
Physics-Informed Regularization for Domain-Agnostic
Dynamical System Modeling

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning complex physical dynamics purely from data is challenging due to the1

intrinsic properties of systems to be satisfied. Incorporating physics-informed2

priors, such as in Hamiltonian Neural Networks (HNNs), achieves high-precision3

modeling for energy-conservative systems. However, real-world systems often4

deviate from strict energy conservation and follow different physical priors. To ad-5

dress this, we present a framework that achieves high-precision modeling for a wide6

range of dynamical systems from the numerical aspect, by enforcing Time-Reversal7

Symmetry (TRS) via a novel regularization term. It helps preserve energies for8

conservative systems while serving as a strong inductive bias for non-conservative,9

reversible systems. While TRS is a domain-specific physical prior, we present the10

first theoretical proof that TRS loss can universally improve modeling accuracy by11

minimizing higher-order Taylor terms in ODE integration, which is numerically12

beneficial to various systems regardless of their properties, even for irreversible13

systems. By integrating the TRS loss within neural ordinary differential equation14

models, the proposed model TREAT demonstrates superior performance on diverse15

physical systems. It achieves a significant 11.5% MSE improvement in a challeng-16

ing chaotic triple-pendulum scenario, underscoring TREAT’s broad applicability17

and effectiveness. Code and further details are available at here.18

1 Introduction19

Dynamical systems, spanning applications from physical simulations (Kipf et al., 2018; Wang et al.,20

2020; Lu et al., 2022) to robotic control (Li et al., 2022; Ni and Qureshi, 2022), are challenging21

to model due to intricate dynamic patterns and potential interactions under multi-agent settings.22

Traditional numerical simulators require extensive domain knowledge for design, which is sometimes23

unknown (Sanchez-Gonzalez et al., 2020), and can consume significant computational resources.24

Therefore, directly learning dynamics from the observational data becomes an attractive alternative.25

Existing deep learning approaches (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021) usually learn a26

fixed-step transition function to predict system dynamics from timestamp t to timestamp t+ 1 and27

rollout trajectories recursively. The transition function can have different inductive biases, such as28

Graph Neural Networks (GNNs) (Lam et al., 2023) for capturing pair-wise interactions among agents29

through message passing. Most recently, neural ordinary differential equations (ODEs) (Chen et al.,30

2018; Rubanova et al., 2019) have emerged as a potent solution for modeling system dynamics in a31

continuous manner, which offer superior prediction accuracy over discrete models in the long-range,32

and can handle systems with partial observations. In particular, GraphODEs (Huang et al., 2020;33

Luo et al., 2023; Zang and Wang, 2020; Jiang et al., 2023) extend NeuralODEs to model interacting34

(multi-agent) dynamical systems, where agents co-evolve and form trajectories jointly.35

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

https://anonymous.4open.science/r/TANGO-ANOY/

Time-Reversal

Dynamical Systems under
Classical Mechanics

Energy-Conservative

(a) High-Precision Modeling of Dynamical Systems

𝑑𝑅(𝑧)
𝑑𝑡

= −𝐹(𝑅 𝑧)

𝑡

backward
forward

𝑧 = 𝑞, 𝑝

𝑅 𝑧 = (𝑞,−𝑝)Identical
positions (𝑞)

(b.2) Time-Reversal Symmetry

TRS Loss
Injecting
Physical Prior

Reducing Error
Accumulation over
Integration Steps

(b.1) Physical Priors

Integration steps
Euler’s method
Grorund truth

𝑧!"# = 𝑧! +
𝑑𝐹
𝑑𝑧!

∆𝑡 + 𝑂 ∆𝑡$ + . .

Numerical Errors

(b.3) Error Accumulation

Figure 1: (a) High-precision modeling for dynamical systems; (b.1) Classification of classical
mechanical systems based on (Tolman, 1938; Lamb and Roberts, 1998);(b.2) Tim-Reversal Symmetry
illustration;(b.3) Error accumulation in numerical solvers.

However, the complexity of dynamical systems necessitates large amounts of data. Models trained on36

limited data risk violating fundamental physical principles such as energy conservation. A promising37

strategy to improve modeling accuracy involves incorporating physical inductive biases (Raissi et al.,38

2019; Cranmer et al., 2020). Existing models like Hamiltonian Neural Networks (HNNs) (Greydanus39

et al., 2019; Sanchez-Gonzalez et al., 2019) strictly enforce energy conservation, yielding more40

accurate predictions for energy-conservative systems. However, not all real-world systems strictly41

adhere to energy conservation, and they may adhere to various physical priors. Such system diversity42

largely limits the usage of existing models which are designed for individual physical prior.43

To address this, we present a framework that achieves high-precision modeling for a wide range44

of dynamical systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS)45

via a novel regularization term. Specifically, TRS posits that a system’s dynamics should remain46

invariant when time is reversed (Lamb and Roberts, 1998). To incorporate TRS, we propose a47

simple-yet-effective self-supervised regularization term that acts as a soft constraint. This term48

aligns forward and backward trajectories predicted by a neural network and we use GraphODE as49

the backbone. We theoretically prove that the TRS loss effectively minimizes higher-order Taylor50

expansion terms during ODE integration, offering a general numerical advantage for improving51

modeling accuracy across a wide array of systems, regardless of their physical properties. It forces52

the model to capture fine-grained physical properties such as jerk (the derivatives of accelerations)53

and provides more regularization for long-term prediction. We also justify our TRS design choice,54

showing case its superior performance both analytically and empirically. We name the model as55

TREAT (Time-Reversal Symmetry ODE).56

Note that TRS itself is a physical prior, that is broader than energy conservation as depicted in57

Figure 1(b.1). It covers classical energy-conservative systems such as Newtonian mechanics, and58

also non-conservative, reversible systems like Stokes flow (Pozrikidis, 2001), commonly encountered59

in microfluidics (Kim and Karrila, 2013; Cao and Li, 2018; Cao et al., 2019). Therefore, TRS loss60

achieves high-precision modeling from both the physical aspect, and the numerical aspect as shown61

in Figure 1(a), making it domain-agnostic and widely applicable to various dynamical systems.62

We systematically conduct experiments across 9 diverse datasets spanning across 1.) single-agent,63

multi-agent systems; 2.) simulated and real-world systems; and 3.) systems with different physical64

priors. TREAT consistently outperforms state-of-the-art baselines, affirming its effectiveness and65

versatility across various dynamic scenarios.66

Our primary contributions can be summarized as follows:67

• We introduce TREAT, a powerful framework that achieves high-precision modeling for a68

wide range of systems from the numerical aspect, by enforcing Time-Reversal Symmetry69

(TRS) via a regularization term.70

• We establish the first theoretical proof that the time-reversal symmetry loss could in general71

help learn more fine-grained and long-context system dynamics from the numerical aspect,72

2

regardless of systems’ physical properties (even irreversible systems). This bridges the73

specific physical implication and the general numerical benefits of the physical prior -TRS.74

• We present empirical evidence of TREAT’s state-of-the-art performance in a variety of75

systems over 9 datasets, including real-world & simulated systems, etc. It yields a significant76

MSE improvement of 11.5% on the challenging chaotic triple-pendulum system.77

2 Preliminaries and Related Work78

We represent a dynamical system as a graph G = (V, E), where V denotes the node set of N79

agents1 and E denotes the set of edges representing their physical interactions. For simplicity, we80

assumed G to be static over time. Single-agent dynamical system is a special case where the graph81

only has one node. In the following, we use the multi-agent setting by default to illustrate our82

model. We denote X(t) ∈ RN×d as the feature matrix at timestamp t for all agents, with d as83

the feature dimension. Model input consists of trajectories of feature matrices over M historical84

timestamps X(t−M :−1) = {X(t−M), . . . ,X(t−1)} and G. The timestamps t−1, · · · , t−M < 0 can85

have non-uniform intervals and take any continuous values. Our goal is to learn a neural simulator86

fθ(·) :
[
X(t−M :−1),G

]
→ Y (t0:K), which predicts node dynamics Y (t) in the future on timestamps87

0 = t0 < · · · < tK = T sampled within [0, T]. We use yi(t) to denote the targeted dynamic vector of88

agent i at time t. In some cases when we are only predicting system feature trajectories, Y (·) ≡ X(·).89

2.1 NeuralODE for Dynamical Systems90

NeuralODEs (Chen et al., 2018; Rubanova et al., 2019) are a family of continuous models that define91

the evolution of dynamical systems by ordinary differential equations (ODEs). The state evolution can92

be described as: żi(t) :=
dzi(t)
dt = g (z1(t), z2(t) · · · zN (t)), where zi(t) ∈ Rd denotes the latent93

state variable for agent i at timestamp t. The ODE function g is parameterized by a neural network94

such as Multi-Layer Perception (MLP), which is automatically learned from data. GraphODEs (Poli95

et al., 2019; Huang et al., 2020; Luo et al., 2023; Wen et al., 2022) are special cases of NeuralODEs,96

where g is a Graph Neural Network (GNN) to capture the continuous interaction among agents.97

GraphODEs have been shown to achieve superior performance, especially in long-range predictions98

and can handle data irregularity issues. They usually follow the encoder-processor-decoder archi-99

tecture, where an encoder first computes the latent initial states z1(t0), · · · zN (t0) for all agents100

simultaneously based on their historical observations as in Eqn 1.101

z1(t0), z2(t0), ...,zN (t0) = fENC
(
X(t−M :−1),G) (1)

Then the GNN-based ODE predicts the latent trajectories starting from the learned initial states.102

The latent state zi(t) can be computed at any desired time using a numerical solver such as Runge-103

Kuttais (Schober et al., 2019) as:104

zi(t) = ODE-Solver
(
g, [z1(t0), ...zN (t0)], t

)
= zi(t0) +

∫ t

t0

g (z1(t), z2(t) · · · zN (t)) dt. (2)

Finally, a decoder extracts the predicted dynamics ŷi(t) based on the latent states zi(t) for any105

timestamp t:106

ŷi(t) = fDEC(zi(t)). (3)

However, vanilla GraphODEs can violate physical properties of a system, resulting in unrealistic107

predictions. We therefore propose to inject physics-informed regularization term to make more108

accurate predictions.109

2.2 Time-Reversal Symmetry (TRS)110

1Following (Kipf et al., 2018), we use “agents” to denote “objects” in dynamical systems, which is different
from “intelligent agent” in AI.

3

𝐳𝐢𝐟𝐰𝐝(𝐭𝐊)𝐳𝐢𝐟𝐰𝐝(𝐭𝟎) 𝐳𝐢𝐟𝐰𝐝(𝐭𝟏)
𝐳𝐢𝐟𝐰𝐝(𝐭𝐊(𝟏)

𝒛𝒊𝐫𝐞𝐯(𝒕𝑲.)
……

Latent forward trajectory

Latent reverse trajectory
𝝓𝑻

𝑅𝑅

𝝓𝑻

𝑹 ∘ 𝝓𝑻	∘ 𝑹 ∘ 𝝓𝑻= 𝑰

𝒛𝒊𝐫𝐞𝐯(𝒕𝑲(𝟏.)
𝒛𝒊𝐫𝐞𝐯(𝒕𝟏.)

𝒛𝒊𝐫𝐞𝐯(𝒕𝟎.)

……

Figure 2: Illustration of time-reversal symmetry based on
Lemma 2.1.The total length of the trajectory is tK − t0 = T .
t′k is the time index in the reverse trajectory, which points to
the same time as tK−k in the forward trajectory.

Consider a dynamical system de-111

scribed in the form of dx(t)
dt =112

F (x(t)), where x(t) ∈ Ω is the ob-113

served states such as positions. The114

system is said to follow the Time-115

Reversal Symmetry if there exists a116

reversing operator R : Ω 7→ Ω such117

that (Lamb and Roberts, 1998):118

d
(
R ◦ x(t)

)
dt

= −F
(
R ◦ x(t)

)
, (4)

where ◦ denote the action of func-119

tional R on the function x.120

Intuitively, we can assume x(t) is the position of a flying ball and the conventional reversing operator121

is defined as R : x 7→ R ◦ x, R ◦ x(t) = x(−t). This implies when x(t) is a forward trajectory122

position with initial position x(0), x(−t) is then a position in the time-reversal trajectory, where123

x(−t) is calculated using the same function F , but with the integration time reversed, i.e. dt 7→ d(−t).124

Eqn 4 shows how to create the reverse trajectory of a flying ball: at each position, the velocity (i.e.,125

the derivative of position with respect to time) should be the opposite. In neural networks, we usually126

model trajectories in the latent space via z (Sanchez-Gonzalez et al., 2020), which can be decoded127

back to real observation state i.e. positions. Therefore, we apply the reversal operator for z.128

Now we introduce a time evolution operator ϕτ such that ϕτ ◦ z(t) = z(t+ τ) for arbitrary t, τ ∈ R.129

It satisfies ϕτ1 ◦ ϕτ2 = ϕτ1+τ2 , where ◦ denotes composition. The time evolution operator helps us130

to move forward (when τ > 0) or backward (when τ < 0) through time, thus forming a trajectory.131

Based on (Lamb and Roberts, 1998), in terms of the evolution operator, Eqn 4 implies:132

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R, (5)

which means that moving forward t steps and then turning to the opposite direction is equivalent133

to firstly turning to the opposite direction and then moving backwards t steps2. Eqn 5 has been134

widely used to describe time-reversal symmetry in existing literature (Huh et al., 2020; Valperga135

et al., 2022). Nevertheless, we propose the following lemma, which is more intuitive to understand136

and straightforward to guide the design of our time-reversal regularizer.137

Lemma 2.1. Eqn 5 is equivalent to R ◦ ϕt ◦R ◦ ϕt = I , where I denotes identity mapping.138

Lemma 2.1 means if we move t steps forward, then turn to the opposite direction, and then move139

forward for t more steps, it shall restore back to the same state. This is illustrated in Figure 2 where140

the reverse trajectory should be the same as the forward trajectory.3 It can be understood as rewinding141

a video to the very beginning. The proof of Lemma 2.1 is in Appendix A.2.142

3 Method: TREAT143

We present a novel framework TREAT that achieves high-precision modeling for a wide range of144

systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a regularization145

term. It improves modeling accuracy regardless of systems’ physical properties. We first introduce146

our architecture design, followed by theoretical analysis to explain its numerical benefits.147

TREAT uses GraphODE (Huang et al., 2020) as the backbone and flexibly incorporates TRS as a148

regularization term based on Lemma 2.1. This term aligns model forward and reverse trajectories. In149

practice, our model predicts the forward trajectories at a series of timestamps {tk}Kk=0 as ground truth150

observations are discrete, where 0 = t0 < t1 < · · · < tK = T . The reverse trajectories are also at the151

same series of K timestamps so as to be aligned with the forward one, which we denote as {t′k}Kk=0152

satisfying 0 = t′0 < t′1 < · · · < t′K = T . It’s important to note that the values of the time variable153

2Time-reversal symmetry is a property of physical systems, which requires the forward and reverse trajectories
to be generated by the same mechanism F (·). It differs from reversibility of neural networks (Chang et al., 2018;
Liu et al., 2019), which is a property of machine learning models and ensures the recovery of input from output
via a reversed operator f−1(·). We highlight the detailed discussions in Appendix F.

3We explain Figure 2 with implementation in Appendix A.1.

4

𝑂𝐷𝐸 𝑆𝑜𝑙𝑣𝑒 𝑔, (𝑧!(𝑡")… 𝑧#(𝑡") , (𝑡"…𝑡$))

Time-Reversal Symmetry Constraint

𝑡%& 𝑡%'

𝑂!
𝑂(

𝑂'

𝑡%(𝑡%!

Processor: Learnable ODE function

Forward trajectory)𝒚𝒊𝐟𝐰𝐝

Reverse trajectory)𝒚𝒊𝐫𝐞𝐯

Encoder

Input 𝑿, 𝓖 Output 𝒀

𝑂!

𝑂"

𝑂#
𝑡" 𝑡$%!𝑡$

𝑂!

𝑂'

𝑡!

𝑂(

𝑧"(0) 𝑧#(0) 𝑧!(0)

+𝑦()*+ 𝑡 = 𝑓,-.(𝑧()*+(𝑡))

Decoder

!𝒚𝒊𝐟𝐰𝐝(𝒕𝑲)
!𝒚𝒊𝐫𝐞𝐯(𝒕𝟎*)

𝒛𝒊𝐟𝐰𝐝(𝒕𝟎)
𝒛𝒊𝐟𝐰𝐝(𝒕𝑲+𝟏) 𝒛𝒊

𝐟𝐰𝐝(𝒕𝑲)𝒛𝒊𝐟𝒘𝒅(𝒕𝟏)

𝑅

𝝓𝑻

𝝓𝑻

!𝒚𝒊𝐟𝐰𝐝(𝒕𝟎)

!𝒚𝒊𝐫𝐞𝐯(𝒕𝑲*)

=4
𝐢1𝟏

𝐍
4

𝒌1𝟎

𝐊
55)𝒚𝒊𝐟𝐰𝐝 𝑡7 −)𝒚𝒊𝐫𝐞𝐯(𝑡897:)
𝟐

𝟐
𝓛𝐫𝐞𝐯𝐞𝐫𝐬𝐞

𝑹

!𝒚𝒊𝐟𝐰𝐝(𝒕𝟏)

!𝒚𝒊𝐫𝐞𝐯(𝐭𝐊+𝟏*)

Latent dynamics

!𝒚𝒊𝐟𝐰𝐝(𝒕𝑲+𝟏)

!𝒚𝒊𝐫𝐞𝐯(𝐭𝟏*)

1𝑦!"#$ 𝑡 = 𝑓%&'(𝑧!"#$(𝑡))

𝑧()*+(𝑡=) = 𝑓->.(𝑋 𝑡9?:9A , 𝒢)

Figure 3: Overall framework of TREAT. O1, O2, O3 are connected agents. It follows the encoder-
processor-decoder architecture introduced in Sec 2.1. A novel TRS loss is incorporated to improve
modeling accuracy across systems from the numerical aspect, regardless of their physical properties.

t′k in the reverse trajectories do not represent real time, but serve as indexes of reverse trajectories.154

This leads to the relation t′K−k = T − tk, which means the reverse trajectories at timestamp t′K−k155

correspond to the forward trajectories at time tk. For example, t′0 = T − tK = 0. It indicates t′0 and156

tK are both pointing to the same real time T , which is the ending point of the forward trajectory as157

shown in Figure 3. Based on Lemma 2.1, the difference of the two trajectories at any observed time158

should be small, i.e. zfwd(tk) ≈ zrev(t′K−k). This serves as the guideline for our regularizer design.159

The weight of the regularizer is also adjustable to adapt different systems. The overall framework is160

depicted in Figure 3.161

3.1 Time-Reversal Symmetry Loss and Training162

Forward Trajectory Prediction and Reconstruction Loss. For multi-agent systems, we utilize163

the GNN operator described in (Kipf et al., 2018) as our ODE function g(·), which drives the system164

to move forward and output the forward trajectories for latent states zfwd
i (t) at each continuous time165

t ∈ [0, T] and each agent i.We then employ a Multilayer Perceptron (MLP) as a decoder to predict166

output trajectories ŷfwd
i (t) based on the latent states. We summarize the whole procedure as:167

żfwd
i (t) :=

dzfwd
i (t)

dt
= g(zfwd

1 (t), zfwd
2 (t), · · · zfwd

N (t)),

zfwd
i (t0) = fENC(X(t−M :−1),G), ŷfwd

i (t) = fDEC(z
fwd
i (t)).

(6)

To train the model, we use the reconstruction loss that minimizes the L2 distance between predicted168

forward trajectories {ŷfwd
i (tk)}Kk=0 and the ground truth trajectories {yi(tk)}Kk=0 as :169

Lpred =

N∑
i=1

K∑
k=0

∥∥∥yi(tk)− ŷfwd
i (tk)

∥∥∥2
2
. (7)

Reverse Trajectory Prediction and Regularization Loss. We design a novel time-reversal symme-170

try loss as a soft constraint to flexibly regulate systems’ behavior based on Lemma 2.1. Specifically,171

we first compute the latent reverse trajectories zrev(t) by starting from the ending state of the forward172

one, traversed back over time. We then employ the decoder to output dynamic trajectories yrev(t).173

żrev
i (t) :=

dzrev
i (t)

dt
= −g(zrev

1 (t), zrev
2 (t), · · · zrev

N (t)),

zrev
i (t′0) = zfwd

i (tK), ŷrev
i (t) = fDEC(z

rev
i (t)).

(8)

5

Next, based on Lemma 2.1, if the system follows Time-Reversal Symmetry, the forward and backward174

trajectories shall be exactly overlap. We thus design the reversal loss by minimizing the L2 distances175

between model forward and backward trajectories decoded from the latent trajectories:176

Lreverse =

N∑
i=1

K∑
k=0

∥∥∥ŷfwd
i (tk)− ŷrev

i (t′K−k)
∥∥∥2
2
. (9)

Finally, we jointly train TREAT as a weighted combination of the two losses:177

L = Lpred + αLreverse =

N∑
i=1

K∑
k=0

∥∥∥yi(tk)− ŷfwd
i (tk)

∥∥∥2
2
+ α

N∑
i=1

K∑
k=0

∥∥∥ŷfwd
i (tk)− ŷrev

i (t′K−k)
∥∥∥2
2
,

(10)
where α is a positive coefficient to balance the two losses based on different targeted systems.178

Remark. The computational time of Lreverse is of the same scale as the reconstruction loss Lpred.179

As the computation process of the reversal loss is to first use the ODE solver to generate the reverse180

trajectories, which has the same computational overhead as computing the forward trajectories, and181

then compute the L2 distances.182

3.2 Theoretical Analysis of Time-Reversal Symmetry Loss183

We next theoretically show that the time-reversal symmetry loss numerically helps to improve184

prediction accuracy in general, regardless of systems’ physical properties. Specifically, we show that185

it minimizes higher-order Taylor expansion terms during the ODE integration steps.186

Theorem 3.1. Let ∆t denote the integration step size in an ODE solver and T be the prediction187

length. The reconstruction loss Lpred defined in Eqn 7 is O(T 3∆t2). The time-reversal loss Lreverse188

defined in Eqn 9 is O(T 5∆t4).189

We prove Theorem 3.1 in Appendix A.3. From Theorem 3.1, we can see two nice properties of190

our proposed time-reversal loss: 1) Regarding the relationship to ∆t, Lreverse is optimizing a high-191

order term ∆t4, which forces the model to predict fine-grained physical properties such as jerk (the192

derivatives of accelerations). In comparison, the reconstruction loss optimizes ∆t2, which mainly193

guides the model to predict the locations/velocities accurately. Therefore, the combined loss enables194

our model to be more noise-tolerable; 2) Regarding the relationship to T , Lreverse is more sensitive195

to total sequence length (T 5), thus it provides more regularization for long-context prediction, a key196

challenge for dynamic modeling.197

TRS Loss Design Choice. We define Lreverse as the distance between model forward trajectories198

and backward trajectories. Based on the definition of TRS in Sec. 2.2, there are other implementation199

choices. One prior work TRS-ODE (Huh et al., 2020) designed a TRS loss based on Eqn 5, where200

a reverse trajectory shares the same starting point as the forward one. However, we show that our201

implementation based on Lemma 2.1 to approximate time-reversal symmetry has a lower maximum202

error compared to their implementation below, supported by empirical experiments in Sec. 4.2.203

Lemma 3.2. Let Lreverse be the TRS implementation of TREAT based on Lemma 2.1, Lreverse2204

be the one in (Huh et al., 2020) based on Eqn 5. When the reconstruction loss defined in Eqn 7 of205

both methods are equal, and the two TRS losses are equal, i.e. Lreverse = Lreverse2, the maximum206

error between the reversal and ground truth trajectory for each agent, i.e. MaxErrorgt_rev =207

maxk∈[K] ∥yi(tk)− ŷrev
i (t′K−k)∥2 for i = 1, 2 · · ·N , made by TREAT is smaller.208

We prove Lemma 3.2 in Appendix A.4. Another implementation is to minimize the distances209

between model backward trajectories and ground truth trajectories. When both forward and backward210

trajectories are close to ground-truth, they are implicitly symmetric. The major drawback is that at211

the early stage of learning when the forward is far away from ground truth (Lpred), such implicit212

regularization does not force time-reversal symmetry, but introduces more noise.213

4 Experiments214

Datasets. We conduct systematic evaluations over five multi-agent systems including three 5-body215

spring systems (Kipf et al., 2018), a complex chaotic pendulum system and a real-world motion216

6

capture dataset (CMU, 2003); and four single-agent systems including three spring systems (with217

only one node) and a chaotic strange attractors system (Huh et al., 2020).218

The settings of spring systems include: 1) conservative, i.e. no interactions with the environments,219

we call it Simple Spring; 2) non-conservative with frictions, we call it Damped Spring; 3) non-220

conservative with periodic external forces, we call it Forced Spring. The Pendulum system contains221

three connected sticks in a 2D plane. It is highly sensitive to initial states, with minor disturbances222

leading to significantly different trajectories (Shinbrot et al., 1992; Awrejcewicz et al., 2008). The223

real-world motion capture dataset (CMU, 2003) describes the walking trajectories of a person,224

each tracking a single joint. We call it Human Motion. The strange attractor consists of symmetric225

attractor/repellor force pairs and is chaotic (Sprott and Clinton, 2015). It is also highly sensitive to226

the initial states (Koppe et al., 2019). We call it Attractor.227

Towards physical properties, Simple Spring and Pendulum are conservative and reversible; Force228

Spring and Attractor are reversible but non-conservative; Damped Spring are irreversible and non-229

conservative. For Human Motion, it does not adhere to specific physical laws since it is a real-world230

dataset. Details of the datasets and generation pipelines can be found inAppendix C.231

Task Setup. We conduct evaluation by splitting trajectories into two halves: [t1, tM], [tM+1, tK]232

where timestamps can be irregular. We condition the first half of observations to make predictions233

for the second half as in (Rubanova et al., 2019). For spring datasets and Pendulum, we generate234

irregular-sampled trajectories and set the training samples to be 20,000 and testing samples to be235

5,000 respectively. For Attractor, We generate 1,000 and 50 trajectories for training and testing236

respectively following Huh et al. (2020). 10% of training samples are used as validation sets and the237

maximum trajectory prediction length is 60. Details can be found in Appendix C.238

Baselines. We compare TREAT against three baseline types: 1) pure data-driven approaches including239

LG-ODE (Huang et al., 2020) and LatentODE (Rubanova et al., 2019), where the first one is a multi-240

agent approach considering pair-wise interactions, and the second one is a single-agent approach that241

predicts each trajectory independently; 2) energy-preserving HODEN (Greydanus et al., 2019); and242

3) time-reversal TRS-ODEN (Huh et al., 2020).243

The latter two are single-agent approaches and require initial states as given input. To handle missing244

initial states in our dataset, we approximate the initial states for the two methods via linear spline245

interpolation (Endre Süli, 2003). In addition, we substitute the ODE network in TRS-ODEN with246

a GNN (Kipf et al., 2018) as TRS-ODENGNN, which serves as a new multi-agent approach for fair247

comparison. HODEN cannot be easily extended to the multi-agent setting as replacing the ODE248

function with a GNN can violate energy conservation of the original HODEN. For running LGODE249

and TREAT on single-agent datasets, we only include self-loop edges in the graph G = (V, E), which250

makes the ODE function g a simple MLP. Implementation details can be found in Appendix D.2.251

Table 1: Evaluation results on MSE (10−2). Best results are in bold numbers and second-best results
are in underline numbers. Human Motion is a real-world dataset and all others are simulated datasets.

Multi-Agent Systems Single-Agent Systems

Dataset Simple
Spring

Forced
Spring

Damped
Spring Pendulum Human

Motion
Simple
Spring

Forced
Spring

Damped
Spring Attractor

LatentODE 5.2622 5.0277 3.3419 2.6894 2.9061 5.7957 0.4563 1.3012 0.58394
HODEN 3.0039 4.0668 8.7950 741.2296 1.9855 3.2119 4.004 1.5675 54.2912
TRS-ODEN 3.6785 4.4465 1.7595 741.4988 0.5400 3.0271 0.4056 1.5667 2.2683
TRS-ODENGNN 1.4115 2.1102 0.5951 596.0319 0.2609 / / / /
LG-ODE 1.7429 1.8929 0.9718 1.4156 0.7610 1.6156 0.1465 1.1223 0.6942
TREAT 1.1178 1.4525 0.5944 1.2527 0.2192 1.6026 0.0960 1.0750 0.5581

(—-Ablation of our method with different implementation of Lreverse—-)
TREATLrev=gt-rev 1.1313 1.5254 0.6171 1.6158 0.2495 1.6190 0.1104 1.1205 0.6364
TREATLrev=rev2 1.6786 1.9786 0.9692 1.5631 0.8785 1.6901 0.0983 1.0952 0.7286

4.1 Main Results252

Table 1 shows the prediction performance on both multi-agent systems and single-agent systems253

measured by mean squared error (MSE). We can see that TREAT consistently surpasses other models,254

highlighting its generalizability and the efficacy of the proposed TRS loss.255

7

For multi-agent systems, approaches that consider interactions among agents (LG-ODE, TRS-256

ODENGNN, TREAT) consistently outperform single-agent baselines (LatentODE, HODEN, TRS-257

ODEN), and TREAT achieves the best performance across datasets.258

The chaotic nature of the Pendulum system and the Attractor system, with their sensitivity to initial259

states 4, poses extreme challenges for dynamic modeling. This leads to highly unstable predictions260

for models like HODEN and TRS-ODEN, as they estimate initial states via inaccurate linear spline261

interpolation (Endre Süli, 2003). In contrast, LatentODE, LG-ODE, and TREAT employ advanced262

encoders that infer latent states from observed data and demonstrate superior accuracy. Among them,263

TREAT achieves the most accurate predictions, further showing its robust generalization capabilities.264

We observe that misapplied inductive biases can degrade results, which limits the usage of physics-265

informed methods that are designed for individual physical prior such as HODEN. HODEN only266

excels on energy-conservative systems, such as Simple Spring compared with LatentODE and TRS-267

ODEN in the multi-agent setting. Its performance drop dramatically on Force Spring, Damped Spring,268

and Attractor. Note that HODEN naively forces each agent to be energy-conservative, instead of the269

whole system. Therefore, it performs poorly than LG-ODE, TREAT in the multi-agent settings.270

For the Human Motion dataset, characterized by its dynamic ambiguity as it does not adhere to specific271

physical laws, we cannot directly determine whether it is conservative or time-reversal. For such a272

system with an unknown nature, TREAT outperforms other purely data-driven methods significantly,273

showcasing its strong numerical benefits in improving prediction accuracy across diverse system274

types. This is also shown by its superior performance on Damped Spring, which is irreversible.275

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

LG-ODE
TREAT
TRS-ODEN
HODEN

Figure 4: Varying prediction lengths across multi-agent datasets (Pendulum MSE is in log values).

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

Figure 5: Varying α values across multi-agent datasets.

4.2 Ablation and Sensitivity Analysis276

Ablation on implementation of Lreverse. We conduct two ablation by changing the implementation277

of Lreverse discussed in Sec. 3.2: 1) TREATLrev=gt-rev , which computes the reversal loss as the L2278

distance between ground truth trajectories to model backward trajectories; 2) TREATLrev=rev2, which279

implements the TRS loss based on Eqn 5 as in TRS-ODEN (Huh et al., 2020). From the last block of280

Table 1, we can clearly see that our implementation achieves the best performance against the two.281

Evaluation across prediction lengths. We vary the maximum prediction lengths from 20 to 60282

and report model performance as shown in Figure 4. As the prediction step increases, TREAT283

consistently maintains optimal prediction performance, while other baselines exhibit significant error284

accumulations. The performance gap between TREAT and baselines widens when making long-range285

predictions, highlighting the superior predictive capability of TREAT.286

Evaluation across different α. We vary the values of the coefficient α defined in Eqn 10, which287

balances the reconstruction loss and the TRS loss. Figure 5 demonstrates that the optimal α values288

being neither too high nor too low. This is because when α is too small, the model tends to neglect289

the TRS physical bias, resulting in error accumulations. Conversely, when α becomes too large, the290

4Video to show Pendulum is highly sensitive to initial states.

8

https://drive.google.com/file/d/1w0Zl-MMoBecNBbQnycgVZTDvgmPxh4Ib/view?usp=sharing

model can emphasize TRS at the cost of accuracy. Nonetheless, across different α values, TREAT291

consistently surpasses the purely data-driven LG-ODE, showcasing its superiority and flexibility in292

modeling diverse dynamical systems.293

Finally, we study its sensitivity towards solver choice and observation ratios in Appendix E.294

LG-ODE
TREAT
HODEN

LG-ODE
TREAT
HODEN

LG-ODE
TREAT
HODEN

Ground Truth TANGO LG-ODE EnergyHODEN
(a
)S
im
pl
e
Sp
rin
g

(b
)D
am
pe
d
Sp
rin
g

(c
)F
or
ce
d
Sp
rin
g

TREAT

LG-ODE
TREAT
HODEN

LG-ODE
TREAT
HODEN

LG-ODE
TREAT
HODEN

Figure 6: Visualization for 5-body spring systems (trajectory starts from light to dark colors).

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

×1#!"# ×1#!"# ×1#!"# ×1#!"$

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

TREAT
LG-ODE

TR
EA

T
Re

ve
rs
al

Lo
ss

TR
EA

T
Re

ve
rs
al

Lo
ss

TR
EA

T
Re

ve
rs
al

Lo
ss

TR
EA

T
Re

ve
rs
al

Lo
ss

LG
-O

D
E
Re

ve
rs
al

Lo
ss

LG
-O

D
E
Re

ve
rs
al

Lo
ss

LG
-O

D
E
Re

ve
rs
al

Lo
ss

LG
-O

D
E
Re

ve
rs
al

Lo
ss

Figure 7: TRS loss visualization across multi-agent datasets (scales of two y-axes are different).

4.3 Visualizations295

Trajectory Visualizations. Model predictions and ground truth are visualized in Figure 6. As296

HODEN is a single-agent baseline that individually forces every agent’s energy to be constant over297

time which is not valid, the predicted trajectories is having the largest errors and systems’ total energy298

is not conserved for all datasets. The purely data-driven LG-ODE exhibits unrealistic energy patterns,299

as seen in the energy spikes in Simple Spring and Force Spring. In contrast, TREAT, incorporating300

reversal loss, generates realistic energy trends, and consistently produces trajectories closest to the301

ground truth, showing its superior performance.302

Reversal Loss Visualizations To illustrate the issue of energy explosion from the purely data-driven303

LG-ODE, we visualize the TRS loss over training epochs from LG-ODE5 and TREAT in Figure 7.304

As results suggest, LG-ODE has increased TRS loss over training epochs, meaning it is violating the305

time-reversal symmetry sharply, in contrast to TREAT which has decreased reversal loss over epochs.306

5 Conclusions307

We propose TREAT, a deep learningframework that achieves high-precision modeling for a wide308

range of dynamical systems by injecting time-reversal symmetry as an inductive bias. TREAT309

features a novel regularization term to softly enforce time-reversal symmetry by aligning predicted310

forward and reverse trajectories from a GraphODE model. Notably, we theoretically prove that311

the regularization term effectively minimizes higher-order Taylor expansion terms during the ODE312

integration, which serves as a general numerical benefit widely applicable to various systems (even313

irreversible systems) regardless of their physical properties. Empirical evaluations on different kinds314

of datasets illustrate TREAT’s superior efficacy in accurately capturing real-world system dynamics.315

5There is no reversal loss backpropagation in LG-ODE, we just compute its value along training.

9

References316

J. Awrejcewicz, G. Kudra, and G. Wasilewski. 2008. Chaotic zones in triple pendulum dynamics317

observed experimentally and numerically. Applied Mechanics and Materials (2008), 1–17.318

Y. Cao, X. Gao, and R. Li. 2019. A liquid plug moving in an annular pipe–Heat transfer analysis.319

International Journal of Heat and Mass Transfer 139 (2019), 1065–1076.320

Y. Cao and R. Li. 2018. A liquid plug moving in an annular pipe—Flow analysis. Physics of Fluids321

30, 9 (2018).322

B. Chang, L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham. 2018. Reversible architectures323

for arbitrarily deep residual neural networks. In Proceedings of the AAAI conference on artificial324

intelligence, Vol. 32.325

R. T. Q. Chen, B. Amos, and M. Nickel. 2021. Learning Neural Event Functions for Ordinary326

Differential Equations. International Conference on Learning Representations (2021).327

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. 2018. Neural Ordinary Differential328

Equations. In Advances in Neural Information Processing Systems.329

CMU. 2003. Carnegie-Mellon Motion Capture Database. http://mocap.cs.cmu.edu330

M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. 2020. Lagrangian neural331

networks. arXiv preprint arXiv:2003.04630 (2020).332

D. F. M. Endre Süli. 2003. An Introduction to Numerical Analysis. Cambridge University Press. 293333

pages.334

S. Greydanus, M. Dzamba, and J. Yosinski. 2019. Hamiltonian neural networks. Advances in Neural335

Information Processing Systems (2019).336

Z. Hu, Y. Dong, K. Wang, and Y. Sun. 2020. Heterogeneous Graph Transformer. In Proceedings of337

the 2020 World Wide Web Conference.338

Z. Huang, Y. Sun, and W. Wang. 2020. Learning Continuous System Dynamics from Irregularly-339

Sampled Partial Observations. In Advances in Neural Information Processing Systems.340

Z. Huang, Y. Sun, and W. Wang. 2021. Coupled Graph ODE for Learning Interacting System341

Dynamics. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and342

Data Mining.343

I. Huh, E. Yang, S. J. Hwang, and J. Shin. 2020. Time-Reversal Symmetric ODE Network. In344

Advances in Neural Information Processing Systems.345

S. Jiang, Z. Huang, X. Luo, and Y. Sun. 2023. CF-GODE: Continuous-Time Causal Inference346

for Multi-Agent Dynamical Systems. In Proceedings of the 29th ACM SIGKDD Conference on347

Knowledge Discovery and Data Mining.348

S. Kim and S. J. Karrila. 2013. Microhydrodynamics: principles and selected applications. Courier349

Corporation.350

T. Kipf, E. Fetaya, K. Wang, M. Welling, and R. Zemel. 2018. Neural Relational Inference for351

Interacting Systems. arXiv preprint arXiv:1802.04687 (2018).352

Georgia Koppe, Hazem Toutounji, Peter Kirsch, Stefanie Lis, and Daniel Durstewitz. 2019. Identi-353

fying nonlinear dynamical systems via generative recurrent neural networks with applications to354

fMRI. PLoS computational biology 15, 8 (2019), e1007263.355

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Ferran356

Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, Alexander Merose, Stephan357

Hoyer, George Holland, Oriol Vinyals, Jacklynn Stott, Alexander Pritzel, Shakir Mohamed, and358

Peter Battaglia. 2023. Learning skillful medium-range global weather forecasting. Science 382,359

6677 (2023), 1416–1421.360

10

http://mocap.cs.cmu.edu

J. S. Lamb and J. A. Roberts. 1998. Time-reversal symmetry in dynamical systems: a survey. Physica361

D: Nonlinear Phenomena (1998), 1–39.362

C. Li, F. Xia, R. Martín-Martín, M. Lingelbach, S. Srivastava, B. Shen, K. E. Vainio, C. Gokmen, G.363

Dharan, T. Jain, A. Kurenkov, K. Liu, H. Gweon, J. Wu, L. Fei-Fei, and S. Savarese. 2022. iGibson364

2.0: Object-Centric Simulation for Robot Learning of Everyday Household Tasks. In Proceedings365

of the 5th Conference on Robot Learning.366

J. Liu, A. Kumar, J. Ba, J. Kiros, and K. Swersky. 2019. Graph normalizing flows. Advances in367

Neural Information Processing Systems 32 (2019).368

I. Loshchilov and F. Hutter. 2019. Decoupled weight decay regularization. In The International369

Conference on Learning Representations.370

Yupu Lu, Shijie Lin, Guanqi Chen, and Jia Pan. 2022. ModLaNets: Learning Generalisable Dynamics371

via Modularity and Physical Inductive Bias. In Proceedings of the 39th International Conference on372

Machine Learning (Proceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri,373

Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, 14384–374

14397.375

X. Luo, J. Yuan, Z. Huang, H. Jiang, Y. Qin, W. Ju, M. Zhang, and Y. Sun. 2023. HOPE: High-376

order Graph ODE For Modeling Interacting Dynamics. In Proceedings of the 40th International377

Conference on Machine Learning.378

Ruiqi Ni and Ahmed H Qureshi. 2022. Ntfields: Neural time fields for physics-informed robot motion379

planning. arXiv preprint arXiv:2210.00120 (2022).380

J. North. 2021. Formulations of classical mechanics. Forthcoming in A companion to the philosophy381

of physics. Routledge (2021).382

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. 2021. Learning Mesh-Based Simula-383

tion with Graph Networks. In International Conference on Learning Representations.384

M. Poli, S. Massaroli, J. Park, A. Yamashita, H. Asama, and J. Park. 2019. Graph neural ordinary385

differential equations. arXiv preprint arXiv:1911.07532 (2019).386

C. Pozrikidis. 2001. Interfacial dynamics for Stokes flow. J. Comput. Phys. 169, 2 (2001), 250–301.387

M. Raissi, P. Perdikaris, and G. E. Karniadakis. 2019. Physics-informed neural networks: A388

deep learning framework for solving forward and inverse problems involving nonlinear partial389

differential equations. Journal of Computational physics 378 (2019), 686–707.390

Y. Rubanova, R. T. Chen, and D. K. Duvenaud. 2019. Latent ordinary differential equations for391

irregularly-sampled time series. In Advances in Neural Information Processing Systems.392

A. Sanchez-Gonzalez, V. Bapst, K. Cranmer, and P. Battaglia. 2019. Hamiltonian Graph Networks393

with ODE Integrators. In Advances in Neural Information Processing Systems.394

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia. 2020. Learning395

to Simulate Complex Physics with Graph Networks. In Proceedings of the 37th International396

Conference on Machine Learning.397

V. G. Satorras, E. Hoogeboom, and M. Welling. 2021. E (n) equivariant graph neural networks. In398

International conference on machine learning. PMLR, 9323–9332.399

M. Schober, S. Särkkä, and P. Hennig. 2019. A probabilistic model for the numerical solution of400

initial value problems. In Statistics and Computing. 99–122.401

H. Sepp and S. Jürgen. 1997. Long Short-term Memory. Neural computation (1997).402

T. Shinbrot, C. Grebogi, J. Wisdom, and J. A. Yorke. 1992. Chaos in a double pendulum. American403

Journal of Physics 6 (1992), 491–499.404

Sprott and Julien Clinton. 2015. Symmetric time-reversible flows with a strange attractor. Interna-405

tional Journal of Bifurcation and Chaos 25, 05 (2015), 1550078.406

11

T. Stachowiak and T. Okada. 2006. A numerical analysis of chaos in the double pendulum. Chaos,407

Solitons & Fractals 2 (2006), 417–422.408

E. C. Tolman. 1938. The Determiners of Behavior at a Choice Point. Psychological Review 45, 1409

(1938), 1–41.410

R. Valperga, K. Webster, D. Turaev, V. Klein, and J. Lamb. 2022. Learning Reversible Symplectic411

Dynamics. In Proceedings of The 4th Annual Learning for Dynamics and Control Conference.412

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, ˙ U. Kaiser, and I. Polosukhin.413

2017. Attention is All you Need. In Advances in Neural Information Processing Systems.414

R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu. 2020. Towards physics-informed deep415

learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD International416

Conference on Knowledge Discovery and Data Mining.417

S. Wen, H. Wang, and D. Metaxas. 2022. Social ODE: Multi-agent Trajectory Forecasting with418

Neural Ordinary Differential Equations. In European Conference on Computer Vision.419

C. Zang and F. Wang. 2020. Neural dynamics on complex networks. In Proceedings of the 26th ACM420

SIGKDD International Conference on Knowledge Discovery and Data Mining.421

12

A Theoretical Analysis422

A.1 Implementation of the Time-Reversal Symmetry Loss423

Algorithm 1 The implementation of Lreverse

Require: latent initial states zfwd
i (t0); the ODE function g(·); number of agents N :

1: for each i ∈ N do
2: Compute the latent forward trajectory at timestamps {tk}Kk=0:

zfwd
i (tk) = ODE-Solver

(
g, [zfwd

1 (t0), z
fwd
2 (t0)...z

fwd
N (t0)], tk

)
. Reach the final state zfwd

i (tK).

3: The initial state of the reverse trajectory is defined as zrev
i (t′0) = zfwd

i (tK), and the dynamics
of the system which is the ODE function g(·) is also reversed as −g(·) .

4: Compute the latent reverse trajectory at timestamps {t′k}Kk=0,
zrev
i (t′k) = ODE-Solver

(
g, [zrev

1 (t′0), z
rev
2 (t′0)...z

rev
N (t′0)], t

′
k

)
.

5: ŷfwd
i (tk) = fDEC(z

fwd
i (tk)) ,ŷrev

i (t′k) = fDEC(z
rev
i (t′k))

6: end for
7: Lreverse =

∑N
i=1

∑K
k=0

∥∥∥ŷfwd
i (tk)− ŷrev

i (t′K−k)
∥∥∥2
2

A.2 Proof of Lemma 1424

Proof. The definition of time-reversal symmetry is given by:425

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R (11)

Here, R is an involution operator, which means R ◦R = I.426

First, we apply the time evolution operator ϕt to both sides of Eqn 11:427

ϕt ◦R ◦ ϕt = ϕt ◦ ϕ−1
t ◦R (12)

Simplifying, we obtain:428

ϕt ◦R ◦ ϕt = R (13)

Next, we apply the involution operator R to both sides of the equation:429

R ◦ ϕt ◦R ◦ ϕt = R ◦R (14)

Since R ◦R = I, we finally arrive at:430

R ◦ ϕt ◦R ◦ ϕt = I (15)

which means the trajectories can overlap when evolving backward from the final state.431

A.3 Proof of Theorem 3.1432

Let ∆t denote the integration step size in an ODE solver and T be the prediction length. The time433

stamps of the ODE solver are {tj}Tj=0, where tj+1 − tj = ∆t for j = 0, · · · , T (T > 1). Next434

suppose during the forward evolution, the updates go through states zfwd(tj) = (qfwd(tj),p
fwd(tj))435

for j = 0, · · · , T , where qfwd(tj) is position, pfwd(tj) is momentum, while during the reverse436

evolution they go through states zrev(tj) = (qrev(tj),p
rev(tj)) for j = 0, · · · , T , in reverse order.437

The ground truth trajectory is zgt(tj) = (qgt(tj),p
gt(tj)) for j = 0, · · · , T .438

For the sake of brevity in the ensuing proof, we denote zgt(tj) by zgt
j , zfwd(tj) by zfwd

j and zrev(tj)439

by zrev
j , and we will use Mathematical Induction to prove the theorem.440

A.3.1 Reconstruction Loss (Lpred) Analysis.441

First, we bound the forward loss
∑T

j=0 ∥zfwd
j − zgt

j ∥22. Since our method models the momentum and
position of the system, we can write the following Taylor expansion of the forward process, where

13

for any 0 ≤ j < T :
qfwd
j+1 = qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2 +O(∆t3), (16a)

pfwd
j+1 = pfwd

j + ṗfwd
j ∆t+O(∆t2), (16b)

ṗfwd
j+1 = ṗfwd

j +O(∆t), (16c)

and for the ground truth process, we also have from Taylor expansion that
qgt
j+1 = qgt

j + (pgt
j /m)∆t+ (ṗgt

j /2m)∆t2 +O(∆t3), (17a)

pgt
j+1 = pgt

j + ṗgt
j ∆t+O(∆t2), (17b)

ṗgt
j+1 = ṗgt

j +O(∆t). (17c)

With these, we aim to prove that for any k = 0, 1, · · · , T , the following hold :{
∥qfwd

k − qgt
k ∥2 ≤ C fwd

2 k2∆t2, (18a)

∥pfwd
k − pgt

k ∥2 ≤ C fwd
1 k∆t, (18b)

where C fwd
1 and C fwd

2 are constants.442

Base Case k = 0: Based on the initialization rules, it is obvious that
∥∥qfwd

0 − qgt
0

∥∥
2
= 0 and443 ∥∥pfwd

0 − pgt
0

∥∥
2
= 0, thus (18a) and (18b) both hold for k = 0.444

Inductive Hypothesis: Assume (18a) and (18b) hold for k = j, which means:{
∥qfwd

j − qgt
j ∥2 ≤ C fwd

2 j2∆t2, (19a)

∥pfwd
j − pgt

j ∥2 ≤ C fwd
1 j∆t, (19b)

Inductive Proof: We need to prove (18a) and (18b) hold for k = j + 1.445

First, using (16c) and (17c), we have446 ∥∥ṗfwd
j+1 − ṗgt

j+1

∥∥
2
=
∥∥ṗfwd

j − ṗgt
j

∥∥
2
+O(∆t) =

∥∥ṗfwd
0 − ṗgt

0

∥∥
2
+O

(
(j + 1)∆t

)
= O(1), (20)

where we iterate through j, j − 1, · · · , 0 in the second equality. Then using (17b) and (16b), we get447

for j + 1 that448 ∥∥pfwd
j+1 − pgt

j+1

∥∥
2
=
∥∥(pfwd

j + ṗfwd
j ∆t

)
−
(
pgt
j + ṗgt

j ∆t
)
+O(∆t2)∥2

≤
∥∥pfwd

j − pgt
j

∥∥
2
+
∥∥ṗfwd

j − ṗgt
j

∥∥
2
∆t+O(∆t2)

≤
[
C fwd

1 j +O(1)
]
∆t,

where the first inequality uses the triangle inequality, and in the second inequality we use (19b) as449

well as (20). We can see there exists C fwd
1 such that the final expression above is upper bounded by450

C fwd
1 (j + 1)∆t, with which the claim holds for j + 1.451

Next for (18a), using (17a) and (16a), we get for any j that452 ∥∥qfwd
j+1 − qgt

j+1

∥∥
2
=
∥∥(qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2)−
(
qgt
j + (pgt

j /m)∆t+ (ṗgt
j /2m)∆t2

)
+O(∆t3)∥2

≤
∥∥qfwd

j − qgt
j

∥∥
2
+

1

m

∥∥pfwd
j − pgt

j

∥∥
2
∆t+

1

2m

∥∥ṗfwd
j − ṗgt

j

∥∥
2
∆t2 +O(∆t3)

≤
[
C fwd

2 j2 +
C fwd

1

m
j +O(1)

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (19a) and453

(19b) as well as (20). Thus with an appropriate C fwd
2 , we have the final expression above is upper454

bounded by C fwd
2 (j + 1)2∆t2, and so the claim holds for j + 1.455

Since both the base case and the inductive step have been proven, by the principle of mathematical456

induction, (18a) and (18b) holds for all k = 0, 1, · · · , T .457

14

With this, we finish the forward proof by plugging (18a) and (18b) into the loss function:458

T∑
j=0

∥zfwd
j − zgt

j ∥
2
2 =

T∑
j=0

∥pfwd
j − pgt

j ∥
2
2 +

T∑
j=0

∥qfwd
j − qgt

j ∥
2
2

≤
(
C fwd

1

)2 T∑
j=0

j2∆t2 +
(
C fwd

2

)2 T∑
j=0

j4∆t4

= O(T 3∆t2).

A.3.2 Reversal Loss (Lreverse) Analysis.459

Next we analyze the reversal loss
∑T

j=0 ∥R(zrev
j) − zfwd

j ∥22. For this, we need to refine the Taylor460

expansion residual terms for a more in-depth analysis.461

First reconsider the forward process. Since the process is generated from the learned network, we
may assume that for some constants c1, c2, and c3, the states satisfy the following for any 0 ≤ j < T :

qfwd
j = qfwd

j+1 − (pfwd
j+1/m)∆t+ (ṗfwd

j+1/2m)∆t2 + remfwd,3
j , (21a)

pfwd
j = pfwd

j+1 − ṗfwd
j+1∆t+ remfwd,2

j , (21b)

ṗfwd
j = ṗfwd

j+1 + remfwd,1
j , (21c)

where the remaining terms
∥∥remfwd,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3. Similarly, we have approximate

Taylor expansions for the reverse process:
qrev
j = qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j , (22a)

prev
j = prev

j+1 + ṗrev
j+1∆t+ remrev,2

j , (22b)

ṗrev
j = ṗrev

j+1 + remrev,1
j , (22c)

where
∥∥remrev,i

j

∥∥
2
≤ ci∆ti for i = 1, 2, 3.462

We will prove via induction that for k = T, T − 1, · · · , 0,
∥R(qrev

k)− qfwd
k ∥2 ≤ C rev

3 (T − k)3∆t3, (23a)

∥R(prev
k)− pfwd

k ∥2 ≤ C rev
2 (T − k)2∆t2, (23b)

∥R(ṗrev
k)− ṗfwd

k ∥2 ≤ C rev
1 (T − k)∆t, (23c)

where C rev
1 , C rev

2 and C rev
3 are constants.463

The entire proof process is analogous to the previous analysis of Reconstruction Loss.464

Base Case k = T : Since the reverse process is initialized by the forward process variables at k = T ,465

it is obvious that
∥∥qfwd

T − qev
T

∥∥
2
=
∥∥pfwd

T − prev
T

∥∥
2
=
∥∥ṗfwd

T − ṗrev
T

∥∥
2
= 0. Thus (23a), (23b) and466

(23c) all hold for k = 0.467

Inductive Hypothesis: Assume the inequalities (23b), (23a) and (23c) hold for k = j + 1, which
means: 

∥R(qrev
j+1)− qfwd

j+1∥2 ≤ C rev
3 (T − (j + 1))3∆t3, (24a)

∥R(prev
j+1)− pfwd

j+1∥2 ≤ C rev
2 (T − (j + 1))2∆t2, (24b)

∥R(ṗrev
j+1)− ṗfwd

j+1∥2 ≤ C rev
1 (T − (j + 1))∆t, (24c)

Inductive Proof: We need to prove (23b) (23a) and (23c) holds for k = j.468

First, for (23c), using (21c) and (22c), we get for any j that469 ∥∥R(ṗrev
j)− ṗfwd

j

∥∥
2

=
∥∥(ṗrev

j+1 + remrev,1
j)− (ṗfwd

j+1 + remfwd,1
j)

∥∥
2

≤
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
+ ∥remrev,1

j ∥2 + ∥remfwd,1
j ∥2

≤ C rev
1 (T − j − 1)∆t+ 2c1∆t,

15

where the first inequality uses the triangle inequality, and the second inequality plugs in (24c). Thus470

taking C rev
1 = 2c1, the above is upped bounded by C rev

1 (T − j)∆t, and (23b) holds for j.471

Second, for (24b), using (21b) and (22b), we get472 ∥∥R(prev
j)− pfwd

j

∥∥
2
=
∥∥− (prev

j+1 + ṗrev
j+1∆t+ remrev,2

j

)
−
(
pfwd
j+1 − ṗfwd

j+1∆t+ remfwd,2
j

)
∥2

≤
∥∥R(prev

j+1)− pfwd
j+1

∥∥
2
+
∥∥R(ṗrev

j+1)− ṗfwd
j+1

∥∥
2
∆t+ ∥remrev,2

j ∥2 + ∥remfwd,2
j ∥2

≤
[
C rev

2 (T − j − 1)2 + C rev
1 (T − j − 1) + 2c2

]
∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (24a) and473

(24b). Thus taking C rev
2 = max{C rev

1 /2, 2c2}, we have the final expression above is upper bounded474

by C rev
2 (T − j)2∆t2, and so the claim holds for j.475

Finally, for (24a), we use (21a) and (22a) to get476 ∥∥R(qrev
j)− qfwd

j

∥∥
2

=
∥∥(qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + remrev,3
j

)
−
(
qfwd
j+1 − (pfwd

j+1/m)∆t+ (ṗfwd
j+1/2m)∆t2 + remfwd,3

j

)
∥2

≤
∥∥R(qrev

j+1)− qfwd
j+1

∥∥
2
+

1

m

∥∥R(prev
j+1)− pfwd

j+1

∥∥
2
∆t+

1

2m

∥∥R(ṗrev
j+1)− ṗfwd

j+1

∥∥
2
∆t2 + ∥remrev,3

j ∥2 + ∥remfwd,3
j ∥2

≤
[
C rev

3 (T − j − 1)3 +
C rev

2

m
(T − j − 1)2 +

C rev
1

2m
(T − j − 1) + 2c3

]
∆t3,

where the first inequality uses the triangle inequality, and in the second inequality we use (24a), (24b)477

and (24c). Thus taking C rev
3 = max{C rev

2 /3m,C rev
1 /6m, 2c3}, we have the final expression above is478

upper bounded by C rev
3 (T − j)3∆t3, and so the claim holds for j.479

Since both the base case and the inductive step have been proven, by the principle of mathematical480

induction, (23b), (23a) and (23c) hold for all k = T, T − 1, · · · , 0.481

With this we finish the proof by plugging (23b) and (23a) into the loss function:482

T∑
j=0

∥R(zrev
j)− zfwd

j ∥22 =

T∑
j=0

∥R(prev
j)− pfwd

j ∥22 +
T∑

j=0

∥R(qrev
j)− qfwd

j ∥22

≤
(
C rev

2

)2 T∑
j=0

(T − j)4∆t4 +
(
C rev

3

)2 T∑
j=0

(T − j)6∆t6

= O(T 5∆t4).

(25)

A.4 Proof of Lemma 3.2483

b
a

b

a

𝒚$𝒊𝐟𝐰𝐝 𝟎 = 𝒚𝒊(𝟎) 𝒚𝒊(𝟏) 𝒚$𝒊𝐫𝐞𝐯𝟐 𝟎 = 𝒚𝒊 𝟎 = 𝒚$𝒊𝐟𝐰𝐝 𝟎 𝒚𝒊(𝟏)

𝒚$𝒊𝐟𝐰𝐝 𝟏𝒚$𝒊𝐟𝐰𝐝 𝟏

𝒚$𝒊𝐫𝐞𝐯𝟐 −𝟏

𝒚$𝒊𝐫𝐞𝐯𝟐 𝟏

𝒚$𝒊𝐫𝐞𝐯 𝟎

𝒚$𝒊𝐫𝐞𝐯 −𝟏 = 𝑹(𝒚$𝒊𝐟𝐰𝐝 𝟏)

𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 !"#$! = max	{𝑎, 𝑏}
𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 !"%-'(#) = 𝑎 + 𝑏

ℒ!"#$ = 𝒚$𝒊𝐟𝐰𝐝 𝟏 − 𝒚𝒊(𝟏))
)
∶= 𝑎

ℒ"#*#"+# = 𝑅(𝒚$𝒊𝐫𝐞𝐯 𝟎) − 𝒚$𝒊𝐟𝐰𝐝 𝟎)
)
≔ 𝑏

ℒ!"#$ = 𝒚$𝒊𝐟𝐰𝐝 𝟏 − 𝒚𝒊(𝟏))
)
∶= 𝑎

ℒ"#*#"+#) = 𝒚$𝒊𝐫𝐞𝐯𝟐 𝟏 − 𝒚$𝒊𝐟𝐰𝐝 𝟏)
)
≔ 𝑏

Ground truth Trajectory
Forward Trajectory
Reverse Trajectory

TREAT:	𝑅 ∘ 𝜙! ∘ 𝑅 ∘ 𝜙! = 𝐼 TRS-ODEN:	𝑅 ∘ 𝜙! = 𝜙"! ∘ 𝑅

	𝒚$𝒊𝐫𝐞𝐯𝟐 𝟏 = 𝑹(𝒚$ 𝒊𝐫𝐞𝐯𝟐 −𝟏)

Figure 8: Comparison between two reversal loss implementation

16

We expect an ideal model to align both the predicted forward and reverse trajectories with the ground484

truth. As shown in Figure 8, we integrate one step from the initial state ŷfwd
i (0) (which is the same as485

yi(0)) and reach the state ŷfwd
i (1).486

The first reverse loss implementation (ours) follows Lemma 2.1 as R ◦Φt ◦R ◦Φt = I, which means487

when we evolve forward and reach the state ŷfwd
i (1) we reverse it into ŷrev

i (−1) = R(ŷfwd
i (1)) and go488

back to reach ŷrev
i (0), then reverse it to get R(ŷrev

i (0)), which ideally should be the same as ŷfwd
i (0).489

The second reverse loss implementation follows Eqn 5as R ◦ Φt = Φ−t ◦R, which means we first490

reverse the initial state as ŷrev2
i (0) = R(yi(0)), then evolve the reverse trajectory in the opposite491

direction to reach ŷrev2
i (−1), and then perform a symmetric operation to reach ŷrev2

i (1), aligning it492

with the forward trajectory.493

We assume the two reconstruction losses Lpred = ∥ŷfwd
i (1) − yi(1)∥22 := a are the same. For the494

time-reversal losses, we also assume they have reached the same value b:495

Lreverse = ∥R(ŷrev
i (0))− ŷfwd

i (0)∥22 + ∥R(ŷrev
i (−1))− ŷfwd

i (1)∥22 = ∥R(ŷrev
i (0))− ŷfwd

i (0)∥22 := b,

Lreverse2 = ∥ŷrev2
i (0)− ŷfwd

i (0)∥22 + ∥ŷrev2
i (1)− ŷfwd

i (1)∥22 = ∥ŷrev2
i (1)− ŷfwd

i (1)∥22 := b,

As shown in Figure 8 where we illustrate the worst case scenario MaxErrorgt_rev =496

maxk∈[K] ∥yi(tk)−ŷrev
i (t′K−k)∥2 of TREAT and TRS-ODEN, we can see that in our implementation497

the worst error is the maximum of two loss, while the TRS-ODEN’s implementation has the risk of498

accumulating the error together, making the worst error being the sum of both:499

MaxErrorTREAT = max
{∥∥R(ŷrev

i (0))− yi(0)
∥∥
2
,
∥∥R(ŷrev

i (−1))− yi(1)
∥∥
2

}
= max

{
a, b
}
,

MaxErrorTRS-ODEN = max
{∥∥ŷrev2

i (0)− yi(0)
∥∥
2
,
∥∥ŷrev2

i (1)− yi(1)
∥∥
2

}
= max

{
0,
∥∥R(ŷrev

i (−1))− yi(1)
∥∥
2

}
=
∥∥ŷrev2

i (1)− ŷfwd
i (1)

∥∥
2
+
∥∥ŷfwd(1)− y(1)

∥∥
2
= a+ b,

(26)
So it is obvious that MaxErrorTREAT made by TREAT is smaller., which means our model achieves500

a smaller error of the maximum distance between the reversal and ground truth trajectory.501

B Example of varying dynamical systems502

We illustrate the energy conservation and time reversal of the three n-body spring systems used in our503

experiments. We use the Hamiltonian formalism of systems under classical mechanics to describe504

their dynamics and verify their energy conservation and time-reversibility characteristics.505

The scalar function that describes a system’s motion is called the Hamiltonian, H, and is typically506

equal to the total energy of the system, that is, the potential energy plus the kinetic energy (North,507

2021). It describes the phase space equations of motion by following two first-order ODEs called508

Hamilton’s equations:509

dq

dt
=

∂H(q,p)

∂p
,
dp

dt
= −∂H(q,p)

∂q
, (27)

where q ∈ Rn,p ∈ Rn, and H : R2n 7→ R are positions, momenta, and Hamiltonian of the system.510

Under this formalism, energy conservative is defined by dH/dt = 0, and the time-reversal symmetry511

is defined by H(q, p, t) = H(q,−p,−t) (Lamb and Roberts, 1998).512

B.1 Conservative and reversible systems.513

A simple example is the isolated n-body spring system, which can be described by :514

dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj),
(28)

where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a set of515

momenta of each object, mi is mass of each object, k is spring constant.516

17

The Hamilton’s equations are:517

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj),
(29)

Hence, we can obtain the Hamiltonian through the integration of the above equation.518

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
, (30)

Verify the systems’ energy conservation519

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
= 0, (31)

So it is conservative.520

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).521

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
,

(32)

It is obvious H(q,p) = H(q,−p), so it is reversible522

B.2 Non-conservative and reversible systems.523

A simple example is a n-body spring system with periodical external force, which can be described524

by:525

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(33)

The Hamilton’s equations are:526

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + k1 cosωt,
(34)

Hence, we can obtain the Hamiltonian through the integration of the above equation:527

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt, (35)

Verify the systems’ energy conservation528

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

(N∑
i=1

qi ∗ k1 cosωt
)

=0 +
1

dt

(N∑
i=1

qik1 cosωt
)

=
(N∑
i=1

−ωqik1 sinωt
)
̸= 0

(36)

18

So it is non-conservative.529

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).530

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosωt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

qi ∗ k1 cosω(−t),

(37)

It is obvious H(q,p, t) = H(q,−p, t), so it is reversible531

B.3 Non-conservative and irreversible systems.532

A simple example is an n-body spring system with frictions proportional to its velocity,γ is the533

coefficient of friction, which can be described by:534

dqi

dt
=

pi

m
dpi

dt
= −k0qi − γ

pi

m

(38)

The Hamilton’s equations are:535

∂H(q,p)

∂pi
=

dqi

dt
=

pi

m

∂H(q,p)

∂qi
= −dpi

dt
=
∑
j∈Ni

k(qi − qj) + γ
pi

m

(39)

Hence, we can obtain the Hamiltonian through the integration of the above equation:536

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt, (40)

Verify the systems’ energy conservation537

dH
(
q,p)

dt
=

1

dt
(

N∑
i=1

pi
2

2mi

)
+

1

dt

(1
2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

(N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=0 +
1

dt

(N∑
i=1

γ

m

∫ t

0

pi
2

m
dt)

=
(N∑
i=1

γ

m

pi
2

m
) ̸= 0

(41)

So it is non-conservative.538

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).539

H(q,p) =

N∑
i=1

pi
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ t

0

pi
2

m
dt,

H(q,−p) =

N∑
i=1

(−pi)
2

2mi
+

1

2

N∑
i=1

N∑
j∈Ni

1

2
k(qi − qj)

2
+

N∑
i=1

γ

m

∫ (−t)

0

pi
2

m
d(−t),

(42)

It is obvious H(q,p, t) ̸= H(q,−p, t), so it is irreversible540

19

C Dataset541

In our experiments, all datasets are synthesized from ground-truth physical law via sumulation. We542

generate five simulated datasets: three n-body spring systems under damping, periodic, or no external543

force, one chaotic tripe pendulum dataset with three sequentially connected stiff sticks that form and544

a chaotic strange attractor. We name the first three as Sipmle Spring, Forced Spring, and Damped545

Spring respectively. For multi-agent systems, all n-body spring systems contain 5 interacting balls,546

with varying connectivities. Each Pendulum system contains 3 connected stiff sticks. For single-agent547

systems, all spring systems contain only one ball. For the chaotic single Attractor, we follow the548

setting of (Huh et al., 2020).549

For the n-body spring system, we randomly sample whether a pair of objects are connected, and550

model their interaction via forces defined by Hooke’s law. In the Damped spring, the objects have an551

additional friction force that is opposite to their moving direction and whose magnitude is proportional552

to their speed. In the Forced spring, all objects have the same external force that changes direction553

periodically. We show in Figure 1(a), the energy variation in both of the Damped spring and Forced554

spring is significant. For the chaotic triple Pendulum , the equations governing the motion are555

inherently nonlinear. Although this system is deterministic, it is also highly sensitive to the initial556

condition and numerical errors (Shinbrot et al., 1992; Awrejcewicz et al., 2008; Stachowiak and557

Okada, 2006). This property is often referred to as the "butterfly effect", as depicted in Figure 9.558

Unlike for n-body spring systems, where the forces and equations of motion can be easily articulated,559

for the Pendulum, the explicit forces cannot be directly defined, and the motion of objects can only560

be described through Lagrangian formulations (North, 2021), making the modeling highly complex561

and raising challenges for accurate learning. We simulate the trajectories by using Euler’s method for

0 100 200 300 400 500 600 700
Time steps

10

0

10

20

30

40

Jo
in

t

Original initial condition: 0
w/ 1e-3 perturbation: 0
w/ 1e-2 perturbation: 0

1
1
1

2
2
2

Figure 9: Illustration to show the pendulum is highly-sensitive to initial states

562
n-body spring systems and using the 4th order Runge-Kutta (RK4) method for the Pendulum and563

Attractor . For all spring systems and Pendulum, We integrate with a fixed step size and subsample564

every 100 steps. For training, we use a total of 6000 forward steps. To generate irregularly sampled565

partial observations, we follow (Huang et al., 2020) and sample the number of observations n from a566

uniform distribution U(40, 52) and draw the n observations uniformly for each object. For testing, we567

additionally sample 40 observations following the same procedure from PDE steps [6000, 12000],568

besides generating observations from steps [1, 6000]. The above sampling procedure is conducted569

independently for each object. We generate 20k training samples and 5k testing samples for each570

dataset. For Attractor, we integrate a total of 600 forward steps for training and subsample every571

10 steps. For testing, we additionally sample 40 observations from step [600,1200].The irregularly572

sampled partial observations generation is the same as above. We generate 1000 training samples573

and 50 testing samples following (Huh et al., 2020). Therefore, for all datasets, condition length is574

20

60 steps and prediction length is 40s steps. The features (position/velocity) are normalized to the575

maximum absolute value of 1 across training and testing datasets.576

We also compute the Maximum Lyapunov Exponent (MLE) to assess the chaos level of the systems,577

using the formula:578

λ = maxt→inf(
1

t
ln

||δ(t)||
||δ(0)||

).

We set fixed initial values for each dataset and generate 10 trajectories by perturbing the initial values579

with random noise (0, 0.0001). We calculate the Maximum Lyapunov Exponent (MLE) between any580

two trajectories. Finally, we compute the average and std of MLE from all pairs to gauge the chaotic581

behavior of each dataset. The data is presented in the table below:582

Table 2: MLE of different Multi-agent Systems
Dataset Simple Spring Forced Spring Damped Spring Pendulum

MLE(in 60 steps) 0.4031 ± 0.3944 1.0087± 1.0577 0.6307 ± 0.7065 34.1832 ± 30.1846

From the table, it’s evident that the order of MLE values is: Pendulum » three Spring datasets.583

This observation is consistent with the evaluation results based on MSE presented in our previous584

responses in Table 3 which indicates that as the prediction length(steps*step size) increases, there is a585

more significant performance degradation of all models on Pendulum dataset.586

In the following subsections, we show the dynamical equations of each dataset in detail.587

C.1 Spring Systems588

C.1.1 Simple Spring589

The dynamical equations of simple spring are as follows:590

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)
(43)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a591

set of momenta of each object. We set the mass of each object m = 1, the spring constantk = 0.1.592

C.1.2 Damped Spring593

The dynamical equations of damped spring are as follows:594

dqi

dt
=

pi

m
dpi

dt
=
∑
j∈Ni

−k(qi − qj)− γ
pi

m

(44)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object, p = (p1,p2, · · · ,pN) is a595

set of momenta of each object, We set the mass of each object m = 1, the spring constantk = 0.1,596

the coefficient of friction γ = 10.597

C.1.3 Forced Spring598

The dynamical equations of forced spring system are as follows:599

dqi

dt
=

pi

m

dpi

dt
=

N∑
j∈Ni

−k(qi − qj)− k1 cosωt,
(45)

21

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a600

set of momenta of each object. We set the mass of each object m = 1 , the spring constantk = 0.1,601

the external strength k1 = 10 and the frequency of variation ω = 1602

We simulate the positions and momentums of three spring systems by using Euler methods as follows:603

qi(t+ 1) = qi(t) +
dqi

dt
∆t

pi(t+ 1) = pi(t) +
dpi

dt
∆t

(46)

where dqi

dt and dpi

dt were defined as above for each datasets, and ∆t = 0.001 is the integration steps.604

C.2 Chaotic Pendulum605

In this section, we demonstrate how to derive the dynamics equations for a chaotic triple pendulum606

using the Lagrangian formalism.607

The moment of inertia of each stick about the centroid is608

I =
1

12
ml2 (47)

The position of the center of gravity of each stick is as follows:609

x1 =
l

2
sin θ1, y1 = − l

2
cos θ1

x2 = l(sin θ1 +
1

2
sin θ2), y2 = −l(cos θ1 +

1

2
cos θ2)

x3 = l(sin θ1 + sin θ2 +
1

2
sin θ3), y3 = −l(cos θ1 + cos θ2 +

1

2
cos θ3)

(48)

The change in the center of gravity of each stick is:610

ẋ1 =
l

2
cos θ1 · θ̇1, ẏ1 =

l

2
sin θ1 · θ̇1

ẋ2 = l(cos θ1 · θ̇1 +
1

2
cos θ2 · θ̇2), ẏ2 = l(sin θ1 · θ̇1 +

1

2
sin θ2 · θ̇2)

ẋ3 = l(cos θ1 · θ̇1 + cos θ2 · θ̇2 +
1

2
cos θ3 · θ̇3), ẏ3 = l(sin θ1 · θ̇1 + sin θ2 · θ̇2 +

1

2
sin θ3 · θ̇3)

(49)

The Lagrangian L of this triple pendulum system is:611

L =T − V

=
1

2
m(ẋ1

2 + ẋ2
2 + ẋ3

2 + ẏ1
2 + ẏ2

2 + ẏ3
2) +

1

2
I(θ̇1

2
+ θ̇2

2
+ θ̇3

2
)−mg(y1 + y2 + y3)

=
1

6
ml(9θ̇2θ̇1l cos(θ1 − θ2) + 3θ̇3θ̇1l cos (θ1 − θ3) + 3θ̇2θ̇3l cos (θ2 − θ3) + 7θ̇21l + 4θ̇22l + θ̇23l

+ 15g cos (θ1) + 9g cos (θ2) + 3g cos (θ3))

(50)

The Lagrangian equation is defined as follows:612

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0 (51)

and we also have:613
∂L
∂θ̇

=
∂T

∂θ̇
= p

ṗ =
d

dt

∂L
∂θ̇

=
∂L
∂θ

(52)

where p is the Angular Momentum.614

We can list the equations for each of the three sticks separately:615

p1 =
∂L
∂θ̇1

ṗ1 =
∂L
∂θ1

p2 =
∂L
∂θ̇2

ṗ2 =
∂L
∂θ2

p3 =
∂L
∂θ̇3

ṗ3 =
∂L
∂θ3

(53)

22

Finally, we have :616 

θ̇1 = 6(9p1 cos(2(θ2−θ3))+27p2 cos(θ1−θ2)−9p2 cos(θ1+θ2−2θ3)+21p3 cos(θ1−θ3)−27p3 cos(θ1−2θ2+θ3)−23p1)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇2 = 6(27p1 cos(θ1−θ2)−9p1 cos(θ1+θ2−2θ3)+9p2 cos(2(θ1−θ3))−27p3 cos(2θ1−θ2−θ3)+57p3 cos(θ2−θ3)−47p2)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇3 = 6(21p1 cos(θ1−θ3)−27p1 cos(θ1−2θ2+θ3)−27p2 cos(2θ1−θ2−θ3)+57p2 cos(θ2−θ3)+81p3 cos(2(θ1−θ2))−143p3)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

ṗ1 = − 1
2ml

(
3θ̇2θ̇1l sin (θ1 − θ2) + θ̇1θ̇3l sin (θ1 − θ3) + 5g sin (θ1)

)
ṗ1 = − 1

2ml
(
−3θ̇1θ̇2l sin (θ1 − θ2) + θ̇2θ̇3l sin (θ2 − θ3) + 3g sin (θ2)

)
ṗ1 = − 1

2ml
(
θ̇1θ̇3l sin (θ1 − θ3) + θ̇2θ̇3l sin (θ2 − θ3)− g sin (θ3)

)
(54)

We simulate the angular of the three sticks by using the Runge-Kutta 4th Order Method as follows:617

∆θ1(t) = θ̇(t,θ(t)) ·∆t

∆θ2(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ1(t)

2
) ·∆t

∆θ3(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ2(t)

2
) ·∆t

∆θ4(t) = θ̇(t+∆t,θ(t) + ∆θ3(t)) ·∆t

∆θ(t) =
1

6
(∆θ1(t) + ∆θ2(t) + ∆θ3(t) + ∆θ4(t))

θ(t+ 1) = θ(t) + ∆θ(t)

(55)

where θ̇ was defined as above , and ∆t = 0.0001 is the integration steps.618

C.3 Chaotic Strange Attractor619

The dynamical equations of this reversible strange attractor are as follows:620

dx

dt
= 1 + yz,

dy

dt
= −xz,

dz

dt
= y2 + 2yz,

x, y, x ∈ R

(56)

The above equations can be presented as (ẋ(t), ẏ(t), ż(t)) = Dynamic(x(t), y(t), z(t)).621

We simulate K(t) = (x(t), y(t), z(t)) by using the Runge-Kutta 4th Order Method as follows:622

∆K1(t) = Dynamic(K(t)) ∗∆t

∆K2(t) = Dynamic(K(t) +
∆K1(t)

2
) ∗∆t

∆K3(t) = Dynamic(K(t) +
∆K2(t)

2
) ∗∆t

∆K4(t) = Dynamic(K(t) + ∆K3(t)) ∗∆t

∆K(t) =
1

6
(∆K1(t) + ∆K2(t) + ∆K3(t) + ∆K4(t))

K(t+ 1) = K(t) + ∆K(t)

(57)

We sampling z(t0) randomly from uniform distribution [1, 3] while fixing x(t0) = y(t0) = 0. We set623

the trajectory lengths of both training and test dataset to 600, with regular time-step size ∆t = 0.03624

and the sample frequency of 10. We add Gaussian noise 0.05n, n ∼ N (0, 1) to training trajectories.625

23

C.4 Human Motion626

For the real-world motion capture dataset(CMU, 2003), we focus on the walking sequences of subject627

35. Each sample in this dataset is represented by 31 trajectories, each corresponding to the movement628

of a single joint. For each joint, we first randomly sample the number of observations from a uniform629

distribution U(30, 42) and then sample uniformly from the first 50 frames for training and validation630

trajectories. For testing, we additionally sampled 40 observations from frames [51, 99].We split631

different walking sequences into training (15 trials) and test sets (7 trials). For each walking sequence,632

we further split it into several non-overlapping small sequences with maximum length 50 for training,633

and maximum length 100 for testing. In this way, we generate total 120 training samples and 27634

testing samples. We normalize all features (position/velocity) to maximum absolute value of 1 across635

training and testing datasets.636

D Model Details637

In the following we introduce in details how we implement our model and each baseline.638

D.1 Initial State Encoder639

For multi-agent systems, the initial state encoder computes the latent node initial states zi(t) for all640

agents simultaneously considering their mutual interaction. Specifically, it first fuses all observations641

into a temporal graph and conducts dynamic node representation through a spatial-temporal GNN as642

in (Huang et al., 2020):643

hl+1
j(t) = hl

j(t) + σ

 ∑
i(t′)∈Nj(t)

αl
i(t′)→j(t) ×Wvĥ

l−1
i(t′)


αl
i(t′)→j(t) =

(
Wkĥ

l−1
i(t′)

)T (
Wqh

l−1
j(t)

)
· 1√

d
, ĥl−1

i(t′) = hl−1
i(t′) + TE(t′ − t)

TE(∆t)2i = sin

(
∆t

100002i/d

)
, TE(∆t)2i+1 = cos

(
∆t

100002i/d

)
,

(58)

where || denotes concatenation; σ(·) is a non-linear activation function; d is the dimension of node644

embeddings. The node representation is computed as a weighted summation over its neighbors645

plus residual connection where the attention score is a transformer-based (Vaswani et al., 2017)646

dot-product of node representations by the use of value, key, query projection matrices Wv,Wk,Wq .647

Here hl
j(t) is the representation of agent j at time t in the l-th layer. i(t′) is the general index for648

neighbors connected by temporal edges (where t′ ̸= t) and spatial edges (where t = t′ and i ̸= j).649

The temporal encoding (Hu et al., 2020) is added to a neighborhood node representation in order650

to distinguish its message delivered via spatial and temporal edges. Then, we stack L layers to get651

the final representation for each observation node: ht
i = hL

i(t). Finally, we employ a self-attention652

mechanism to generate the sequence representation ui for each agent as their latent initial states:653

ui =
1

K

∑
t

σ
(
aT
i ĥ

t
iĥ

t
i

)
, ai = tanh

((
1

K

∑
t

ĥt
i

)
Wa

)
, (59)

where ai is the average of observation representations with a nonlinear transformation Wa and654

ĥt
i = ht

i + TE(t). K is the number of observations for each trajectory. Compared with recurrent655

models such as RNN, LSTM (Sepp and Jürgen, 1997), it offers better parallelization for accelerating656

training speed and in the meanwhile alleviates the vanishing/exploding gradient problem brought by657

long sequences. For single-agent Systems, there only left the self-attention mechanism component.658

Given the latent initial states, the dynamics of the whole system are determined by the ODE function659

g which we parametrize as a GNN as in (Huang et al., 2020) for Multi-Agent Systems to capture the660

continuous interaction among agents. For single-agent systems, we only include self-loop edges in661

the graph G = (V, E), which makes the ODE function g a simple MLP.662

We then employ Multilayer Perceptron (MLP) as a decoder to predict the trajectories ŷi(t) from the663

latent states zi(t).664

24

z1(t), z2(t), z3(t) · · · zN (t) = ODEsolver(g, [z1(t0), z2(t0) · · · zN (t0)], (t0, t1 · · · tK))

ŷi(t) = fdec(zi(t))
(60)

D.2 Implementation Details665

TREAT666

For multi-agent systems, our implementation of TREAT follows GraphODE pipeline. We implement667

the initial state encoder using a 2-layer GNN with a hidden dimension of 64 across all datasets.668

We use ReLU for nonlinear activation. For the sequence self-attention module, we set the output669

dimension to 128. The encoder’s output dimension is set to 16, and we add 64 additional dimensions670

initialized with all zeros to the latent states zi(t) to stabilize the training processes as in (Huang et al.,671

2021). The GNN ODE function is implemented with a single-layer GNN from (Kipf et al., 2018)672

with hidden dimension 128. For single-agent systems, we only include self-loop edges in the graph673

G = (V, E), which makes the ODE function g a simple MLP. To compute trajectories, we use the674

Runge-Kutta method from torchdiffeq python package s(Chen et al., 2021) as the ODE solver and a675

one-layer MLP as the decoder.676

We implement our model in pytorch. Encoder, generative model, and the decoder parameters are677

jointly optimized with AdamW optimizer (Loshchilov and Hutter, 2019) using a learning rate of678

0.0001 for spring datasets and 0.00001 for Pendulum. The batch size for all datasets is set to 512.679

TREATLrev=gt-rev and TREATLrev=rev2 share the same architecture and hyparameters as TREAT,680

with different implementations of the loss function. In TREATLrev=gt-rev, instead of comparing681

forward and reverse trajectories, we look at the L2 distance between the ground truth and reverse682

trajectories when computing the reversal loss.683

For TREATLrev=rev2, we implement the reversal loss following (Huh et al., 2020) with one difference:684

we do not apply the reverse operation to the momentum portion of the initial state to the ODE function.685

This is because the initial hidden state is an output of the encoder that mixes position and momentum686

information. Note that we also remove the additional dimensions to the latent state that TREAT has.687

To reproduce our model’s results, we provide our code implementation link here.688

LatentODE689

We implement the Latent ODE sequence to sequence model as specified in (Rubanova et al., 2019).690

We use a 4-layer ODE function in the recognition ODE, and a 2-layer ODE function in the generative691

ODE. The recognition and generative ODEs use Euler and Dopri5 as solvers (Chen et al., 2021),692

respectively. The number of units per layer is 1000 in the ODE functions and 50 in GRU update693

networks. The dimension of the recognition model is set to 100. The model is trained with a learning694

rate of 0.001 with an exponential decay rate of 0.999 across different experiments. Note that since695

latentODE is a single-agent model, we compute the trajectory of each object independently when696

applying it to multi-agent systems.697

HODEN698

To adapt HODEN, which requires full initial states of all objects, to systems with partial observations,699

we compute each object’s initial state via linear spline interpolation if it is missing. Following the700

setup in (Huh et al., 2020), we have two 2-layer linear networks with Tanh activation in between as701

ODE functions, in order to model both positions and momenta. Each network has a 1000-unit layer702

followed by a single-unit layer. The model is trained with a learning rate of 0.00001 using a cosine703

scheduler.HODEN is a single-agent model, we compute the trajectory of each object independently704

when applying it to multi-agent systems.705

TRS-ODEN706

Similar to HODEN, we compute each object’s initial state via linear spline interpolation if it is707

missing. As in (Huh et al., 2020), we use a 2-layer linear network with Tanh activation in between as708

the ODE functions, and the Leapfrog method for solving ODEs. The network has 1000 hidden units709

and is trained with a learning rate of 0.00001 using a cosine scheduler. TRS-ODEN is a single-agent710

model, we compute the trajectory of each object independently when applying it to multi-agent711

systems.712

25

https://anonymous.4open.science/r/TREAT-ANOY/

TRS-ODENGNN713

For TRSODENGNN, we substitute the ODE function in TRS-ODEN with a GraphODE network. The714

GraphODE generative model is implemented with a single-layer GNN with hidden dimension 128.715

As in HODEN and TRS-ODEN, we compute each object’s missing initial state via linear spline716

interpolation and the Leapfrog method for solving ODE. For all datasets, we use 0.5 as the coefficient717

for the reversal loss in (Huh et al., 2020), and 0.0002 as the learning rate under cosine scheduling.718

LGODE719

Our implementation follows (Huang et al., 2020) except we remove the Variational Autoencoder720

(VAE) from the initial state encoder. Instead of using the output from the encoder GNN as the721

mean and std of the VAE, we directly use it as the latent initial state. That is, the initial states are722

deterministic instead of being sampled from a distribution. We use the same architecture as in TREAT723

and train the model using an AdamW optimizer with a learning rate of 0.0001 across all datasets.724

E Additional Experiments725

E.1 Comparison of different solvers726

We next show our model’s sensitivity regarding solvers with different precisions. Specifically, we727

compare against Euler and Runge-Kutta (RK4) where the latter is a higher-precision solver. We show728

the comparison against LGODE and TREAT in Table 3.729

We can firstly observe that TREAT consistently outperforms LGODE, which is our strongest baseline730

across different solvers and datasets, indicating the effectiveness of the proposed time-reversal731

symmetry loss. Secondly, we compute the improvement ratio as LGODE−TREAT
LGODE . We can see that732

the improvement ratios get larger when using RK4 over Euler. This can be understood as our reversal733

loss is minimizing higher-order Tayler expansion terms (Theoreom 3.1) thus compensating numerical734

errors brought by ODE solvers.735

Table 3: Evaluation results on MSE (10−2) over different solvers for multi-agent systems.
Dataset Simple Spring Forced Spring Damped Spring Pendulum
Solvers Euler RK4 Euler RK4 Euler RK4 Euler RK4

LGODE 1.8443 1.7429 2.0462 1.8929 1.1686 0.9718 1.4634 1.4156
TREAT 1.4864 1.1178 1.6058 1.4525 0.8070 0.5944 1.3093 1.2527
% Improvement 19.4057 35.8655 21.5228 23.2659 30.9430 38.8352 10.5303 11.5075

E.2 Evaluation across observation ratios.736

For LG-ODE and TREAT, the encoder computes the initial states from observed trajectories. To show737

models’ sensitivity towards data sparsity, we randomly mask out 40% and 80% historical observations738

and compare model performance. As shown in Table 4, when changing the ratios from 80% to 40%,739

we observe that TREAT has a smaller performance drop compared with LG-ODE, especially on the740

more complex Pendulum dataset (LG-ODE decreases 22.04% while TREAT decreases 1.62%). This741

indicates that TREAT is less sensitive toward data sparsity.742

Table 4: Results of varying observation ratios on MSE (10−2) of multi-agent datasets.
Dataset Simple Spring Forced Spring Damped Spring Pendulum
Observation Ratios 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4

LG-ODE 1.7054 1.6889 1.7554 2.0370 0.9305 1.0217 1.4314 1.7469
TREAT 1.1176 1.1429 1.3611 1.5109 0.6920 0.6964 1.2309 1.2110

E.3 Evaluation for ablation across 5 run743

The second model variant TREATLrev=gt-rev is by computing the reversal loss Lreverse as between744

model backward predictions to ground truth, in contrast with our proposed loss between model745

26

backward and forward predictions used in TREAT. In Table 1, we can see that TREATLrev=gt-rev746

decreases the performance by 1.20%, 5.02%,3.82%, and 28.98% for the four systems respectively.747

We further repeated our experiments multiple rounds and provided std in the following. We observed748

that TREAT consistently outperforms TREATLrev=gt-rev and in general has smaller stds.

Table 5: Evaluation Results on MSE (10−2) across 5 runs
Model Simple Spring Forced Spring Damped Spring Pendulum

TREAT 1.1101 ± 0.0159 1.4565 ± 0.0176 0.6023 ± 0.0112 1.2561 ± 0.0021
TREATLrev=gt-rev 1.1113± 0.0162 1.5865± 0.0451 0.6209± 0.0160 1.6254± 0.0150

749

E.4 Comparison of different solver step sizes.750

F Discussion about Reversible Neural Networks751

In literature, there is another line of research about building reversible neural networks (NNs). For752

example, (Chang et al., 2018) formulates three architectures for reversible neural networks to address753

the stability issue and achieve arbitrary deep lengths, motivated by dynamical system modeling. (Liu754

et al., 2019) employs normalizing flow to create a generative model of graph structures. They all755

propose novel architectures to construct reversible NN where intermediate states across layer depths756

do not need to be stored, thus improving memory efficiency.757

However, we’d like to clarify that reversible NNs (RevNet) do not resolve the time-reversal symmetry758

problem that we’re studying. The core of RevNet is that input can be recovered from output via a759

reversible operation (which is another operator), similar as any linear operator W (·) have a reversed760

projector W−1(·). In the contrary, what we want to study is that the same operator can be used for761

both forward and backward prediction over time, and keep the trajectory the same. That being said,762

to generate the forward and backward trajectories, we are using the same g(·), instead of g(·), g−1(·)763

respectively.764

In summary, though both reversible NN and time-reversal symmetry share similar insights and765

intuition, they’re talking about different things: reversible NNs make every operator g(·) having a766

g−1(·), while time-reversible assume the trajectory get from ẑfwd = g(z) and ẑbwd = −g(z) to be767

closer. Making g to be reversible cannot make the system to be time-reversible.768

G Impact Statement769

This paper presents work whose goal is to advance the field of Machine Learning. TREAT is trained770

upon physical simulation data (e.g., , spring and pendulum) and implemented by public libraries in771

PyTorch. During the modeling, we neither introduces any social/ethical bias nor amplify any bias in772

the data. There are many potential societal consequences of our work, none which we feel must be773

specifically highlighted here.774

H Limitations775

Currently, TREAT only incorporates inductive bias from the temporal aspect, while there are many776

important properties in the spatial aspect such as translation and rotation equivariance (Satorras et al.,777

2021). Future endeavors that combine biases from both temporal and spatial dimensions could unveil778

a new frontier in dynamical systems modeling.779

27

NeurIPS Paper Checklist780

1. Claims781

Question: Do the main claims made in the abstract and introduction accurately reflect the782

paper’s contributions and scope?783

Answer: [Yes]784

Justification: [TODO]785

Guidelines:786

• The answer NA means that the abstract and introduction do not include the claims787

made in the paper.788

• The abstract and/or introduction should clearly state the claims made, including the789

contributions made in the paper and important assumptions and limitations. A No or790

NA answer to this question will not be perceived well by the reviewers.791

• The claims made should match theoretical and experimental results, and reflect how792

much the results can be expected to generalize to other settings.793

• It is fine to include aspirational goals as motivation as long as it is clear that these goals794

are not attained by the paper.795

2. Limitations796

Question: Does the paper discuss the limitations of the work performed by the authors?797

Answer: [Yes]798

Justification: Limitations are discussed in Appendix H799

Guidelines:800

• The answer NA means that the paper has no limitation while the answer No means that801

the paper has limitations, but those are not discussed in the paper.802

• The authors are encouraged to create a separate "Limitations" section in their paper.803

• The paper should point out any strong assumptions and how robust the results are to804

violations of these assumptions (e.g., independence assumptions, noiseless settings,805

model well-specification, asymptotic approximations only holding locally). The authors806

should reflect on how these assumptions might be violated in practice and what the807

implications would be.808

• The authors should reflect on the scope of the claims made, e.g., if the approach was809

only tested on a few datasets or with a few runs. In general, empirical results often810

depend on implicit assumptions, which should be articulated.811

• The authors should reflect on the factors that influence the performance of the approach.812

For example, a facial recognition algorithm may perform poorly when image resolution813

is low or images are taken in low lighting. Or a speech-to-text system might not be814

used reliably to provide closed captions for online lectures because it fails to handle815

technical jargon.816

• The authors should discuss the computational efficiency of the proposed algorithms817

and how they scale with dataset size.818

• If applicable, the authors should discuss possible limitations of their approach to819

address problems of privacy and fairness.820

• While the authors might fear that complete honesty about limitations might be used by821

reviewers as grounds for rejection, a worse outcome might be that reviewers discover822

limitations that aren’t acknowledged in the paper. The authors should use their best823

judgment and recognize that individual actions in favor of transparency play an impor-824

tant role in developing norms that preserve the integrity of the community. Reviewers825

will be specifically instructed to not penalize honesty concerning limitations.826

3. Theory Assumptions and Proofs827

Question: For each theoretical result, does the paper provide the full set of assumptions and828

a complete (and correct) proof?829

Answer: [Yes]830

28

Justification: Proofs are in Appendix A.3, A.2and A.4.831

Guidelines:832

• The answer NA means that the paper does not include theoretical results.833

• All the theorems, formulas, and proofs in the paper should be numbered and cross-834

referenced.835

• All assumptions should be clearly stated or referenced in the statement of any theorems.836

• The proofs can either appear in the main paper or the supplemental material, but if837

they appear in the supplemental material, the authors are encouraged to provide a short838

proof sketch to provide intuition.839

• Inversely, any informal proof provided in the core of the paper should be complemented840

by formal proofs provided in appendix or supplemental material.841

• Theorems and Lemmas that the proof relies upon should be properly referenced.842

4. Experimental Result Reproducibility843

Question: Does the paper fully disclose all the information needed to reproduce the main ex-844

perimental results of the paper to the extent that it affects the main claims and/or conclusions845

of the paper (regardless of whether the code and data are provided or not)?846

Answer: [Yes]847

Justification: The Datasets, Task Setup, Baselines describtion are in Sec. 4. Pseudo code for848

the implementation of the Time-Reversal Symmetry Loss is in Appendix A.1. More Model849

Details and Implementation Details are in Appendix D.850

Guidelines:851

• The answer NA means that the paper does not include experiments.852

• If the paper includes experiments, a No answer to this question will not be perceived853

well by the reviewers: Making the paper reproducible is important, regardless of854

whether the code and data are provided or not.855

• If the contribution is a dataset and/or model, the authors should describe the steps taken856

to make their results reproducible or verifiable.857

• Depending on the contribution, reproducibility can be accomplished in various ways.858

For example, if the contribution is a novel architecture, describing the architecture fully859

might suffice, or if the contribution is a specific model and empirical evaluation, it may860

be necessary to either make it possible for others to replicate the model with the same861

dataset, or provide access to the model. In general. releasing code and data is often862

one good way to accomplish this, but reproducibility can also be provided via detailed863

instructions for how to replicate the results, access to a hosted model (e.g., in the case864

of a large language model), releasing of a model checkpoint, or other means that are865

appropriate to the research performed.866

• While NeurIPS does not require releasing code, the conference does require all submis-867

sions to provide some reasonable avenue for reproducibility, which may depend on the868

nature of the contribution. For example869

(a) If the contribution is primarily a new algorithm, the paper should make it clear how870

to reproduce that algorithm.871

(b) If the contribution is primarily a new model architecture, the paper should describe872

the architecture clearly and fully.873

(c) If the contribution is a new model (e.g., a large language model), then there should874

either be a way to access this model for reproducing the results or a way to reproduce875

the model (e.g., with an open-source dataset or instructions for how to construct876

the dataset).877

(d) We recognize that reproducibility may be tricky in some cases, in which case878

authors are welcome to describe the particular way they provide for reproducibility.879

In the case of closed-source models, it may be that access to the model is limited in880

some way (e.g., to registered users), but it should be possible for other researchers881

to have some path to reproducing or verifying the results.882

5. Open access to data and code883

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-884

tions to faithfully reproduce the main experimental results, as described in supplemental885

material?886

Answer: [Yes]887

Justification: The Datasets, Task Setup, Baselines description are in Sec. 4. Pseudo code888

for the implementation of the Time-Reversal Symmetry Loss is in Appendix A.1. More889

Dataset descriptions are in Appendix C. More Model Details and Implementation Details890

are in Appendix D.891

Guidelines:892

• The answer NA means that paper does not include experiments requiring code.893

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/894

public/guides/CodeSubmissionPolicy) for more details.895

• While we encourage the release of code and data, we understand that this might not be896

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not897

including code, unless this is central to the contribution (e.g., for a new open-source898

benchmark).899

• The instructions should contain the exact command and environment needed to run to900

reproduce the results. See the NeurIPS code and data submission guidelines (https:901

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.902

• The authors should provide instructions on data access and preparation, including how903

to access the raw data, preprocessed data, intermediate data, and generated data, etc.904

• The authors should provide scripts to reproduce all experimental results for the new905

proposed method and baselines. If only a subset of experiments are reproducible, they906

should state which ones are omitted from the script and why.907

• At submission time, to preserve anonymity, the authors should release anonymized908

versions (if applicable).909

• Providing as much information as possible in supplemental material (appended to the910

paper) is recommended, but including URLs to data and code is permitted.911

6. Experimental Setting/Details912

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-913

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the914

results?915

Answer: [Yes]916

Justification: The Datasets, Task Setup, Baselines description are in Sec. 4. More Implemen-917

tation Details are in Appendix D.2.918

Guidelines:919

• The answer NA means that the paper does not include experiments.920

• The experimental setting should be presented in the core of the paper to a level of detail921

that is necessary to appreciate the results and make sense of them.922

• The full details can be provided either with the code, in appendix, or as supplemental923

material.924

7. Experiment Statistical Significance925

Question: Does the paper report error bars suitably and correctly defined or other appropriate926

information about the statistical significance of the experiments?927

Answer: [Yes]928

Justification: In Appendix E.3929

Guidelines:930

• The answer NA means that the paper does not include experiments.931

• The authors should answer "Yes" if the results are accompanied by error bars, confi-932

dence intervals, or statistical significance tests, at least for the experiments that support933

the main claims of the paper.934

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for935

example, train/test split, initialization, random drawing of some parameter, or overall936

run with given experimental conditions).937

• The method for calculating the error bars should be explained (closed form formula,938

call to a library function, bootstrap, etc.)939

• The assumptions made should be given (e.g., Normally distributed errors).940

• It should be clear whether the error bar is the standard deviation or the standard error941

of the mean.942

• It is OK to report 1-sigma error bars, but one should state it. The authors should943

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis944

of Normality of errors is not verified.945

• For asymmetric distributions, the authors should be careful not to show in tables or946

figures symmetric error bars that would yield results that are out of range (e.g. negative947

error rates).948

• If error bars are reported in tables or plots, The authors should explain in the text how949

they were calculated and reference the corresponding figures or tables in the text.950

8. Experiments Compute Resources951

Question: For each experiment, does the paper provide sufficient information on the com-952

puter resources (type of compute workers, memory, time of execution) needed to reproduce953

the experiments?954

Answer: [Yes]955

Justification: [TODO]956

Guidelines:957

• The answer NA means that the paper does not include experiments.958

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,959

or cloud provider, including relevant memory and storage.960

• The paper should provide the amount of compute required for each of the individual961

experimental runs as well as estimate the total compute.962

• The paper should disclose whether the full research project required more compute963

than the experiments reported in the paper (e.g., preliminary or failed experiments that964

didn’t make it into the paper).965

9. Code Of Ethics966

Question: Does the research conducted in the paper conform, in every respect, with the967

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?968

Answer: [Yes]969

Justification: [TODO]970

Guidelines:971

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.972

• If the authors answer No, they should explain the special circumstances that require a973

deviation from the Code of Ethics.974

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-975

eration due to laws or regulations in their jurisdiction).976

10. Broader Impacts977

Question: Does the paper discuss both potential positive societal impacts and negative978

societal impacts of the work performed?979

Answer: [Yes]980

Justification: In Appendix G.981

Guidelines:982

• The answer NA means that there is no societal impact of the work performed.983

• If the authors answer NA or No, they should explain why their work has no societal984

impact or why the paper does not address societal impact.985

31

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses986

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations987

(e.g., deployment of technologies that could make decisions that unfairly impact specific988

groups), privacy considerations, and security considerations.989

• The conference expects that many papers will be foundational research and not tied990

to particular applications, let alone deployments. However, if there is a direct path to991

any negative applications, the authors should point it out. For example, it is legitimate992

to point out that an improvement in the quality of generative models could be used to993

generate deepfakes for disinformation. On the other hand, it is not needed to point out994

that a generic algorithm for optimizing neural networks could enable people to train995

models that generate Deepfakes faster.996

• The authors should consider possible harms that could arise when the technology is997

being used as intended and functioning correctly, harms that could arise when the998

technology is being used as intended but gives incorrect results, and harms following999

from (intentional or unintentional) misuse of the technology.1000

• If there are negative societal impacts, the authors could also discuss possible mitigation1001

strategies (e.g., gated release of models, providing defenses in addition to attacks,1002

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1003

feedback over time, improving the efficiency and accessibility of ML).1004

11. Safeguards1005

Question: Does the paper describe safeguards that have been put in place for responsible1006

release of data or models that have a high risk for misuse (e.g., pretrained language models,1007

image generators, or scraped datasets)?1008

Answer: [NA]1009

Justification: [TODO]1010

Guidelines:1011

• The answer NA means that the paper poses no such risks.1012

• Released models that have a high risk for misuse or dual-use should be released with1013

necessary safeguards to allow for controlled use of the model, for example by requiring1014

that users adhere to usage guidelines or restrictions to access the model or implementing1015

safety filters.1016

• Datasets that have been scraped from the Internet could pose safety risks. The authors1017

should describe how they avoided releasing unsafe images.1018

• We recognize that providing effective safeguards is challenging, and many papers do1019

not require this, but we encourage authors to take this into account and make a best1020

faith effort.1021

12. Licenses for existing assets1022

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1023

the paper, properly credited and are the license and terms of use explicitly mentioned and1024

properly respected?1025

Answer: [Yes]1026

Justification: [TODO]1027

Guidelines:1028

• The answer NA means that the paper does not use existing assets.1029

• The authors should cite the original paper that produced the code package or dataset.1030

• The authors should state which version of the asset is used and, if possible, include a1031

URL.1032

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1033

• For scraped data from a particular source (e.g., website), the copyright and terms of1034

service of that source should be provided.1035

• If assets are released, the license, copyright information, and terms of use in the1036

package should be provided. For popular datasets, paperswithcode.com/datasets1037

has curated licenses for some datasets. Their licensing guide can help determine the1038

license of a dataset.1039

32

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of1040

the derived asset (if it has changed) should be provided.1041

• If this information is not available online, the authors are encouraged to reach out to1042

the asset’s creators.1043

13. New Assets1044

Question: Are new assets introduced in the paper well documented and is the documentation1045

provided alongside the assets?1046

Answer: [NA]1047

Justification: [TODO]1048

Guidelines:1049

• The answer NA means that the paper does not release new assets.1050

• Researchers should communicate the details of the dataset/code/model as part of their1051

submissions via structured templates. This includes details about training, license,1052

limitations, etc.1053

• The paper should discuss whether and how consent was obtained from people whose1054

asset is used.1055

• At submission time, remember to anonymize your assets (if applicable). You can either1056

create an anonymized URL or include an anonymized zip file.1057

14. Crowdsourcing and Research with Human Subjects1058

Question: For crowdsourcing experiments and research with human subjects, does the paper1059

include the full text of instructions given to participants and screenshots, if applicable, as1060

well as details about compensation (if any)?1061

Answer: [NA]1062

Justification: [TODO]1063

Guidelines:1064

• The answer NA means that the paper does not involve crowdsourcing nor research with1065

human subjects.1066

• Including this information in the supplemental material is fine, but if the main contribu-1067

tion of the paper involves human subjects, then as much detail as possible should be1068

included in the main paper.1069

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1070

or other labor should be paid at least the minimum wage in the country of the data1071

collector.1072

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1073

Subjects1074

Question: Does the paper describe potential risks incurred by study participants, whether1075

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1076

approvals (or an equivalent approval/review based on the requirements of your country or1077

institution) were obtained?1078

Answer: [NA]1079

Justification: [TODO]1080

Guidelines:1081

• The answer NA means that the paper does not involve crowdsourcing nor research with1082

human subjects.1083

• Depending on the country in which research is conducted, IRB approval (or equivalent)1084

may be required for any human subjects research. If you obtained IRB approval, you1085

should clearly state this in the paper.1086

• We recognize that the procedures for this may vary significantly between institutions1087

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1088

guidelines for their institution.1089

• For initial submissions, do not include any information that would break anonymity (if1090

applicable), such as the institution conducting the review.1091

33

	Introduction
	Preliminaries and Related Work
	NeuralODE for Dynamical Systems
	Time-Reversal Symmetry (TRS)

	Method: TREAT
	Time-Reversal Symmetry Loss and Training
	Theoretical Analysis of Time-Reversal Symmetry Loss

	Experiments
	Main Results
	Ablation and Sensitivity Analysis
	Visualizations

	Conclusions
	Theoretical Analysis
	Implementation of the Time-Reversal Symmetry Loss
	Proof of Lemma 1
	Proof of Theorem 3.1
	Reconstruction Loss (Lpred) Analysis.
	Reversal Loss (Lreverse) Analysis.

	Proof of Lemma 3.2

	Example of varying dynamical systems
	Conservative and reversible systems.
	Non-conservative and reversible systems.
	Non-conservative and irreversible systems.

	Dataset
	Spring Systems
	Simple Spring
	Damped Spring
	Forced Spring

	Chaotic Pendulum
	Chaotic Strange Attractor
	Human Motion

	Model Details
	Initial State Encoder
	Implementation Details

	Additional Experiments
	Comparison of different solvers
	Evaluation across observation ratios.
	Evaluation for ablation across 5 run
	Comparison of different solver step sizes.

	Discussion about Reversible Neural Networks
	Impact Statement
	Limitations

