
Physics-Informed Regularization for Domain-Agnostic
Dynamical System Modeling

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning complex physical dynamics purely from data is challenging due to the1

intrinsic properties of systems to be satisfied. Incorporating physics-informed2

priors, such as in Hamiltonian Neural Networks (HNNs), achieves high-precision3

modeling for energy-conservative systems. However, real-world systems often4

deviate from strict energy conservation and follow different physical priors. To ad-5

dress this, we present a framework that achieves high-precision modeling for a wide6

range of dynamical systems from the numerical aspect, by enforcing Time-Reversal7

Symmetry (TRS) via a novel regularization term. It helps preserve energies for8

conservative systems while serving as a strong inductive bias for non-conservative,9

reversible systems. While TRS is a domain-specific physical prior, we present the10

first theoretical proof that TRS loss can universally improve modeling accuracy by11

minimizing higher-order Taylor terms in ODE integration, which is numerically12

beneficial to various systems regardless of their properties, even for irreversible13

systems. By integrating the TRS loss within neural ordinary differential equation14

models, the proposed model TREAT demonstrates superior performance on diverse15

physical systems. It achieves a significant 11.5% MSE improvement in a challeng-16

ing chaotic triple-pendulum scenario, underscoring TREAT’s broad applicability17

and effectiveness. Code and further details are available at here.18

1 Introduction19

Dynamical systems, spanning applications from physical simulations (Kipf et al., 2018; Wang et al.,20

2020; Lu et al., 2022) to robotic control (Li et al., 2022; Ni and Qureshi, 2022), are challenging21

to model due to intricate dynamic patterns and potential interactions under multi-agent settings.22

Traditional numerical simulators require extensive domain knowledge for design, which is sometimes23

unknown (Sanchez-Gonzalez et al., 2020), and can consume significant computational resources.24

Therefore, directly learning dynamics from the observational data becomes an attractive alternative.25

Existing deep learning approaches (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021) usually learn a26

fixed-step transition function to predict system dynamics from timestamp t to timestamp t+ 1 and27

rollout trajectories recursively. The transition function can have different inductive biases, such as28

Graph Neural Networks (GNNs) (Lam et al., 2023) for capturing pair-wise interactions among agents29

through message passing. Most recently, neural ordinary differential equations (ODEs) (Chen et al.,30

2018; Rubanova et al., 2019) have emerged as a potent solution for modeling system dynamics in a31

continuous manner, which offer superior prediction accuracy over discrete models in the long-range,32

and can handle systems with partial observations. In particular, GraphODEs (Huang et al., 2020;33

Luo et al., 2023; Zang and Wang, 2020; Jiang et al., 2023) extend NeuralODEs to model interacting34

(multi-agent) dynamical systems, where agents co-evolve and form trajectories jointly.35
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Figure 1: (a) High-precision modeling for dynamical systems; (b.1) Classification of classical
mechanical systems based on (Tolman, 1938; Lamb and Roberts, 1998);(b.2) Tim-Reversal Symmetry
illustration;(b.3) Error accumulation in numerical solvers.

However, the complexity of dynamical systems necessitates large amounts of data. Models trained on36

limited data risk violating fundamental physical principles such as energy conservation. A promising37

strategy to improve modeling accuracy involves incorporating physical inductive biases (Raissi et al.,38

2019; Cranmer et al., 2020). Existing models like Hamiltonian Neural Networks (HNNs) (Greydanus39

et al., 2019; Sanchez-Gonzalez et al., 2019) strictly enforce energy conservation, yielding more40

accurate predictions for energy-conservative systems. However, not all real-world systems strictly41

adhere to energy conservation, and they may adhere to various physical priors. Such system diversity42

largely limits the usage of existing models which are designed for individual physical prior.43

To address this, we present a framework that achieves high-precision modeling for a wide range44

of dynamical systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS)45

via a novel regularization term. Specifically, TRS posits that a system’s dynamics should remain46

invariant when time is reversed (Lamb and Roberts, 1998). To incorporate TRS, we propose a47

simple-yet-effective self-supervised regularization term that acts as a soft constraint. This term48

aligns forward and backward trajectories predicted by a neural network and we use GraphODE as49

the backbone. We theoretically prove that the TRS loss effectively minimizes higher-order Taylor50

expansion terms during ODE integration, offering a general numerical advantage for improving51

modeling accuracy across a wide array of systems, regardless of their physical properties. It forces52

the model to capture fine-grained physical properties such as jerk (the derivatives of accelerations)53

and provides more regularization for long-term prediction. We also justify our TRS design choice,54

showing case its superior performance both analytically and empirically. We name the model as55

TREAT (Time-Reversal Symmetry ODE).56

Note that TRS itself is a physical prior, that is broader than energy conservation as depicted in57

Figure 1(b.1). It covers classical energy-conservative systems such as Newtonian mechanics, and58

also non-conservative, reversible systems like Stokes flow (Pozrikidis, 2001), commonly encountered59

in microfluidics (Kim and Karrila, 2013; Cao and Li, 2018; Cao et al., 2019). Therefore, TRS loss60

achieves high-precision modeling from both the physical aspect, and the numerical aspect as shown61

in Figure 1(a), making it domain-agnostic and widely applicable to various dynamical systems.62

We systematically conduct experiments across 9 diverse datasets spanning across 1.) single-agent,63

multi-agent systems; 2.) simulated and real-world systems; and 3.) systems with different physical64

priors. TREAT consistently outperforms state-of-the-art baselines, affirming its effectiveness and65

versatility across various dynamic scenarios.66

Our primary contributions can be summarized as follows:67

• We introduce TREAT, a powerful framework that achieves high-precision modeling for a68

wide range of systems from the numerical aspect, by enforcing Time-Reversal Symmetry69

(TRS) via a regularization term.70

• We establish the first theoretical proof that the time-reversal symmetry loss could in general71

help learn more fine-grained and long-context system dynamics from the numerical aspect,72
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regardless of systems’ physical properties (even irreversible systems). This bridges the73

specific physical implication and the general numerical benefits of the physical prior -TRS.74

• We present empirical evidence of TREAT’s state-of-the-art performance in a variety of75

systems over 9 datasets, including real-world & simulated systems, etc. It yields a significant76

MSE improvement of 11.5% on the challenging chaotic triple-pendulum system.77

2 Preliminaries and Related Work78

We represent a dynamical system as a graph G = (V, E), where V denotes the node set of N79

agents1 and E denotes the set of edges representing their physical interactions. For simplicity, we80

assumed G to be static over time. Single-agent dynamical system is a special case where the graph81

only has one node. In the following, we use the multi-agent setting by default to illustrate our82

model. We denote X(t) ∈ RN×d as the feature matrix at timestamp t for all agents, with d as83

the feature dimension. Model input consists of trajectories of feature matrices over M historical84

timestamps X(t−M :−1) = {X(t−M ), . . . ,X(t−1)} and G. The timestamps t−1, · · · , t−M < 0 can85

have non-uniform intervals and take any continuous values. Our goal is to learn a neural simulator86

fθ(·) :
[
X(t−M :−1),G

]
→ Y (t0:K), which predicts node dynamics Y (t) in the future on timestamps87

0 = t0 < · · · < tK = T sampled within [0, T ]. We use yi(t) to denote the targeted dynamic vector of88

agent i at time t. In some cases when we are only predicting system feature trajectories, Y (·) ≡ X(·).89

2.1 NeuralODE for Dynamical Systems90

NeuralODEs (Chen et al., 2018; Rubanova et al., 2019) are a family of continuous models that define91

the evolution of dynamical systems by ordinary differential equations (ODEs). The state evolution can92

be described as: żi(t) :=
dzi(t)
dt = g (z1(t), z2(t) · · · zN (t)), where zi(t) ∈ Rd denotes the latent93

state variable for agent i at timestamp t. The ODE function g is parameterized by a neural network94

such as Multi-Layer Perception (MLP), which is automatically learned from data. GraphODEs (Poli95

et al., 2019; Huang et al., 2020; Luo et al., 2023; Wen et al., 2022) are special cases of NeuralODEs,96

where g is a Graph Neural Network (GNN) to capture the continuous interaction among agents.97

GraphODEs have been shown to achieve superior performance, especially in long-range predictions98

and can handle data irregularity issues. They usually follow the encoder-processor-decoder archi-99

tecture, where an encoder first computes the latent initial states z1(t0), · · · zN (t0) for all agents100

simultaneously based on their historical observations as in Eqn 1.101

z1(t0), z2(t0), ...,zN (t0) = fENC
(
X(t−M :−1),G) (1)

Then the GNN-based ODE predicts the latent trajectories starting from the learned initial states.102

The latent state zi(t) can be computed at any desired time using a numerical solver such as Runge-103

Kuttais (Schober et al., 2019) as:104

zi(t) = ODE-Solver
(
g, [z1(t0), ...zN (t0)], t

)
= zi(t0) +

∫ t

t0

g (z1(t), z2(t) · · · zN (t)) dt. (2)

Finally, a decoder extracts the predicted dynamics ŷi(t) based on the latent states zi(t) for any105

timestamp t:106

ŷi(t) = fDEC(zi(t)). (3)

However, vanilla GraphODEs can violate physical properties of a system, resulting in unrealistic107

predictions. We therefore propose to inject physics-informed regularization term to make more108

accurate predictions.109

2.2 Time-Reversal Symmetry (TRS)110

1Following (Kipf et al., 2018), we use “agents” to denote “objects” in dynamical systems, which is different
from “intelligent agent” in AI.
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Figure 2: Illustration of time-reversal symmetry based on
Lemma 2.1.The total length of the trajectory is tK − t0 = T .
t′k is the time index in the reverse trajectory, which points to
the same time as tK−k in the forward trajectory.

Consider a dynamical system de-111

scribed in the form of dx(t)
dt =112

F (x(t)), where x(t) ∈ Ω is the ob-113

served states such as positions. The114

system is said to follow the Time-115

Reversal Symmetry if there exists a116

reversing operator R : Ω 7→ Ω such117

that (Lamb and Roberts, 1998):118

d
(
R ◦ x(t)

)
dt

= −F
(
R ◦ x(t)

)
, (4)

where ◦ denote the action of func-119

tional R on the function x.120

Intuitively, we can assume x(t) is the position of a flying ball and the conventional reversing operator121

is defined as R : x 7→ R ◦ x, R ◦ x(t) = x(−t). This implies when x(t) is a forward trajectory122

position with initial position x(0), x(−t) is then a position in the time-reversal trajectory, where123

x(−t) is calculated using the same function F , but with the integration time reversed, i.e. dt 7→ d(−t).124

Eqn 4 shows how to create the reverse trajectory of a flying ball: at each position, the velocity (i.e.,125

the derivative of position with respect to time) should be the opposite. In neural networks, we usually126

model trajectories in the latent space via z (Sanchez-Gonzalez et al., 2020), which can be decoded127

back to real observation state i.e. positions. Therefore, we apply the reversal operator for z.128

Now we introduce a time evolution operator ϕτ such that ϕτ ◦ z(t) = z(t+ τ) for arbitrary t, τ ∈ R.129

It satisfies ϕτ1 ◦ ϕτ2 = ϕτ1+τ2 , where ◦ denotes composition. The time evolution operator helps us130

to move forward (when τ > 0) or backward (when τ < 0) through time, thus forming a trajectory.131

Based on (Lamb and Roberts, 1998), in terms of the evolution operator, Eqn 4 implies:132

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R, (5)

which means that moving forward t steps and then turning to the opposite direction is equivalent133

to firstly turning to the opposite direction and then moving backwards t steps2. Eqn 5 has been134

widely used to describe time-reversal symmetry in existing literature (Huh et al., 2020; Valperga135

et al., 2022). Nevertheless, we propose the following lemma, which is more intuitive to understand136

and straightforward to guide the design of our time-reversal regularizer.137

Lemma 2.1. Eqn 5 is equivalent to R ◦ ϕt ◦R ◦ ϕt = I , where I denotes identity mapping.138

Lemma 2.1 means if we move t steps forward, then turn to the opposite direction, and then move139

forward for t more steps, it shall restore back to the same state. This is illustrated in Figure 2 where140

the reverse trajectory should be the same as the forward trajectory.3 It can be understood as rewinding141

a video to the very beginning. The proof of Lemma 2.1 is in Appendix A.2.142

3 Method: TREAT143

We present a novel framework TREAT that achieves high-precision modeling for a wide range of144

systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a regularization145

term. It improves modeling accuracy regardless of systems’ physical properties. We first introduce146

our architecture design, followed by theoretical analysis to explain its numerical benefits.147

TREAT uses GraphODE (Huang et al., 2020) as the backbone and flexibly incorporates TRS as a148

regularization term based on Lemma 2.1. This term aligns model forward and reverse trajectories. In149

practice, our model predicts the forward trajectories at a series of timestamps {tk}Kk=0 as ground truth150

observations are discrete, where 0 = t0 < t1 < · · · < tK = T . The reverse trajectories are also at the151

same series of K timestamps so as to be aligned with the forward one, which we denote as {t′k}Kk=0152

satisfying 0 = t′0 < t′1 < · · · < t′K = T . It’s important to note that the values of the time variable153

2Time-reversal symmetry is a property of physical systems, which requires the forward and reverse trajectories
to be generated by the same mechanism F (·). It differs from reversibility of neural networks (Chang et al., 2018;
Liu et al., 2019), which is a property of machine learning models and ensures the recovery of input from output
via a reversed operator f−1(·). We highlight the detailed discussions in Appendix F.

3We explain Figure 2 with implementation in Appendix A.1.
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Figure 3: Overall framework of TREAT. O1, O2, O3 are connected agents. It follows the encoder-
processor-decoder architecture introduced in Sec 2.1. A novel TRS loss is incorporated to improve
modeling accuracy across systems from the numerical aspect, regardless of their physical properties.

t′k in the reverse trajectories do not represent real time, but serve as indexes of reverse trajectories.154

This leads to the relation t′K−k = T − tk, which means the reverse trajectories at timestamp t′K−k155

correspond to the forward trajectories at time tk. For example, t′0 = T − tK = 0. It indicates t′0 and156

tK are both pointing to the same real time T , which is the ending point of the forward trajectory as157

shown in Figure 3. Based on Lemma 2.1, the difference of the two trajectories at any observed time158

should be small, i.e. zfwd(tk) ≈ zrev(t′K−k). This serves as the guideline for our regularizer design.159

The weight of the regularizer is also adjustable to adapt different systems. The overall framework is160

depicted in Figure 3.161

3.1 Time-Reversal Symmetry Loss and Training162

Forward Trajectory Prediction and Reconstruction Loss. For multi-agent systems, we utilize163

the GNN operator described in (Kipf et al., 2018) as our ODE function g(·), which drives the system164

to move forward and output the forward trajectories for latent states zfwd
i (t) at each continuous time165

t ∈ [0, T ] and each agent i.We then employ a Multilayer Perceptron (MLP) as a decoder to predict166

output trajectories ŷfwd
i (t) based on the latent states. We summarize the whole procedure as:167

żfwd
i (t) :=

dzfwd
i (t)

dt
= g(zfwd

1 (t), zfwd
2 (t), · · · zfwd

N (t)),

zfwd
i (t0) = fENC(X(t−M :−1),G), ŷfwd

i (t) = fDEC(z
fwd
i (t)).

(6)

To train the model, we use the reconstruction loss that minimizes the L2 distance between predicted168

forward trajectories {ŷfwd
i (tk)}Kk=0 and the ground truth trajectories {yi(tk)}Kk=0 as :169

Lpred =

N∑
i=1

K∑
k=0

∥∥∥yi(tk)− ŷfwd
i (tk)

∥∥∥2
2
. (7)

Reverse Trajectory Prediction and Regularization Loss. We design a novel time-reversal symme-170

try loss as a soft constraint to flexibly regulate systems’ behavior based on Lemma 2.1. Specifically,171

we first compute the latent reverse trajectories zrev(t) by starting from the ending state of the forward172

one, traversed back over time. We then employ the decoder to output dynamic trajectories yrev(t).173

żrev
i (t) :=

dzrev
i (t)

dt
= −g(zrev

1 (t), zrev
2 (t), · · · zrev

N (t)),

zrev
i (t′0) = zfwd

i (tK), ŷrev
i (t) = fDEC(z

rev
i (t)).

(8)
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Next, based on Lemma 2.1, if the system follows Time-Reversal Symmetry, the forward and backward174

trajectories shall be exactly overlap. We thus design the reversal loss by minimizing the L2 distances175

between model forward and backward trajectories decoded from the latent trajectories:176

Lreverse =

N∑
i=1

K∑
k=0

∥∥∥ŷfwd
i (tk)− ŷrev

i (t′K−k)
∥∥∥2
2
. (9)

Finally, we jointly train TREAT as a weighted combination of the two losses:177

L = Lpred + αLreverse =

N∑
i=1

K∑
k=0

∥∥∥yi(tk)− ŷfwd
i (tk)

∥∥∥2
2
+ α

N∑
i=1

K∑
k=0

∥∥∥ŷfwd
i (tk)− ŷrev

i (t′K−k)
∥∥∥2
2
,

(10)
where α is a positive coefficient to balance the two losses based on different targeted systems.178

Remark. The computational time of Lreverse is of the same scale as the reconstruction loss Lpred.179

As the computation process of the reversal loss is to first use the ODE solver to generate the reverse180

trajectories, which has the same computational overhead as computing the forward trajectories, and181

then compute the L2 distances.182

3.2 Theoretical Analysis of Time-Reversal Symmetry Loss183

We next theoretically show that the time-reversal symmetry loss numerically helps to improve184

prediction accuracy in general, regardless of systems’ physical properties. Specifically, we show that185

it minimizes higher-order Taylor expansion terms during the ODE integration steps.186

Theorem 3.1. Let ∆t denote the integration step size in an ODE solver and T be the prediction187

length. The reconstruction loss Lpred defined in Eqn 7 is O(T 3∆t2). The time-reversal loss Lreverse188

defined in Eqn 9 is O(T 5∆t4).189

We prove Theorem 3.1 in Appendix A.3. From Theorem 3.1, we can see two nice properties of190

our proposed time-reversal loss: 1) Regarding the relationship to ∆t, Lreverse is optimizing a high-191

order term ∆t4, which forces the model to predict fine-grained physical properties such as jerk (the192

derivatives of accelerations). In comparison, the reconstruction loss optimizes ∆t2, which mainly193

guides the model to predict the locations/velocities accurately. Therefore, the combined loss enables194

our model to be more noise-tolerable; 2) Regarding the relationship to T , Lreverse is more sensitive195

to total sequence length (T 5), thus it provides more regularization for long-context prediction, a key196

challenge for dynamic modeling.197

TRS Loss Design Choice. We define Lreverse as the distance between model forward trajectories198

and backward trajectories. Based on the definition of TRS in Sec. 2.2, there are other implementation199

choices. One prior work TRS-ODE (Huh et al., 2020) designed a TRS loss based on Eqn 5, where200

a reverse trajectory shares the same starting point as the forward one. However, we show that our201

implementation based on Lemma 2.1 to approximate time-reversal symmetry has a lower maximum202

error compared to their implementation below, supported by empirical experiments in Sec. 4.2.203

Lemma 3.2. Let Lreverse be the TRS implementation of TREAT based on Lemma 2.1, Lreverse2204

be the one in (Huh et al., 2020) based on Eqn 5. When the reconstruction loss defined in Eqn 7 of205

both methods are equal, and the two TRS losses are equal, i.e. Lreverse = Lreverse2, the maximum206

error between the reversal and ground truth trajectory for each agent, i.e. MaxErrorgt_rev =207

maxk∈[K] ∥yi(tk)− ŷrev
i (t′K−k)∥2 for i = 1, 2 · · ·N , made by TREAT is smaller.208

We prove Lemma 3.2 in Appendix A.4. Another implementation is to minimize the distances209

between model backward trajectories and ground truth trajectories. When both forward and backward210

trajectories are close to ground-truth, they are implicitly symmetric. The major drawback is that at211

the early stage of learning when the forward is far away from ground truth (Lpred), such implicit212

regularization does not force time-reversal symmetry, but introduces more noise.213

4 Experiments214

Datasets. We conduct systematic evaluations over five multi-agent systems including three 5-body215

spring systems (Kipf et al., 2018), a complex chaotic pendulum system and a real-world motion216
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capture dataset (CMU, 2003); and four single-agent systems including three spring systems (with217

only one node) and a chaotic strange attractors system (Huh et al., 2020).218

The settings of spring systems include: 1) conservative, i.e. no interactions with the environments,219

we call it Simple Spring; 2) non-conservative with frictions, we call it Damped Spring; 3) non-220

conservative with periodic external forces, we call it Forced Spring. The Pendulum system contains221

three connected sticks in a 2D plane. It is highly sensitive to initial states, with minor disturbances222

leading to significantly different trajectories (Shinbrot et al., 1992; Awrejcewicz et al., 2008). The223

real-world motion capture dataset (CMU, 2003) describes the walking trajectories of a person,224

each tracking a single joint. We call it Human Motion. The strange attractor consists of symmetric225

attractor/repellor force pairs and is chaotic (Sprott and Clinton, 2015). It is also highly sensitive to226

the initial states (Koppe et al., 2019). We call it Attractor.227

Towards physical properties, Simple Spring and Pendulum are conservative and reversible; Force228

Spring and Attractor are reversible but non-conservative; Damped Spring are irreversible and non-229

conservative. For Human Motion, it does not adhere to specific physical laws since it is a real-world230

dataset. Details of the datasets and generation pipelines can be found inAppendix C.231

Task Setup. We conduct evaluation by splitting trajectories into two halves: [t1, tM ], [tM+1, tK ]232

where timestamps can be irregular. We condition the first half of observations to make predictions233

for the second half as in (Rubanova et al., 2019). For spring datasets and Pendulum, we generate234

irregular-sampled trajectories and set the training samples to be 20,000 and testing samples to be235

5,000 respectively. For Attractor, We generate 1,000 and 50 trajectories for training and testing236

respectively following Huh et al. (2020). 10% of training samples are used as validation sets and the237

maximum trajectory prediction length is 60. Details can be found in Appendix C.238

Baselines. We compare TREAT against three baseline types: 1) pure data-driven approaches including239

LG-ODE (Huang et al., 2020) and LatentODE (Rubanova et al., 2019), where the first one is a multi-240

agent approach considering pair-wise interactions, and the second one is a single-agent approach that241

predicts each trajectory independently; 2) energy-preserving HODEN (Greydanus et al., 2019); and242

3) time-reversal TRS-ODEN (Huh et al., 2020).243

The latter two are single-agent approaches and require initial states as given input. To handle missing244

initial states in our dataset, we approximate the initial states for the two methods via linear spline245

interpolation (Endre Süli, 2003). In addition, we substitute the ODE network in TRS-ODEN with246

a GNN (Kipf et al., 2018) as TRS-ODENGNN, which serves as a new multi-agent approach for fair247

comparison. HODEN cannot be easily extended to the multi-agent setting as replacing the ODE248

function with a GNN can violate energy conservation of the original HODEN. For running LGODE249

and TREAT on single-agent datasets, we only include self-loop edges in the graph G = (V, E), which250

makes the ODE function g a simple MLP. Implementation details can be found in Appendix D.2.251

Table 1: Evaluation results on MSE (10−2). Best results are in bold numbers and second-best results
are in underline numbers. Human Motion is a real-world dataset and all others are simulated datasets.

Multi-Agent Systems Single-Agent Systems

Dataset Simple
Spring

Forced
Spring

Damped
Spring Pendulum Human

Motion
Simple
Spring

Forced
Spring

Damped
Spring Attractor

LatentODE 5.2622 5.0277 3.3419 2.6894 2.9061 5.7957 0.4563 1.3012 0.58394
HODEN 3.0039 4.0668 8.7950 741.2296 1.9855 3.2119 4.004 1.5675 54.2912
TRS-ODEN 3.6785 4.4465 1.7595 741.4988 0.5400 3.0271 0.4056 1.5667 2.2683
TRS-ODENGNN 1.4115 2.1102 0.5951 596.0319 0.2609 / / / /
LG-ODE 1.7429 1.8929 0.9718 1.4156 0.7610 1.6156 0.1465 1.1223 0.6942
TREAT 1.1178 1.4525 0.5944 1.2527 0.2192 1.6026 0.0960 1.0750 0.5581

(—-Ablation of our method with different implementation of Lreverse—-)
TREATLrev=gt-rev 1.1313 1.5254 0.6171 1.6158 0.2495 1.6190 0.1104 1.1205 0.6364
TREATLrev=rev2 1.6786 1.9786 0.9692 1.5631 0.8785 1.6901 0.0983 1.0952 0.7286

4.1 Main Results252

Table 1 shows the prediction performance on both multi-agent systems and single-agent systems253

measured by mean squared error (MSE). We can see that TREAT consistently surpasses other models,254

highlighting its generalizability and the efficacy of the proposed TRS loss.255
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For multi-agent systems, approaches that consider interactions among agents (LG-ODE, TRS-256

ODENGNN, TREAT) consistently outperform single-agent baselines (LatentODE, HODEN, TRS-257

ODEN), and TREAT achieves the best performance across datasets.258

The chaotic nature of the Pendulum system and the Attractor system, with their sensitivity to initial259

states 4, poses extreme challenges for dynamic modeling. This leads to highly unstable predictions260

for models like HODEN and TRS-ODEN, as they estimate initial states via inaccurate linear spline261

interpolation (Endre Süli, 2003). In contrast, LatentODE, LG-ODE, and TREAT employ advanced262

encoders that infer latent states from observed data and demonstrate superior accuracy. Among them,263

TREAT achieves the most accurate predictions, further showing its robust generalization capabilities.264

We observe that misapplied inductive biases can degrade results, which limits the usage of physics-265

informed methods that are designed for individual physical prior such as HODEN. HODEN only266

excels on energy-conservative systems, such as Simple Spring compared with LatentODE and TRS-267

ODEN in the multi-agent setting. Its performance drop dramatically on Force Spring, Damped Spring,268

and Attractor. Note that HODEN naively forces each agent to be energy-conservative, instead of the269

whole system. Therefore, it performs poorly than LG-ODE, TREAT in the multi-agent settings.270

For the Human Motion dataset, characterized by its dynamic ambiguity as it does not adhere to specific271

physical laws, we cannot directly determine whether it is conservative or time-reversal. For such a272

system with an unknown nature, TREAT outperforms other purely data-driven methods significantly,273

showcasing its strong numerical benefits in improving prediction accuracy across diverse system274

types. This is also shown by its superior performance on Damped Spring, which is irreversible.275

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

Figure 4: Varying prediction lengths across multi-agent datasets (Pendulum MSE is in log values).

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

Figure 5: Varying α values across multi-agent datasets.

4.2 Ablation and Sensitivity Analysis276

Ablation on implementation of Lreverse. We conduct two ablation by changing the implementation277

of Lreverse discussed in Sec. 3.2: 1) TREATLrev=gt-rev , which computes the reversal loss as the L2278

distance between ground truth trajectories to model backward trajectories; 2) TREATLrev=rev2, which279

implements the TRS loss based on Eqn 5 as in TRS-ODEN (Huh et al., 2020). From the last block of280

Table 1, we can clearly see that our implementation achieves the best performance against the two.281

Evaluation across prediction lengths. We vary the maximum prediction lengths from 20 to 60282

and report model performance as shown in Figure 4. As the prediction step increases, TREAT283

consistently maintains optimal prediction performance, while other baselines exhibit significant error284

accumulations. The performance gap between TREAT and baselines widens when making long-range285

predictions, highlighting the superior predictive capability of TREAT.286

Evaluation across different α. We vary the values of the coefficient α defined in Eqn 10, which287

balances the reconstruction loss and the TRS loss. Figure 5 demonstrates that the optimal α values288

being neither too high nor too low. This is because when α is too small, the model tends to neglect289

the TRS physical bias, resulting in error accumulations. Conversely, when α becomes too large, the290

4Video to show Pendulum is highly sensitive to initial states.
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model can emphasize TRS at the cost of accuracy. Nonetheless, across different α values, TREAT291

consistently surpasses the purely data-driven LG-ODE, showcasing its superiority and flexibility in292

modeling diverse dynamical systems.293

Finally, we study its sensitivity towards solver choice and observation ratios in Appendix E.294

LG-ODE
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HODEN
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TREAT
HODEN

LG-ODE
TREAT
HODEN
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Figure 6: Visualization for 5-body spring systems (trajectory starts from light to dark colors).
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Figure 7: TRS loss visualization across multi-agent datasets (scales of two y-axes are different).

4.3 Visualizations295

Trajectory Visualizations. Model predictions and ground truth are visualized in Figure 6. As296

HODEN is a single-agent baseline that individually forces every agent’s energy to be constant over297

time which is not valid, the predicted trajectories is having the largest errors and systems’ total energy298

is not conserved for all datasets. The purely data-driven LG-ODE exhibits unrealistic energy patterns,299

as seen in the energy spikes in Simple Spring and Force Spring. In contrast, TREAT, incorporating300

reversal loss, generates realistic energy trends, and consistently produces trajectories closest to the301

ground truth, showing its superior performance.302

Reversal Loss Visualizations To illustrate the issue of energy explosion from the purely data-driven303

LG-ODE, we visualize the TRS loss over training epochs from LG-ODE5 and TREAT in Figure 7.304

As results suggest, LG-ODE has increased TRS loss over training epochs, meaning it is violating the305

time-reversal symmetry sharply, in contrast to TREAT which has decreased reversal loss over epochs.306

5 Conclusions307

We propose TREAT, a deep learningframework that achieves high-precision modeling for a wide308

range of dynamical systems by injecting time-reversal symmetry as an inductive bias. TREAT309

features a novel regularization term to softly enforce time-reversal symmetry by aligning predicted310

forward and reverse trajectories from a GraphODE model. Notably, we theoretically prove that311

the regularization term effectively minimizes higher-order Taylor expansion terms during the ODE312

integration, which serves as a general numerical benefit widely applicable to various systems (even313

irreversible systems) regardless of their physical properties. Empirical evaluations on different kinds314

of datasets illustrate TREAT’s superior efficacy in accurately capturing real-world system dynamics.315

5There is no reversal loss backpropagation in LG-ODE, we just compute its value along training.
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A Theoretical Analysis422

A.1 Implementation of the Time-Reversal Symmetry Loss423

Algorithm 1 The implementation of Lreverse

Require: latent initial states zfwd
i (t0); the ODE function g(·); number of agents N :

1: for each i ∈ N do
2: Compute the latent forward trajectory at timestamps {tk}Kk=0:

zfwd
i (tk) = ODE-Solver

(
g, [zfwd

1 (t0), z
fwd
2 (t0)...z

fwd
N (t0)], tk

)
. Reach the final state zfwd

i (tK).

3: The initial state of the reverse trajectory is defined as zrev
i (t′0) = zfwd

i (tK), and the dynamics
of the system which is the ODE function g(·) is also reversed as −g(·) .

4: Compute the latent reverse trajectory at timestamps {t′k}Kk=0,
zrev
i (t′k) = ODE-Solver

(
g, [zrev

1 (t′0), z
rev
2 (t′0)...z

rev
N (t′0)], t

′
k

)
.

5: ŷfwd
i (tk) = fDEC(z

fwd
i (tk)) ,ŷrev

i (t′k) = fDEC(z
rev
i (t′k))

6: end for
7: Lreverse =

∑N
i=1

∑K
k=0

∥∥∥ŷfwd
i (tk)− ŷrev

i (t′K−k)
∥∥∥2
2

A.2 Proof of Lemma 1424

Proof. The definition of time-reversal symmetry is given by:425

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R (11)

Here, R is an involution operator, which means R ◦R = I.426

First, we apply the time evolution operator ϕt to both sides of Eqn 11:427

ϕt ◦R ◦ ϕt = ϕt ◦ ϕ−1
t ◦R (12)

Simplifying, we obtain:428

ϕt ◦R ◦ ϕt = R (13)

Next, we apply the involution operator R to both sides of the equation:429

R ◦ ϕt ◦R ◦ ϕt = R ◦R (14)

Since R ◦R = I, we finally arrive at:430

R ◦ ϕt ◦R ◦ ϕt = I (15)

which means the trajectories can overlap when evolving backward from the final state.431

A.3 Proof of Theorem 3.1432

Let ∆t denote the integration step size in an ODE solver and T be the prediction length. The time433

stamps of the ODE solver are {tj}Tj=0, where tj+1 − tj = ∆t for j = 0, · · · , T (T > 1). Next434

suppose during the forward evolution, the updates go through states zfwd(tj) = (qfwd(tj),p
fwd(tj))435

for j = 0, · · · , T , where qfwd(tj) is position, pfwd(tj) is momentum, while during the reverse436

evolution they go through states zrev(tj) = (qrev(tj),p
rev(tj)) for j = 0, · · · , T , in reverse order.437

The ground truth trajectory is zgt(tj) = (qgt(tj),p
gt(tj)) for j = 0, · · · , T .438

For the sake of brevity in the ensuing proof, we denote zgt(tj) by zgt
j , zfwd(tj) by zfwd

j and zrev(tj)439

by zrev
j , and we will use Mathematical Induction to prove the theorem.440

A.3.1 Reconstruction Loss (Lpred) Analysis.441

First, we bound the forward loss
∑T

j=0 ∥zfwd
j − zgt

j ∥22. Since our method models the momentum and
position of the system, we can write the following Taylor expansion of the forward process, where

13



for any 0 ≤ j < T :
qfwd
j+1 = qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2 +O(∆t3), (16a)

pfwd
j+1 = pfwd

j + ṗfwd
j ∆t+O(∆t2), (16b)

ṗfwd
j+1 = ṗfwd

j +O(∆t), (16c)

and for the ground truth process, we also have from Taylor expansion that
qgt
j+1 = qgt

j + (pgt
j /m)∆t+ (ṗgt

j /2m)∆t2 +O(∆t3), (17a)

pgt
j+1 = pgt

j + ṗgt
j ∆t+O(∆t2), (17b)

ṗgt
j+1 = ṗgt

j +O(∆t). (17c)

With these, we aim to prove that for any k = 0, 1, · · · , T , the following hold :{
∥qfwd

k − qgt
k ∥2 ≤ C fwd

2 k2∆t2, (18a)

∥pfwd
k − pgt

k ∥2 ≤ C fwd
1 k∆t, (18b)

where C fwd
1 and C fwd

2 are constants.442

Base Case k = 0: Based on the initialization rules, it is obvious that
∥∥qfwd

0 − qgt
0

∥∥
2
= 0 and443 ∥∥pfwd

0 − pgt
0

∥∥
2
= 0, thus (18a) and (18b) both hold for k = 0.444

Inductive Hypothesis: Assume (18a) and (18b) hold for k = j, which means:{
∥qfwd

j − qgt
j ∥2 ≤ C fwd

2 j2∆t2, (19a)

∥pfwd
j − pgt

j ∥2 ≤ C fwd
1 j∆t, (19b)

Inductive Proof: We need to prove (18a) and (18b) hold for k = j + 1.445

First, using (16c) and (17c), we have446 ∥∥ṗfwd
j+1 − ṗgt

j+1

∥∥
2
=
∥∥ṗfwd

j − ṗgt
j

∥∥
2
+O(∆t) =

∥∥ṗfwd
0 − ṗgt

0

∥∥
2
+O

(
(j + 1)∆t

)
= O(1), (20)

where we iterate through j, j − 1, · · · , 0 in the second equality. Then using (17b) and (16b), we get447

for j + 1 that448 ∥∥pfwd
j+1 − pgt

j+1

∥∥
2
=
∥∥(pfwd

j + ṗfwd
j ∆t

)
−
(
pgt
j + ṗgt

j ∆t
)
+O(∆t2)∥2

≤
∥∥pfwd

j − pgt
j

∥∥
2
+
∥∥ṗfwd

j − ṗgt
j

∥∥
2
∆t+O(∆t2)

≤
[
C fwd

1 j +O(1)
]
∆t,

where the first inequality uses the triangle inequality, and in the second inequality we use (19b) as449

well as (20). We can see there exists C fwd
1 such that the final expression above is upper bounded by450

C fwd
1 (j + 1)∆t, with which the claim holds for j + 1.451

Next for (18a), using (17a) and (16a), we get for any j that452 ∥∥qfwd
j+1 − qgt

j+1

∥∥
2
=
∥∥(qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2)−
(
qgt
j + (pgt

j /m)∆t+ (ṗgt
j /2m)∆t2

)
+O(∆t3)∥2

≤
∥∥qfwd

j − qgt
j

∥∥
2
+

1

m

∥∥pfwd
j − pgt

j

∥∥
2
∆t+

1

2m

∥∥ṗfwd
j − ṗgt

j

∥∥
2
∆t2 +O(∆t3)

≤
[
C fwd

2 j2 +
C fwd

1

m
j +O(1)

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (19a) and453

(19b) as well as (20). Thus with an appropriate C fwd
2 , we have the final expression above is upper454

bounded by C fwd
2 (j + 1)2∆t2, and so the claim holds for j + 1.455

Since both the base case and the inductive step have been proven, by the principle of mathematical456

induction, (18a) and (18b) holds for all k = 0, 1, · · · , T .457
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With this, we finish the forward proof by plugging (18a) and (18b) into the loss function:458

T∑
j=0

∥zfwd
j − zgt

j ∥
2
2 =

T∑
j=0

∥pfwd
j − pgt

j ∥
2
2 +

T∑
j=0

∥qfwd
j − qgt

j ∥
2
2

≤
(
C fwd

1

)2 T∑
j=0

j2∆t2 +
(
C fwd

2

)2 T∑
j=0

j4∆t4

= O(T 3∆t2).

A.3.2 Reversal Loss (Lreverse) Analysis.459

Next we analyze the reversal loss
∑T

j=0 ∥R(zrev
j ) − zfwd

j ∥22. For this, we need to refine the Taylor460

expansion residual terms for a more in-depth analysis.461

First reconsider the forward process. Since the process is generated from the learned network, we
may assume that for some constants c1, c2, and c3, the states satisfy the following for any 0 ≤ j < T :

qfwd
j = qfwd

j+1 − (pfwd
j+1/m)∆t+ (ṗfwd

j+1/2m)∆t2 + remfwd,3
j , (21a)

pfwd
j = pfwd

j+1 − ṗfwd
j+1∆t+ remfwd,2

j , (21b)

ṗfwd
j = ṗfwd

j+1 + remfwd,1
j , (21c)

where the remaining terms
∥∥remfwd,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3. Similarly, we have approximate

Taylor expansions for the reverse process:
qrev
j = qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j , (22a)

prev
j = prev

j+1 + ṗrev
j+1∆t+ remrev,2

j , (22b)

ṗrev
j = ṗrev

j+1 + remrev,1
j , (22c)

where
∥∥remrev,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3.462

We will prove via induction that for k = T, T − 1, · · · , 0,
∥R(qrev

k )− qfwd
k ∥2 ≤ C rev

3 (T − k)3∆t3, (23a)

∥R(prev
k )− pfwd

k ∥2 ≤ C rev
2 (T − k)2∆t2, (23b)

∥R(ṗrev
k )− ṗfwd

k ∥2 ≤ C rev
1 (T − k)∆t, (23c)

where C rev
1 , C rev

2 and C rev
3 are constants.463

The entire proof process is analogous to the previous analysis of Reconstruction Loss.464

Base Case k = T : Since the reverse process is initialized by the forward process variables at k = T ,465

it is obvious that
∥∥qfwd

T − qev
T

∥∥
2
=
∥∥pfwd

T − prev
T

∥∥
2
=
∥∥ṗfwd

T − ṗrev
T

∥∥
2
= 0. Thus (23a), (23b) and466

(23c) all hold for k = 0.467

Inductive Hypothesis: Assume the inequalities (23b), (23a) and (23c) hold for k = j + 1, which
means: 

∥R(qrev
j+1)− qfwd

j+1∥2 ≤ C rev
3 (T − (j + 1))3∆t3, (24a)

∥R(prev
j+1)− pfwd

j+1∥2 ≤ C rev
2 (T − (j + 1))2∆t2, (24b)

∥R(ṗrev
j+1)− ṗfwd

j+1∥2 ≤ C rev
1 (T − (j + 1))∆t, (24c)

Inductive Proof: We need to prove (23b) (23a) and (23c) holds for k = j.468

First, for (23c), using (21c) and (22c), we get for any j that469 ∥∥R(ṗrev
j )− ṗfwd

j

∥∥
2

=
∥∥(ṗrev

j+1 + remrev,1
j )− (ṗfwd

j+1 + remfwd,1
j )

∥∥
2

≤
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
+ ∥remrev,1

j ∥2 + ∥remfwd,1
j ∥2

≤ C rev
1 (T − j − 1)∆t+ 2c1∆t,
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where the first inequality uses the triangle inequality, and the second inequality plugs in (24c). Thus470

taking C rev
1 = 2c1, the above is upped bounded by C rev

1 (T − j)∆t, and (23b) holds for j.471

Second, for (24b), using (21b) and (22b), we get472 ∥∥R(prev
j )− pfwd

j

∥∥
2
=
∥∥− (prev

j+1 + ṗrev
j+1∆t+ remrev,2

j

)
−
(
pfwd
j+1 − ṗfwd

j+1∆t+ remfwd,2
j

)
∥2

≤
∥∥R(prev

j+1)− pfwd
j+1

∥∥
2
+
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
∆t+ ∥remrev,2

j ∥2 + ∥remfwd,2
j ∥2

≤
[
C rev

2 (T − j − 1)2 + C rev
1 (T − j − 1) + 2c2

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (24a) and473

(24b). Thus taking C rev
2 = max{C rev

1 /2, 2c2}, we have the final expression above is upper bounded474

by C rev
2 (T − j)2∆t2, and so the claim holds for j.475

Finally, for (24a), we use (21a) and (22a) to get476 ∥∥R(qrev
j )− qfwd

j

∥∥
2

=
∥∥(qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j

)
−
(
qfwd
j+1 − (pfwd

j+1/m)∆t+ (ṗfwd
j+1/2m)∆t2 + remfwd,3

j

)
∥2

≤
∥∥R(qrev

j+1)− qfwd
j+1

∥∥
2
+

1

m

∥∥R(prev
j+1)− pfwd

j+1

∥∥
2
∆t+

1

2m

∥∥R(ṗrev
j+1)− ṗfwd

j+1

∥∥
2
∆t2 + ∥remrev,3

j ∥2 + ∥remfwd,3
j ∥2

≤
[
C rev

3 (T − j − 1)3 +
C rev

2

m
(T − j − 1)2 +

C rev
1

2m
(T − j − 1) + 2c3

]
∆t3,

where the first inequality uses the triangle inequality, and in the second inequality we use (24a), (24b)477

and (24c). Thus taking C rev
3 = max{C rev

2 /3m,C rev
1 /6m, 2c3}, we have the final expression above is478

upper bounded by C rev
3 (T − j)3∆t3, and so the claim holds for j.479

Since both the base case and the inductive step have been proven, by the principle of mathematical480

induction, (23b), (23a) and (23c) hold for all k = T, T − 1, · · · , 0.481

With this we finish the proof by plugging (23b) and (23a) into the loss function:482

T∑
j=0

∥R(zrev
j )− zfwd

j ∥22 =

T∑
j=0

∥R(prev
j )− pfwd

j ∥22 +
T∑

j=0

∥R(qrev
j )− qfwd

j ∥22

≤
(
C rev

2

)2 T∑
j=0

(T − j)4∆t4 +
(
C rev

3

)2 T∑
j=0

(T − j)6∆t6

= O(T 5∆t4).

(25)

A.4 Proof of Lemma 3.2483

b
a

b

a

𝒚$𝒊𝐟𝐰𝐝 𝟎 = 𝒚𝒊(𝟎) 𝒚𝒊(𝟏) 𝒚$𝒊𝐫𝐞𝐯𝟐 𝟎 = 𝒚𝒊 𝟎 = 𝒚$𝒊𝐟𝐰𝐝 𝟎 𝒚𝒊(𝟏)

𝒚$𝒊𝐟𝐰𝐝 𝟏𝒚$𝒊𝐟𝐰𝐝 𝟏

𝒚$𝒊𝐫𝐞𝐯𝟐 −𝟏

𝒚$𝒊𝐫𝐞𝐯𝟐 𝟏

𝒚$𝒊𝐫𝐞𝐯 𝟎

𝒚$𝒊𝐫𝐞𝐯 −𝟏 = 𝑹(𝒚$𝒊𝐟𝐰𝐝 𝟏 )

𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 !"#$! = max	{𝑎, 𝑏}
𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 !"%-'(#) = 𝑎 + 𝑏

ℒ!"#$ = 𝒚$𝒊𝐟𝐰𝐝 𝟏  − 𝒚𝒊(𝟏) )
)
∶= 𝑎

ℒ"#*#"+# = 𝑅(	𝒚$𝒊𝐫𝐞𝐯 𝟎 ) − 𝒚$𝒊𝐟𝐰𝐝 𝟎   )
)
≔ 𝑏

ℒ!"#$ = 𝒚$𝒊𝐟𝐰𝐝 𝟏  − 𝒚𝒊(𝟏) )
)
∶= 𝑎

ℒ"#*#"+#) = 𝒚$𝒊𝐫𝐞𝐯𝟐 𝟏 − 𝒚$𝒊𝐟𝐰𝐝 𝟏   )
)
≔ 𝑏

Ground truth Trajectory
Forward Trajectory
Reverse Trajectory

TREAT:	𝑅 ∘ 𝜙! ∘ 𝑅 ∘ 𝜙! = 𝐼 TRS-ODEN:	𝑅 ∘ 𝜙! = 𝜙"! ∘ 𝑅

	𝒚$𝒊𝐫𝐞𝐯𝟐 𝟏 = 𝑹(	𝒚$ 𝒊𝐫𝐞𝐯𝟐 −𝟏 )

Figure 8: Comparison between two reversal loss implementation
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We expect an ideal model to align both the predicted forward and reverse trajectories with the ground484

truth. As shown in Figure 8, we integrate one step from the initial state ŷfwd
i (0) (which is the same as485

yi(0)) and reach the state ŷfwd
i (1).486

The first reverse loss implementation (ours) follows Lemma 2.1 as R ◦Φt ◦R ◦Φt = I, which means487

when we evolve forward and reach the state ŷfwd
i (1) we reverse it into ŷrev

i (−1) = R(ŷfwd
i (1)) and go488

back to reach ŷrev
i (0), then reverse it to get R(ŷrev

i (0)), which ideally should be the same as ŷfwd
i (0).489

The second reverse loss implementation follows Eqn 5as R ◦ Φt = Φ−t ◦R, which means we first490

reverse the initial state as ŷrev2
i (0) = R(yi(0)), then evolve the reverse trajectory in the opposite491

direction to reach ŷrev2
i (−1), and then perform a symmetric operation to reach ŷrev2

i (1), aligning it492

with the forward trajectory.493

We assume the two reconstruction losses Lpred = ∥ŷfwd
i (1) − yi(1)∥22 := a are the same. For the494

time-reversal losses, we also assume they have reached the same value b:495

Lreverse = ∥R(ŷrev
i (0))− ŷfwd

i (0)∥22 + ∥R(ŷrev
i (−1))− ŷfwd

i (1)∥22 = ∥R(ŷrev
i (0))− ŷfwd

i (0)∥22 := b,

Lreverse2 = ∥ŷrev2
i (0)− ŷfwd

i (0)∥22 + ∥ŷrev2
i (1)− ŷfwd

i (1)∥22 = ∥ŷrev2
i (1)− ŷfwd

i (1)∥22 := b,

As shown in Figure 8 where we illustrate the worst case scenario MaxErrorgt_rev =496

maxk∈[K] ∥yi(tk)−ŷrev
i (t′K−k)∥2 of TREAT and TRS-ODEN, we can see that in our implementation497

the worst error is the maximum of two loss, while the TRS-ODEN’s implementation has the risk of498

accumulating the error together, making the worst error being the sum of both:499

MaxErrorTREAT = max
{∥∥R(ŷrev

i (0))− yi(0)
∥∥
2
,
∥∥R(ŷrev

i (−1))− yi(1)
∥∥
2

}
= max

{
a, b
}
,

MaxErrorTRS-ODEN = max
{∥∥ŷrev2

i (0)− yi(0)
∥∥
2
,
∥∥ŷrev2

i (1)− yi(1)
∥∥
2

}
= max

{
0,
∥∥R(ŷrev

i (−1))− yi(1)
∥∥
2

}
=
∥∥ŷrev2

i (1)− ŷfwd
i (1)

∥∥
2
+
∥∥ŷfwd(1)− y(1)

∥∥
2
= a+ b,

(26)
So it is obvious that MaxErrorTREAT made by TREAT is smaller., which means our model achieves500

a smaller error of the maximum distance between the reversal and ground truth trajectory.501

B Example of varying dynamical systems502

We illustrate the energy conservation and time reversal of the three n-body spring systems used in our503

experiments. We use the Hamiltonian formalism of systems under classical mechanics to describe504

their dynamics and verify their energy conservation and time-reversibility characteristics.505

The scalar function that describes a system’s motion is called the Hamiltonian, H, and is typically506

equal to the total energy of the system, that is, the potential energy plus the kinetic energy (North,507

2021). It describes the phase space equations of motion by following two first-order ODEs called508

Hamilton’s equations:509

dq

dt
=

∂H(q,p)

∂p
,
dp

dt
= −∂H(q,p)

∂q
, (27)

where q ∈ Rn,p ∈ Rn, and H : R2n 7→ R are positions, momenta, and Hamiltonian of the system.510

Under this formalism, energy conservative is defined by dH/dt = 0, and the time-reversal symmetry511

is defined by H(q, p, t) = H(q,−p,−t) (Lamb and Roberts, 1998).512

B.1 Conservative and reversible systems.513

A simple example is the isolated n-body spring system, which can be described by :514

dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj),
(28)

where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a set of515

momenta of each object, mi is mass of each object, k is spring constant.516
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The Hamilton’s equations are:517

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj),
(29)

Hence, we can obtain the Hamiltonian through the integration of the above equation.518

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
, (30)

Verify the systems’ energy conservation519

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
= 0, (31)

So it is conservative.520

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).521

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

(32)

It is obvious H(q,p) = H(q,−p), so it is reversible522

B.2 Non-conservative and reversible systems.523

A simple example is a n-body spring system with periodical external force, which can be described524

by:525

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(33)

The Hamilton’s equations are:526

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + k1 cosωt,
(34)

Hence, we can obtain the Hamiltonian through the integration of the above equation:527

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt, (35)

Verify the systems’ energy conservation528

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

( N∑
i=1

qi ∗ k1 cosωt
)

=0 +
1

dt

( N∑
i=1

qik1 cosωt
)

=
( N∑
i=1

−ωqik1 sinωt
)
̸= 0

(36)
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So it is non-conservative.529

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).530

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosω(−t),

(37)

It is obvious H(q,p, t) = H(q,−p, t), so it is reversible531

B.3 Non-conservative and irreversible systems.532

A simple example is an n-body spring system with frictions proportional to its velocity,γ is the533

coefficient of friction, which can be described by:534

dqi

dt
=

pi

m
dpi

dt
= −k0qi − γ

pi

m

(38)

The Hamilton’s equations are:535

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + γ
pi

m

(39)

Hence, we can obtain the Hamiltonian through the integration of the above equation:536

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt, (40)

Verify the systems’ energy conservation537

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

( N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=0 +
1

dt

( N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=
( N∑
i=1

γ

m

pi
2

m
) ̸= 0

(41)

So it is non-conservative.538

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).539

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ (−t)

0

pi
2

m
d(−t),

(42)

It is obvious H(q,p, t) ̸= H(q,−p, t), so it is irreversible540
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C Dataset541

In our experiments, all datasets are synthesized from ground-truth physical law via sumulation. We542

generate five simulated datasets: three n-body spring systems under damping, periodic, or no external543

force, one chaotic tripe pendulum dataset with three sequentially connected stiff sticks that form and544

a chaotic strange attractor. We name the first three as Sipmle Spring, Forced Spring, and Damped545

Spring respectively. For multi-agent systems, all n-body spring systems contain 5 interacting balls,546

with varying connectivities. Each Pendulum system contains 3 connected stiff sticks. For single-agent547

systems, all spring systems contain only one ball. For the chaotic single Attractor, we follow the548

setting of (Huh et al., 2020).549

For the n-body spring system, we randomly sample whether a pair of objects are connected, and550

model their interaction via forces defined by Hooke’s law. In the Damped spring, the objects have an551

additional friction force that is opposite to their moving direction and whose magnitude is proportional552

to their speed. In the Forced spring, all objects have the same external force that changes direction553

periodically. We show in Figure 1(a), the energy variation in both of the Damped spring and Forced554

spring is significant. For the chaotic triple Pendulum , the equations governing the motion are555

inherently nonlinear. Although this system is deterministic, it is also highly sensitive to the initial556

condition and numerical errors (Shinbrot et al., 1992; Awrejcewicz et al., 2008; Stachowiak and557

Okada, 2006). This property is often referred to as the "butterfly effect", as depicted in Figure 9.558

Unlike for n-body spring systems, where the forces and equations of motion can be easily articulated,559

for the Pendulum, the explicit forces cannot be directly defined, and the motion of objects can only560

be described through Lagrangian formulations (North, 2021), making the modeling highly complex561

and raising challenges for accurate learning. We simulate the trajectories by using Euler’s method for
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Figure 9: Illustration to show the pendulum is highly-sensitive to initial states

562
n-body spring systems and using the 4th order Runge-Kutta (RK4) method for the Pendulum and563

Attractor . For all spring systems and Pendulum, We integrate with a fixed step size and subsample564

every 100 steps. For training, we use a total of 6000 forward steps. To generate irregularly sampled565

partial observations, we follow (Huang et al., 2020) and sample the number of observations n from a566

uniform distribution U(40, 52) and draw the n observations uniformly for each object. For testing, we567

additionally sample 40 observations following the same procedure from PDE steps [6000, 12000],568

besides generating observations from steps [1, 6000]. The above sampling procedure is conducted569

independently for each object. We generate 20k training samples and 5k testing samples for each570

dataset. For Attractor, we integrate a total of 600 forward steps for training and subsample every571

10 steps. For testing, we additionally sample 40 observations from step [600,1200].The irregularly572

sampled partial observations generation is the same as above. We generate 1000 training samples573

and 50 testing samples following (Huh et al., 2020). Therefore, for all datasets, condition length is574
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60 steps and prediction length is 40s steps. The features (position/velocity) are normalized to the575

maximum absolute value of 1 across training and testing datasets.576

We also compute the Maximum Lyapunov Exponent (MLE) to assess the chaos level of the systems,577

using the formula:578

λ = maxt→inf(
1

t
ln

||δ(t)||
||δ(0)||

).

We set fixed initial values for each dataset and generate 10 trajectories by perturbing the initial values579

with random noise (0, 0.0001). We calculate the Maximum Lyapunov Exponent (MLE) between any580

two trajectories. Finally, we compute the average and std of MLE from all pairs to gauge the chaotic581

behavior of each dataset. The data is presented in the table below:582

Table 2: MLE of different Multi-agent Systems
Dataset Simple Spring Forced Spring Damped Spring Pendulum

MLE(in 60 steps) 0.4031 ± 0.3944 1.0087± 1.0577 0.6307 ± 0.7065 34.1832 ± 30.1846

From the table, it’s evident that the order of MLE values is: Pendulum » three Spring datasets.583

This observation is consistent with the evaluation results based on MSE presented in our previous584

responses in Table 3 which indicates that as the prediction length(steps*step size) increases, there is a585

more significant performance degradation of all models on Pendulum dataset.586

In the following subsections, we show the dynamical equations of each dataset in detail.587

C.1 Spring Systems588

C.1.1 Simple Spring589

The dynamical equations of simple spring are as follows:590

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)
(43)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a591

set of momenta of each object. We set the mass of each object m = 1, the spring constantk = 0.1.592

C.1.2 Damped Spring593

The dynamical equations of damped spring are as follows:594

dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj)− γ
pi

m

(44)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object, p = (p1,p2, · · · ,pN) is a595

set of momenta of each object, We set the mass of each object m = 1, the spring constantk = 0.1,596

the coefficient of friction γ = 10.597

C.1.3 Forced Spring598

The dynamical equations of forced spring system are as follows:599

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(45)
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where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a600

set of momenta of each object. We set the mass of each object m = 1 , the spring constantk = 0.1,601

the external strength k1 = 10 and the frequency of variation ω = 1602

We simulate the positions and momentums of three spring systems by using Euler methods as follows:603

qi(t+ 1) = qi(t) +
dqi

dt
∆t

pi(t+ 1) = pi(t) +
dpi

dt
∆t

(46)

where dqi

dt and dpi

dt were defined as above for each datasets, and ∆t = 0.001 is the integration steps.604

C.2 Chaotic Pendulum605

In this section, we demonstrate how to derive the dynamics equations for a chaotic triple pendulum606

using the Lagrangian formalism.607

The moment of inertia of each stick about the centroid is608

I =
1

12
ml2 (47)

The position of the center of gravity of each stick is as follows:609

x1 =
l

2
sin θ1, y1 = − l

2
cos θ1

x2 = l(sin θ1 +
1

2
sin θ2), y2 = −l(cos θ1 +

1

2
cos θ2)

x3 = l(sin θ1 + sin θ2 +
1

2
sin θ3), y3 = −l(cos θ1 + cos θ2 +

1

2
cos θ3)

(48)

The change in the center of gravity of each stick is:610

ẋ1 =
l

2
cos θ1 · θ̇1, ẏ1 =

l

2
sin θ1 · θ̇1

ẋ2 = l(cos θ1 · θ̇1 +
1

2
cos θ2 · θ̇2), ẏ2 = l(sin θ1 · θ̇1 +

1

2
sin θ2 · θ̇2)

ẋ3 = l(cos θ1 · θ̇1 + cos θ2 · θ̇2 +
1

2
cos θ3 · θ̇3), ẏ3 = l(sin θ1 · θ̇1 + sin θ2 · θ̇2 +

1

2
sin θ3 · θ̇3)

(49)

The Lagrangian L of this triple pendulum system is:611

L =T − V

=
1

2
m(ẋ1

2 + ẋ2
2 + ẋ3

2 + ẏ1
2 + ẏ2

2 + ẏ3
2) +

1

2
I(θ̇1

2
+ θ̇2

2
+ θ̇3

2
)−mg(y1 + y2 + y3)

=
1

6
ml(9θ̇2θ̇1l cos(θ1 − θ2) + 3θ̇3θ̇1l cos (θ1 − θ3) + 3θ̇2θ̇3l cos (θ2 − θ3) + 7θ̇21l + 4θ̇22l + θ̇23l

+ 15g cos (θ1) + 9g cos (θ2) + 3g cos (θ3))

(50)

The Lagrangian equation is defined as follows:612

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0 (51)

and we also have:613
∂L
∂θ̇

=
∂T

∂θ̇
= p

ṗ =
d

dt

∂L
∂θ̇

=
∂L
∂θ

(52)

where p is the Angular Momentum.614

We can list the equations for each of the three sticks separately:615

p1 =
∂L
∂θ̇1

ṗ1 =
∂L
∂θ1

p2 =
∂L
∂θ̇2

ṗ2 =
∂L
∂θ2

p3 =
∂L
∂θ̇3

ṗ3 =
∂L
∂θ3

(53)
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Finally, we have :616 

θ̇1 = 6(9p1 cos(2(θ2−θ3))+27p2 cos(θ1−θ2)−9p2 cos(θ1+θ2−2θ3)+21p3 cos(θ1−θ3)−27p3 cos(θ1−2θ2+θ3)−23p1)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇2 = 6(27p1 cos(θ1−θ2)−9p1 cos(θ1+θ2−2θ3)+9p2 cos(2(θ1−θ3))−27p3 cos(2θ1−θ2−θ3)+57p3 cos(θ2−θ3)−47p2)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇3 = 6(21p1 cos(θ1−θ3)−27p1 cos(θ1−2θ2+θ3)−27p2 cos(2θ1−θ2−θ3)+57p2 cos(θ2−θ3)+81p3 cos(2(θ1−θ2))−143p3)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

ṗ1 = − 1
2ml

(
3θ̇2θ̇1l sin (θ1 − θ2) + θ̇1θ̇3l sin (θ1 − θ3) + 5g sin (θ1)

)
ṗ1 = − 1

2ml
(
−3θ̇1θ̇2l sin (θ1 − θ2) + θ̇2θ̇3l sin (θ2 − θ3) + 3g sin (θ2)

)
ṗ1 = − 1

2ml
(
θ̇1θ̇3l sin (θ1 − θ3) + θ̇2θ̇3l sin (θ2 − θ3)− g sin (θ3)

)
(54)

We simulate the angular of the three sticks by using the Runge-Kutta 4th Order Method as follows:617

∆θ1(t) = θ̇(t,θ(t)) ·∆t

∆θ2(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ1(t)

2
) ·∆t

∆θ3(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ2(t)

2
) ·∆t

∆θ4(t) = θ̇(t+∆t,θ(t) + ∆θ3(t)) ·∆t

∆θ(t) =
1

6
(∆θ1(t) + ∆θ2(t) + ∆θ3(t) + ∆θ4(t))

θ(t+ 1) = θ(t) + ∆θ(t)

(55)

where θ̇ was defined as above , and ∆t = 0.0001 is the integration steps.618

C.3 Chaotic Strange Attractor619

The dynamical equations of this reversible strange attractor are as follows:620

dx

dt
= 1 + yz,

dy

dt
= −xz,

dz

dt
= y2 + 2yz,

x, y, x ∈ R

(56)

The above equations can be presented as (ẋ(t), ẏ(t), ż(t)) = Dynamic(x(t), y(t), z(t)).621

We simulate K(t) = (x(t), y(t), z(t)) by using the Runge-Kutta 4th Order Method as follows:622

∆K1(t) = Dynamic(K(t)) ∗∆t

∆K2(t) = Dynamic(K(t) +
∆K1(t)

2
) ∗∆t

∆K3(t) = Dynamic(K(t) +
∆K2(t)

2
) ∗∆t

∆K4(t) = Dynamic(K(t) + ∆K3(t)) ∗∆t

∆K(t) =
1

6
(∆K1(t) + ∆K2(t) + ∆K3(t) + ∆K4(t))

K(t+ 1) = K(t) + ∆K(t)

(57)

We sampling z(t0) randomly from uniform distribution [1, 3] while fixing x(t0) = y(t0) = 0. We set623

the trajectory lengths of both training and test dataset to 600, with regular time-step size ∆t = 0.03624

and the sample frequency of 10. We add Gaussian noise 0.05n, n ∼ N (0, 1) to training trajectories.625
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C.4 Human Motion626

For the real-world motion capture dataset(CMU, 2003), we focus on the walking sequences of subject627

35. Each sample in this dataset is represented by 31 trajectories, each corresponding to the movement628

of a single joint. For each joint, we first randomly sample the number of observations from a uniform629

distribution U(30, 42) and then sample uniformly from the first 50 frames for training and validation630

trajectories. For testing, we additionally sampled 40 observations from frames [51, 99].We split631

different walking sequences into training (15 trials) and test sets (7 trials). For each walking sequence,632

we further split it into several non-overlapping small sequences with maximum length 50 for training,633

and maximum length 100 for testing. In this way, we generate total 120 training samples and 27634

testing samples. We normalize all features (position/velocity) to maximum absolute value of 1 across635

training and testing datasets.636

D Model Details637

In the following we introduce in details how we implement our model and each baseline.638

D.1 Initial State Encoder639

For multi-agent systems, the initial state encoder computes the latent node initial states zi(t) for all640

agents simultaneously considering their mutual interaction. Specifically, it first fuses all observations641

into a temporal graph and conducts dynamic node representation through a spatial-temporal GNN as642

in (Huang et al., 2020):643

hl+1
j(t) = hl

j(t) + σ

 ∑
i(t′)∈Nj(t)

αl
i(t′)→j(t) ×Wvĥ

l−1
i(t′)


αl
i(t′)→j(t) =

(
Wkĥ

l−1
i(t′)

)T (
Wqh

l−1
j(t)

)
· 1√

d
, ĥl−1

i(t′) = hl−1
i(t′) + TE(t′ − t)

TE(∆t)2i = sin

(
∆t

100002i/d

)
, TE(∆t)2i+1 = cos

(
∆t

100002i/d

)
,

(58)

where || denotes concatenation; σ(·) is a non-linear activation function; d is the dimension of node644

embeddings. The node representation is computed as a weighted summation over its neighbors645

plus residual connection where the attention score is a transformer-based (Vaswani et al., 2017)646

dot-product of node representations by the use of value, key, query projection matrices Wv,Wk,Wq .647

Here hl
j(t) is the representation of agent j at time t in the l-th layer. i(t′) is the general index for648

neighbors connected by temporal edges (where t′ ̸= t) and spatial edges (where t = t′ and i ̸= j).649

The temporal encoding (Hu et al., 2020) is added to a neighborhood node representation in order650

to distinguish its message delivered via spatial and temporal edges. Then, we stack L layers to get651

the final representation for each observation node: ht
i = hL

i(t). Finally, we employ a self-attention652

mechanism to generate the sequence representation ui for each agent as their latent initial states:653

ui =
1

K

∑
t

σ
(
aT
i ĥ

t
iĥ

t
i

)
, ai = tanh

((
1

K

∑
t

ĥt
i

)
Wa

)
, (59)

where ai is the average of observation representations with a nonlinear transformation Wa and654

ĥt
i = ht

i + TE(t). K is the number of observations for each trajectory. Compared with recurrent655

models such as RNN, LSTM (Sepp and Jürgen, 1997), it offers better parallelization for accelerating656

training speed and in the meanwhile alleviates the vanishing/exploding gradient problem brought by657

long sequences. For single-agent Systems, there only left the self-attention mechanism component.658

Given the latent initial states, the dynamics of the whole system are determined by the ODE function659

g which we parametrize as a GNN as in (Huang et al., 2020) for Multi-Agent Systems to capture the660

continuous interaction among agents. For single-agent systems, we only include self-loop edges in661

the graph G = (V, E), which makes the ODE function g a simple MLP.662

We then employ Multilayer Perceptron (MLP) as a decoder to predict the trajectories ŷi(t) from the663

latent states zi(t).664
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z1(t), z2(t), z3(t) · · · zN (t) = ODEsolver(g, [z1(t0), z2(t0) · · · zN (t0)], (t0, t1 · · · tK))

ŷi(t) = fdec(zi(t))
(60)

D.2 Implementation Details665

TREAT666

For multi-agent systems, our implementation of TREAT follows GraphODE pipeline. We implement667

the initial state encoder using a 2-layer GNN with a hidden dimension of 64 across all datasets.668

We use ReLU for nonlinear activation. For the sequence self-attention module, we set the output669

dimension to 128. The encoder’s output dimension is set to 16, and we add 64 additional dimensions670

initialized with all zeros to the latent states zi(t) to stabilize the training processes as in (Huang et al.,671

2021). The GNN ODE function is implemented with a single-layer GNN from (Kipf et al., 2018)672

with hidden dimension 128. For single-agent systems, we only include self-loop edges in the graph673

G = (V, E), which makes the ODE function g a simple MLP. To compute trajectories, we use the674

Runge-Kutta method from torchdiffeq python package s(Chen et al., 2021) as the ODE solver and a675

one-layer MLP as the decoder.676

We implement our model in pytorch. Encoder, generative model, and the decoder parameters are677

jointly optimized with AdamW optimizer (Loshchilov and Hutter, 2019) using a learning rate of678

0.0001 for spring datasets and 0.00001 for Pendulum. The batch size for all datasets is set to 512.679

TREATLrev=gt-rev and TREATLrev=rev2 share the same architecture and hyparameters as TREAT,680

with different implementations of the loss function. In TREATLrev=gt-rev, instead of comparing681

forward and reverse trajectories, we look at the L2 distance between the ground truth and reverse682

trajectories when computing the reversal loss.683

For TREATLrev=rev2, we implement the reversal loss following (Huh et al., 2020) with one difference:684

we do not apply the reverse operation to the momentum portion of the initial state to the ODE function.685

This is because the initial hidden state is an output of the encoder that mixes position and momentum686

information. Note that we also remove the additional dimensions to the latent state that TREAT has.687

To reproduce our model’s results, we provide our code implementation link here.688

LatentODE689

We implement the Latent ODE sequence to sequence model as specified in (Rubanova et al., 2019).690

We use a 4-layer ODE function in the recognition ODE, and a 2-layer ODE function in the generative691

ODE. The recognition and generative ODEs use Euler and Dopri5 as solvers (Chen et al., 2021),692

respectively. The number of units per layer is 1000 in the ODE functions and 50 in GRU update693

networks. The dimension of the recognition model is set to 100. The model is trained with a learning694

rate of 0.001 with an exponential decay rate of 0.999 across different experiments. Note that since695

latentODE is a single-agent model, we compute the trajectory of each object independently when696

applying it to multi-agent systems.697

HODEN698

To adapt HODEN, which requires full initial states of all objects, to systems with partial observations,699

we compute each object’s initial state via linear spline interpolation if it is missing. Following the700

setup in (Huh et al., 2020), we have two 2-layer linear networks with Tanh activation in between as701

ODE functions, in order to model both positions and momenta. Each network has a 1000-unit layer702

followed by a single-unit layer. The model is trained with a learning rate of 0.00001 using a cosine703

scheduler.HODEN is a single-agent model, we compute the trajectory of each object independently704

when applying it to multi-agent systems.705

TRS-ODEN706

Similar to HODEN, we compute each object’s initial state via linear spline interpolation if it is707

missing. As in (Huh et al., 2020), we use a 2-layer linear network with Tanh activation in between as708

the ODE functions, and the Leapfrog method for solving ODEs. The network has 1000 hidden units709

and is trained with a learning rate of 0.00001 using a cosine scheduler. TRS-ODEN is a single-agent710

model, we compute the trajectory of each object independently when applying it to multi-agent711

systems.712
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TRS-ODENGNN713

For TRSODENGNN, we substitute the ODE function in TRS-ODEN with a GraphODE network. The714

GraphODE generative model is implemented with a single-layer GNN with hidden dimension 128.715

As in HODEN and TRS-ODEN, we compute each object’s missing initial state via linear spline716

interpolation and the Leapfrog method for solving ODE. For all datasets, we use 0.5 as the coefficient717

for the reversal loss in (Huh et al., 2020), and 0.0002 as the learning rate under cosine scheduling.718

LGODE719

Our implementation follows (Huang et al., 2020) except we remove the Variational Autoencoder720

(VAE) from the initial state encoder. Instead of using the output from the encoder GNN as the721

mean and std of the VAE, we directly use it as the latent initial state. That is, the initial states are722

deterministic instead of being sampled from a distribution. We use the same architecture as in TREAT723

and train the model using an AdamW optimizer with a learning rate of 0.0001 across all datasets.724

E Additional Experiments725

E.1 Comparison of different solvers726

We next show our model’s sensitivity regarding solvers with different precisions. Specifically, we727

compare against Euler and Runge-Kutta (RK4) where the latter is a higher-precision solver. We show728

the comparison against LGODE and TREAT in Table 3.729

We can firstly observe that TREAT consistently outperforms LGODE, which is our strongest baseline730

across different solvers and datasets, indicating the effectiveness of the proposed time-reversal731

symmetry loss. Secondly, we compute the improvement ratio as LGODE−TREAT
LGODE . We can see that732

the improvement ratios get larger when using RK4 over Euler. This can be understood as our reversal733

loss is minimizing higher-order Tayler expansion terms (Theoreom 3.1) thus compensating numerical734

errors brought by ODE solvers.735

Table 3: Evaluation results on MSE (10−2) over different solvers for multi-agent systems.
Dataset Simple Spring Forced Spring Damped Spring Pendulum
Solvers Euler RK4 Euler RK4 Euler RK4 Euler RK4

LGODE 1.8443 1.7429 2.0462 1.8929 1.1686 0.9718 1.4634 1.4156
TREAT 1.4864 1.1178 1.6058 1.4525 0.8070 0.5944 1.3093 1.2527
% Improvement 19.4057 35.8655 21.5228 23.2659 30.9430 38.8352 10.5303 11.5075

E.2 Evaluation across observation ratios.736

For LG-ODE and TREAT, the encoder computes the initial states from observed trajectories. To show737

models’ sensitivity towards data sparsity, we randomly mask out 40% and 80% historical observations738

and compare model performance. As shown in Table 4, when changing the ratios from 80% to 40%,739

we observe that TREAT has a smaller performance drop compared with LG-ODE, especially on the740

more complex Pendulum dataset (LG-ODE decreases 22.04% while TREAT decreases 1.62%). This741

indicates that TREAT is less sensitive toward data sparsity.742

Table 4: Results of varying observation ratios on MSE (10−2) of multi-agent datasets.
Dataset Simple Spring Forced Spring Damped Spring Pendulum
Observation Ratios 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4

LG-ODE 1.7054 1.6889 1.7554 2.0370 0.9305 1.0217 1.4314 1.7469
TREAT 1.1176 1.1429 1.3611 1.5109 0.6920 0.6964 1.2309 1.2110

E.3 Evaluation for ablation across 5 run743

The second model variant TREATLrev=gt-rev is by computing the reversal loss Lreverse as between744

model backward predictions to ground truth, in contrast with our proposed loss between model745
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backward and forward predictions used in TREAT. In Table 1, we can see that TREATLrev=gt-rev746

decreases the performance by 1.20%, 5.02%,3.82%, and 28.98% for the four systems respectively.747

We further repeated our experiments multiple rounds and provided std in the following. We observed748

that TREAT consistently outperforms TREATLrev=gt-rev and in general has smaller stds.

Table 5: Evaluation Results on MSE (10−2) across 5 runs
Model Simple Spring Forced Spring Damped Spring Pendulum

TREAT 1.1101 ± 0.0159 1.4565 ± 0.0176 0.6023 ± 0.0112 1.2561 ± 0.0021
TREATLrev=gt-rev 1.1113± 0.0162 1.5865± 0.0451 0.6209± 0.0160 1.6254± 0.0150

749

E.4 Comparison of different solver step sizes.750

F Discussion about Reversible Neural Networks751

In literature, there is another line of research about building reversible neural networks (NNs). For752

example, (Chang et al., 2018) formulates three architectures for reversible neural networks to address753

the stability issue and achieve arbitrary deep lengths, motivated by dynamical system modeling. (Liu754

et al., 2019) employs normalizing flow to create a generative model of graph structures. They all755

propose novel architectures to construct reversible NN where intermediate states across layer depths756

do not need to be stored, thus improving memory efficiency.757

However, we’d like to clarify that reversible NNs (RevNet) do not resolve the time-reversal symmetry758

problem that we’re studying. The core of RevNet is that input can be recovered from output via a759

reversible operation (which is another operator), similar as any linear operator W (·) have a reversed760

projector W−1(·). In the contrary, what we want to study is that the same operator can be used for761

both forward and backward prediction over time, and keep the trajectory the same. That being said,762

to generate the forward and backward trajectories, we are using the same g(·), instead of g(·), g−1(·)763

respectively.764

In summary, though both reversible NN and time-reversal symmetry share similar insights and765

intuition, they’re talking about different things: reversible NNs make every operator g(·) having a766

g−1(·), while time-reversible assume the trajectory get from ẑfwd = g(z) and ẑbwd = −g(z) to be767

closer. Making g to be reversible cannot make the system to be time-reversible.768

G Impact Statement769

This paper presents work whose goal is to advance the field of Machine Learning. TREAT is trained770

upon physical simulation data (e.g., , spring and pendulum) and implemented by public libraries in771

PyTorch. During the modeling, we neither introduces any social/ethical bias nor amplify any bias in772

the data. There are many potential societal consequences of our work, none which we feel must be773

specifically highlighted here.774

H Limitations775

Currently, TREAT only incorporates inductive bias from the temporal aspect, while there are many776

important properties in the spatial aspect such as translation and rotation equivariance (Satorras et al.,777

2021). Future endeavors that combine biases from both temporal and spatial dimensions could unveil778

a new frontier in dynamical systems modeling.779
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