across all communities880

k ∈ [κ]. As moreover we have that n−1∥UV T −ΠM∗ΠT ∥op ≤ n−1∥UV T −ΠM∗ΠT ∥F = op(1),881

the condition that ∥UV T − ΠM∗ΠT ∥op ≤ 1/2σd(ΠM
∗ΠT ) holds with asymptotic probability 1,882

we have verified the conditions in Lemma S23, giving the desired result. In the case where we883

constrain U = V , the same argument holds, except we no longer need to verify the condition that884

∥UU∗ −M∗∥op is sufficiently small, and so we have concluded in this case also.885

In the case of a SBM(n, κ, p̃, q̃, ρn) model it is actually able to give closed form expressions for the886

embedding vectors which are converged to by factorizing the minima matrix M∗ in the way described887

by the above proof. These details are given in Lemma S31.888

D Proof of Theorem 4 and Corollary 5889

D.1 Guarantees for community detection890

We begin with a discussion of how we can get guarantees for community detection via approximate891

k-means clustering method, using the convergence criteria for embeddings we have derived already.892

To do so, suppose we have a matrix U ∈ Rn×d corresponding of n columns of d-dimensional vectors.893

Defining the set894

Mn,K := {Π ∈ {0, 1}n×K : each row of Π has exactly K − 1 zero entries}, (S89)

we seek to find a factorization U ≈ ΠX for matrices Π ∈ Mn,K and X ∈ RK×d. To do so, we895

minimize the objective896

Lk(Π, X) =
1

n
∥U −ΠX∥2F (S90)

In practice, this minimization problem is NP-hard [5], but we can find (1 + ϵ)-approximate solutions897

in polynomial time [24]. As a result, we consider any minimizers Π̂ and X̂ such that898

Lk(Π̂, X̂) ≤ (1 + ϵ)min
Π,X

Lk(Π, X). (S91)

We want to examine the behavior of k-means clustering on the matrix U , when it is close to a matrix899

U∗ which has an exact factorization U∗ = Π∗X∗ for some matrices Π∗ ∈Mn,K and X∗ ∈ RK×d.900

We introduce the notation901

Gk(Π) := {i ∈ [n] : Πik = 1}, nk(Π) := |Gk(π)| (S92)

for the columns of U which are assigned as closest to the k-th column of X as according to the matrix902

Π.903

We make use of the following theorem from Lei and Rinaldo [29], which we restate for ease of use.904

Proposition S15 (Lemma 5.3 of Lei and Rinaldo [29]). Let (Π̂, X̂) be any (1 + ϵ)-approximate905

minimizer to the k-means problem given a matrix U ∈ Rn×d. Suppose that U∗ = Π∗X∗ for some906

matrices Π∗ ∈ Mn,κ and X∗ ∈ Rκ×d. Fix any δk ≤ minl ̸=k ∥X∗
l· −X∗

k·∥2, and suppose that the907

condition908

(16 + 8ϵ)∥U − U∗∥2F /δ2k < nk(Π
∗) for all k ∈ [κ] (S93)
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holds. Then there exist subsets Sk ⊆ Gk(Π
∗) and a permutation matrix σ ∈ Rκ×κ such that the909

following holds:910

i) For G =
⋃

k(Gk(Π
∗) \ Sk), we have that (Π∗)G· = σΠG·. In words, outside of the sets Sk911

we recover the assignments given by Π∗ up to a re-labelling of the clusters.912

ii) The inequality
∑κ

k=1 |Sk|δ2k ≤ (16 + 8ϵ)∥U − U∗∥2F holds.913

In particular, we can then apply this to our consistency results with the embeddings learned by914

node2vec. Recall that we are interested in the following metrics measuring recovery of communities915

by any given procedure:916

L(c, ĉ) := min
σ∈Sym(κ)

1

n

n∑
i=1

1[ĉ(i) ̸= σ(c(i))], (S94)

L̃(c, ĉ) := max
k∈[κ]

min
σ∈Sym(κ)

1

|Ck|
∑
i∈Ck

1[ĉ(i) ̸= σ(k)]. (S95)

These measure the overall misclassification rate and worst-case class misclassification rate respec-917

tively.918

Corollary S16. Suppose that we have embedding vectors ωi ∈ Rd for i ∈ [n] such that919

min
Q∈O(d)

1

n

n∑
i=1

∥ωi − ηC(i)Q∥22 = Op(rn) (S96)

for some rate function rn → 0 as n → ∞ and vectors ηl ∈ Rd for l ∈ [κ]. Moreover suppose that920

δ := minl ̸=k ∥ηl − ηk∥2 > 0. Then if ĉ(i) are the community assignments produced by applying921

a (1 + ϵ)-approximate k-means clustering to the matrix whose columns are the ωi, we have that922

L(c, ĉ) = Op(δ
−2rn) and L̃(c, ĉ) = Op(δ

−2rn). If the RHS of (S96) is instead op(1), then we923

replace Op(rn) by op(1) in the statements for L(c, ĉ) and L̃(c, ĉ).924

Proof. We apply Proposition S15 with Π∗ corresponding to the matrix of community assignments925

according to c(·), and X∗ the matrix whose columns are the Qηl for l ∈ [κ] where Q ∈ O(d) attains926

the minimizer in (S96). Letting U be the matrix whose columns are the ωi and taking δk = δ, the927

condition (S93) to verify becomes928

16 + 8ϵ

δ2
1

n

n∑
i=1

∥ωi −Qηc(i)∥22 <
|Ck|
n

for all k ∈ [κ]. (S97)

As rn → 0 and |Cl|/n > c > 0 for some constant c uniformly across vertices l ∈ [κ] with asymptotic929

probability 1 (as a result of the community generation mechanism, the communities are balanced),930

the above event will be satisfied with asymptotic probability 1. The desired conclusion follows by931

making use of the inequalities932

L(c, ĉ) ≤ 1

n

∑
k∈[κ]

|Sk|, L̃(c, ĉ) ≤ max
k∈[κ]

1

|Ck|
|Sk| ≤

(
max
k∈[κ]

n

|Ck|

)
· 1
n

∑
l∈[κ]

|Sl| (S98)

which hold by the first consequence in Proposition S15, and then applying the bound933

1

n

∑
k∈[κ]

|Sk| ≤
16 + 8ϵ

δ2
· 1
n

n∑
i=1

∥ωi −Qηc(i)∥22. (S99)

We note that in order to apply this theorem, we require the further separation criterion of δ > 0.934

As a result of Lemma S31, we can guarantee this for the SBM(n, κ, p̃, q̃, ρn) model when either a)935

DeepWalk is trained in the unconstrained setting, or b) we are in the constrained setting with p̃ > q̃.936

As we know that the embedding vectors converge to the zero vector on average when we are in the937

constrained setting with p̃ ≤ q̃, as a result we know that community detection is possible in the938

constrained setting iff p̃ > q̃, which gives Corollary 5 of the main paper.939
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D.2 Guarantees for node classification and link prediction940

We now discuss what guarantees we can make when using the embedding vectors for classification.941

In this section, we suppose that we have a guarantee942

1

n
min

Q∈O(d)

n∑
i=1

∥ui − ηC(i)Q∥22 ≤ C(τ)rn holds with probability ≥ 1− τ (S100)

for some constant C(τ) and rate function rn → 0 as n → ∞. This is the same as saying that the943

LHS is Op(rn) - it will happen to be more convenient to use this formulation. We also suppose that944

there exists a positive constant δ > 0 for which945

δ ≤ min
k ̸=l

∥ηk − ηl∥2. (S101)

We begin with a lemma which discusses the underlying geometry when we take a small sample of the946

embedding vectors.947

Lemma S17. Suppose we sample K embeddings from the set (ui)i∈[n], which we denote as948

ui1 , . . . , uiK . Define the sets949

Sl = {i ∈ Cl : ∥ui − ηC(i)∥2 < δ/4}. (S102)

Then there exists n0(K, δ, τ ′) such that if n ≥ n0, with probability 1− τ ′ we have that uij ∈ Sc(ij)950

for all j ∈ [K].951

Proof. Without loss of generality, we will suppose that Q = I . For each l ∈ [κ], define the sets952

Sl = {i ∈ Cl : ∥ui − ηl∥2 ≤ δ/4}. Then by the condition (S100), by Markov’s inequality we know953

that with probability 1− τ we have that954

1

n

∑
l∈[κ]

|Cl \ Sl| ≤ 4δ−2C(τ/2)rn. (S103)

We now suppose that we sample K embeddings uniformly at random; for convenience, we suppose955

that they are done so with replacement. Then the probability that all of the embeddings are outside956

the set
⋃

l(Cl \ Sl) is given by (1− 1
n

∑
l |Cl \ Sl|)K ≥ 1− K

n

∑
l |Cl \ Sl|. In particular, this means957

with probability no less than 1 − τ − 4Kδ−1C(τ)rn, if we sample K embeddings with indices958

i1, . . . , iK at random from the set of n embeddings, they lie within the sets SC(i1), . . . , SC(iK)959

respectively. The desired result then follows by noting that we take τ = τ ′/2, and choose n such that960

4δ−2C(τ/2)rn < τ ′/2.961

To understand how this lemma can give insights into the downstream use of embeddings, suppose that962

we have access to an oracle which provides the community assignments of a vertex when requested,963

but otherwise the community assignments are unseen.964

We note that in practice, only a small number of labels are needed to be provided to embedding965

vectors in order to achieve good classification results (see e.g the experiments in Hamilton et al.966

[16], Veličković et al. [46]). As a result, we can imagine keeping K fixed in the regime where n is967

large. Moreover, the constant δ simply reflects the underlying geometry of the learned embeddings,968

and τ ′ is a tolerance we can choose such that the stated result is very likely to hold (by e.g choosing969

τ ′ = 10−2 or 10−3). As a consequence, the above lemma tells us with high probability, we can970

i) learn a classifier which is able to distinguish between the sets Sl given use of the sampled971

embeddings ui1 , . . . , uiK and the labels c(i1), . . . , c(iK), provided the classifier is flexible972

enough to separate κ disjoint convex sets; and973

ii) as a consequence of (S103), this classifier will correctly classify a large proportion of974

vertices within the correct sets Sl.975

The same argument applies if instead we have classes assigned to embedding vectors which form a976

coarser partitioning of the underlying community assignments. The importance of the above result977

is that in order to understand the behavior of embedding methods for classification, it suffices to978

understand which geometries particular classifiers are able to separate - for example, when the number979
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of classes equals 2, this reduces down to the classic concept of linear separability, in which case a980

logistic classifier would suffice.981

We end with a discussion as to the task of link prediction, which asks to predict whether two vertices982

are connected or not given a partial observation of the network. To do so, we suppose that from983

the observed network, we delete half of the edges in the network, and then train node2vec on the984

resulting network. Note that the node2vec mechanism only makes explicit use of known edges985

within the network. This corresponds to training the node2vec model on the data with sparsity factor986

ρn → ρn/2; in particular, this leaves the underlying asymptotic representations unchanged and slows987

the rate of convergence by a factor of 2. With this, a link prediction classifier is formed by the988

following process:989

1. Take a set of edges J ⊆ {(i, j) : aij = 1} for which the node2vec algorithm was not990

trained on, and a set of non-edges J̃ ⊆ {(i, j) : aij = 0}. As in practice networks are991

sparse, these sets are not sampled randomly from the network, but are assumed to be sampled992

in a balanced fashion so that the sets J and J̃ are roughly balanced in size. One way of993

doing so is to pick a number of edges in advance, say E, and then sample E elements from994

the set of edges and non-edges in order to form J and J̃ respectively.995

2. Form edge embeddings eij = f(ui, uj) given some symmetric function f(x, y) and node996

embeddings ui. Two popular choices of functions are the average function f(x, y) =997

(x+ y)/2 and the Hadamard product f(x, y) = (xiyi)i∈[d].998

3. Using the features eij and the labels provided by the sets J and J̃ , build a classifier using999

your favorite ML algorithm.1000

By our convergence guarantees, we know that the asymptotic distribution of the edge embeddings1001

eij will approach some vectors ηc(i),c(j) ∈ Rd, giving at most κ2 distinct vectors overall. Note that1002

these embedding vectors in of themselves contain little information about whether the edges are1003

connected; that said, even given perfect information of the communities and the connectivity matrix1004

P , one can only form probabilistic guesses as to whether two vertices are connected. That said, by1005

clustering together the link embeddings we can identify together edges as having vertices belonging1006

to a particular pair of communities. With knowledge of the sampling mechanism, it is then possible1007

to backout estimates for p and q by counting the overlap of the sets J and J̃ in the neighbourhoods of1008

the clustered node embeddings.1009

We note that in practice, ML classification algorithms such as logistic regression are used instead. This1010

instead depends on the typical geometry of the sets J and J̃ . Suppose we have a SBM(n, 2, p̃, q̃, ρn)1011

model. In this case, the set J will approximately consist of p̃/2(p̃ + q̃) × E vectors from η11,1012

p̃/2(p̃ + q̃) × E vectors from η22, q̃/2(p̃ + q̃) × E vectors from η12 and q̃/2(p̃ + q̃) × E vectors1013

from η21. In contrast, the set J̃ will approximately have E/4 of each of η11, η12, η21 and η22. As a1014

result, in the case where p̃≫ q̃, a linear classifier (for example) will be biased towards classifying1015

more frequently vectors with c(i) = c(j), which is at least directionally correct.1016

So far, we have not talked about the particular mechanism used to form link embeddings from the1017

node embeddings. The Hadamard product is popular, but particularly difficult to analyze given1018

our results, as it does not remain invariant to an orthogonal rotation of the embedding vectors. In1019

contrast, the average link function retains this information. In the SBM(n, 2, p̃, q̃, ρn), it ends up1020

giving embeddings which will asymptotically depend on only whether c(i) = c(j) or not (i.e, whether1021

the vertices belong to the same community or not).1022

E Intermediate results1023

E.1 Sampling probabilities for node2vec1024

In this section, we derive asymptotic results for the sampling probabilities of edges within node2vec.1025

We begin by recapping the second-order random walk defined for node2vec. To do so, we define a1026
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random process (Xn)n≥1 via the second-order Markov property1027

P
(
Xn = u |Xn−1 = s,Xn−2 = v

)
∝


0 if (u, s) ̸∈ E ,
1/p if du,v = 0 and (u, s) ∈ E ,
1 if du,v = 1 and (u, s) ∈ E ,
1/q if du,v = 2 and (u, s) ∈ E .

(S104)

where du,s denotes the length of the shortest path between u and s. Given the extra information1028

that (u, s) is an edge, du,v = 0 occurs iff u = v, du,v = 1 occurs iff (u, v) is an edge, and du,v = 21029

occurs iff (u, v) is not an edge (as given that (v, s) is an edge, the shortest path must be v → s→ u).1030

With this, we select positive samples by selecting k concurrent edges within the walk (via taking a1031

walk of length k + 1).1032

To initialize the random walk, we note that for the second order walk we need to specify a distribution1033

on the first two vertices; for DeepWalk where this collapses down to a first order walk, we only need1034

to specify a distribution on ther first vertex. To do so generally, we consider an initial distribution of1035

selecting the first vertex via π(u) = deg(u)/
∑

v deg(v) = deg(u)/2En with En being the number1036

of edges in the graph (single counting (u, v) ∈ E and (v, u) ∈ E), and select the second vertex1037

uniformly at random from those connected to the first. (Note that this is the transition kernel used1038

for DeepWalk, and so we handle both cases via this argument.) One can show this is equivalent to1039

selecting an edge uniformly at random.1040

For the negative sampling mechanism, we consider the vertices which arose as part of the positive1041

sampling process - which we denote V (P) - and then sample l vertices independently according to1042

the unigram distribution1043

Ugα(v |u,Gn) =
deg(v)α∑

v′ ̸=u deg(v)
α

(S105)

where u ∈ V (P). We note that the case where α → 0 corresponds to the uniform distribution on1044

vertices not equal to u.1045

E.1.1 Proof of Theorem S11046

In this section and the next, it will be convenient to use the notation ∼p to indicate that two1047

positive random variables Xn and Yn are asymptotic in the sense that |Xn/Yn − 1| = op(1) when1048

n → ∞. If we say such a bound happens uniformly over some free variables - say Xn,k ∼p Yn,k1049

uniformly over k - then this means maxk |Xn,k/Yn,k − 1| = op(1). We also make extensive1050

use of the result that if X(i)
n ∼p rnY

(i)
n for i ∈ {0, 1} and Y (i)

n ∈ [C−1, C] for C > 1, then1051

X
(0)
n +X

(1)
n ∼p rn(Y

(0)
n + Y

(1)
n ). Indeed, if we write X(i)

n = Y
(i)
n rn(1 + ϵ

(i)
n where ϵ(1)n = op(1),1052

then1053

X(0)
n +X(1)

n = rn(Y
(0)
n + Y (1)

n ) ·
(
1 +

Y
(0)
n

Y
(0)
n + Y

(1)
n

ϵ(0)n +
Y

(1)
n

Y
(0)
n + Y

(1)
n

ϵ(1)n

)
(S106)

from which the claimed result follows as the terms weighting the ϵ(1)n can be bounded below away1054

from zero, and are bounded above by 1. We also note that X(0)
n −X

(1)
n = Op(rn), meaning that the1055

order of magnitude of terms cannot increase (only decrease) by subtracting them.1056

As we are interested in the sampling probability of edges within node2vec, it will be convenient1057

to instead study the first order Markov process Yn = (Xn, Xn−1), as then we instead study the1058

sampling probability of individual states in a regular Markov chain. We note that normally we use1059

the notation (u, v) to refer an unordered pair belonging to an edge in a graph, but for the Markov1060

process (Yn)n≥1 the order matters, we will write Yn = ev→u whenever Xn = u and Xn−1 = v. In1061

such a scenario, the random walk is therefore defined on the state space1062

S =
⋃

(u,v)∈E

{
eu→v, ev→u

}
.

with the law of Y given by1063

P
(
Yn = et→u |Yn−1 = ev→s

)
= 0 if t ̸= s, (S107)

P
(
Yn = es→u |Yn−1 = ev→s

)
∝

{
0 if (s, u) ̸∈ E
1[u=v]

p + 1[u ̸= v](auv +
1−auv

q ) otherwise.
(S108)
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One can calculate the normalizing factor for the probability distribution as being1064 (1
p
− 1

q

)
+

1

q
deg(s) +

(
1− 1

q

) ∑
u∈V\{v}

asuauv, (S109)

from which we observe that when p = q = 1 we recover the simple random walk defined by1065

DeepWalk, as then the probability an edge is selected with source node u is uniform over edges (u, v)1066

where v is a neighbour of u.1067

With this in mind, we define the transition matrix1068

Pv→s,s→u =
asu · {1[u = v] · 1/p+ 1[u ̸= v](auv + 1/q · (1− auv)}(

1
p − 1

q

)
+ 1

q deg(s) +
(
1− 1

q

)∑
u∈V\{v} asuauv

(S110)

governing the transition probabilities on the above chain. We note that by [11, Proposition 72] and1069

Theorem S26 respectively that1070

deg(s) ∼p nρnW (λs, ·), (S111)∑
u∈V\{v}

asuauv ∼p nρ
2
nT (λs, λv) where T (λs, λv) := Eλ∼Unif[0,1][W (λu, λ)W (λ, λv) |λu, λv]

(S112)

uniformly over all s, u, v. As a result, we define1071

P̃v→s,s→u =
asu · {q−1 + (1− q−1)avu + δuv(p

−1 − q−1)}(
1
p − 1

q

)
+ 1

qnρnW (λs, ·) +
(
1− 1

q

)
nρ2nT (λs, λv)

. (S113)

where δuv := 1[u = v] and the numerator is the same as in Pv→s,s→u (only written in a more1072

convenient to use fashion), and the denominator makes use of the asymptotic statements (S111) and1073

(S112). As a result, we have that Pv→s,s→u ∼p P̃v→s,s→u uniformly over v, s, u. In particular, we1074

have that P̃v→s,s→u = Θp(asu(nρn)
−1) uniformly over all triples of indices (v, s, u).1075

Let Aj(u→ v) = {Yj = eu→v}. We then note that the sampling probability of (u, v) being sampled1076

within the first k + 1 steps of the second order random walk is given by1077

P
( ⋃

j≤k

Aj(u→ v) ∪Aj(v → u) | Gn

)
. (S114)

To ease on the notation going forward, we write Pn(·) := P(· | Gn). By the inclusion-exclusion1078

principle, we can write this probability as equalling1079 ∑
l,m≥1
l+m≤k

(−1)k+m+1
∑

1≤i1<i2<···<il≤k
1≤j1<j2<···<jm≤m

Pn

( ⋂
k≤l

Aik(u→ v) ∩
⋂
k≤m

Ajk(v → u)
)
. (S115)

We note that the number of terms in this sum is bounded above by (2k)! (some terms will be zero,1080

as we cannot select eu→v two times in a row), and so for asymptotic purposes we can focus on the1081

individual terms.1082

We now address the individual probabilities making up this sum. Intuitively, we want to show the1083

following: that the terms for which (l,m) ̸= (1, 0) or (0, 1) are asymptotically negligible, and that1084

asymptotically these terms are functions only of (λu, λv). We fix a particular instance of the i1, . . . , il1085

and j1, . . . , jm, and denote β1 < β2 < · · · < βl+m for the ordering of these indices. As we use1086

indices ik to denote the direction u→ v and jk for the direction v → u, we write1087

Ai(u→ v) =: Aβ(u, v, 0), Aj(v → u) =: Aβ(u, v, 1) (S116)

where the third argument (which we refer to as the orientation herein) indicates which of the first1088

two arguments are used as the source node for the edge. For each βk for k ≤ l +m, we write ok to1089

denote this orientation. As a result, it suffices for us to analyze1090

Pn

( ⋂
k≤l+m

Aβk
(u, v, ok)

)
(S117)
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over all sequences 1 ≤ β1 < β2 < · · · < βl+m ≤ k and orientations (ok)l+m
k=1 . For this, we then note1091

that by the Markov property of the random walk, we are able to write this probability as1092 [ ∏
k≤l+m−1

Pn

(
Aβk+1

(u, v, ok+1) |Aβk
(u, v, ok)

)]
· Pn

(
Aβ1

(u, v, o1)
)

(S118)

=

[ ∏
k≤l+m−1

Pn

(
Aβk+1−βk+1(u, v, ok+1) |A1(u, v, ok)

)]
· Pn

(
Aβ1

(u, v, o1)
)

(S119)

Focusing now on the terms in the product, if βk+1 − βk = 1, then this term equals zero if ok = ok=1,1093

or otherwise equals e.g Pu→v,v→u which is Op((nρn)
−1) as discussed above. If the walk is longer,1094

then by the same argument as in [11, Proposition 73], by conditioning on the second step in the walk1095

one can show this probability is asymptotically of the same order of a walk of length βk+1 − βk − 11096

initialized from the uniform distribution on the edges of Gn. As a result, we therefore only need to1097

analyze events of the form1098

Pn

(
Aβ(u, v, o)

)
(S120)

which will allow us to then show that the events of the form (l,m) = (1, 0) or (0, 1) are the only1099

ones we need to consider in the asymptotic expansion. Going forward, we assume that o = 0, as the1100

sum (S115) is symmetric in the orientation o and the arguments are unchanged.1101

To do so, we begin by writing writing π′ = (auv/|E|)u,v for the initial distribution provided to Y1. To1102

analyze pn(u, v, β) := Pn

(
Aβ(u, v, 0)), note that when β = 1 we trivially have that this probability1103

equals auv/|E| and we know that |E| ∼p n
2ρnEW (1). In the case where β ≥ 2, we consider the set1104

of sequences α = (α0, . . . , αβ−2) ∈ Vβ−1, where we then have that1105

pn(u, v, 2) =
1

|E|
∑
α0

aα0,uPα0→u,u→v (S121)

pn(u, v, β) =
1

|E|
∑
α

aα0,α1
·

β∏
j=1

Pαj−1→αj ,αj→αj+1
· Pαβ−2→αβ−1,αβ−1→uPαβ−1→u,u→v

(S122)

for β ≥ 3.1106

To study these sums, we begin by noting that they are asymptotic to their versions where we replace1107

P → P̃ . Indeed, we note that if we have positive sequences (ai) and (bi), then1108 ∣∣∣∑j aj∑
j bj

− 1
∣∣∣ = |

∑
j bj(aj/bj − 1)|∑

j bj
≤ max

j

∣∣∣aj
bj

− 1
∣∣∣, (S123)

and so the fact that we know P ∼p P̃ uniformly, means that we can apply this to obtain asymptotic1109

formulae for their sums also. With this, if we write N(λs, λt) for the denominator of P̃t→s,s→u,1110

pn(u, v, β) can be asymptotically be decomposed into a linear combination of terms (bounded in1111

number by a function of k independent of n) of the form1112

c(p, q)auv
|E|

∑
α∈Vβ−1

{( ∏
2≤i≤β

N(λα̃i−1 , λα̃i)
)−1

·
∏

i≤β−1

aα̃i−1,α̃i ·
∏
j∈J

aα̃j−1,α̃j+1 ·
∏
k∈K

δα̃k−1,α̃k+1

}
(S124)

where:1113

• we write α̃ for the concatenation (α, u, v), meaning α̃ is of length β + 1, with α̃k = αk for1114

k ≤ β − 1, α̃β = u and α̃β+1 = v;1115

• c(p, q) = (q−1)β−|J|−|K|(1− q−1)|J|(p−1 − q−1)|K| is a polynomial in p−1 and q−1;1116

• J and K are possibly empty subsets of {1, . . . , β} which are disjoint.1117
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The more tedious part to handle is when the set K is non-empty; as each delta function acts to1118

contract the sum along one variable, doing so allows us to rewrite (S124) as1119

auv
|E|

c(p, q)
∑

α∈Vβ−1−|K|

{( ∏
2≤i≤β−|K|

N(λα̃i−1
, λα̃i

)ni

)−1

·
∏

i≤β−1−|K|

aα̃i−1,α̃i
·
∏
j∈J̃

aα̃j−1,α̃j+1

}
(S125)

after a) performing some relabeling of the indices and modification to the set J , to give a new set1120

J̃ which is a subset of {1, . . . , β − |K|} and b) introducing some multiplicities ni which sum to1121

β − 1. By Theorem S26 we uniformly have that this quantity is asymptotic, uniformly over all the1122

free variables in the expression, to1123

ρ
|J̃|
n

(nρn)|K| ·
auvc(p, q)ρ

−1
n

n2EW (1)
·E

[∏
i≤β−1−|K|W (λ′i−1, λ

′
i)
∏

j∈J̃ W (λ′j−1, λ
′
j+1)∏

2≤i≤β−|K|N
′(λ′i−1, λ

′
i)

ni
|λu, λv

]
(S126)

where we write λ′ = (λ̃0, . . . , λ̃β−2−|K|, λu, λv) and λ̃ is an independent copy of λ, and1124

N ′(λu, λv) := (nρn)
−1N(λu, λv). As nρn → ∞ under the prescribed conditions, we only need to1125

consider leading terms of the order ρ−1
n n2, which shows that the sampling probability is asymptotic1126

(uniformly over all vertices) to ρ−1
n n2 for some function gP(λu, λv). To argue that this function is1127

bounded above away from zero, we note that the terms where |J |+ |K| > 0 will be asymptotically1128

negligible, and the remainder of the terms give a positive weighted sum.1129

E.1.2 Proof of Theorem S21130

To understand the selection probability for the vertex pair (u, v) to be selected via negative sampling,1131

define the events1132

Ai(u) = {Xi = u}, Bi(v|u) = {v selected via negative sampling from u} (S127)

so then1133

P((u, v) ∈ N (Gn) | Gn) = P
( k⋃

i=0

(Ai(u) ∩Bi(v|u)) ∪ (Ai(v) ∩Bi(u|v)) | Gn

)
. (S128)

We note that1134

P(Ai(u) ∩Bi(v|u) | Gn) = P(Ai(u) | Gn) · P(Binomial(l,Ugα(v|u)) ≥ 1 | Gn). (S129)

As a result, we need to begin by understanding the asymptotic probabilities of P(Ai(v) | Gn) and the1135

unigram sampling probability. We begin with understanding the first probability. If i ∈ {0, 1}, then we1136

have that P(Ai(v) | Gn) = deg(v)/2En ∼p W (λv, ·)/nEW (1) uniformly in v [11, Proposition 72].1137

For i ≥ 2, we have that1138

P(Ai(v) | Gn) =
∑
u

P(Ai(u→ v) | Gn) (S130)

using the same notation as in Appendix E.1.1. Consequently, via the same arguments as in Ap-1139

pendix E.1.1, it will be asymptotic to a positive linear combination of statistics of the form1140

c(p, q)

|E|
∑
α∈Vβ

{( ∏
2≤i≤β−|K|

N(λα̃i−1
, λα̃i

)ni

)−1

·
∏

i≤β−|K|

aα̃i−1,α̃i
·
∏
j∈J̃

aα̃j−1,α̃j+1

}
(S131)

where we write α̃ = (α, v) for α ∈ Vβ . Using the same relabeling and arguments as given in1141

Appendix E.1.1 will be asymptotic to1142

ρ
|J̃|
n

(nρn)|K| ·
c(p, q)

nEW (1)
· E

[∏
i≤β−|K|W (λ′i−1, λ

′
i)
∏

j∈J̃ W (λ′j−1, λ
′
j+1)∏

2≤i≤β−|K|N
′(λ′i−1, λ

′
i)

ni
|λv

]
(S132)

uniformly in all the free variables involved, where λ′ = (λ̃0, . . . , λ̃β−1−|K|, λv) and λ̃ is an indepen-1143

dent copy of λ. (We note that while Theorem S26 is expressed in terms of concentration of quantities1144

around functions which depend on both λu and λv , the exact same reasoning will apply for statistics1145

which only end up depending on λv .) In particular by taking the highest order terms of this expansion,1146
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we have that there exists some measurable function gi(·) which is bounded below and above, for each1147

i, such that P(Ai(u) | Gn) ∼p n
−1gi(λu) uniformly in u.1148

As for the unigram sampling term, we note that by [11, Proposition 77] we have that1149

P(Binomial(l,Ugα(v|u)) ∼p
lW (λu, ·)α

nEW (α)
(S133)

uniformly in the vertices v, u. With this, we note that the same arguments via self-intersection allow1150

us to argue that1151

P((u, v) ∈ N (Gn) | Gn) ∼p
l

n2

k∑
i=0

l

EW (α)
(gi(λu)W (λv, ·)α + gi(λv)W (λu, ·)α) (S134)

which gives the claimed result.1152

E.2 Chaining and bounds on Talagrand functionals1153

In this section, let L > 0 denote a universal constant (which may differ across occurrences) and K(α)1154

a universal constant which depends on a variable α (but for fixed α also differs across occurrences).1155

For a metric space (T, d), we define the diameter of T as1156

∆(T ) := sup
t1,t2∈T

d(t1, t2). (S135)

We also define the entropy and covering numbers respectively by1157

N(T, d, ϵ) := min
{
n ∈ N |F ⊆ T, |F | ≤ n, d(t, F ) ≤ ϵ for all t ∈ T

}
, (S136)

en(T ) := inf
{
sup
t∈T

d(t, Tn) |Tn ⊆ T, |Tn| ≤ 22
n}

= inf
{
ϵ > 0 |N(t, d, ϵ) ≤ 22

n}
. (S137)

We then define the Talagrand γα functional [42] of the metric space (T, d) by1158

γα(T, d) = inf sup
t∈T

∑
n≥0

2n/α∆
(
An(t)

)
(S138)

where the infimum is taking over all admissable sequences; these are increasing sequences (An)n≥01159

of T such that |A0| = 1 and |An| ≤ 22
n

for all n, with An(t) being the unique element of An which1160

contains t. We will shortly see that this quantity helps to control the supremum of empirical processes1161

on the metric space (T, d). We first give some generic properties for the above functional.1162

Lemma S18. a) Suppose that d is a metric on T , and M > 0 is a constant. Then1163

γα(T,Md) =Mγα(T, d). If U ⊆ T , then γα(U, d) ≤ γα(T, d).1164

b) Suppose that (T1, d1) and (T2, d2) are metric spaces, so d = d1 + d2 is a metric on the1165

product space T = T1 × T2. Then γα(T, d) ≤ K(α)(γα(T1, d1) + γα(T2, d2)).1166

c) We have the upper bounds1167

γα(T, d) ≤ K(α)
∑
n≥0

2n/αen(T ) ≤ K(α)

∫ ∞

0

(
logN(T, d, ϵ)

)1/α
dϵ. (S139)

d) Suppose that ∥ · ∥ is a norm on Rm, d is the metric induced by ∥ · ∥, and BA = {x :1168

∥x∥ ≤ A}. Then one has the bound N(BA, d, ϵ) ≤ max{(3A/ϵ)m, 1}, and consequently1169

γα(BA, d) ≤ K(α)Am1/α.1170

Proof. The first statement in a) is immediate, and the second part is Theorem 2.7.5 a) of Talagrand1171

[42].1172

For part b), suppose that Ai
n are admissable sequences for (Ti, di) such that1173

sup
ti∈Ti

∑
n≥0

2n/α∆(Ai
n(t)) ≤ 2γα(Ti, di) for i = 1, 2. (S140)
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If we then form the sequence of sets Bn := {A1 ×A2 : Ai ∈ Ai
n−1} for n ≥ 1 and B0 = T1 × T2,1174

we have that Bn is a partition of T for each n, |B0| = 1 and |Bn| = |A1
n−1| · |A2

n−1| ≤ 22
n

for each1175

n, meaning that Bn is an admissable sequence for the metric space (T, d). Moreover, note that we1176

have1177

∆((A1 ×A2)(t1, t2)) = ∆(A1(t1)) + ∆(A2(t2)) (S141)
for all sets A1 ⊆ T1, A2 ⊆ T2 and t1 ∈ T1, t2 ∈ T2. As a result, if write Bn(t1, t2) = A1

n−1(t1)×1178

A2
n−1(t2) for the unique set in Bn for which the point (t1, t2) lies within it, then we have that1179 ∑
n≥0

2n/α∆(Bn(t1, t2)) ≤ 2α
(∑

n≥1

2(n−1)/α∆(Ai
n−1(t1))+

∑
n≥1

2(n−1)/α∆(Ai
n−1(t2))

)
. (S142)

In particular, taking supremum over all t ∈ T then gives the result, as the resuling LHS is lower1180

bounded by γα(T, d), and the resulting RHS is upper bounded by 2(γα(T1, d1) + γα(T2, d2)).1181

For part c), the first inequality is Corollary 2.3.2 in Talagrand [42]. As for the second inequality, note1182

that if ϵ ≤ en(T ), then N(T, d, ϵ) > 22
n

and consequently N(T, d, ϵ) ≥ 22
n

+ 1 (recall that both1183

quantities are integers). Writing Nn = 22
n

, this implies that1184 (
log(1 +Nn)

)1/α
(en(T )− en+1(T )) ≤

∫ en(T )

en+1(T )

(
logN(T, d, ϵ)

)α
dϵ. (S143)

As log(1 +Nn) ≤ 2n log(2) for all n ≥ 0, summation over all n ≥ 0 implies that1185

(log 2)1/α
∑
n≥0

2n/α(en(T )− en+1(T )) ≤
∫ e0(T )

0

(
logN(T, d, ϵ)

)α
dϵ. (S144)

As we have that1186 ∑
n≥0

2n/α
(
en(T )− en+1(T )) ≥ (1− 21/α)

∑
n≥0

2n/αen(T ), (S145)

combining this and the prior inequality gives the stated result.1187

For part d), we can calculate that1188 ∫ ∞

0

(
logN(BA, d, ϵ)

)1/α
dϵ ≤

∫ 3A

0

m1/α
(
log(3A/ϵ)

)1α
dϵ ≤ 3Am1/α

∫ 1

0

(log(1/y))1/α dy.

(S146)
For the remaining integral, note that if we make the substitution y = exp(−tα), then the integral1189

equals1190 ∫ 1

0

(log(1/y))1/α dy = α

∫ ∞

0

tαe−tα dt, (S147)

which we recognize as the mean of an Exp(1) random variabe in the case where α = 1, and the1191

variance of an unnormalized N(0, 2) density in the case where α = 2, and so in both cases the integral1192

is finite. The desired conclusion follows.1193

Before stating a corollary of this result involving bounds on the γ-functional of some of the sets1194

introduced in Theorem S5, we discuss some of the properties of these sets.1195

Lemma S19. Define the sets1196

BF (A) :=
{
U ∈ Rn×d | ∥U∥F ≤ A

}
, (S148)

B2,∞(A) :=
{
U ∈ Rn×d | ∥U∥2,∞ ≤ A

}
. (S149)

Moreover, define the metrics1197

dF ((U1, V1), (U2, V2)) := ∥U1 − U2∥F + ∥V1 − V2∥F (S150)
d2,∞((U1, V1), (U2, V2)) := ∥U1 − U2∥2,∞ + ∥V1 − V2∥2,∞ (S151)

defined on the space Rn×d×Rn×d of pairs of n×d matrices. Then we have that for U1, U2, V1, V2 ∈1198

BF (AF ) ∩ B2,∞(A2,∞) that1199

∥U1V
T
1 −U2V

T
2 ∥F ≤ AF dF ((U1, V1), (U2, V2)), ∥U1V

T
1 −U2V

T
2 ∥∞ ≤ A2,∞d2,∞((U1, V1), (U2, V2)).

(S152)
Moreover, if U ∈ B2,∞(A), then U ∈ BF (

√
nA) also, and consequently if U ∈ B2,∞(A2,∞) then1200

we have that U ∈ B2,∞(A2,∞) ∩ BF (
√
nA2,∞).1201

38



Proof. Begin by noting that, if U1, V1, U2, V2 ∈ Rn×d are matrices, then we have that1202

∥U1V
T
1 − U2V

T
2 ∥F = ∥U1(V1 − V2)

T + (U1 − U2)V
T
2 ∥F ≤ ∥U1∥F ∥V1 − V2∥F + ∥U1 − U2∥F ∥V2∥F

and similarly1203

∥U1V
T
1 − U2V

T
2 ∥∞ = ∥U1(V1 − V2)

T + (U1 − U2)V
T
2 ∥∞ ≤ ∥U1∥2,∞∥V1 − V2∥2,∞ + ∥U1 − U2∥2,∞∥V2∥2,∞.

As a result, we therefore have that in the case where U1, V1, U2, V2 all have ∥ · ∥F ≤ AF , then1204

∥U1V
T
1 − U2V

T
2 ∥F ≤ AF

(
∥U1 − U2∥F + ∥V1 − V2∥F

)
(S153)

and similarly if each of U1, V1, U2, V2 have ∥ · ∥2,∞ ≤ A2,∞ then1205

∥U1V
T
1 − U2V

T
2 ∥ ≤ A2,∞

(
∥U1 − U2∥2,∞ + ∥V1 − V2∥2,∞

)
, (S154)

giving the first result of the lemma. The second part follows by noting that1206

n∑
i=1

d∑
j=1

|uij |2 ≤ nmax
i∈[n]

d∑
j=1

|uij |2 (S155)

and taking square roots.1207

Corollary S20. With the same notation as in Lemma S19, and writing T = BF (AF ) ∩ B2,∞(A2,∞),1208

we have that for any constant C > 0 that1209

γα(T × T,CdF ) ≤ γα(BF (AF ), CdF ) ≤ K(α) · CAF (nd)
1/α ≤ K(α) · CA2,∞n

1/2+1/αd1/α,
(S156)

γα(T × T,Cd2,∞) ≤ γα(B2,∞(A2,∞), CdF ) ≤ K(α) · CA2,∞(nd)1/α. (S157)

Proof. This is a combination of Lemma S18 and Lemma S191210

We now state a result which illustrates the usefulness of the above quantity when trying to control the1211

supremum of empirical processes on a metric space (T, d).1212

Theorem S21. Suppose (Xt)t ∈ T is a mean-zero stochastic process, where d1 and d2 are two1213

metrics on T . Suppose for all s, t ∈ T we have the inequality1214

P
(
|Xs −Xt| ≥ u

)
≤ 2 exp

(
−min

{ u2

d2(s, t)2
,

u

d1(s, t)

})
. (S158)

Then we have that1215

P
(
sup
s,t∈T

|Xs −Xt| ≥ Lu
(
γ2(T, d2) + γ1(T, d1)

))
≤ L exp(−u). (S159)

Proof. This can be found within the proof of Theorem 2.2.23 in Talagrand [42].1216

Corollary S22. With the notation of Theorem S5, Lemma S19 and Corollary S20, if we have the1217

bound1218

P
(
|En(U, V )− En(Ũ , Ṽ )| ≥ u

)
(S160)

≤ 2 exp
(
−min

{ u2

128ρ−1
n n−4A2

F dF ((U, V ), (Ũ , Ṽ ))2
,

u

16ρ−1
n n−2A2,∞d2,∞((U, V ), (Ũ , Ṽ ))

})
(S161)

then as a consequence we can deduce that1219

sup
(U,V ),(Ũ,Ṽ )∈T×T

∣∣En(U, V )− En(Ũ , Ṽ )
∣∣ = Op

(
A2

2,∞

( d

nρn

)1/2

+A2
2,∞

d

nρn

)
(S162)

Proof. This is a consequence of Corollary S20 and Theorem S21.1220
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E.3 Matrix Algebra1221

Proposition S23. Suppose that we have matrices U,X ∈ Rn×d with n ≥ d, and suppose that X is a1222

full rank matrix so σd(XXT ) > 0. Then we have that1223

min
Q∈O(d)

1

n
∥U −XQ∥2F ≤ n−2∥UUT −XXT ∥2F√

2(
√
2− 1)n−1σd(XXT )

. (S163)

Now instead suppose we have matrices U, V ∈ Rn×d and a matrix M ∈ Rn×d of rank d. Let M =1224

UMΣV T
M be a SVD of M . Moreover suppose that UTU = V TV , and ∥UV T −M∥op ≤ σd(M)/2.1225

Then we have that1226

min
Q∈O(d)

1

n
∥U − UMΣ1/2Q∥2F ≤ 2n−2∥UV T −M∥2F

(
√
2− 1)n−1σd(M)

. (S164)

Proof. The first part of the theorem statement is Lemma 5.4 of Tu et al. [43]. For the second part, we1227

note that by Proposition S24, we can let U = UMΣ1/2Q and V = VMΣ1/2Q for some orthonormal1228

matrix Q, where Ũ Σ̃Ṽ T is the SVD of UV T . As a result, we can therefore apply without loss of1229

generality Lemma 5.14 of Tu et al. [43], which then gives the desired statement.1230

Proposition S24. Suppose that U, V ∈ Rn×d are matrices such that UV T = M for some rank d1231

matrix M ∈ Rn×n. Moreover suppose that UTU = V TV . Let M = UMΣV T
M be the SVD of M .1232

Then there exists an orthonormal matrix Q ∈ O(d) such that V = VMΣ1/2Q. In particular, the1233

symmetry group of the mapping (U, V ) → UV T under the constraint UTU = V TV is exactly the1234

orthogonal group O(d).1235

Proof. Begin by noting that the condition UTU = V TV forces there to exist an orthonormal matrix1236

R ∈ O(n) such that RU = V (e.g by Theorem 7.3.11 of Horn and Johnson [20]). As a consequence,1237

we therefore have that M = R−1V V T . This is a polar decomposition of M , and therefore as1238

the semi-positive definite factor is unique, we have that V V T = (VMΣ1/2)(VMΣ1/2)T , where1239

M = UMΣV T
M is the SVD of M , and we highlight that the polar decomposition of M is usually1240

represented by M = (UMV
−1
M ) · (VMΣV T

M ). As V V T = (VMΣ1/2)(VMΣ1/2)T , again by e.g1241

Theorem 7.3.11 of Horn and Johnson [20] we have that there exists an orthonormal matrix Q ∈ O(d)1242

such that V = VMΣ1/2Q, giving the desired result.1243

Lemma S25. Suppose X ∈ Rn×n is a symmetric matrix such that X = ΠAΠT where A ∈ Rd×d1244

is of full rank, and Π ∈ Rn×d is the assignment matrix for a partition of [n]; that is, there exists a1245

partition of [n] into d sets B(1), . . . , B(d) such that Πil = 1[i ∈ B(l)]. Suppose further that Π is of1246

full rank. Then we have that σd(X) ≥ σd(A)×minl |B(l)|.1247

Proof. Let ∆ = diag(|B(1)|1/2, . . . , |B(d)|1/2). Then note that we can write1248

X = (Π∆−1) ·∆A∆ · (Π∆)−1 (S165)

where (Π∆−1) is an orthonormal matrix. As a result, we can simply concentrate on the spectrum of1249

the matrix ∆A∆. As the smallest singular value of a matrix product is less than the product of the1250

smallest singular values, the stated result follows.1251

E.4 Concentration inequalities1252

Theorem S26. Suppose that H is a graph on a vertex set {r1, . . . , rl, v1, . . . , vm} where the vertices1253

ri are referred to as root vertices, and the remaining vertices as free vertices. We refer to such a1254

graph as a rooted graph. Suppose that all the edges in H have at least one free vertex as an endpoint.1255

Write x = (x1, . . . , xm) for the collection of m variables xi, and let Y be a statistic of the form1256

Y =
∑

x1,...,xm∈[n]

gx
∏
i∼Hj

txi,xj
(S166)

where the random variables txi,xj are independent and {0, 1} valued with cp ≤ P(txi,xj = 1) ≤1257

1 − cp for all xi, xj; the coefficients cg ≤ gx ≤ ∥g∥∞ < ∞ for some cg > 0; and i ∼H j iff1258
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(i, j) is an edge within the graph H . Suppose that ρn = n−α for some α < 1/m′(H) where1259

m′(H) = max2≤j≤k(j − 1)/(v(j) − 2), v(j) = min|A|≥j v(A) and v(A) for a set of edges A1260

indicates the number of vertices in A. Then there exist constants c, δ,∆ which depend only on cg , cp,1261

∥g∥∞, H and α such that1262

P
(∣∣Y − E[Y ]

∣∣ ≥ E[Y ]
√
λ(n2ρn)−1

)
≤ exp(−cλ) (S167)

for all ∆ ≤ λ ≤ nδ .1263

Proof. Without loss of generality suppose that ∥g∥∞ = 1. The proof is essentially the same as Vu1264

[47, Corollary 6.4], where we extend the result derived for the asymptotics of subgraph counts to that1265

of a weighted count of rooted subgraph counts. To do so, we introduce some notation introduced1266

within [47]. If H has k edges, and A is a set of pairs {xi, xj}, we write ∂AT for the polynomial1267 ∏
x∈A ∂xT when interpreting T as a formal sum in the variables axi,xj (which we recall are {0, 1}1268

valued. We then define for 1 ≤ j ≤ k the quantities1269

Ej [Y ] = max
|A|≥j

E[∂AY ],Mj(Y ) = max
t,|A|≥j

∂AY (t). (S168)

Let v(A) denote the number of vertices specified within the set A, and let v(j) −min|A|≥j v(A).1270

With this, we note that E[Y ] = Θ(nmρkn) and E[∂AY ) = Θ(nm−v(A)ρ
k−|A|
n ). Consequently, we1271

have that1272

Ej [Y ] = max
h≥j

Θ(nm−v(h)ρk−h
n ),E[Y ]/Ej [Y ] = Θ(min

h≥j
nv(h)ρhn) (S169)

where the implied constants depend only on k, cg and cp. The same arguments as given in Claim 6.21273

and Corollary 6.4 in [47] can then be applied verbatim to give the claimed result.1274

Lemma S27. Let T be a statistic of the form1275

T ′ =
∑

x1 ̸=x2 ̸=···̸=xm

g(λx1
, . . . , λxm

) (S170)

where cg ≤ g(·) ≤ ∥g∥∞ <∞. Then we have that1276

P
(
|T ′ − E[T ′]| ≥ ϵE[T ′]

)
≤ 2 exp

(−ϵ2c2g⌊n/m⌋
2∥g∥2∞

)
. (S171)

Consequently, if we define1277

Tl,k =
∑

x1,x2,...,xm

g(λx1
, . . . , λxm

, λl, λk), T ′
l,k =

∑
x1 ̸=x2 ̸=···≠xm

g(λx1
, . . . , λxm

, λl, λk)

(S172)
where cg ≤ g(·) ≤ ∥g∥∞ <∞ as above, then we have that1278

max
l,k

∣∣∣ Tl,k
E[T ′

l,k |λl, λk]
− 1

∣∣∣ = Op

(( log n
n

)1/2)
(S173)

where the implied constant depends only on m and cg .1279

Proof. The first part is an immediate consequence of Hoeffding’s inequality for U-statistics [38],1280

which states that for U = ((n−m)!/n!) · T that1281

P
(
|U − E[U ]| ≥ t

)
≤ 2 exp

(−t2⌊n/m⌋
2∥g∥2∞

)
, (S174)

by substituting in t 7→ tE[U ] and making use of the bound E[U ] ≥ cg .1282

For the second part, we work conditionally on λl, λk and note we can decompose Tl,m for each1283

l,m into a sum of statistics of the form T ′, one of order Θp(n
m) and

(
m
k

)
of order Θp(n

m−k)1284

(corresponding to when some of the indices xi are equal) for 1 ≤ k ≤ m. By applying the first1285

concentration inequality to these m! · n2 random variables, conditional on the (λl, λk), we note1286

the RHS is independent of these quantities, and so the probability bounds hold unconditionally.1287

Consequently, we know that asymptotically Tl,k is asymptotic to T ′
l,k, from which we can then apply1288

the resulting concentration bound for this term.1289
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Theorem S28. Suppose we have a statistic of the form1290

Tn,β,J(λu, λv) = ρ−β−|J|
n

∑
α∈Vβ−1

g(λα̃0
, . . . , λα̃β−1

, λu, λv)
∏
i≤β

aα̃i−1,α̃i
·
∏
j∈J

aα̃j−1,α̃j+1
(S175)

where α̃ = (α, u, v) is a concatenation of α, u and v in order, g : Rβ+1 → R is a positive function1291

which satisfies cg ≤ g ≤ ∥g∥∞ <∞ for some constant cg, and J is a possibly empty set of indices.1292

Define λ′ = (λ̃0, . . . , λ̃β−1, λu, λv) where λ̃ is an independent copy of λ. Further define the statistic1293

T ′
n,β,J(λu, λv) :=

(n− β)!

n!
· E

[
g(λ′)

∏
i≤β

W (λ′i−1, λ
′
i)
∏
j∈J

W (λ′j−1, λ
′
j+1) |λu, λv

]
. (S176)

Then for any ρn = n−α for α sufficiently small, we have that1294

max
β,J,u,v

∣∣∣Tn,β,J(λu, λv)
T ′
n,β,J(λu, λv)

− 1
∣∣∣ = Op

(( (log n)k

n · (nρn)

)1/2)
. (S177)

Proof. For this, we apply the above results. We begin by working conditionally on all of the λ, whose1295

collection we denote λ, and note that by Theorem S26 by taking λ = (log n)k for some k > 1 and a1296

union bound, we have that1297

Tn,β,J(λu, λv) = E[Tn,β,J(λu, λv) |λ] · (1 + E(1)
n ) where E(1)

n = O
(( (log n)k

n · (nρn)

)1/2)
(S178)

uniformly over all O(m2m! · n2) random variables with probability 1− exp(O((log n)k)). As we1298

have that1299

E[Tn,β,J(λu, λv) |λ] =
∑

α∈Vβ−1

g(λα̃0 , . . . , λα̃β−1
, λu, λv)

∏
i≤β

W (λα̃i−1 , λα̃i)·
∏
j∈J

W (λα̃j−1 , λα̃j+1)

(S179)
where the function is bounded below by cg · cβ+|J|

p and is bounded above by ∥g∥∞, we can make use1300

of Lemma S27 to show that1301

max
β,J,u,v

∣∣∣E[Tn,β,J(λu, λv) |λ]
T ′
n,β,J(λu, λv)

− 1
∣∣∣ = Op

(( log n
n

)1/2)
(S180)

from which the claimed result follows.1302

Remark 1. One natural question to ask about the necessity of the range of values of ρn specified1303

above. Generally speaking, one can show for Erdos-Renyi graphs G(n, p) that the number of1304

subgraphs YH of H in Gn satisfy a zero-one law, where1305

P(YH = 0) =

{
1− o(1) if p≪ n−c(H),

o(1) if p≫ n−c(H) (S181)

for some constant c(H) which relates to the geometry of the graph G [6]. In the latter regime, one1306

can then show that YH ∼ E[YH ] asymptotically again, and in the former this shows that the term1307

is asymptotically negligible. As the purpose of this result is to derive an asymptotic expansion for1308

the sum of various statistics of the form of T to the highest order, provided ρn is of an order which1309

avoids any of the "phase transition" stages of the form above we could eventually generalize our1310

results further. As this involves even more additional book-keeping, we do not do so here.1311

Lemma S29. Let I be a finite index set of size |I| = m. Suppose that there exist constants τ > 0,1312

a bounded non-negative sequence (pi)i∈I such that pi ≤ τ−1 for all i, and a real sequence (ti)i∈I .1313

Define the random variable1314

X =
1

m

∑
i∈I

(
τ−1ai − pi

)
ti where ai

indep∼ Bernoulli(τpi) for i ∈ I. (S182)

Then for all u > 0, we have that1315

P
(
|X| ≥ u

)
≤ 2 exp

(
−min

{ u2

4τ−1m−2∥t∥22
,

u

2τ−1m−1∥t∥∞

})
. (S183)
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Proof. This follows by an application of Bernstein’s inequality, by noting that X is a sum of1316

independent mean zero random variables Xi = m−1(τ−1ai − pi)ti which satisfy1317

|Xi| ≤ τ−1m−1|ti| ≤ τ−1m−1∥t∥∞ for all i, E[X2
i ] ≤ m−2τ−1t2i .

Lemma S30. Define the random variable1318

Y =
1

n(n− 1)

∑
i ̸=j

(
ρ−1
n aij −W (λi, λj)

)
Tij (S184)

for some constants (Tij). Write ∥T∥22 =
∑

i ̸=j T
2
ij and ∥T∥∞ = maxi ̸=j |Tij |. Then we have that1319

P
(
|Y | ≥ u

)
≤ 2 exp

(
−min

{ u2

128ρ−1
n n−4∥T∥22

,
u

16ρ−1
n n−2∥T∥∞

})
(S185)

In particular, when Tij = 1 for all i ̸= j, we have that Y = Op((n
2ρn)

−1/2).1320

Proof. Note that under the assumptions on the model (where we have that aij = aji andW (λi, λj) =1321

W (λj , λi) for all i ̸= j), we can write1322

Y =
2

n(n− 1)/2

∑
i<j

(
ρ−1
n aij −W (λi, λj)

)
(Tij + Tji). (S186)

Note that1323 ∑
i<j

(Tij + Tji)
2 ≤ 2

∑
i<j

(
T 2
ij + T 2

ji

)
≤ 2∥T∥22, (S187)

max
i<j

|Tij + Tji| ≤ max
i<j

|Tij |+max
i<j

|Tji| ≤ 2∥T∥∞, (S188)

where we have used the inequality (a+ b)2 ≤ 2(a2 + b2) which holds for all a, b ∈ R. Consequently,1324

as a result of Lemma S29, we have conditional on λ that1325

P
(
|Y | ≥ u |λ

)
≤ 2 exp

(
−min

{ u2

128ρ−1
n n−4∥T∥22

,
u

16ρ−1
n n−2∥T∥∞

})
(S189)

As the right hand side has no dependence on λ, taking expectations gives the first part of the lemma1326

statement. For the second part, note that if Tij = 1 for all i ̸= j, then we have that ∥T∥22 ≤ n2 and1327

∥T∥∞ = 1, and consequently1328

P
(
|Y | ≥ u) ≤ 2 exp

(
−min

{ u2

128ρ−1
n n−2

,
u

16ρ−1
n n−2

})
(S190)

In particular, this implies that Y = Op((n
2ρn)

−1/2).1329

E.5 Miscellaneous results1330

Lemma S31. Suppose that A ∈ Rm×m is a matrix whose diagonal entries are α, and off-diagonal1331

entries are β, soAij = αδij+β(1−δij), where δij is the Kronecker delta. ThenA has an eigenvalue1332

α+(m− 1)β of multiplicity one with eigenvector 1m, and an eigenvalue α−β of multiplicity m− 1,1333

whose eigenvectors form an orthonormal basis of the subspace {v : ⟨v, 1m⟩ = 0}. For the subspace1334

{v : ⟨v, 1m⟩ = 0}, we can take the eigenvectors to be1335

vi =
1√
2
(em,1 − em,i+1) for i ∈ [m− 1]

where em,i are the unit column vectors in Rm, The singular values ofA are |α−β| and |α+(κ−1)β|.1336

Consequently, we can write A = UV T for matrices U, V ∈ Rm×m with UUT = V V T , where the1337

rows of U satisfy1338

U1· =
|α+ β(m− 1)|1/2√

m
em,1 +

|α− β|1/2√
2

em,2 (S191)

Ui· =
|α+ β(m− 1)|1/2√

m
em,1 −

|α− β|1/2√
2

em,i for i ∈ {2, . . . ,m}. (S192)
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Consequently, we then have that ∥Ui·∥2 ≤
(
2|α + β(m − 1)|/m + |α − β|/2

)1/2
for all i, and1339

mini ̸=j ∥Ui· − Uj·∥2 = (|α− β|)1/2.1340

Further suppose that β = −α/(m− 1). Then provided α > 0, A is positive semi-definite, is of rank1341

m− 1, with a singular non-zero eigenvalue αm/(m− 1) of multiplicity m− 1. Consequently one1342

can write A = UUT where U ∈ Rm×(m−1) and whose columns equal the
√
αm/(m− 1)vi. In1343

particular, the rows of U equal1344

U1· =
( αm

2(m− 1)

)1/2
eTm−1,1, Ui· = −

( αm

2(m− 1)

)1/2
eTm−1,i−1 for i ∈ [2,m].

Consequently, one has that ∥Ui·∥2 =
√
αm/(m− 1) for all i, and moreover we have the separability1345

condition min1≤i<j≤m ∥Ui· − Uj·∥2 = (αm/(m− 1))1/2.1346

Proof. It is straightforward to verify that A has an eigenvalue of α + (n − 1)β with the claimed1347

eigenvector. For the second part, we note that the characteristic polynomial of A is1348

det(A− tI) = (α− β − t)n−1 · (α+ (n− 1)β − t)

and so A has m− 1 eigenvalues equal to α− β; as A is symmetric, we know that we can always take1349

eigenvectors to be orthogonal to each other, and consequently the eigenspace associated with such an1350

eigenvalue must be a subspace of {v : ⟨v, 1m⟩ = 0}. As both of these subspaces are of dimension1351

m − 1, it consequently follows that they are equal. We then highlight that if A is a symmetric1352

matrix with eigendecomposition A = QΛQT for an orthogonal matrix Q, then the SVD is given by1353

Q|Λ|sgn(Λ)QT , and we can write A = UV T with U = Q|Λ|1/2 and V = Qsgn(Λ)|Λ|1/2 such that1354

UUT = V V T . This allows us to derive the remaining statements about the matrix A which hold in1355

generality. The remaining parts discussing what occurs when β = −α/(m− 1) follow by routine1356

calculation.1357

Lemma S32. Let σ(x) = (1 + exp(−x))−1 be the sigmoid function. Then there exists a unique1358

y ∈ R which solves the equation1359

ασ(y) = β + γσ(−y/s) (S193)

for α, γ, s > 0 and β ∈ R if and only if β < α and β + γ > 0. Moreover, y > 0 if and only if1360

β + γ/2 > α/2.1361

Proof. Note that ασ(x) is a function whose range is (0, α) on x ∈ (−∞,∞), and is strictly monotone1362

increasing on the domain. Similarly, β + γσ(−y/s) is strictly monotone decreasing with range1363

(β, β + γ), and so simple geometric considerations of the graphs of the two functions gives the1364

existence result. For the second part, note that the ranges of the functions on the LHS and the RHS on1365

the range y > 0 are [α/2, α) and (β, β + γ/2] respectively, and so the same considerations as above1366

give the second claim.1367

Lemma S33. Let σ(x) = (ex)/(1 + ex) be the sigmoid function. Then for any x, y ∈ R, we have1368

that1369

− log(1− σ(x)) ≥ − log(1− σ(y)) + σ(y)(x− y) + E(x− y) (S194)

where1370

E(z) =

{
1
2e

−Az2 if |x|, |y| ≤ A,
1
4e

−A min{z2, 2|z|} if either |x| ≤ A or |y| ≤ A.
(S195)

Proof. Note that by the integral version of Taylor’s theorem, for a twice differentiable function f one1371

has for all x, y ∈ R that1372

f(x) = f(y) + f ′(y)(x− y) +

∫ 1

0

(1− t)f ′′(tx+ (1− t)y)(x− y)2 dt. (S196)

Applying this to f(x) = − log σ(x) gives1373

− log σ(x) = − log σ(y) + (−1+ σ(y))(x− y) +

∫ 1

0

(1− t)(x− y)2σ′(tx+ (1− t)y) dt (S197)
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where σ′(x) = ex/(1 + ex)2. Applying this to f(x) = log(1− σ(x)) gives1374

− log(1−σ(x)) = − log(1−σ(y))+σ(y)(x−y)+
∫ 1

0

(1−t)(x−y)2σ′(tx+(1−t)y) dt (S198)

As the integral terms are the same, we concentrate on lower bounding this quantity. To do so, we1375

make use of the lower bound σ′(x) ≥ e−|x|/4 (Lemma 68 of Davison and Austern [11]) which holds1376

for all x ∈ R. We then note that if |x|, |y| ≤ A, then we have that1377

− log(1− σ(x)) = − log(1− σ(y)) + σ(y)(x− y) +

∫ 1

0

(1− t)(x− y)2σ′(tx+ (1− t)y) dt

(S199)

≥ − log(1− σ(y)) + σ(y)(x− y) +
e−|A|

2
(x− y)2. (S200)

Alternatively, if we only make use of the fact that |x| ≤ A (without loss of generality - the argument1378

is essentially equivalent if we only assume that |y| ≤ A), then we have that1379 ∫ 1

0

(1− t)σ′(tx+ (1− t)y)(x− y)2 dt ≥
∫ 1

0

(1− t)e−|tx+(1−t)y|(x− y)2 dt (S201)

≥
∫ 1

0

(1− t)e−|x|e−(1−t)|x−y|(x− y)2 dt (S202)

= e−|x|{|x− y|+ e−|x−y| − 1
}

(S203)

≥ 1

4
e−A min{(x− y)2, 2|x− y|}, (S204)

and consequently we get that1380

− log(1− σ(x)) ≥ − log(1− σ(y)) + σ(y)(x− y) +
1

4
e−A min{|x− y|2, 2|x− y|} (S205)

as claimed.1381

Lemma S34. Suppose that we have a function1382

f(X) =
1

m2

m∑
i,j=1

min{X2
ij , 2|Xij |}. (S206)

Then if f(X) ≤ r, we have that m−2
∑m

i,j=1 |Xij | ≤ r + r1/2.1383

Proof. To proceed, note that if we have that1384

E[min{X2, 2X}] ≤ r (S207)

for a non-negative random variable X , then by Jensen’s inequality we get that1385 (
E[X1[X < 2]]

)2
+ E[X1[X ≥ 2]] ≤ E[min{X2, 2X}] ≤ r (S208)

and consequently E[X] ≤ r + r1/2 by decomposing E[X] into the parts where X ≥ 2 and X < 2.1386

Applying this result to the empirical measure on the |Xij | across indices i, j ∈ [m] gives the desired1387

result.1388

F Minimizers for degree corrected SBMs when α ̸= 11389

In this section, we give an informal discussion of how to study the minimizers of Rn(M) for degree1390

corrected SBMs when the unigram parameter α ̸= 1. We begin by highlighting that Rn(M) does not1391

concentrate around its expectation when averaging over only the degree heterogenity parameters θi,1392

which rules out using a similar proof approach as to what was carried out earlier in Appendix 1.1393
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Recall that we were able to derive that the global minima of Rn(M) was the matrix1394

M∗
ij = log

( 2EW (α)

(1 + k−1)E[θ]E[θ]α
·

Pc(i),c(j)

P̃c(i)P̃c(j) ·
(
θα−1
i P̃α−1

c(i) + θα−1
j P̃α−1

c(j)

)). (S209)

When α = 1 or the θi are constant, this allows us to write M∗ = ΠMΠT where Π is the matrix1395

of community assignments for the network and M is some matrix, which allows us to simplify the1396

problem. If we supposed that the θ actually had some dependence on the c(i) and were discrete - in1397

that θi|c(i) = l ∼ Ql for some discrete distributions Ql for l ∈ [κ], then we could in fact employ the1398

same type of argument as done throughout the paper. The major change is that then the embedding1399

vectors would each concentrate around a vector decided by both a) their community assignment, and1400

b) the particular degree correction parameter they were assigned. This would then potentially effect1401

our ability to perform community detection depending on the underlying geometry of these vectors.1402

One possible idea would be to explore Rn(M) partially averaged over the θi - we divide the θi into1403

B bins where B = nβ for some β ∈ (0, 1), and average over only over the refinement of the θi as1404

belonging to the different bins. This would be similar to the argument employed in Davison and1405

Austern [11].1406

An alternative perspective to give some type of guarantee on the concentration of the embedding1407

vectors is to study the rank of the matrix M∗. If we are able to prove that is of finite rank r even1408

as n grows large, then we are able to give a convergence result for the embeddings as soon as the1409

embedding dimension d is greater than or equal to r. To study this, it suffices to look at the matrix1410

(M∗
E)ij = log

(
θα−1
i P̃α−1

c(i) + θα−1
j P̃α−1

c(j)

)
(S210)

and argue that this is low rank (due to the logarithm, we can write M∗ as the difference between1411

this matrix and a matrix of rank κ, which is therefore also low rank). The entry-wise logarithm is a1412

complicating factor here, as otherwise it is straightforward to argue that the entry-wise exponential of1413

this matrix is of rank 2. One can reduce studying the rank of the matrix M∗
E to studying the rank of1414

the kernel1415

KM

(
(x, cx), (y, cy)

)
= log

(
xα−1P̃α−1

cx + yα−1P̃α−1
cy

)
(S211)

of an operator L2(P ) → L2(P ), where P is the product measure induced by θ and the community1416

assignment mechanism c. As KM is of finite rank r if and only if it can be written as1417

KM

(
(x, cx), (y, cy)

)
=

r∑
i=1

ϕi(x, cx)ψi(y, cy) (S212)

for some functions ϕi, ψi, it follows that the matrix (M∗
E)ij will be of finite rank r also. Indeed, this1418

representation forces that M∗
E = ΦΨT for some matrices Φ,Ψ ∈ Rn×r, meaning that M∗

E is of rank1419

≤ r; Corollary 5.5 of Koltchinskii and Giné [23] then guarantees convergence of the eigenvalues of1420

the matrix M∗
E to the operator KM so that M∗

E is actually of full rank.1421
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• The abstract and/or introduction should clearly state the claims made, including the1433

contributions made in the paper and important assumptions and limitations. A No or1434

NA answer to this question will not be perceived well by the reviewers.1435

• The claims made should match theoretical and experimental results, and reflect how1436

much the results can be expected to generalize to other settings.1437

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1438

are not attained by the paper.1439

2. Limitations1440

Question: Does the paper discuss the limitations of the work performed by the authors?1441

Answer: [Yes]1442

Justification: We highlight and discuss the assumptions required for the theoretical results1443

presented within the paper and in detail in the appendix. We demonstrate empirically the1444

performance of our procedure when these assumptions are relaxed, if theoretical results1445

were not obtained.1446

Guidelines:1447

• The answer NA means that the paper has no limitation while the answer No means that1448

the paper has limitations, but those are not discussed in the paper.1449

• The authors are encouraged to create a separate "Limitations" section in their paper.1450

• The paper should point out any strong assumptions and how robust the results are to1451

violations of these assumptions (e.g., independence assumptions, noiseless settings,1452

model well-specification, asymptotic approximations only holding locally). The authors1453

should reflect on how these assumptions might be violated in practice and what the1454

implications would be.1455

• The authors should reflect on the scope of the claims made, e.g., if the approach was1456

only tested on a few datasets or with a few runs. In general, empirical results often1457

depend on implicit assumptions, which should be articulated.1458

• The authors should reflect on the factors that influence the performance of the approach.1459

For example, a facial recognition algorithm may perform poorly when image resolution1460

is low or images are taken in low lighting. Or a speech-to-text system might not be1461

used reliably to provide closed captions for online lectures because it fails to handle1462

technical jargon.1463

• The authors should discuss the computational efficiency of the proposed algorithms1464

and how they scale with dataset size.1465

• If applicable, the authors should discuss possible limitations of their approach to1466

address problems of privacy and fairness.1467

• While the authors might fear that complete honesty about limitations might be used by1468

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1469

limitations that aren’t acknowledged in the paper. The authors should use their best1470

judgment and recognize that individual actions in favor of transparency play an impor-1471

tant role in developing norms that preserve the integrity of the community. Reviewers1472

will be specifically instructed to not penalize honesty concerning limitations.1473

3. Theory Assumptions and Proofs1474
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Question: For each theoretical result, does the paper provide the full set of assumptions and1475

a complete (and correct) proof?1476

Answer: [Yes]1477

Justification: Due to space constraints all proofs appear in the supplemental material.1478

We provide intuition for these proofs in the paper where space allows. Complete proofs1479

are included in the supplemental material, along with all required Lemmas and exact1480

assumptions.1481

Guidelines:1482

• The answer NA means that the paper does not include theoretical results.1483

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1484

referenced.1485

• All assumptions should be clearly stated or referenced in the statement of any theorems.1486

• The proofs can either appear in the main paper or the supplemental material, but if1487

they appear in the supplemental material, the authors are encouraged to provide a short1488

proof sketch to provide intuition.1489

• Inversely, any informal proof provided in the core of the paper should be complemented1490

by formal proofs provided in appendix or supplemental material.1491

• Theorems and Lemmas that the proof relies upon should be properly referenced.1492

4. Experimental Result Reproducibility1493

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1494

perimental results of the paper to the extent that it affects the main claims and/or conclusions1495

of the paper (regardless of whether the code and data are provided or not)?1496

Answer: [Yes]1497

Justification: We detail the experimental setup used in this work in the supplemental1498

procedure, along with providing all code required to run and replicate these experiments1499

also.1500

Guidelines:1501

• The answer NA means that the paper does not include experiments.1502

• If the paper includes experiments, a No answer to this question will not be perceived1503

well by the reviewers: Making the paper reproducible is important, regardless of1504

whether the code and data are provided or not.1505

• If the contribution is a dataset and/or model, the authors should describe the steps taken1506

to make their results reproducible or verifiable.1507

• Depending on the contribution, reproducibility can be accomplished in various ways.1508

For example, if the contribution is a novel architecture, describing the architecture fully1509

might suffice, or if the contribution is a specific model and empirical evaluation, it may1510

be necessary to either make it possible for others to replicate the model with the same1511

dataset, or provide access to the model. In general. releasing code and data is often1512

one good way to accomplish this, but reproducibility can also be provided via detailed1513

instructions for how to replicate the results, access to a hosted model (e.g., in the case1514

of a large language model), releasing of a model checkpoint, or other means that are1515

appropriate to the research performed.1516

• While NeurIPS does not require releasing code, the conference does require all submis-1517

sions to provide some reasonable avenue for reproducibility, which may depend on the1518

nature of the contribution. For example1519

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1520

to reproduce that algorithm.1521

(b) If the contribution is primarily a new model architecture, the paper should describe1522

the architecture clearly and fully.1523

(c) If the contribution is a new model (e.g., a large language model), then there should1524

either be a way to access this model for reproducing the results or a way to reproduce1525

the model (e.g., with an open-source dataset or instructions for how to construct1526

the dataset).1527
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(d) We recognize that reproducibility may be tricky in some cases, in which case1528

authors are welcome to describe the particular way they provide for reproducibility.1529

In the case of closed-source models, it may be that access to the model is limited in1530

some way (e.g., to registered users), but it should be possible for other researchers1531

to have some path to reproducing or verifying the results.1532

5. Open access to data and code1533

Question: Does the paper provide open access to the data and code, with sufficient instruc-1534

tions to faithfully reproduce the main experimental results, as described in supplemental1535

material?1536

Answer: [Yes]1537

Justification: We have included an anonymized version of the code repository used to create1538

all experimental results in this paper.1539

Guidelines:1540

• The answer NA means that paper does not include experiments requiring code.1541

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1542

public/guides/CodeSubmissionPolicy) for more details.1543

• While we encourage the release of code and data, we understand that this might not be1544

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1545

including code, unless this is central to the contribution (e.g., for a new open-source1546

benchmark).1547

• The instructions should contain the exact command and environment needed to run to1548

reproduce the results. See the NeurIPS code and data submission guidelines (https:1549

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1550

• The authors should provide instructions on data access and preparation, including how1551

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1552

• The authors should provide scripts to reproduce all experimental results for the new1553

proposed method and baselines. If only a subset of experiments are reproducible, they1554

should state which ones are omitted from the script and why.1555

• At submission time, to preserve anonymity, the authors should release anonymized1556

versions (if applicable).1557

• Providing as much information as possible in supplemental material (appended to the1558

paper) is recommended, but including URLs to data and code is permitted.1559

6. Experimental Setting/Details1560

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1561

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1562

results?1563

Answer: [Yes]1564

Justification: We provide sufficient detail in the main text to understand the experimental1565

results presented. In the appendix, we completely detail all experimental details, along with1566

providing the exact code used as supplemental material.1567

Guidelines:1568

• The answer NA means that the paper does not include experiments.1569

• The experimental setting should be presented in the core of the paper to a level of detail1570

that is necessary to appreciate the results and make sense of them.1571

• The full details can be provided either with the code, in appendix, or as supplemental1572

material.1573

7. Experiment Statistical Significance1574

Question: Does the paper report error bars suitably and correctly defined or other appropriate1575

information about the statistical significance of the experiments?1576

Answer: [Yes]1577

Justification: For all experimental results we either show error bars corresponding to one1578

standard error or all simulation results (in the case of box plots).1579
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Guidelines:1580

• The answer NA means that the paper does not include experiments.1581

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1582

dence intervals, or statistical significance tests, at least for the experiments that support1583

the main claims of the paper.1584

• The factors of variability that the error bars are capturing should be clearly stated (for1585

example, train/test split, initialization, random drawing of some parameter, or overall1586

run with given experimental conditions).1587

• The method for calculating the error bars should be explained (closed form formula,1588

call to a library function, bootstrap, etc.)1589

• The assumptions made should be given (e.g., Normally distributed errors).1590

• It should be clear whether the error bar is the standard deviation or the standard error1591

of the mean.1592

• It is OK to report 1-sigma error bars, but one should state it. The authors should1593

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1594

of Normality of errors is not verified.1595

• For asymmetric distributions, the authors should be careful not to show in tables or1596

figures symmetric error bars that would yield results that are out of range (e.g. negative1597

error rates).1598

• If error bars are reported in tables or plots, The authors should explain in the text how1599

they were calculated and reference the corresponding figures or tables in the text.1600

8. Experiments Compute Resources1601

Question: For each experiment, does the paper provide sufficient information on the com-1602

puter resources (type of compute workers, memory, time of execution) needed to reproduce1603

the experiments?1604

Answer: [Yes]1605

Justification: The computation required for individual experiments was relatively small1606

(in terms of both memory and time) and is detailed in the appendix. These were run on a1607

computing cluster.1608

Guidelines:1609

• The answer NA means that the paper does not include experiments.1610

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1611

or cloud provider, including relevant memory and storage.1612

• The paper should provide the amount of compute required for each of the individual1613

experimental runs as well as estimate the total compute.1614

• The paper should disclose whether the full research project required more compute1615

than the experiments reported in the paper (e.g., preliminary or failed experiments that1616

didn’t make it into the paper).1617

9. Code Of Ethics1618

Question: Does the research conducted in the paper conform, in every respect, with the1619

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1620

Answer: [Yes]1621

Justification: We have ensured the research conforms with the code of ethics.1622

Guidelines:1623

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1624

• If the authors answer No, they should explain the special circumstances that require a1625

deviation from the Code of Ethics.1626

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1627

eration due to laws or regulations in their jurisdiction).1628

10. Broader Impacts1629

Question: Does the paper discuss both potential positive societal impacts and negative1630

societal impacts of the work performed?1631
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Answer: [NA]1632

Justification: This paper provides theoretical guarantees for community detection in a1633

specific class of statistical network models. Any potential societal impacts, positive or1634

negative, will be ancillary from the theoretical focus of this paper.1635

Guidelines:1636

• The answer NA means that there is no societal impact of the work performed.1637

• If the authors answer NA or No, they should explain why their work has no societal1638

impact or why the paper does not address societal impact.1639

• Examples of negative societal impacts include potential malicious or unintended uses1640

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1641

(e.g., deployment of technologies that could make decisions that unfairly impact specific1642

groups), privacy considerations, and security considerations.1643

• The conference expects that many papers will be foundational research and not tied1644

to particular applications, let alone deployments. However, if there is a direct path to1645

any negative applications, the authors should point it out. For example, it is legitimate1646

to point out that an improvement in the quality of generative models could be used to1647

generate deepfakes for disinformation. On the other hand, it is not needed to point out1648

that a generic algorithm for optimizing neural networks could enable people to train1649

models that generate Deepfakes faster.1650

• The authors should consider possible harms that could arise when the technology is1651

being used as intended and functioning correctly, harms that could arise when the1652

technology is being used as intended but gives incorrect results, and harms following1653

from (intentional or unintentional) misuse of the technology.1654

• If there are negative societal impacts, the authors could also discuss possible mitigation1655

strategies (e.g., gated release of models, providing defenses in addition to attacks,1656

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1657

feedback over time, improving the efficiency and accessibility of ML).1658

11. Safeguards1659

Question: Does the paper describe safeguards that have been put in place for responsible1660

release of data or models that have a high risk for misuse (e.g., pretrained language models,1661

image generators, or scraped datasets)?1662

Answer: [NA]1663

Justification: As this work theoretical guarantees for community detection in a specific class1664

of statistical network models, such safeguards are not applicable.1665

Guidelines:1666

• The answer NA means that the paper poses no such risks.1667

• Released models that have a high risk for misuse or dual-use should be released with1668

necessary safeguards to allow for controlled use of the model, for example by requiring1669

that users adhere to usage guidelines or restrictions to access the model or implementing1670

safety filters.1671

• Datasets that have been scraped from the Internet could pose safety risks. The authors1672

should describe how they avoided releasing unsafe images.1673

• We recognize that providing effective safeguards is challenging, and many papers do1674

not require this, but we encourage authors to take this into account and make a best1675

faith effort.1676

12. Licenses for existing assets1677

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1678

the paper, properly credited and are the license and terms of use explicitly mentioned and1679

properly respected?1680

Answer: [Yes]1681

Justification: We credit the original owners of code and data used.1682

Guidelines:1683

• The answer NA means that the paper does not use existing assets.1684
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• The authors should cite the original paper that produced the code package or dataset.1685

• The authors should state which version of the asset is used and, if possible, include a1686

URL.1687

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1688

• For scraped data from a particular source (e.g., website), the copyright and terms of1689

service of that source should be provided.1690

• If assets are released, the license, copyright information, and terms of use in the1691

package should be provided. For popular datasets, paperswithcode.com/datasets1692

has curated licenses for some datasets. Their licensing guide can help determine the1693

license of a dataset.1694

• For existing datasets that are re-packaged, both the original license and the license of1695

the derived asset (if it has changed) should be provided.1696

• If this information is not available online, the authors are encouraged to reach out to1697

the asset’s creators.1698

13. New Assets1699

Question: Are new assets introduced in the paper well documented and is the documentation1700

provided alongside the assets?1701

Answer: [Yes]1702

Justification: We provide an anonymized zip file which details the code used to generate all1703

results.1704

Guidelines:1705

• The answer NA means that the paper does not release new assets.1706

• Researchers should communicate the details of the dataset/code/model as part of their1707

submissions via structured templates. This includes details about training, license,1708

limitations, etc.1709

• The paper should discuss whether and how consent was obtained from people whose1710

asset is used.1711

• At submission time, remember to anonymize your assets (if applicable). You can either1712

create an anonymized URL or include an anonymized zip file.1713

14. Crowdsourcing and Research with Human Subjects1714

Question: For crowdsourcing experiments and research with human subjects, does the paper1715

include the full text of instructions given to participants and screenshots, if applicable, as1716

well as details about compensation (if any)?1717

Answer: [NA]1718

Justification: Crowdsourcing or human subjects were not used in this research.1719

Guidelines:1720

• The answer NA means that the paper does not involve crowdsourcing nor research with1721

human subjects.1722

• Including this information in the supplemental material is fine, but if the main contribu-1723

tion of the paper involves human subjects, then as much detail as possible should be1724

included in the main paper.1725

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1726

or other labor should be paid at least the minimum wage in the country of the data1727

collector.1728

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1729

Subjects1730

Question: Does the paper describe potential risks incurred by study participants, whether1731

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1732

approvals (or an equivalent approval/review based on the requirements of your country or1733

institution) were obtained?1734

Answer: [NA]1735

Justification: Crowdsourcing or human subjects were not used in this research.1736
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Guidelines:1737

• The answer NA means that the paper does not involve crowdsourcing nor research with1738

human subjects.1739

• Depending on the country in which research is conducted, IRB approval (or equivalent)1740

may be required for any human subjects research. If you obtained IRB approval, you1741

should clearly state this in the paper.1742

• We recognize that the procedures for this may vary significantly between institutions1743

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1744

guidelines for their institution.1745

• For initial submissions, do not include any information that would break anonymity (if1746

applicable), such as the institution conducting the review.1747
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