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Abstract

The field of graph learning has been substantially advanced by the development of
deep learning models, in particular graph neural networks. However, one salient
yet largely under-explored challenge is detecting Out-of-Distribution (OOD) nodes
on graphs. Prevailing OOD detection techniques developed in other domains like
computer vision, do not cater to the interconnected nature of graphs. This work
aims to fill this gap by exploring the potential of a simple yet effective method –
OOD score propagation, which propagates OOD scores among neighboring nodes
along the graph structure. This post hoc solution can be easily integrated with ex-
isting OOD scoring functions, showcasing its excellent flexibility and effectiveness
in most scenarios. However, the conditions under which score propagation proves
beneficial remain not fully elucidated. Our study meticulously derives these condi-
tions and, inspired by this discovery, introduces an innovative edge augmentation
strategy with theoretical guarantee. Empirical evaluations affirm the superiority of
our proposed method, outperforming strong OOD detection baselines in various
scenarios and settings. To ensure reproducibility, we have made our code and
relevant data publicly available at https://github.com/longfei-ma/GRASP.

1 Introduction

Graph-like data structures are ubiquitous in many domains, such as social networks [87, 40], molecular
chemistry [19, 82], and recommendation systems [84, 45]. As graph neural networks increasingly
serve as powerful tools for navigating this complex data landscape, a compelling yet under-explored
issue emerges: Out-of-Distribution (OOD) node detection. Imagine a recommender system suggesting
irrelevant or even harmful products to users, or a bioinformatics algorithm misusing an unknown
protein. This gives rise to the importance of OOD detection in graph data, which determines whether
an input is in-distribution (ID) or OOD and enables the model to take precautions.
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Figure 1: Illustration of OOD
scores propagation.

While existing OOD detection methods have shown promising re-
sults in computer vision [66, 27, 18, 15, 95], natural language pro-
cession [11, 57] and tabular data analytics [68], their effectiveness
diminishes when applied to graph data [77]. These conventional
techniques operate under the assumption that data points are indepen-
dently sampled, which misaligns with the interconnected nature of
graphs. To better leverage the structural knowledge from the graph,
OOD score propagation [77] has been employed to enhance graph
OOD detection performance by directly propagating the computed
OOD scores along the graph structure (as shown in Figure 1). Al-
though this strategy has shown promising results on some datasets,
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(b) The case when propagation is helpful. (a) The case when propagation is harmful. 

Worse Better

Score Propagation (with More Inter-edges) Score Propagation (with More Intra-edges)

Inter-edges

Intra-edges

ID
Node

OOD
Node

Annotation

Figure 2: Two illustrative examples when scoring propagation is harmful/helpful. We consider ID nodes in
green and OOD nodes in red. Inter-edges are defined to be ID-to-OOD edges and Intra-edges are ID-to-ID or
OOD-to-OOD edges. The value represents the respective OOD scores. Consequently, the propagated scores in
these cases will be the mean of the scores of adjacent nodes as shown in Figure 1.

the reasons behind its effectiveness and the conditions under which it works are not clear. To dive deep
into it, our research embarks on addressing two research questions related to OOD score propagation:

Question 1: "Will naive OOD score propagation always help graph OOD Detection?" The short
answer is no. This method can be ineffective on graphs where inter-edges (ID-to-OOD) are predom-
inant. Using the examplse in Figure 2(a), where only inter-edges exist, prior to conducting score
propagation, all ID and OOD nodes can be fully distinguished. However, after performing score
propagation along these edges, the ID and OOD nodes are completely misclassified. Conversely, after
adding intra-edges and making them donimate, as shown in Figure 2(b), score propagation would
be beneficial to distinguish ID and OOD nodes. These two examples intuitively illustrate how the
ratio of intra-edges and inter-edges can impact the effectiveness of OOD score propagation. We
substantiate this intuition in Section 3. This finding naturally paves the way for subsequent questions.

Question 2: "How to derive a better score propagation strategy for graph OOD detection?" Building
on our prior findings, we propose a graph augmentation strategy as presented in Section 4. Specifically,
our strategy selects a subset G of the training set and puts additional edges to the nodes within G.
Beyond its practical implications, our solution is theoretically supported: When G predominantly
connects to ID data over OOD data, our strategy can provably enhance the post-propagation OOD
detection outcomes.

We summarize our contributions as below:

• Theoretical understanding: We delve deeply into the mechanism of score propagation to under-
stand its potential for graph OOD detection and elucidate the conditions under which it thrives,
providing an understanding that extends beyond existing knowledge.

• Practical solution: To counter the identified challenge of inter-edges’ domination, we propose
GRaph-Augmented Score Propagation (GRASP), an innovative edge augmentation strategy with
theoretical guarantee. By strategically adding edges to a chosen subset G of the training set, as
detailed in Section 4, our method aims to enhance the intra-edge ratio, thereby boosting OOD
detection outcomes post-propagation.

• Empirical studies: We demonstrate the superior performance of the proposed method on extensive
graph OOD detection benchmarks, different pre-trained methodologies [34, 69, 7, 94], and different
OOD scoring functions. Under the same condition, our proposed strategy substantially reduces
the FPR95 by 17.87% and 32.21% compared to the strongest graph OOD detection baselines on
common and large-scale benchmarks respectively. Comprehensive analyses are also provided to
validate the effectiveness of the proposed approach and the correctness of the theoretical findings.

2 Preliminaries

Problem setup. We consider a traditional semi-supervised node classification setting with the
additional unlabeled nodes from the out-of-distribution class. Let G = {V, E} denote the graph
with nodes V and edges E , where the node set V with size N are attributed with data matrix
X ∈ RN×d. The structure of graph G is described by the adjacency matrix A ∈ {0, 1}N×N . We
let the corresponding row-stochastic matrices as Ā = D−1A, where D is the diagonal matrix with
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Dii =
∑

j Aij . The N nodes are partially labeled, so we let Vl and Vu represent the labeled and
unlabeled node sets respectively, i.e, V = Vl ∪Vu. Given a training set Dtr =

{
(xi, yi)

}
i∈Vl

with xi

as the i-th row of X and yi ∈ Y ≜ {1, · · · , C}, the goal of node classification is to learn a mapping
f : V → RC from the nodes to the probability of each class.

Out-of-distribution detection. When deploying a model in the real world, a reliable classifier should
not only accurately classify known in-distribution (ID) nodes, but also identify “unknown” nodes or
OOD nodes. Formally, we can represent the unlabeled node set by Vu = Vuid ∪ Vuood where Vuid

and Vuood represent the in-distribution (ID) node and OOD node respectively. The goal of the graph
OOD detection is to derive an algorithm to decide if a node i ∈ Vu is from Vuood or Vuid.

This can be achieved by having an OOD detector, in tandem with the node classification model f .
OOD detection can be formulated as a binary classification problem. At test time, the goal of OOD
detection is to decide whether an unlabeled node i ∈ Vu is from ID or OOD. The decision can be
made via a level set estimation:

FOODD(i,G;λ) =
{

ID g(xi) ≥ λ

OOD g(xi) < λ
,

where nodes with higher scores g(xi) are classified as ID and vice versa, and λ is the threshold
commonly chosen so that a high fraction (e.g., 95%) of ID data is correctly classified.

In this paper, we consider post hoc OOD detection methods to produce g(xi) which does not require
expensive re-training. As an example, a classical way to compute g(xi) is Maximum Softmax
Probability (MSP) [23] which is given by the maximum softmax value. We include details of the
considered OOD detection methods in Appendix B.

3 Will propagation always help Graph OOD Detection?

In the introduction, we delineate the limitations of OOD score propagation using a concrete example
and elucidate the intuition that it may fail when inter-edges dominate. In this section, we formally
delineate the conditions under which OOD score propagation works. We start by showing the formal
definition of propagation.

Define OOD scoring propagation. Given a raw OOD scoring vector ĝ ∈ RN with ĝi = g(xi), the
propagated scoring vector is given by:

Propagated OOD Scoring Vector: g = Ākĝ, (1)

where k ∈ N+ are hyperparameters.

Is it necessarily the case that g outperforms ĝ? The answer is NO. We elucidate with the theoretical
insight below.

Theoretical Insight. As discussed in the Introduction from Figure 2, when the number of ID-to-ID
and OOD-to-OOD edges surpasses that of ID-to-OOD edges, the propagation mechanism tends to
“aggregate" the scores associated with the ID and OOD nodes respectively, which further amplify the
separability between them. Conversely, when the number of ID-to-OOD edges are more than the other
types of edges, the scores for both ID and OOD nodes become undistinguishable post-propagation.

The example above offers the insight that the relative performance of g compared to ĝ is contingent
upon the structural dynamics of the network, specifically the distribution of edges. To formally
articulate this relationship, we adopt a probabilistic framework for modeling edges. Specifically, we
assume that the edge follows a Bernoulli distribution characterized by parameters ηintra and ηinter
for intra-edges (ID-to-ID and OOD-to-OOD) and inter-edges (ID-to-OOD), respectively:

Aij ∼
{

Ber(ηintra), if i, j ∈ Vuid or i, j ∈ Vuood

Ber(ηinter), if i ∈ Vuid, j ∈ Vuood or j ∈ Vuid, i ∈ Vuood

In the context of probabilistic modeling, the subsequent Theorem 3.1 can be established to formalize
the inherent understanding.
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Theorem 3.1. (Informal) (a) When ηintra ≫ ηinter, it is highly likely that the propagation
algorithm will yield enhanced performance in OOD detection. (b) When ηintra ≈ ηinter or
even ηintra < ηinter, the score propagation is likely to be either ineffective or detrimental to
the performance.

We also provide the formal version below (Theorem 3.2) which provides a mathematical foundation
for understanding how varying the Bernoulli parameters influence the efficacy of the propagation in
the context of OOD detection. We provide the detailed proof in Appendix A.

Theorem 3.2. (Formal) For any two test ID/OOD node set Sid ⊂ Vuid, Sood ⊂ Vuood with
equal size Ns, let the ID-vs-OOD separability Msep defined on an OOD scoring vector
ĝ ∈ RN as

Msep(ĝ) ≜ Ei∈Sid
ĝi − Ej∈Sood

ĝj .

If Msep(ĝ) > 0 and ηintra − ηinter > 1/Ns, for some ϵ > 0 and constant c, we have
P
(
Msep(Aĝ) ≥ Msep(ĝ)− ϵ

)
≥ 1− exp(− cϵ2

∥ĝ∥2
2
).

Summary. This section has presented a comprehensive theoretical evidence to substantiate the claim
that propagation through the adjacency matrix A does not necessarily enhance out-of-distribution
(OOD) detection in graphs. Moreover, Theorem 3.2 reveals that the critical factor in enhancing
post-propagation performance lies in improving the ratio of intra-edges within the graph structure.
These insights serve as a direct motivation for the augmentation strategy in the next section.

4 An Augmented Score Propagation Strategy

The findings from the preceding section give rise to a subsequent thought: "Can we improve the
propagation strategy for graph OOD detection performance?" In an ideal scenario, if an oracle were
to indicate that a particular subset in the test set belongs exclusively to the ID or OOD, one could
augment the graph by adding intra-edges or removing inter-edges. This would consequently improve
the ratio of intra-edges ηintra, leading to enhanced OOD detection performance post-propagation.

However, such an oracle does not exist in practical settings, and even approximating such a subset
proves to be a difficult task. Existing literature has suggested the use of pseudo-labels assigned to
nodes [36, 79, 2, 73, 55]. Nonetheless, these studies also caution that this approach is susceptible to
“confirmation bias", whereby errors in estimation are inadvertently amplified.

To circumvent it, this paper proposes the solution for adding edges to a subset of the training set
Vl, which is assured to be in-distribution data. We start by showing the theoretical underpinnings
that adding such a subset can, under specified conditions, contribute to improved OOD detection
performance after propagation.

4.1 Theoretical Insight

Our approach involves adding the edges to a subset G of training data and then propagating the
out-of-distribution (OOD) scoring vector using the enhanced adjacency matrix. Specifically, when
edges are added to G, this action can be mathematically represented as incorporating a perturbation
matrix E = eGe

⊤
G into A, as demonstrated in Figure 3. Here, eS ∈ RN denotes an indicator vector

for a set S ⊂ V , where the vector takes the value of 1 if the index i ∈ S and value 0 otherwise. A
sufficient condition for the efficacy of this augmentation strategy in enhancing post-propagation OOD
detection performance is outlined in Theorem 4.1.

Theorem 4.1. (Informal) For a subset G in the training set, augmenting G by adding edges
to all its nodes can lead to improved post-propagation OOD detection performance, provided
that the following condition is met: G has more edges to ID data than OOD data.

We also provide the formal version below (Theorem 4.2) that incorporates a perturbation analysis.
This analysis elucidates how edge augmentation in the training set can positively influence the
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Figure 3: The augmentation procedure.

propagation algorithm’s ability to enhance OOD detection. For the sake of the main intuition, we
provide the analysis on A instead of Ā for simplicity. We provide the detailed proof in Appendix A.

Theorem 4.2. (Formal) For any two test ID/OOD node set Sid ⊂ Vuid, Sood ⊂ Vuood with
size Ns, let the ID-vs-OOD separability Msep defined on a non-negative OOD scoring vector
ĝ ∈ RN as

Msep(ĝ) ≜ Ei∈Sid
ĝi − Ej∈Sood

ĝj .

Let ES↔S′ ⊂ E to denote the edge set of edges between two node sets S and S′, where
S, S′ ⊂ V . If we can find a node set G ⊂ Vl such that |EG↔Sid

| > |EG↔Sood
|, we have

Msep((A+ δE)2ĝ) > Msep(A
2ĝ),

where E = eGe
⊤
G and δ > 0.

The Theorem 4.2 shows a critical principle for enhancing propagation: the optimal strategy entails
the addition of edges to the subset G such that there are more edges to ID data than OOD data. For
some Sid, Sood in the test set, the goal is to find the set

G∗ = argmax
S⊂Vl,|S|=Ng

|ES↔Sid
|

|ES↔Sood
| , (2)

where Ng is a hyperparameter to control the size of G∗. Inspired by the optimization target, we
proceed to present our pragmatic algorithmic approach.

4.2 Graph-Augmented Score Propagation (GRASP)

Our augmentation approach hinges on the selection of a subset, G, from the training set, as exemplified
in Equation 2. Two principal challenges arise in implementing this: (1) We cannot directly determine
the number of edges linked to ID/OOD data because these reside in the test set and their labels remain
unknown. (2) An exhaustive search to find a subset is computationally expensive, as the number of
combinatorial possibilities increases in a factorial manner. In this paper, we tackle these challenges
by providing the practical approximation method.

Selection of Sid/Sood. Our discussion begins by detailing the methodology to select the subset from
the test ID/OOD dataset, symbolized by Sid and Sood in Equation 2. A straightforward approach to
obtain the most likely ID is by selecting nodes with the largest confidence and the least for OOD in
class predictions. Following [23], we employ the max softmax probability (MSP) as a representation
of confidence. The selected sets can be defined as:

Sid = {i ∈ Vu|max
c∈[C]

fc(i) > λα}, Sood = {j ∈ Vu|max
c∈[C]

fc(j) < λ100−α, (3)

where λα denotes the α-th percentile of the MSP scores corresponding to nodes in Vu. To offer a
clear view, Figure 4 portrays Sid and Sood in the marginal regions highlighted in orange. Selecting a
subset in the leftmost and rightmost regions reduces the error when identifying the ID/OOD subsets,
given that overlapping between ID and OOD predominantly occurs around the central region of the
distribution.

Selection of G. Upon establishing Sid and Sood, the next step is to determine G using Equation 2.
Directly enumerating every possible G is impractical. Instead, we adopt a greedy approach, prioritiz-
ing the node with the highest "likelihood" score. To elucidate, for each node i ∈ Vl, the score can be
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Figure 4: Illustration of the rationale in selecting Sid and Sood. MSP score is reported on Dataset
Coauther-CS with the division of ID and OOD classes introduced in Appendix C.

computed as the ratio of the edge count to Sid over Sood:

h(i) = |E{i}↔Sid
|/(|E{i}↔Sood

|+ 1), (4)

where we incorporate an addition of 1 in the denominator to circumvent division by zero. Subse-
quently, G can be expressed as:

G = {i ∈ Vl|h(i) > τβ}, (5)
where τβ stands for the β-th percentile of h(i) scores for nodes in Vl. Once G is defined, edge
augmentation can be executed as demonstrated in Section 4.1. The OOD score is then propagated
with the new adjacency matrix A+ = A+ eGe

⊤
G in place:

gGRASP = (Ā+)
kĝ, (6)

where k ∈ N+ are hyperparameters.

Complexity analysis. While our algorithm introduces the fully connected matrix E, our method
can be effciently implemented by matrix-vector multiplication, leading to computational footprint
in terms of runtime and memory usage with O(N + 2k|E|+ n) and O(N + |E|+ n) respectively
after propagation for k times, where n is node count of subset G. We provide the comprehensive
complexity analysis in Appendix D.6.

5 Experiments

Table 1: Summary statistics of the datasets: size of
the training set |Vl|, test ID set |Vuid|, test OOD set
|Vuood|; number of ID classes C, scale of the dataset,
and whether the graph is homophily.

Dataset |Vl| |Vuid| |Vuood| C Scale Homph

Cora 180 724 18K 3 SM ✓
Amazon-Photo 618 2K 4K 3 SM ✓
Coauthor-CS 2K 10K 5K 11 SM ✓
Chameleon 272 1K 916 3 SM ✗
Squirrel 622 2K 2K 3 SM ✗
Reddit2 33K 133K 65K 11 LG ✓
ogbn-products 130K 522K 1M 11 LG ✓
ArXiv-year 23K 92K 53K 3 LG ✗
Snap-patents 351K 1M 1M 3 LG ✗
Wiki 212K 850K 862K 3 LG ✗

Datasets. We conduct extensive experiments us-
ing 10 real-world datasets that span diverse do-
mains, scales, and structures (homophily or het-
erophily). A high-level summary of the dataset
statistics is provided in Table 1, with a detailed
information of the datasets and the comprehen-
sive description of ID/OOD split in Appendix C.
Specifically, Cora [61] serves as a widely rec-
ognized citation network. Amazon-Photo [52]
represents a co-purchasing network on Amazon.
Coauthor-CS [62] portrays a coauthor network
within the realm of computer science. More-
over, Chameleon and Squirrel [59] are two
notable Wikipedia networks, predominantly uti-
lized as heterophilic graph benchmarks. We
additionally incorporate 5 large-scale graphs to evaluate our proposed methods: Reddit2 [88] and
ogbn-products [24] are large homophily datasets; ArXiv-year, Snap-patents, and Wiki [44]
are recently proposed large-scale heterophily benchmarks.

Remark on homophily/heterophily. In Table 1, datasets are also categorized based on the attribute of
homophily, denoting the tendency of nodes with the same class to connect. Conversely, the heterophily
graph demonstrates a tendency for nodes of disparate classes to connect. This characteristic not
only presents a challenge for node classification but also for graph OOD detection. The underlying
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Table 2: Main results on common benchmarks. Comparison with competitive out-of-distribution detection
methods on pre-trained GCN. We take the average values that are percentages over 5 independently trained
backbones. ↑ (↓) indicates larger (smaller) values are better.

Method
Datasets AverageCora Amazon Coauthor Chameleon Squirrel

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
MSP 70.86 84.56 49.26 89.34 28.82 94.34 85.70 57.96 94.68 48.51 65.86 74.94
Energy 67.54 85.47 42.13 90.28 20.29 95.67 88.06 59.20 93.98 45.07 62.40 75.14
KNN 90.20 70.94 65.19 84.71 51.24 90.13 93.38 57.90 94.72 54.68 78.95 71.67
ODIN 68.41 84.98 44.06 89.90 22.59 95.27 85.31 57.94 94.17 44.08 62.91 74.43
Mahalanobis 69.68 85.48 96.49 75.58 85.71 84.98 95.55 53.19 94.90 54.99 88.47 70.84
GKDE 63.71 86.27 81.29 77.26 25.48 95.13 92.93 50.14 96.71 49.38 72.02 71.64
GPN 58.45 82.93 72.95 82.63 34.11 93.82 82.25 68.20 95.58 48.38 68.67 75.19
OODGAT 94.59 53.63 71.34 66.95 96.53 52.18 94.43 59.67 95.27 46.13 90.43 55.71
GNNSafe 54.71 87.52 22.39 96.27 16.64 95.82 100.00 50.42 100.00 35.88 58.75 73.18
GRASP (Ours) 29.70 93.50 14.38 96.68 7.84 97.75 66.88 76.93 85.59 61.09 40.88 85.19

reason is that the OOD data is from different classes with ID, and heterophily exacerbates the ratio of
inter-edge connections between ID and OOD, which is deemed undesirable for graph OOD detection
according to Theorem 3.2.

Implementation Details. Our graph OOD detection technique operates in a post hoc fashion utilizing
a pre-trained network and so can be used in various pre-trained network seamlessly. We present
results evaluated on Graph Convolutional Network (GCN) [34] in the main paper to save space and
put detailed results of other architectures in Appendix D.3. All pre-trained models possess a layer
depth of 2. With the pre-trained network, we proceed to execute the graph OOD detection. By default,
we report the performance of the augmented propagation (GRASP) on the MSP score [23]. The
compatibility with other OOD scoring functions is also shown in Table 6. We set the propagation
number k as 8, with percentile values α = 5 and β = 50. The sensitivity analysis of the hyper-
parameters is included in Appendix D.4.

Metrics. Following the convention in literature [23, 47, 65], we use AUROC and FPR95 as evaluation
metrics for OOD detection.

5.1 Main Results

GRASP consistently achieves superior performance. We provide results of 5 common small-scale
benchmarks and 5 large-scale datasets in Table 2 and Table 3 respectively, wherein only the averaged
results over 5 runs are presented to save space and the detailed results with standard errors of these
two scale datasets are shown in Table 12 and Table 13 respectively. From the results we can see
that our proposed methodology (GRASP) consistently demonstrates promising performance. The
comparative analysis encompasses a broad spectrum of post hoc competitive Out-of-Distribution
(OOD) detection techniques in existing literature and training-based methods tailored for graph
OOD detection. We categorize the baseline methods into two groups: (a) Traditional OOD detection
methods including MSP [23], Energy [47], ODIN [43], Mahalanobis [37], and KNN [67]; (b) Graph
OOD detection methods including GKDE [92], GPN [64], OODGAT [63], and GNNSafe [77]. In these
tables, we present GRASP results based on the MSP score. Noteworthy findings include: (a) The
traditional OOD detection methods exhibit suboptimal performance in the realm of graph OOD
detection. For instance, GRASP reduced the average FPR95 by 17.87% and 32.21% compared to the
strongest traditional OOD detection method GNNSafe and Mahalanobis on common and large-scale
benchmarks, respectively. This outcome is anticipated given their lack of specificity in design towards
graph data. (b) GRASP outperforms existing baselines by a large margin, surpassing the best baseline
GNNSafe by 17.87% and 40% concerning average FPR95 on two scale benchmarks respectively.
These results further corroborate that the theoretically motivated solution GRASP is also appealing to
use in practice.

GRASP is also competitive on large-scale graph datasets. Contrasted with the small-scale
benchmarks in Table 2, the large-scale scenario in Table 3 presents more challenges due to a large
number of nodes and edges. From Table 3 we can see that all baseline OOD detection methodologies
exhibit suboptimal performance on large-scale benchmarks, while our method GRASP robustly
performs the best.

GRASP exhibits significant advantages over training-based baselines. In addition to contrasting
with post hoc methods, we extend our comparison to a parallel line of graph Out-Of-Distribution
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Table 3: Main results on large-scale benchmarks. Comparison with competitive out-of-distribution detection
methods on pre-trained method GCN. We take the average values that are percentages over 5 independently
trained backbones. OOM means Out-Of-Memory and OOT denotes that no results have been got after running
over 48 hours for each run. ↑ (↓) indicates larger (smaller) values are better.

Method
Datasets Averagereddit2 ogbn-products arxiv-year snap-patents wiki

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
MSP 96.59 46.61 86.87 70.19 95.03 47.24 94.31 46.99 95.46 54.70 93.65 53.15
Energy 96.77 44.13 85.09 68.13 94.10 51.35 96.82 46.03 97.31 29.02 94.02 47.73
KNN 90.78 66.74 84.22 73.58 95.35 57.96 90.54 53.45 93.43 43.69 90.86 59.08
ODIN 96.74 44.69 85.65 68.95 95.06 47.36 94.27 45.20 97.88 29.91 93.92 47.22
Mahalanobis 71.73 74.89 OOM OOM 88.60 59.57 96.03 58.50 72.33 67.95 82.17 65.23
GKDE OOT OOT OOM OOM OOM OOM OOM OOM OOM OOM - -
GPN OOM OOM OOM OOM 95.62 50.97 OOM OOM OOM OOM 95.62 50.97
OODGAT OOM OOM OOM OOM 92.90 59.38 OOM OOM OOM OOM 92.90 59.38
GNNSafe 99.49 31.99 77.86 85.66 100.00 35.30 99.92 27.35 72.63 60.32 89.98 48.12
GRASP (Ours) 2.41 98.50 39.77 93.79 73.93 81.24 75.22 72.13 58.49 77.97 49.96 84.73

(OOD) detection research, which focuses on refining the training strategy to improve graph OOD
detection performance. The compared methods include GKDE [92], GPN [64] and OODGAT [63]. While
these approaches necessitate a costly re-training procedure, they perform mediocrely across all
small-scale datasets and even run out-of-memory on almost all large-scale benchmarks, rendering
them impractical for real-world deployment.

GRASP is performant on challenging heterophily datasets. As indicated in Table 2 and 3,
GNNSafe, which performs well on homophily datasets, experiences significant degradation on the
difficult heterophily benchmarks due to its naïve propagation mechanism. In contrast, GRASP
maintains optimal performance on these hard scenarios.

5.2 A Comprehensive Analysis of GRASP
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Figure 5: Illustration of the number of edges
from each training node i to Sid and Sood on
Chameleon dataset. The x-axis denotes the
training node indices, ordered by h(i) from
low to high.

Ablation study on augmentation policy. Recall that the
key part of our method GRASP is the augmentation policy
that consists in adding edges to the training nodes with top
50% scores of h(i), which corresponds to the nodes on the
right side of Figure 5. We ablate the contributions of h(i)
by comparision with alternative augmentation approaches
that utilize h(i) differently in Table 4, specifically, (1)
selecting 50% of training nodes with the lowest h(i) val-
ues (left side of Figure 5), (2) randomly selecting 50% of
training nodes, corresponding to randomly picking node in-
dices from the x-axis of Figure 5, (3) directly adding edges
to Sid and Sood within the test set (i.e., TestAug), and (4)
a classic graph augmentation method named GAug [91],
which adds or removes edges based on an edge predictor that disregards h(i) completely. We have
the following key observations:

(a) Selection by h(i) is effective. For example, our strategy using the top 50% scores of h(i)
outperforms that uses random 50%, which, in turn, outperforms the low 50% way. This is because a
higher score of h(i) implies higher edge count towards ID data than to OOD data, which can increase
the ratios of intra-edges and improve OOD detection performance after propagation. In contrast, the
alternative augmentation method GAug, which does not consider the score h(i) at all, performs even
worse than the Low 50% policy.

Table 4: Ablation study on OOD detection performance by different augmentation policy. We report averaged
AUROC over 5 independently pre-trained GCN models.

Strategy Cora Amazon Coauthor Chameleon Squirrel Average
GAug 64.94 74.38 91.41 63.79 47.96 68.50
TestAug 59.24 75.78 95.00 50.58 48.64 65.85
Low 50% 88.84 95.02 97.21 54.60 53.52 77.84
Random 50% 90.23 95.37 97.45 65.32 57.59 81.19
Top 50% (Ours) 93.50 96.68 97.75 76.93 61.09 85.19
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Table 5: GRASP consistently enhances the OOD detection performance of nodes connected by both inter-edges
and intra-edges on datasets characterized by a strong degree of heterophily (datasets highlighted in bold in the
table). However, naive propagation tends to compromise the performance of these nodes.

Datasets MSP MSP+prop MSP+GRASP
intra inter intra inter intra inter

cora 48.06 46.90 60.91 48.31 78.42 50.48
amazon 66.70 57.82 81.80 68.58 89.56 78.66
coauthor 87.72 73.30 93.88 81.37 94.85 83.21
chameleon 57.48 51.22 55.63 51.02 70.79 55.19
squirrel 44.76 38.45 43.74 37.04 49.89 41.69
reddit2 64.85 54.85 65.70 54.99 96.56 93.63
ogbn-product 31.72 37.73 37.10 43.63 67.95 64.30
arxiv-year 60.18 8.34 62.93 4.27 70.42 16.21
snap-patents 61.49 5.76 64.12 0.37 67.24 9.89
wiki 56.58 48.39 60.62 52.06 69.13 61.19

(b) Directly adding edges to Sid and Sood within the test set is sub-optimal. Specifically, employing
this method leads to nearly 20% lower than that achieved with GRASP, which substantiates the notion
that “confirmation bias" can adversely affect the graph OOD detection.

Overall, the ablation study suggests that our proposed augmentation policy is crucial to OOD detection
performance.

GRASP can effectively boost performance of challenging nodes connected by inter-edges. As
stated in the introduction 1, the reason OOD score propagation does not always work is the confusion
between ID and OOD nodes resulting from propagation along the inter-edges. For example in
heterophily datasets, where connected nodes tend to possess different labels, OOD nodes are more
likely to appear on the inter-edges. To assess the capability of our proposed augmentation propagation
method to address this challenge, we present in Table 5 the accuracy of detecting OOD nodes
connected by intra-edges (intra) and inter-edges (inter) respectively, using the original MSP without
any propagation, naive propagation based on MSP (MSP+prop), and our proposed augmentation
propagation (MSP+GRASP) respectively. From the results we can see that naive propagation performs
well only on strong homophily datasets, while on strong heterophily datasets (datasets highlighted in
bold in the table), its performance is even worse than without propagation, as expected. In contrast,
employing our augmentation method still results in substantial performance gain after propagation on
these challenging datasets.

GRASP is compatible with a wide range of OOD scoring methods. In Table 6, we demonstrate
the compatibility of GRASP with various alternative scoring functions. Each method generates OOD
scores to form a scoring vector; GRASP is then applied to facilitate score propagation. The use of
GRASP markedly surpasses the performance of its non-augmented counterpart across all datasets.

Table 6: GRASP is compatible with different OOD scoring functions. We compare OOD detection methods and
the performance after the simple propagation in Equation 1 (denoted by “+ prop") and with GRASP respectively.
We report AUROC results that are averaged over 5 independent pre-trained GCN models.

Method Cora Amazon Coauthor Chameleon Squirrel
MSP 84.56 89.34 94.34 57.96 48.51
MSP+prop 88.02 95.32 97.15 50.35 36.21
MSP+GRASP 93.50 96.68 97.75 76.93 61.09
Energy 85.47 90.28 95.67 59.20 45.07
Energy+prop 87.52 96.27 95.82 50.42 36.49
Energy+GRASP 88.34 96.35 96.64 62.04 60.66
KNN 70.94 84.71 90.13 57.90 54.68
KNN+prop 73.70 92.36 95.47 49.76 53.99
KNN+GRASP 91.48 97.43 96.52 76.32 60.24

Remark on other empirical findings. We include other empirical findings in Appendix. Specifically,
in Table 14, we prove that GRASP also achieves superior performance on the other GNN architectures
in the literature. In Figure 7, we demonstrate a strong positive correlation between ratios of intra-
edges and the corresponding OOD detection performance, validating the correctness of Theorem 3.2.
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We also show in Table 15 that GRASP can increase the ratio of intra-edges after augmentation,
consequently boosting OOD performance. This substantiates the correctness of Theorem 4.2. What’s
more, we conduct a thorough accounting of computation/memory demands compared to baselines
on all scale datasets in Table 16 and Table 17 respectively, which underscore the strong practicality
of our approach. Lastly, in Appendix D.7, we investigate the other propagation mechanisms in the
literature and their impact on graph OOD detection performance emperically.

6 Related Work

Out-of-distribution Detection. The primary focus within this realm has been on the development
of scoring functions for OOD detection. These works can be broadly categorized into two main
streams: (1) output-based methods [23, 43, 47, 71, 25, 72, 95, 26, 15, 90, 16, 21], and (2) feature-
based methods including the Mahalanobis distance [37, 60, 56] and KNN distance [67]. These
methodologies are predominantly applied in domains such as computer vision, where samples are
inherently independent of each other. However, these techniques are not designed to adeptly handle
data structures like graphs, where samples are inter-connected.

Out-of-distribution detection for graph data. Graph anomaly detection has a rich history [12, 74,
89, 75, 48, 14, 50, 32, 46, 51]. In recent years, the OOD detection in graph data introduced fresh
challenges, particularly with multi-class classification for in-distribution data, escalating the difficulty
in discerning outlier data. Some of the works focus on graph-level OOD detection [42, 49, 4, 76].
For node-level OOD detection, GKDE [92] and GPN [64] apply Bayesian Network models to
estimate uncertainties to detect OOD nodes. However, Bayesian-based approaches can encounter
impediments such as inaccurate predictions and high computational demands, which limit their
broader applicability [83]. GNNSafe [77] emerges as the work employing post hoc energy-based
score to perform OOD detection. Given the merits of post hoc methods, our study first provides a
comprehensive understanding of the OOD score propagation in Graphs, extending beyond existing
knowledge.

Graph Data Augmentation. Graph Data Augmentation is a common technique in graph machine
learning [20, 6, 58, 29, 93, 91, 33, 53, 13, 3] to improve the node classification performance.
Existing methods operate exclusively on in-distribution (ID) data. Furthermore, their test set data also
originates from the in-distribution and shares the same classes as the training set. In contrast, our data
augmentation is purposefully crafted for OOD detection, supported by the theoretical explanation.

7 Conclusions

In this research, we delve into an important yet under-explored challenge in the realm of graph data:
Out-of-Distribution (OOD) detection. Recognizing the inadequacies of traditional OOD detection
techniques in the context of graph data, our exploration centered on the potential of score propagation
as a viable and efficient solution. Our findings reveal the specific conditions under which score
propagation will be helpful—in situations where the ratio of intra-edges surpasses that of inter-edges.
Motivated by this finding, our edge augmentation strategy selectively adds edges to a specific subset
G of the training set, which provably improves post-propagation OOD detection outcomes under
certain conditions. Extensive empirical evaluations reinforced the merit of our approach.
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A Proofs

Theorem A.1. (Recap of Theorem 3.2) For any two test ID/OOD node set Sid ⊂ Vuid, Sood ⊂ Vuood

with equal size Ns, let the ID-vs-OOD separability Msep defined on a OOD scoring vector ĝ ∈ RN

as
Msep(ĝ) ≜ Ei∈Sid

ĝi − Ej∈Sood
ĝj .

If Msep(ĝ) > 0 and ηintra − ηinter > 1/Ns, for some ϵ > 0 and constant c, we have

P
(
Msep(Aĝ) ≥ Msep(ĝ)− ϵ

)
≥ 1− exp(− cϵ2

∥ĝ∥22
).

Proof. Without losing the generality, we set the ĝi = 0, if i ∈ Sood ∪ Sid, since we only care about
the detection results in the given test node set Sood and Sid.

The Msep(ĝ) can be re-written as

Msep(ĝ) = ĝ⊤(eSid
− eSood

).

Then we have

Msep(Aĝ) = ĝ⊤A(eSid
− eSood

)

According to General Hoeffding’s inequality (Theorem 2.6.3) in [70], we know that

P
(
E[ĝ⊤A(eSid

− eSood
)]− ĝ⊤A(eSid

− eSood
) ≤ ϵ

)
≥ 1− exp(− cϵ2

∥ĝ∥22
),

where c is some constant value.

Since ĝi = 0, if i ∈ Vl,

E[ĝ⊤A(eSid
− eSood

]) = ĝ⊤E[A](eSid
− eSood

)

= ĝ⊤Ns(ηintra − ηinter)(eSid
− eSood

)

> ĝ⊤(eSid
− eSood

)

Combining together, we have

P
(
ĝ⊤A(eSid

− eSood
) ≥ ĝ⊤(eSid

− eSood
)− ϵ

)
≥ 1− exp(− cϵ2

∥ĝ∥22
)

Theorem A.2. (Recap of Theorem 4.2) For any two test ID/OOD node set Sid ⊂ Vuid, Sood ⊂ Vuood

with equal size Ns, let the ID-vs-OOD separability Msep defined on a non-negative OOD scoring
vector ĝ ∈ RN as

Msep(ĝ) ≜ Ei∈Sid
ĝi − Ej∈Sood

ĝj .

Let ES↔S′ ⊂ E to denote the edge set of edges between two node sets S and S′, where S, S′ ⊂ V . If
we can find a node set G ⊂ Vl such that |EG↔Sid

| > |EG↔Sood
|, we have

Msep((A+ δE)2ĝ) > Msep(A
2ĝ),

where E = eGe
⊤
G and δ > 0.

Proof. The Msep(ĝ) can be re-written as

Msep(ĝ) =
1

Ns
ĝ⊤(eSid

− eSood
).
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We can then directly derive the proof by expanding

Msep((A+ δE)2ĝ)−Msep(A
2ĝ) =

1

Ns
(eSid

− eSood
)⊤

(
(A+ δE)2ĝ −A2ĝ

)

=
1

Ns
(eSid

− eSood
)⊤

(
δ(AE + EA)ĝ + δ2eGe

⊤
GeGe

⊤
Gĝ

)

=
δ

Ns
(eSid

− eSood
)⊤

(
AeGe

⊤
Gĝ + eGe

⊤
GAĝ

)

=
δ

Ns
(eSid

− eSood
)⊤AeGe

⊤
Gĝ

=
δ

Ns
(e⊤Gĝ)(e

⊤
Sid

AeG − e⊤Sood
AeG)

=
δ(e⊤Gĝ)
|G|Ns

(|EG↔Sid
| − |EG↔Sood

|)

> 0,

where the second and the third equation are derived by the fact that G ⊂ Vl and then we have
e⊤Sid

eG = 0 and e⊤Sood
eG = 0.

B Details of Baselines

For the reader’s convenience, we summarize in detail a few common techniques for defining OOD
scores that measure the degree of ID-ness on a given input. By convention, a higher (lower) score is
indicative of being in-distribution (out-of-distribution).

MSP [23] This method proposes to use the maximum softmax score as the OOD score. For each
node i, we use FOODD(i) = maxc∈[C] fc(i) as the OOD score.

ODIN [43] This method improves OOD detection with temperature scaling and input perturbation.
In all experiments, we set the temperature scaling parameter T = 1000. For graph neural network,
we found the input perturbation does not further improve the OOD detection performance and hence
we set ϵ = 0.

Mahalanobis [37] This method uses multivariate Gaussian distributions to model class-conditional
distributions of softmax neural classifiers and uses Mahalanobis distance-based scores for OOD
detection. The mean µc of each multivariate Gaussian distribution with class c and a tied covariance Σ
are estimated based on training samples. We define the confidence score M(x) using the Mahalanobis
distance between test sample x and the closest class-conditional Gaussian distribution.

Energy [47] This method proposes using energy score for OOD detection. The energy function maps
the logit outputs to a scalar E(xi; f) ∈ R, which is relatively lower for ID data. Note that [47] used
the negative energy score for OOD detection, in order to align with the convention that S(x) is higher
(lower) for ID (OOD) data.

KNN [67] This method uses the k-th nearest neighbor distance between a test graph node and the
training set as the OOD score. We use k = 10 for all experiments in this paper.

C Dataset Details

We adopt ten publicly available benchmarks used for graph learning, covering diverse domains,
scales, and structures (homophily or heterophily). For five homophily datasets Cora, Amazon-Photo,
Coauthor-CS, Reddit2 and ogbn-products, we use the data loader provided by the Pytorch
Geometric package 3. For the remaining five heterophily datasets, we directly use the pickle file or
download from the given hyperlinks proposed by [44].

Cora [61] is a 7-class citation network comprising 2,708 nodes, 5,429 edges and 1,433 features. In
this network, each node represents a published paper, each edge signifies a citation relationship, and
the label class is each paper’s topic, which is the goal to predict.

3https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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Amazon-Photo [52] is an 8-class item co-purchasing network on Amazon, which contains 7,650
nodes, 238,162 edges and 745 features. In this network, each node denotes a product, each edge
indicates that two linked products are frequently purchased together, and the node label denotes the
category of the product.

Coauthor-CS [62] is a 15-class coauthor network of computer science, which contains 18,333 nodes,
163,788 edges and 6,805 features. In this network, nodes denote authors and there is an edge between
two authors if co-authored a paper. And the label represents the study field for the authors.

Reddit2 [88] is a large homophily post network with 41 classes, where nodes are posts based on
user comments and the task is to predict communities of online posts based on user comments.

ogbn-products [24] is a super large homophily undirected and unweighted graph with 47 classes,
representing an Amazon product co-purchasing network. Nodes represent products sold in Amazon,
and edges between two products indicate that the products are purchased together. The task is to
predict the category of a product in a multi-class classification setup, where the 47 top-level categories
are used for target labels.

Chameleon and Squirrel [59] are two Wikipedia networks with 5 classes, where nodes represent
web pages and edges represent hyperlinks between them. Node features represent several informative
nouns in the Wikipedia pages and the task is to predict the average daily traffic of the web page [17].

arXiv-year [24] is the ogbn-arXiv network with different labels and is altered to be heterophily,
in which the class labels are set to be the year that the paper is posted, instead of subject area in
the original paper. The nodes are arXiv papers, and directed edges connect a paper to other papers
that it cites. The node features are averaged word2vec token features of both the title and abstract
of the paper. The five classes are chosen by partitioning the posting dates so that class ratios are
approximately balanced [44].

snap-patents [39, 38] is a big dataset of utility patents in the US. Each node represents a patent
and edges connect patents that cite each other. Node features are derived from patent metadata [44].
Like arXiv-year, this dataset is changed to set the task to predict the time at which a patent was
granted, which is also five classes.

wiki [44] is a super big dataset of Wikipedia articles, which are crawled and cleaned from the internet.
Nodes represent pages and edges represent links between them. Node features are derived from the
average GloVe embeddings [54] of the titles and abstracts and labels indicate total page views over a
60-day period, categorized into five classes based on quintiles.

The complete information and statistics of all these datasets aforementioned are summarized in Table
7.

Table 7: Statistics of all the graph datasets. # C is the total number of distinct node classes.

Dataset # Nodes # Edges # Features # C Domain Homoph OOD Class ID Class

Cora 2,708 5,429 1,433 7 citation ✓ {0, · · · , 3} {4, 5, 6}
Amazon-Photo 7,650 238,162 745 8 product ✓ {0, · · · , 4} {5, 6, 7}
Coauthor-CS 18,333 163,788 6,805 15 citation ✓ {0, · · · , 3} {4, · · · , 14}
Reddit2 232,965 23,213,838 602 41 post ✓ {0, · · · , 10} {11, · · · , 40}
ogbn-products 2,449,029 61,859,140 100 47 product ✓ {0, · · · , 11} {12, · · · , 46}
Chameleon 2,277 31,421 2,325 5 Wikipedia ✗ {0, 1} {2, 3, 4}
Squirrel 5,201 198,493 2,089 5 Wikipedia ✗ {0, 1} {2, 3, 4}
arXiv-year 169,343 1,166,243 128 5 citation ✗ {0, 1} {2, 3, 4}
snap-patents 2,923,922 13,975,788 269 5 patent ✗ {0, 1} {2, 3, 4}
wiki 1,925,342 303,434,860 600 5 Wikipedia ✗ {0, 1} {2, 3, 4}
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D Additional Experiments

D.1 Graph ID Classification Details

In this section, we provide a detailed report on the ID ACC results of nine popular GNN pretrained
backbones used in our paper, including GCN [34], GAT [69], GCNJK [81], GATJK [81], APPNP [35],
MixHop [1], GPR-GNN [10], GCNII [7], and H2GCN [94]. The results of all the nine architectures
on five common benchmarks and architecture GCN on five large-scale benchmarks are presented in
Table 8 and Table 9 respectively. In addition, we present the ID ACC results of three training-based
methods on the ten benchmarks. It is important to note that these training-based methods only yield
results on five small-scale datasets and the moderately sized arxiv-year dataset. They fail to produce
results on the remaining four large datasets, as shown in Tables 10 and Table 11.

Table 8: ID ACCs of six pre-trained methods on common benchmarks. For each pre-trained method,
we take the average values that are percentages over 5 independently trained backbones.

Backbone Cora Amazon Coauthor Chameleon Squirrel

GCN 93.89 ± 1.31 96.72 ± 0.76 96.21 ± 0.61 71.20 ± 2.07 72.32 ± 2.02
GAT 93.89 ± 1.64 96.44 ± 0.92 95.67 ± 0.35 73.43 ± 3.42 75.88 ± 1.73
GCNJK 92.92 ± 2.03 96.88 ± 0.56 95.93 ± 0.32 71.03 ± 2.41 72.22 ± 0.71
GATJK 93.27 ± 1.91 96.31 ± 0.38 95.78 ± 0.26 74.55 ± 1.95 76.47 ± 1.45
GCNII 94.07 ± 1.28 96.62 ± 0.57 96.97 ± 0.37 73.08 ± 1.78 72.57 ± 1.92
H2GCN 94.07 ± 1.84 96.26 ± 0.74 94.57 ± 0.43 71.85 ± 2.21 74.73 ± 1.11
APPNP 91.44 ± 1.48 95.63 ± 0.19 95.79 ± 0.28 54.77 ± 1.66 42.87 ± 2.07
MixHop 86.05 ± 4.01 93.47 ± 1.31 93.80 ± 0.28 59.48 ± 3.15 53.18 ± 0.69
GPR-GNN 91.02 ± 1.76 95.35 ± 0.14 96.04 ± 0.16 46.24 ± 10.26 45.73 ± 0.95

Table 9: ID ACCs of pre-trained GCN models on five large-scale datasets. We report the average
values that are percentages over 5 independently trained backbones.

Backbone reddit2 ogbn-products arxiv-year snap-patents wiki

GCN 51.36 ± 0.35 74.39 ± 0.09 56.67 ± 0.33 62.48 ± 0.10 54.89 ± 0.16

Table 10: ID ACCs of three training-based ood detection methods on five small-scale datasets. For
each method, we take the average values that are percentages over 5 independently runs.

Method Cora Amazon Coauthor Chameleon Squirrel

GKDE 91.40 ± 1.39 91.30 ± 2.30 96.14 ± 0.50 65.22 ± 1.67 53.29 ± 2.97
GPN 91.49 ± 1.51 93.96 ± 2.39 89.83 ± 4.25 62.40 ± 1.40 46.27 ± 5.37
OODGAT 76.02 ± 7.77 61.88 ± 1.19 31.71 ± 1.06 61.00 ± 2.84 50.88 ± 2.35

Table 11: ID ACCs of three training-based methods on five large-scale datasets, where OOM means
Out-Of-Memory and OOT denotes that no results have been got after running over 48 hours for each
run. All the training-based methods only have results on the moderately sized arXiv-year dataset. For
each method, we take the average values that are percentages over 5 independently runs.

Method reddit2 ogbn-products arxiv-year snap-patents wiki

GKDE OOM OOM OOT OOM OOM
GPN OOM OOM 43.07 ± 2.02 OOM OOM
OODGAT OOM OOM 43.43 ± 0.36 OOM OOM
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D.2 Detailed Main Graph OOD Detection Results

Table 12: Detailed main results on common benchmarks. Comparison with competitive out-of-distribution
detection methods on pre-trained GCN. We take the average values with standard errors that are percentages
over 5 independently trained backbones. ↑ (↓) indicates larger (smaller) values are better.

Method
Datasets

Cora Amazon Coauthor Chameleon Squirrel
FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

MSP 70.86 ± 15.88 84.56 ± 5.39 49.26 ± 10.51 89.34 ± 3.49 28.82 ± 1.94 94.34 ± 0.41 85.70 ± 7.09 57.96 ± 3.31 94.68 ± 1.01 48.51 ± 0.46
Energy 67.54 ± 22.98 85.47 ± 4.98 42.13 ± 9.96 90.28 ± 3.42 20.29 ± 1.49 95.67 ± 0.25 88.06 ± 7.50 59.20 ± 4.31 93.98 ± 1.42 45.07 ± 1.68
KNN 90.20 ± 4.35 70.94 ± 5.62 65.19 ± 7.26 84.71 ± 3.28 51.24 ± 1.83 90.13 ± 0.50 93.38 ± 5.48 57.90 ± 6.48 94.72 ± 2.84 54.68 ± 2.25
ODIN 68.41 ± 18.48 84.98 ± 5.59 44.06 ± 10.69 89.90 ± 3.65 22.59 ± 1.76 95.27 ± 0.33 85.31 ± 7.64 57.94 ± 3.75 94.17 ± 0.44 44.08 ± 0.35
Mahalanobis 69.68 ± 14.60 85.48 ± 1.69 96.49 ± 5.96 75.58 ± 7.97 85.71 ± 1.82 84.98 ± 0.58 95.55 ± 2.36 53.19 ± 4.30 94.90 ± 0.51 54.99 ± 0.70
GKDE 63.71 ± 14.36 86.27 ± 2.69 81.29 ± 3.36 77.26 ± 5.54 25.48 ± 1.48 95.13 ± 0.29 92.93 ± 4.89 50.14 ± 5.50 96.71 ± 0.67 49.38 ± 3.58
GPN 58.45 ± 31.98 82.93 ± 11.20 72.95 ± 19.77 82.63 ± 5.87 34.11 ± 22.46 93.82 ± 2.63 82.25 ± 6.55 68.20 ± 6.70 95.58 ± 1.65 48.38 ± 4.43
OODGAT 94.59 ± 6.38 53.63 ± 5.13 71.34 ± 15.34 66.95 ± 16.02 96.53 ± 3.39 52.18 ± 8.26 94.43 ± 3.43 59.67 ± 6.37 95.27 ± 1.00 46.13 ± 3.10
GNNSafe 54.71 ± 31.41 87.52 ± 6.16 22.39 ± 4.90 96.27 ± 0.31 16.64 ± 1.90 95.82 ± 0.28 100.00 ± 0.00 50.42 ± 0.65 100.00 ± 0.00 35.88 ± 0.24
NODESafe 45.73 ± 21.86 89.70 ± 4.60 63.25 ± 23.15 79.03 ± 13.00 39.06 ± 25.23 87.45 ± 13.31 100.00 ± 0.00 50.34 ± 0.58 100.00 ± 0.00 36.18 ± 0.23
fDBD 81.56 ± 10.45 56.77 ± 12.97 51.87 ± 13.89 73.31 ± 7.86 59.68 ± 3.50 63.10 ± 1.01 89.85 ± 11.80 50.85 ± 14.89 94.78 ± 1.30 53.17 ± 3.24
GRASP 29.70 ± 12.25 93.50 ± 1.65 14.38 ± 6.63 96.68 ± 0.28 7.84 ± 0.58 97.75 ± 0.18 66.88 ± 6.48 76.93 ± 4.18 85.59 ± 3.61 61.09 ± 1.49

Table 13: Detailed main results on large-scale benchmarks. Comparison with competitive out-of-distribution
detection methods on pre-trained method GCN. We take the average values with standard errors that are
percentages over 5 independently trained backbones. OOM means Out-Of-Memory and OOT denotes that no
results have been got after running over 48 hours for each run. ↑ (↓) indicates larger (smaller) values are better.

Method
Datasets

reddit2 ogbn-products arxiv-year snap-patents wiki
FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

MSP 96.59 ± 0.14 46.61 ± 0.66 86.87 ± 0.35 70.19 ± 0.92 95.03 ± 1.46 47.24 ± 3.70 94.31 ± 0.30 46.99 ± 0.83 95.46 ± 0.32 54.70 ± 0.68
Energy 96.77 ± 0.03 44.13 ± 0.14 85.09 ± 0.45 68.13 ± 0.38 94.10 ± 2.76 51.35 ± 5.91 96.82 ± 1.07 46.03 ± 4.59 97.31 ± 1.54 29.02 ± 2.78
KNN 90.78 ± 0.75 66.74 ± 0.55 84.22 ± 2.00 73.58 ± 1.21 95.35 ± 0.92 57.96 ± 2.19 90.54 ± 1.09 53.45 ± 0.93 93.43 ± 2.57 43.69 ± 4.83
ODIN 96.74 ± 0.07 44.69 ± 0.24 85.65 ± 0.31 68.95 ± 0.52 95.06 ± 1.47 47.36 ± 3.46 94.27 ± 0.30 45.20 ± 0.87 97.88 ± 0.18 29.91 ± 0.47
Mahalanobis 71.73 ± 1.55 74.89 ± 1.01 OOM - 88.60 ± 1.27 59.57 ± 1.27 96.03 ± 0.22 58.50 ± 0.81 72.33 ± 2.15 67.95 ± 1.56
GKDE OOT - OOM - OOM - OOM - OOM -
GPN OOM - OOM - 95.62 ± 3.29 50.97 ± 14.98 OOM - OOM -
OODGAT OOM - OOM - 92.90 ± 0.94 59.38 ± 3.44 OOM - OOM -
GNNSafe 99.49 ± 0.07 31.99 ± 0.26 77.86 ± 1.09 85.66 ± 1.16 100.00 ± 0.00 35.30 ± 0.06 99.92 ± 0.18 27.35 ± 0.18 72.63 ± 2.05 60.32 ± 4.51
NODESafe 86.47 ± 10.45 47.00 ± 9.33 OOT - 100.00 ± 0.00 35.32 ± 0.04 100.00 ± 0.00 27.27 ± 0.01 OOT -
fDBD 89.78 ± 0.73 55.72 ± 0.88 83.41 ± 0.53 66.67 ± 1.15 95.82 ± 2.23 48.87 ± 9.73 94.99 ± 0.20 43.27 ± 2.50 96.53 ± 0.55 59.32 ± 1.23
GRASP 2.41 ± 0.09 98.50 ± 0.02 39.77 ± 1.25 93.79 ± 0.24 73.93 ± 0.60 81.24 ± 0.39 75.22 ± 0.09 72.13 ± 0.06 58.49 ± 1.07 77.97 ± 1.38
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D.3 Graph OOD Detection Results on Various Backbones

GRASP can seamlessly be applied to various GNN backbones. In this section, we report the OOD
detection performance of all baselines on various popular architectures in Table 14

Table 14: Results of various GNN pretrained backbones on common benchmarks.
Pre-

trained
Backbone

OOD
Detection
Method

Datasets
Cora Amazon Coauthor Chameleon Squirrel

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑

GCN

MSP 70.86 84.56 49.26 89.34 28.82 94.34 85.70 57.96 94.68 48.51
Energy 67.54 85.47 42.13 90.28 20.29 95.67 88.06 59.20 93.98 45.07
KNN 90.20 70.94 65.19 84.71 51.24 90.13 93.38 57.90 94.72 54.68
ODIN 68.41 84.98 44.06 89.90 22.59 95.27 85.31 57.94 94.17 44.08
Mahalanobis 69.68 85.48 96.49 75.58 85.71 84.98 95.55 53.19 94.90 54.99
GNNSafe 54.71 87.52 22.39 96.27 16.64 95.82 100.00 50.42 100.00 35.88
GRASP (ours) 29.70 93.50 14.38 96.68 7.84 97.75 66.88 76.93 85.59 61.09

GAT

MSP 55.33 88.82 29.88 94.39 28.15 94.26 91.27 61.94 95.21 47.50
Energy 80.71 79.16 26.48 95.24 20.96 95.65 92.71 61.11 96.47 45.69
KNN 71.14 81.28 46.42 90.74 42.51 91.51 89.02 61.13 95.37 53.16
ODIN 55.27 89.06 26.92 94.89 24.61 94.95 90.83 62.89 96.11 45.68
Mahalanobis 67.92 86.37 14.28 95.80 26.27 94.46 95.35 50.65 91.36 57.67
GNNSafe 58.97 85.64 29.12 93.16 25.41 93.91 100.00 50.39 100.00 36.21
GRASP (ours) 22.76 94.28 14.21 96.79 8.59 97.51 70.15 73.40 85.84 61.18

GCNJK

MSP 81.33 80.40 32.45 94.64 26.43 94.44 86.42 68.19 94.93 51.83
Energy 96.56 70.16 40.90 93.80 18.75 95.75 91.92 65.16 95.36 49.68
KNN 90.98 73.81 64.47 85.18 50.95 89.98 94.45 59.04 94.64 53.49
ODIN 81.04 80.68 28.35 95.13 21.12 95.41 86.03 68.58 95.04 50.64
Mahalanobis 60.84 86.20 61.61 87.11 83.04 87.34 87.23 66.61 91.52 57.24
GNNSafe 65.01 83.11 22.41 96.28 13.27 96.47 100.00 50.40 100.00 36.21
GRASP (ours) 29.69 92.98 12.66 96.86 8.03 97.74 59.61 75.78 86.02 60.70

GATJK

MSP 69.56 84.51 47.21 91.32 24.66 95.37 94.39 55.43 94.67 50.98
Energy 62.27 85.75 34.75 92.89 17.23 96.38 91.11 59.01 95.61 48.76
KNN 82.54 74.32 70.98 83.48 38.95 92.56 92.21 61.14 95.20 54.32
ODIN 64.25 85.21 39.29 92.19 18.16 96.30 93.56 56.10 95.24 48.62
Mahalanobis 79.60 79.33 52.79 88.53 34.60 93.68 91.59 52.38 91.52 56.19
GNNSafe 44.43 90.01 22.46 95.45 17.54 95.32 100.00 50.39 100.00 36.15
GRASP (ours) 29.04 92.57 14.78 96.70 8.32 97.70 78.65 71.09 85.88 61.17

APPNP

MSP 59.37 89.01 64.64 86.51 18.38 96.45 94.24 48.87 94.41 50.91
Energy 81.82 81.21 62.87 84.36 14.57 97.01 90.55 55.75 90.91 53.04
KNN 75.33 81.21 49.55 89.76 38.44 91.71 92.14 54.19 94.12 53.14
ODIN 56.72 89.47 60.67 86.76 15.02 96.98 94.63 50.71 94.41 50.60
Mahalanobis 73.64 86.02 98.75 62.13 30.20 93.91 92.38 58.15 93.29 56.65
GNNSafe 59.70 85.45 19.26 95.08 12.10 96.60 100.00 50.45 100.00 36.24
GRASP (ours) 26.45 94.16 5.69 97.11 8.69 97.59 83.41 63.02 86.42 60.76

H2GCN

MSP 67.00 86.50 59.23 86.88 99.37 40.35 91.00 62.79 94.34 57.21
Energy 68.06 86.84 57.05 86.21 97.85 51.65 92.66 63.24 96.75 53.18
KNN 80.00 79.68 63.85 80.54 60.66 77.25 95.13 56.89 95.62 57.45
ODIN 65.21 87.10 56.25 86.97 99.43 41.58 91.07 63.52 95.08 55.69
Mahalanobis 81.67 80.55 86.26 77.33 97.92 61.02 97.62 58.29 96.36 53.54
GNNSafe 43.97 88.83 33.40 90.87 93.00 43.23 100.00 50.35 100.00 36.26
GRASP (ours) 33.54 92.63 16.57 96.48 14.23 96.08 66.38 74.72 86.04 60.83

MixHop

MSP 83.94 78.60 53.56 90.97 48.66 90.91 92.95 56.77 95.60 49.07
Energy 83.67 77.15 57.04 89.28 28.49 94.67 94.10 57.21 95.61 48.87
KNN 93.36 69.93 65.41 86.45 62.40 85.91 89.52 57.64 93.44 54.00
ODIN 83.14 79.10 50.00 91.25 41.39 92.65 93.45 56.48 95.68 47.58
Mahalanobis 82.35 80.04 90.05 81.85 47.41 91.67 93.93 56.30 91.33 56.56
GNNSafe 66.86 83.77 39.72 93.54 33.83 92.46 100.00 50.35 100.00 36.42
GRASP (ours) 32.11 92.77 10.07 96.99 9.41 97.31 76.92 66.12 85.92 60.69

GPR-GNN

MSP 64.90 87.44 62.84 87.66 23.96 95.64 96.09 47.65 95.78 44.62
Energy 72.85 83.86 64.23 85.28 16.42 96.50 93.78 49.09 95.16 42.63
KNN 74.24 81.46 48.47 90.48 38.83 92.31 94.39 55.31 94.18 51.74
ODIN 62.58 88.13 55.49 88.41 17.24 96.51 96.16 47.50 95.51 42.32
Mahalanobis 79.56 84.53 97.25 69.75 49.93 91.56 87.01 55.95 87.24 61.10
GNNSafe 51.65 85.91 13.63 96.46 14.73 95.96 100.00 50.32 100.00 36.25
GRASP (ours) 26.71 94.02 5.30 97.14 8.28 97.70 76.53 72.43 85.40 61.33

GCNII

MSP 72.85 83.02 51.72 88.13 23.18 95.21 96.03 55.46 94.13 49.46
Energy 83.15 75.24 48.28 88.78 17.72 96.03 95.87 56.75 94.61 48.63
KNN 83.99 76.02 59.25 86.74 36.05 93.43 94.72 52.86 94.65 53.47
ODIN 71.49 83.31 49.44 88.35 19.44 95.75 95.61 56.63 94.73 48.34
Mahalanobis 73.90 82.01 77.63 80.87 44.01 92.63 96.68 46.57 91.66 53.62
GNNSafe 66.70 83.12 27.08 93.13 17.87 94.47 100.00 50.35 100.00 36.32
GRASP (ours) 27.92 93.51 23.53 93.72 8.82 97.61 76.79 66.44 86.27 60.62
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D.4 Analysis of Hyper-parameters Sensitivity

We show the sensitivity of hyper-parameters α, β and k in Figure 6. The vertical axis in the figure
represents the average AUROC values across common datasets. The performance comparison in
the bar plot for each hyper-parameter is reported by fixing other hyper-parameters. We see that
within the range of chosen hyperparameter values, our proposed method’s performance does not vary
significantly, which constantly outperforms baselines by a large margin.
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Figure 6: Sensitivity analysis of all the hyper-parameters and the averaged AUROC values of common
benchmarks on model GCN with MSP are displayed. The middle bar in each plot corresponds to the
hyperparameter value used in our main experiments.

D.5 Relationship between Ratio of Intra-Edges and OOD Detection performance
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Figure 7: Ratio of intra-edges and OOD detection performance have strong positive correlation.

As shown in Figure 7, the ratio of intra-edges and OOD detection performance have strong positive
correlation. This validates the correctness of Theorem 4.2. The detailed the number in Figure 7 are
listed in Table 15. From the table we can see that after using our proposed augmentation, the ratio of
intra-edges increases and in turn boosts the OOD detection performance.
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Table 15: Ratios of intra-edges ηintra and respective OOD detection performance on all benchmarks
before and after employing graph augmentation.

Datasets Before Aug After Aug
ηintra AUROC ηintra AUROC

cora 82.31 87.52 92.23 93.50
amazon 93.44 96.27 96.56 96.68
coauthor 92.68 95.82 97.18 97.75
chameleon 57.03 50.42 78.81 76.93
squirrel 39.45 35.88 62.54 61.09
reddit2 40.30 31.99 97.90 98.50
ogbn-products 81.98 85.66 93.56 93.79
arxiv-year 41.93 35.30 82.15 81.24
snap-patents 34.74 27.35 71.74 72.13
wiki 60.31 60.32 79.64 77.97

D.6 Computational Complexity Analysis

Our method’s computational footprint in terms of runtime and memory usage after propagation for k
times is:

• Time Complexity: O(N + 2k|E|+ n)

• Memory Complexity: O(N + |E|+ n)

While our algorithm introduces the fully connected matrix E, which brings about explosive growth of
connections after each propagation and results in challenges in performing related computations, we
adeptly transform the complex and time-consuming structural computations into simple matrix-vector
multiplication operations, making original expensive operation tractable and leading to efficient linear
complexity. Below, we provide the support from both mathmatical and empirical points.

Complexity analysis. Our method consists of two major computational modules, specifically, (a)
calculating connections between training nodes and testing nodes; (b) augmentation propagation.

(a) Calculating connections between training nodes and testing nodes. We utilize two indicator
vectors, Iid and Iood, both with a length of nodes number N , to represent the number of connections
each node has with Sid and Sood, respectively. The initial values of Iid are set to 1 at the indices
corresponding to Sid and 0 at the remaining indices (corresponding to Sood). The initial value of
Iid is denoted as I(0)id . Similarly, Iood has a initial value of 1 at all indices corresponding to Sood

and 0 at the indices corresponding to Sid. We also represent the initial value of Iood as I(0)ood. After
propagation for k times, the connections between each node with Sid are:

I
(k)
id = AkI

(0)
id

= Ak−1 ·AI
(0)
id

= Ak−1 · I(1)id

= (run k − 1 times ...)

In the above equation, AI
(i)
id can be computed in O(|Eid|) with sparse matrix multiplication for each

propagation, where |Eid| represents number of edges connected to Sid nodes.

The above abalysis and conclusion also applys to computing I
(k)
ood, resulting computational complexity

O(|Eood|), where |Eood| is number of edges connected to Sood nodes. This leads to time and memory
costs O(|Eid|+ |Eood|) = O(|E|) for calculating needed number of connections in each propagation
and O(k|E|) and O(|E|) for time and memory costs after propagation for k times, respectively.

(b) Augmentation propagation. As described by Equation 6 in the main paper, given a raw OOD
scoring vector ĝ ∈ RN , the propagated scoring vector using augmentated adjacency matrix after
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propagation for k times is given by:

gGRASP = (Ā+)
kĝ

= (D−1
+ A+)

kĝ

= (D−1
+ A+)

k−1 · (D−1
+ (A+ E))ĝ

= (D−1
+ A+)

k−1 · (D−1
+ Aĝ +D−1

+ Eĝ )

= (run k − 1 times ...)

In the above equation,

• Eĝ can be computed with time/space complexity O(n) by a simple summation operation (gi in G
will be replaced by

∑
i∈G gi ) to get rid of the matrix multiplication.

• Aĝ can be computed in O(|E|) with sparse matrix multiplication.

• D−1
+ is an O(N) operation since it is scaling over all elements in the vector.

Above all, the time/memory complexity of augmentated propagation is O(N + |E| + n) for each
propagation and the time and memory costs are O(N + k|E|+ n) and O(N + |E|+ n) for k times
respectively with memory reutilization.

Integrating the above two considerations, the time complexity of our algorithm after propagation for
k times is O(N +2k|E|+n), while the space complexity is O(N + |E|+n). Notably, the utilization
of space reuse results in a linear space complexity.

Empirical results. Then we conduct comprehensive experiments comparing the time and space costs
of our algorithm with various baselines (both post-hoc and training-based approaches) in Table 16
and Table 17. From the experimental results, it is evident that our algorithm is highly efficient across
all datasets.

Based on the experimental results in Table 16 and Table 17, we have:

• In comparison to training-based methods, post-hoc methods exhibit significantly lower runtime and
memory consumption.

• Considering that the minimum time and space complexity required to run a graph algorithm is
O(N + |E|), as outlined in our algorithm complexity analysis, our algorithm incurs limited addi-
tional time and space costs, specifically O(|E|) and O(n) on time and memory costs respectively
in each propagation. This can be validated by the small extra overhead incurred by our algorithm
compared to MSP or Energy from the table.

• Compared with training-based methods, our algorithm demonstrates substantially lower time and
space demands on five large-scale datasets. And when compared to post-hoc baselines on these
datasets, the overhead of our method is also reasonable. The performance of our method on these
large-scale datasets underscores the strong practicality of our approach.

Table 16: Time (s) and Memory (M) costs of all algorithms with backbone GCN on common benchmarks.

Method
Datasets

Cora Amazon Coauthor Chameleon Squirrel
time memory time memory time memory time memory time memory

GKDE 26.72038 3366.0078 160.00094 3388.5859 1004.73209 4199.8438 37.24027 3310.9219 170.25729 3234.3828
GPN 28.63986 3702.5703 58.71772 3719.0977 77.55155 3634.6562 50.64548 3620.9688 50.69732 3650.5781
OODGAT 77.98510 3369.0039 395.87711 3390.8789 411.43511 3851.3672 182.10900 3291.6289 454.62221 3319.9883
MSP 0.02508 622.7852 0.03915 635.4102 0.13018 1092.0469 0.04835 634.0508 0.05129 657.9961
Energy 0.04687 624.1016 0.09624 636.5156 0.11084 1094.7227 0.10995 634.7500 0.11732 660.5039
KNN 0.24068 630.9219 0.12629 658.2109 0.29778 1101.2969 0.17183 636.4375 0.14258 660.1758
ODIN 0.01500 621.8164 0.04800 636.4023 0.07353 1093.6406 0.16158 635.4062 0.06357 659.5781
Mahalanobis 0.14636 627.3945 0.22022 641.2070 0.28823 1099.3750 0.20611 637.1797 0.18573 661.4375
GNNSafe 0.05700 626.2344 0.14713 652.7969 0.34739 1106.1875 0.12293 637.9531 0.10340 662.4766
GRASP(ours) 0.05305 628.7930 0.14779 677.2617 0.25272 1118.0156 0.14554 644.0938 0.12774 668.0742
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Table 17: Time (s) and Memory (M) costs of all algorithms with backbone GCN on large-scale benchmarks.

Method
Datasets

reddit2 ogbn-products arxiv-year snap-patents wiki
time memory time memory time memory time memory time memory

GKDE - OOM - OOM OOT - - OOM - OOM
GPN - OOM - OOM 444.83901 3808.7227 - OOM - OOM
OODGAT - OOM - OOM 1214.97670 3491.1055 - OOM - OOM
MSP 0.26172 2588.9844 0.4599 4571.1289 0.35540 726.5898 8.91248 4014.2188 431.68647 9765.8008
Energy 0.26987 2590.5273 0.49488 4567.3398 0.51500 726.1719 14.84026 4039.9102 296.09063 9788.4453
KNN 3.48512 2697.3789 4247.99327 4699.3047 3.77242 732.8984 6241.00550 3933.3164 3180.91959 9812.8906
ODIN 0.28509 2587.1289 0.49385 4562.1719 0.61390 727.6797 3.60580 4005.2305 244.30793 9760.2422
Mahalanobis 1.95486 2703.2734 - OOM 1.27940 730.4141 5.92890 4056.0820 243.92857 9829.1562
GNNSafe 0.85545 2621.5547 4.19187 4589.9609 0.97220 790.1992 17.00348 4187.6680 365.39017 9655.1055
GRASP(ours) 1.86865 2628.3633 9.62959 4647.5273 0.67847 768.2070 20.97008 4279.9219 649.71668 9724.7852

D.7 Explore How Different Propagation Mechanisms Impact the Findings.

In this section, we investigate the effect of different propagation mechanisms on graph OOD detection
performance, like higher-order diffusion and the other various classical propagation mechanisms in
the literature, including Personalized PageRank (PPR) [35], Heat Kernel Diffusion (GraphHeat) [80],
Graph Diffusion Convolution (GDC) [20], Mixing Higher-Order Propagation (MixHop) [1], and
Generalized PageRank (GPR) [10]. The emperical observations are as follows:

• From the analysis of the hyper-parameter (order of propagation) and its impact on the
AUROC in Figure 6, we find that OOD detection performance benefits from propagation
orders within a reasonable range. However, excessive propagation (greater than 16) may be
detrimental.

• The AUROC results of the other various classical propagation mechanisms on graph OOD
detection are shown in Table 18 and Table 19. We can see that these propagation mechanisms
perform inconsistently among various datasets. In contrast, our propagation mechanism
GRASP constantly demonstrates superior performance among all datasets.

Table 18: Various classical propagation mechanisms on each dataset.

Method Cora Amazon Coauthor Chameleon
PPR 91.98 95.45 97.29 49.22
GraphHeat 63.72 63.39 67.52 50.67
GDC 89.33 90.47 95.29 59.91
MixHop 91.49 94.42 97.09 49.33
GPR 91.87 94.81 97.23 48.62
GRASP 93.50 96.68 97.75 76.93

Table 19: Various classical propagation mechanisms on each dataset.

Method Squirrel arXiv-year snap-patents wiki
PPR 52.31 56.87 46.70 34.83
GraphHeat 53.92 38.40 41.00 OOM
GDC 48.17 OOM OOM OOM
MixHop 51.29 34.41 28.93 39.22
GPR 52.49 34.30 29.66 36.98
GRASP 61.09 81.24 72.13 77.97

E Limitations

While the proposed method of OOD score propagation shows promise in improving OOD detection
in graph learning, there are limitations worth noting. The effectiveness of the method heavily relies on
the connectivity and structure of the graph. In scenarios where the graph exhibits random connectivity
patterns, the propagation of OOD scores with the proposed solution may no longer be effective.
Addressing these limitations will be crucial for ensuring the robustness and generalizability of the
proposed OOD detection approach in graph learning.
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F Broader Impact

This paper on detecting Out-of-Distribution (OOD) nodes in graph learning holds significant potential
for various fields and applications. By addressing a salient yet under-explored challenge in graph
neural networks, the proposed method of OOD score propagation offers a promising avenue for
enhancing the robustness and reliability of graph-based machine learning systems. The implications
extend beyond the realm of graph learning, as OOD detection is a critical component in many real-
world applications, including anomaly detection, fraud detection, and network security. Improving
OOD detection in graph structures can lead to more accurate and reliable decision-making in domains
such as social network analysis, recommendation systems, and biological network analysis. Overall,
this research has the potential to drive advancements in graph-based machine learning and contribute
to the development of more robust and reliable AI systems with broader societal impact.

G Other Related Works

Graph OOD Generalization. Unlike graph OOD detection, which aims to increase the gap between
ID and OOD for effective OOD detection, graph OOD generalization aims to learn the invariant
aspects behind ID and OOD. By enhancing these invariant points, the gap between ID and OOD
data is reduced to improve the robustness of graph models on OOD data. The distinction among
different proposed methods lies in identifying different invariant factors. GTRANS [30] leverages
contrastive learning to learn the optimal perturbations of features and structures to enhance the
GNN model’s robustness against OOD. GRAPHPATCHER [31] improves GNN’s robustness against
low-degree scenarios during testing by corrupting a portion of nodes and reconstructing the original
structure. LiSA [85] employs variational subgraph generators to generate label-invariant subgraphs
for data augmentation, thereby enhancing the robustness of GNN models. [9] leverages the stability
of correlation and employs a graph decorrelation method to learn stable associations, raising the
graph OOD generalization capability. [78] boosts generalization by eliminating confounding bias.
[41] extrapolates structure and feature spaces to generate OOD graph data, which is then used for
data augmentation to improve OOD generalization. [28] strengthens graph OOD generalization by
extracting invariant subgraphs and learning invariant patterns behind graphs based on these subgraphs.
[8] introduces a set of minimal assumptions for feasible invariant graph learning. [5] investigates
OOD generalization under different structural shifts. [22] incorporates label and environment causal
independence to discover causal subgraphs for intensifying OOD generalization. [86] improves
the OOD generalization of dynamic graphs by learning spatio-temporal invariant patterns from an
environment learning perspective.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide theoretical contribution in Section 3 and Section 4, and experimen-
tal results in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We present the limitation discussion in Appendix E.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the assumptions and complete proof in Appendix A.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: https://github.com/longfei-ma/GRASP
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix D.6

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix F
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: https://github.com/longfei-ma/GRASP
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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