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A Formal connection between NM-RNNs and LSTMs

In this section, we mathematically formalize the connection between the NM-RNN and the LSTM.
We show that, when considering suitable linearized analogs of the NM-RNN and the LSTM, the
internal states and outputs of an NM-RNN may be reproduced by an LSTM. To that end, we begin by
stating the necessary definitions.

First, we define a linearized NM-RNN via the following discretized dynamics:

xt =
1

N
(W x(zt))xt−1 +Bxut (1)

zt =

(
(1− 1

τz
)I +

1

τz
W z

)
zt−1 +

1

τz
(Bzxxt−1 +Bzut) (2)

yt = Cxt + d (3)
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As defined in the main text, we have that W x(zt) = LStR
T ∈ RN×N , where St = diag(st) and

st = σ(Azzt + bz) ∈ RK . Note that we have added a 1
N prefactor to W x in Equation 1. However,

this does not fundamentally change the computation in Equation 1 because we may imagine that this
prefactor is absorbed by the matrices L and R. Explicitly having the 1

N prefactor will be make the
presentation of Proposition 1 more convenient.

Observe that the linearized NM-RNN is an NM-RNN with τx = 1 and where all nonlinear transfer
functions have been made to be the identity function. Notably, we have also added a feedback
coupling term (given by the feedback weights Bzx) from x(t) to z(t); this will serve to enhance the
connection between this model and the LSTM.

Turning to the LSTM, we similarly define a suitable linearized relaxation – the semilinear LSTM –
given by the following equations:

ft = σ(Wf [ht−1, u
′
t] + bf ) it = σ(Wi[ht−1, u

′
t] + bi) (4)

c̃t = Wc[ht−1, u
′
t] + bc ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

ot = Wo[ht−1, u
′
t] + bo ht = ot ⊙ ct (6)

Here, σ denotes the sigmoid nonlinearity, u′
t ∈ RNin denotes the input, and ht, ct ∈ RNLSTM are the

hidden and cell states, respectively. The notation [·, ·] signifies concatenation of vectors. Each of the
parameters Wk, bk, for k ∈ {f, i, c, o}, are learnable.

A.1 Conditions leading to equivalence

Now, we formalize the connection between these two classes of models. It will be revealing to
analyze the linearized NM-RNN in the case where L = R.

Proposition 1. Consider a rank-K linearized NM-RNN, where the hidden size of the (linearized)
output-generating network is N , and the hidden size of the neuromodulatory RNN is M . Moreover,
assume that L = R and that the columns of 1√

N
L are pairwise orthogonal, in the sense that

1
NLTL = IK×K . Finally, across all input sequences ut on which the NM-RNN is tested, assume that
the components of the states xt and zt are uniformly bounded over all timesteps. Then, this model’s
underlying K-dimensional dynamics (given by the low-rank variable wt :=

1
NRTxt), as well as

its neuromodulatory states zt and outputs yt ∈ RO, can be reproduced within a semilinear LSTM

with a linear readout, whose inputs are u′
t :=

[
ut

ut−1

]
∈ R2P . Here, ut ∈ RP denotes the input to

the NM-RNN at time t (with u−1 := 0 ∈ RP by convention). Moreover, such a semilinear LSTM
can be made to have hidden size K +M + P and utilize O

(
max{K2,M2, PK,PM,OK,OP}

)
learnable parameters.

Proof of Proposition 1. Assuming xt has uniformly bounded components, there exists some constant
H ∈ R+ such that |(xt)i| < H for each i ∈ {1, . . . , N} and all t. Consequently, this means
1√
N
||xt||2 < H for all t. Now, consider the update equation for xt in the linearized NM-RNN:

xt =
1

N
RStR

Txt−1 +Bxut.

For Ri the ith column of R, the given orthogonality condition implies that ||Ri||22
N = 1, or

1√
N
||Ri||2 = 1 in the large N limit. Defining wt := 1

NRTxt ∈ RR to the rank-K represen-

tation of xt ∈ RN , we have that |(wt)i| = 1
N

∣∣∣RT
i xt

∣∣∣ ≤ 1
N ||Ri||2 · ||xt||2 = 1√

N
· ||xt||2 < H .

That is, the low-rank mode corresponding to xt also has uniformly bounded components over time,
i.e., the underlying K-dimensional dynamics of the output-generating network do not diverge.

Now, to show that the dynamics of a linearized NM-RNN satisfying the conditions given in the
theorem statement can be replicated by a semilinear LSTM, we must effectively show that each of the
update equations for the linearized NM-RNN (i.e., Equations 1-3) can be suitably replicated through
the semilinear LSTM architecture. In essence, we must suitably map the parameters of the given
NM-RNN onto those of a semilinear LSTM.
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First, we analyze the update equation for wt in the output-generating network. Its corresponding
K-dimensional (low-rank) update is

wt =
1

N
RTRStwt−1 +

1

N
RTBxut

=⇒ wt = Stwt−1 +
1

N
RTBxut.

Accordingly, define the cell state ct of the corresponding semilinear LSTM to be

ct =

[
wt−1

1M

1P

]
∈ RK+M+P (7)

where 1α denotes the vector of 1’s in Rα for α ∈ {M,P} (and, by convention, we set w−1 :=
0 ∈ RK). In particular, note that xt can be recovered from the cell state via the relation xt =
1
NRStR

Txt−1 +Bxut = RStwt−1 +Bxut = RStProjKct +Bxut, where ProjK denotes the
projection matrix that sends ct onto its first K components, namely, wt−1.

We may also set all the parameters in Wi and bi (part of the input gate it) to be 0, so that
it = 1

21K+M+P (after applying the sigmoid nonlinearity). Then, define c̃t so that it equals 2
NRTBxut−1

0M

0P

 ∈ RK+M+P . Indeed,

c̃t = Wc[ht−1, u
′
t] + bc = Wc[ht−1,ut,ut−1] + bc

can be made to have its first K entries form the vector 2
NRTBxut−1 if we set bc = 0 and zero out

all columns of Wc that do not correspond to ut−1, and further by zeroing out the last M + P rows of
Wc. In block matrix form, we have defined

Wc =

0 0 2
NRTBxut−1

0 0 0
0 0 0

 ∈ R(K+M+P )×(K+M+3P ).

Before explicitly computing the other gates, we first analyze how the semilinear LSTM might
reproduce the update for the neuromodulatory state zt ∈ RM :

zt =

(
(1− 1

τz
)IK×K +

1

τz
W z

)
zt−1 +

1

τz
(Bzxxt−1 +Bzut)

=

(
(1− 1

τz
)IK×K +

1

τz
W z

)
zt−1+

1

Nτz
BzxRRTxt−1+

1

τz
Bzx

(
IN×N − 1

N
RRT

)
xt−1+

1

τz
Bzut

=

(
(1− 1

τz
)IK×K +

1

τz
W z

)
zt−1+

1

τz
BzxRwt−1+

1

τz
Bzx

(
IN×N − 1

N
RRT

)
xt−1+

1

τz
Bzut.

Note further that (
IN×N − 1

N
RRT

)
xt−1 = xt−1 −

1

N
RRTxt−1

=
1

N
RSt−1R

Txt−2 +Bxut−1 −
1

N
RRT

(
1

N
RSt−1R

Txt−2 +Bxut−1

)
=

1

N
RSt−1R

Txt−2 +Bxut−1 −
1

N
RSt−1R

Txt−2 −
1

N
RRTBxut−1

=

(
IN×N − 1

N
RRT

)
Bxut−1

where we have again used that 1
NRTR = IK×K . Thus, substituting this expression into our update

equation for zt above, we have

zt =
1

τz
BzxRwt−1 +

(
(1− 1

τz
)IK×K +

1

τz
W z

)
zt−1

+
1

τz
Bzut +

1

τz
Bzx

(
IN×N − 1

N
RRT

)
Bxut−1 (8)
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Accordingly, define the output gate ot of the semilinear LSTM to be

ot :=


1
21K(

(1− 1
τz
)IK×K + 1

τz
W z

)
zt−1 +

1
τz
Bzut +

1
τz
Bzx

(
IN×N − 1

NRRT
)
Bxut−1

ut−1

 ∈ RK+M+P .

Recalling that ot = Wo[ht−1,ut,ut−1] + bo, the above gating is achieved by setting bo = 0 and
zeroing out the first K rows of Wo. The next M rows of Wo can be set to produce the middle entry
in ot shown above, and the last P rows of Wo can similarly be set so as to produce the vector ut−1.
That is, in block matrix form, we may take Wo to be

Wo =

 0 0 0(
(1− 1

τz
)IK×K + 1

τz
W z

)
Wzh

1
τz
Bz

1
τz
Bzx

(
IN×N − 1

NRRT
)
Bx

0 0 IP×P

 ∈ R(K+M+P )×(K+M+3P ),

where Wzh ∈ RM×(K+M+P ) is a suitable matrix (defined below) mapping the hidden state ht of
the semilinear LSTM to zt, so that ot = Wo [ht−1,ut,ut−1]. Then, computing ht = ot ⊙ ct ∈
RK+M+P gives

ht =


1
2wt−1(

(1− 1
τz
)IK×K + 1

τz
W z

)
zt−1 +

1
τz
Bzut +

1
τz
Bzx

(
IN×N − 1

NRRT
)
Bxut−1

ut−1


(9)

Now, observe that zt = Wzhht, where

Wzh =
( 2
τz
BzxR IM×M 0

)
∈ RM×(K+M+P ).

(Thus, our earlier construction of output gate ot as ot = Wo[ht−1,ut,ut−1] is valid.) In particular,
the equation zt = Wzhht precisely corresponds to the update equation for zt in the linearized
NM-RNN given by Equation 8. Thus, at each time t, the hidden state ht of the semilinear LSTM is a
"deconstructed" version of zt, meaning that the model effectively reproduces zt and its dynamics
through ht.

Finally, we set the forget gate so that it evaluates to ft =

[
st−1

1M+P

]
. Recalling that ft =

σ(Wf [ht−1, u
′
t] + bf ) ∈ RK+M+P , we can achieve this gating by taking the first K entries of

ft to be st−1 = σ(Azzt−1 + bz) = σ(AzWzhht−1 + bz). We can also ensure that the last M + P
entries of ft form the vector 1M+P by zeroing out the last M + P rows of Wf and making the last
M + P entries of the bias vector bf to be sufficiently large (so that applying the sigmoid function to
these entries effectively yields 1). In other words, in block matrix form, we have

Wf =

AzWzh 0 0
0 0 0
0 0 0

 ∈ R(K+M+P )×(K+M+3P )

and bf =

[
bz

Q1M+P

]
where Q ∈ R+ may be chosen such that

Q >> M max
1≤i≤K,1≤j≤M

∣∣∣(Az)ij

∣∣∣ sup
1≤m≤M,t,ut

|(zt)m| ≥ ||Azzt||∞ = max
1≤k≤K

|(Azzt)k| .

(The above supremum is taken over all components of zt, all timesteps t – finitely or infinitely many
– and all input sequences (ut)t≥1 being considered. We then invoke uniform boundedness of the
components of zt to grant the existence of such a Q.)

Putting together our gate computations, the cell state update equation for the semilinear LSTM
(Equation 5) can be made to reproduce the low-rank update equation of the linearized NM-RNN’s
output-generating network:

wt = Stwt−1 +
1

N
RTBxut
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=⇒
[
wt−1

1M+P

]
=

[
st−1

1M+P

]
⊙
[
wt−2

1M+P

]
+

1

2
1K+M+P ⊙

[
2
NRTBxut−1

0M+P

]
=⇒ ct = ft ⊙ ct−1 + it ⊙ c̃t.

Having seen that the corresponding semilinear LSTM is capable of replicating the low-rank update
equation for wt as well as (implicitly) reproducing the update equation for zt, we at last turn to
analyzing the outputs yt generated by the NM-RNN. The output readout for the NM-RNN (at time
t− 1, where t ≥ 2) can be expressed as

yt−1 = Cxt−1 + d = C

(
1

N
RRTxt−1 +

(
IN×N − 1

N
RRT

)
xt−1

)
+ d

= CRwt−1 +C

(
IN×N − 1

N
RRT

)
xt−1 + d

CRwt−1 +C

(
IN×N − 1

N
RRT

)
Bxut−1 + d = C ′ht + d′,

where we have used our earlier equation
(
IN×N − 1

NRRT
)
xt−1 =

(
IN×N − 1

NRRT
)
Bxut−1.

Furthermore, in the last equality, we have defined d′ = d and C ′ ∈ RO×(K+M+P ) that (in block
matrix form) as

C ′ =
(
2CR 0 C

(
IN×N − 1

NRRT
)
Bx

)
.

Therefore, we find that the outputs of the NM-RNN can be reproduced via a linear readout from the
hidden state ht of the semilinear LSTM.

Here, it should be noted that the semilinear LSTM we have constructed "lags" behind the NM-RNN
by one timestep, i.e., the hidden state ht is used to produce the (t− 1)th output state yt−1. This is
a consequence of the fact that at each timestep in the NM-RNN, the neuromodulatory state zt is
updated before xt, whereas in the semilinear LSTM, the cell state ct (loosely corresponding to xt)
is updated before the hidden state ht (loosely corresponding to zt); as a result, the outputs of the
semilinear LSTM are staggered by one timestep. In practice, this does not change the fact that the
semilinear LSTM can replicate the outputs of the NM-RNN.

Having constructed a semilinear LSTM with hidden size K +M + P that reproduces the states of
the linearized NM-RNN, we finally turn to counting the total number of learnable parameters used by
the semilinear LSTM (along with its linear readout):

1. ft: Wf only transforms the hidden state ht (i.e., Wf [ht−1, u
′
t] = AzWzhht, where

AzWzh ∈ RK×(K+M+P )), giving us K(K+M+P ) parameters. The bias vector bf gives
an additional K +M + P parameters, for a total of (K + 1)(K +M + P ) parameters.

2. it: We zero out all of these parameters, giving us a count of 0.

3. c̃t: The only parameters used in this computation are those that linearly transform ut−1 into
K-dimensional space (i.e., the elements of 2

NRTBx), so the parameter count here is PK.

4. ot: The bias term bo was set to 0 and we defined the matrix Wo so that the middle M rows
of Wo contained nontrivial entries, and the bottom P rows have P nontrivial parameters
stemming from the identity matrix IP×P . Consequently, we obtain a contribution of
M(K +M + 3P ) + P parameters from the output gate computation.

5. Readout: We have that d′ ∈ RO and C ′ ∈ RO×(K+M+P ) uses a total of O(K + P )
nontrivial parameters, giving us a total of O(K + 1 + P ) parameters used.

Thus, the number of nontrivial parameters used by this semilinear LSTM is

(K + 1)(K +M + P ) + PK +M(K +M + 3P ) + P +O(K + 1 + P )

= O
(
max{K2,M2, PK,PM,OK,OP}

)
.
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B Derivation of exact neuromodulatory signal for rank-1 NM-RNNs

In this section, we precisely quantify how the neuromodulatory signal in a rank-1 NM-RNN is
constrained by the target output signal. First, we derive the exact neuromodulatory signal in a general
(possibly nonlinear) rank-1 NM-RNN that has successfully learned to produce a target output signal
f(t) ∈ R. Then, we specialize to the case in which the rank-1 NM-RNN has linear dynamics.

We start with a general rank-1 NM-RNN that produces the scalar output y(t) ∈ R at each time t, and
for which the output-generating network’s nonlinearity is denoted by φ (which could be tanh, but
also any other function). Because K = 1, we have L ∈ Kn×1,R ∈ Rn×1. Furthermore, treating
L and R as vectors in Rn, let L = ||L||2L̂,R = ||R||2R̂, where L̂, R̂ are unit vectors, and define
s̃(t) = ||L||2||R||2s(t) ∈ R. Additionally, let u(t) ∈ RP denote the input signal over time. Then,
for t > 0, the dynamics of the output-generating network read:

τx
dx

dt
= −x+

1

N
LsRTφ(x) +Bxu

= −x+ s̃L̂R̂
T
φ(x) +Bxu.

We now define the rank-1 dynamics variable w := L̂
T
x and a residual mode w⊥ := (I − L̂L̂

T
)x,

so that x = wL̂+w⊥ is a combination of a rank-1 mode and a residual component. This gives us
the dynamics equations

τx
dw

dt
= L̂

T
(
−x+ s̃L̂R̂

T
φ(x) +Bxu

)
= −w + s̃R̂

T
φ
(
wL̂+w⊥

)
+ L̂

T
Bxu

and τx
dw⊥

dt
=

(
I − L̂L̂

T
)(

−x+ s̃L̂R̂
T
φ(x) +Bxu

)
= −w⊥ +

(
I − L̂L̂

T
)
Bxu.

Using the basic theory of ordinary differential equations, we may solve the latter ODE to obtain

w⊥(t) = e−t/τx

(
w⊥(0) +

1

τx

∫ t

0

es/τx
(
I − L̂L̂

T
)
Bxu(s)ds

)
(10)

As a special case, in the absence of any inputs, we would have w⊥(t) = w⊥(0)e−t/τx . For ease of
notation, we define the function J : R → RN by

J(t) =
1

τx
e−t/τx

∫ t

0

es/τx
(
I − L̂L̂

T
)
Bxu(s)ds (11)

Now, recall that our desired output signal is some prespecified function f(t). Letting the linear
readout (of the output-generating network) be given as y = cTx+ d = (cT L̂)w + cTw⊥ + d =

(cT L̂)w+(cTw⊥(0))e−t/τx + cTJ +d, then solving for w and differentiating yields the equations

w =
f(t)− cTw⊥(0)e−t/τx − cTJ − d

cT L̂
(12)

τx
dw

dt
=

τxf
′(t) + cTw⊥(0)e−t/τx − τx(c

T∇J)

cT L̂
(13)

Now, observe that

s =
s̃

||L||2 · ||R||2
=

w + τx
dw
dt − L̂

T
Bxu

||L||2 · ||R||2 · R̂
T
φ
(
wL̂+w⊥

) ,
meaning that

s =
w + τx

dw
dt − L̂

T
Bxu

||L||2 ·RTφ
(
wL̂+w⊥

) (14)
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Substituting in our earlier expressions for w and τx
dw
dt into the formula for s, we obtain the formula

s =
f(t) + τxf

′(t)− τx(c
T∇J)− d− L̂

T
Bxu

cTL ·RTφ
(

f(t)−cTw⊥(0)e−t/τx−cT J−d
cTL

L+w⊥(0)e−t/τx + J
) .

Moreover, in the absence of any inputs to the system, the neuromodulatory signal would be

s =
f(t) + τxf

′(t)− d

cTL ·RTφ
(

f(t)−cTw⊥(0)e−t/τx−d
cTL

L+w⊥(0)e−t/τx

) (15)

Furthermore, if we also know that that τx is sufficiently small and that w⊥(0) has sufficiently small
entries, then (owing to the exponential decay of w⊥) we may further approximate s as

s(t) ≈ f(t) + τxf
′(t)− d

cTL ·RTφ
(

f(t)−d
cTL

L
) .

Thus, for NM-RNNs in which the output-generating network’s nonlinearity is removed (i.e., where
φ(x) := x), Equation 15 implies that, in the absence of inputs, the neuromodulatory signal is

s =
f(t) + τxf

′(t)− d

(RTL)
(
f(t)− cTw⊥(0)e−t/τx − d

)
+ (cTL)

(
RTw⊥(0)e−t/τx

) .
If we assume further that w⊥(0) is sufficiently small and τx is also sufficiently small, then we may
make the approximation

s ≈ f(t) + τxf
′(t)− d

RTL (f(t)− d)
=

1

RTL

(
1 +

τxf
′(t)

f(t)− d

)
(16)

In particular, for f(t) a linear ramp (such as during the ramping phase of the MWG task), Equation
16 implies that s(t) should follow a power law.

C Computing details

C.1 Code, data, and instructions

The code required to reproduce our main results is included in a folder with the Supplementary
Material. All code was written using Python, using fast compilation and optimization code from the
Jax and Optax packages [1, 2]. Experiments and models were logged using the Weights and Biases
ecosystem [3]. If published, all code will be posted on a public repository.

Instructions. To generate the results that we have presented, we have included the package folder
“nmrnn” and folder of training scripts “scripts”. The packages needed to replicate our coding
environment are in “requirements.txt”.

Each training script has a “config” dictionary near the top of the file that allows you to set hyperpa-
rameters, it is specifically set up to work with Weights and Biases. In the Jax framework, different
initializations are set by changing the “keyind” value in the config dictionary.

C.2 Data generation

All data was generated synthetically.

Rank-1 Measure-Wait-Go. Rank-1 linearized NM-RNNs were trained on 40 trials, generated
using the target intervals [12, 14, 16, 18] and by setting the (integer-valued) timestep at which the
measure cue appeared to be between 10 and 19, inclusive. The delay period was fixed to be 15
(timesteps). For any given target interval T , the target output ramp was the ramping function fT (t)
given by

fT (t) =


− 1

2 t ≤ tgo
1
T (t− tgo)− 1

2 tgo ≤ t ≤ tgo + T
1
2 t ≥ tgo + T

.
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The total number of timesteps was set to be 110. In generating Figure 3B of the main text, a trained
network was tested on the intervals 7 (extrapolation below), 15 (interpolation of trained intervals),
and 23 (extrapolation above). The theoretically expected neuromodulatory signal s(t) and rank-1
state h(t) were computed using Equations 16 and 12, respectively.

Rank-3 Measure-Wait-Go. All networks were trained on 40 trials, generated using desired intervals
[12, 14, 16, 18] and by setting the integer-valued delay period (interval between wait and go cues)
between 10 and 19. Networks were tested on these trials plus corresponding extrapolated trials with
interval lengths [4, 6, 8, 10, 20, 22, 24, 26].

Rank-3 Multitask. Initial training was completed on 3000 randomly sampled trials from [DelayPro,
DelayAnti, MemoryPro], with random angles and task period lengths. Retraining was completed on
1000 trials of MemoryAnti with random angles and task period lengths. Testing was completed on a
different, fixed set of 1000 samples of each task.

Element Finder Task. All networks were trained on one-dimensional input sequences of length 26.
For each input sequence used during training, the input at the first timestep was the query index q,
which was uniformly sampled at random from {0, 1, . . . , 24}. Each input in the proceeding sequence
of 25 inputs was uniformly sampled at random from {−10,−9, . . . , 9, 10}.

C.3 Training details

Training was performed via Adam with weight decay regularization and gradient clipping [4, 5].
Specific AdamW hyperparameters varied by task, see below for exact details. Training time varied
based on model architecture and size, as we elaborate on below. However, we’d like to note that
LR-RNNs and NM-RNNs with the same number of neurons as vanilla RNNs and LSTMs have
comparatively fewer parameters due to their low-rank recurrence matrices, an appealing feature from
a training standpoint (exact ratios depend on rank and neuromodulatory subnetwork size). In this
work we made comparisons based on the number of parameters, not the number of neurons.

Rank-1 Measure-Wait-Go. Training was performed via full-batch gradient descent for 50k it-
erations using the standard Adam optimizer with learning rate 1e − 3. The linearized NM-RNN
trained had the hyperparameters N = 100, M = 20,K = 1, τx = 2, τz = 10. Training took about
20 minutes. A single network was trained to produce the results shown in Figure 3B, and many more
networks were trained while producing preliminary results.

Rank-3 Measure-Wait-Go. Training was performed with initial learning rate 1e − 2. For NM-
RNNs, we first trained the neuromodulatory subnetwork parameters and output-generating subnetwork
parameters separately for 10k iterations each, followed by training all parameters for 50k iterations.
We set specific hyperparameters as follows:

• NM-RNN: N = 100, M = 5, K = 3, τx = 10, τz = 100.

• LR-RNN: As above, except N = 106 for parameter matching.

• Vanilla RNN: As above, except N = 31 for parameter matching.

• LSTM: As above, except N = 15 for parameter matching.

Models were trained using at least 32 parallel CPUs (1G memory each) on a compute cluster. Training
the NM-RNNs took about 15 minutes each, training the LR-RNNs took about 9 minutes each, training
the vanilla RNNs took about 2 minutes each, and training the LSTMs took about 4 minutes each. Ten
of each model were used to produce the results shown in the paper; however, we trained many more
while producing preliminary results.

Rank-3 Multitask. Training on first three tasks was performed with initial learning rate 1e− 3, for
150k iterations. Retraining on the MemoryAnti task was performed with initial learning rate 1e− 2
for 50k iterations. We set specific hyperparameters as follows:

• NM-RNN: N = 100, M = 20, K = 3, τx = 10, τz = 100.
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• LR-RNN: As above. In this case, since the LR-RNN receives contextual inputs as well as
sensory/fixation inputs (compared to the NM-RNN’s output generation subnetwork which
only receives sensory/fixation inputs), the LR-RNN has more parameters.

• Vanilla RNN: As above, except N = 18 to match NM-RNN parameter count.
• LSTM: As above, except N = 8 to match NM-RNN parameter count.

Models were trained using at least 32 parallel CPUs (1G memory each) on a compute cluster. Training
the NM-RNNs took about 2 hours each, training the LR-RNNs took about 2.5 hours each, training
the vanilla RNNs took about 7 minutes each, and training the LSTMs took about 15 minutes each.
These times include both training and retraining. Ten of each model were used to produce the results
shown in the paper; however, we trained many more while producing preliminary results.

Element Finder Task. For all networks, training was done over 20k iterations of gradient descent
using a batch size of 128. Each batch consisted of newly randomly generated input sequences. The
standard Adam optimizer was used, and the learning rate and hyperparameters were varied across the
different models tested:

• LSTM: We trained LSTMs of hidden size N = 10 using a learning rate of 1e− 2.
• NM-RNN: We trained multiple NM-RNNs across the hyperparameter combinations
(M,N,K) = {(5, 18, 8), (5, 13, 12), (10, 14, 5), (10, 12, 7), (15, 6, 5)}, fixing τx = 10 and
τz = 2, and using a learning rate of 1e− 2.

• LR-RNN: We trained multiple LR-RNNs across the hyperparameter combinations
(N,K) = {(23, 10), (31, 7), (50, 4), (83, 2)}, fixing τx = 10, and using a learning rate
of 1e− 2.

• Vanilla RNN: We trained multiple RNNs with hidden size N = 16, fixing τx = 10, and
across the learning rates {1e− 3, 1e− 2, 1e− 1}.

All trained models were parameter-matched (∼ 500 total parameters). For each model type,
hyperparameter combination, and learning rate, ten such models were trained; the resulting
model performances are illustrated in Figure 5B of the main text. Figure 5C was illustrated
using a single run of an LSTM (N = 10), a full-rank RNN (N = 16), and three NM-RNNs
((M,N,K) = (5, 18, 8), (5, 13, 12), (10, 12, 7)), where all models used a learning rate of 1e − 2.
Finally, Figure 5D-F show results for a single NM-RNN ((M,N,K) = (5, 18, 8), lr = 1e − 2).
Training each network took roughly 5 minutes. Many more models were trained while producing
preliminary results.

C.4 Metric for multitask setting

For the multitask setting, we used the percent correct metric from [6]. A trial was counted as correct
if (1) the fixation output stayed above 0.5 until the fixation input switched off, (2) the angle read out
at the final timestep was within π/10 of the desired angle.

D Societal impacts

As mentioned in the Paper Checklist, we don’t anticipate any direct societal impacts from this work.
In the long term, insights into neuromodulatory function provided by computational models have the
potential to impact treatment of neurological diseases.

E Supplemental figures

Included after References.
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Figure 1: Example output comparison plots for the measure-wait-go task, as in Fig. 3 in the main
text, for four trained parameter-matched NM-RNNs, LR-RNNs, vanilla RNNs, and LSTMs. Colors
indicate extrapolated/trained intervals as in the main text. Model hyperparameters described in Supp.
Section C.3.
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Figure 2: Example neuromodulatory signal plots for the measure-wait-go task, as in Fig. 3 in the
main text, for four additional trained networks. Colors indicate extrapolated/trained intervals as in
the main text.
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Figure 3: Example neuromodulatory signal plots for the multitask setting, as in Fig. 4 in the main
text, for four additional trained networks.
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Figure 4: First three PCs of neural activity in multitask setting, plotted until readout period (for ease
of visualization). A. Network visualized in main text, B-E. Four additional networks.
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Figure 5: Sample internal states of an NM-RNN (M = 5, N = 18, R = 8) trained on the Element
Finder Task, shown for 5 different element values (−10, −5, 0, 5, and 10). Each plot shows how all
of the components of one of the vectors s(t) (left), x(t) (middle), y(t) (right) vary through time. The
query index is fixed to be 10, as indicated by the red dashed line in each plot. Each line shown is
averaged over 100 independent runs of the model (standard error shown in cyan).
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s(t), x(t), and y(t) by Query Index
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Figure 6: Sample internal states of an NM-RNN (M = 5, N = 18, R = 8) trained on the Element
Finder Task, shown for 5 different query indices (0, 5, 10, 15, and 20), while fixing the target element
value to be 5 in each case. Each plot shows how all of the components of one of the vectors s(t) (left),
x(t) (middle), y(t) (right) vary through time. In each plot, the onset of the query index is indicated by
the red dashed line. Each line shown is averaged over 100 independent runs of the model (standard
error shown in cyan).
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