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Abstract

Deep learning-based methods significantly advance the exploration of associations
among triple-wise biological entities (e.g., drug-target protein-adverse reaction),
thereby facilitating drug discovery and safeguarding human health. However, exist-
ing researches only focus on entity-centric information mapping and aggregation,
neglecting the crucial role of potential association patterns among different entities.
To address the above limitation, we propose a novel association pattern-aware
fusion method for biological entity relationship prediction, which effectively inte-
grates the related association pattern information into entity representation learning.
Additionally, to enhance the missing information of the low-order message passing,
we devise a bind-relation module that considers the strong bind of low-order entity
associations. Extensive experiments conducted on three biological datasets quan-
titatively demonstrate that the proposed method achieves about 4%-23% hit@1
improvements compared with state-of-the-art baselines. Furthermore, the inter-
pretability of association patterns is elucidated in detail, thus revealing the intrinsic
biological mechanisms and promoting it to be deployed in real-world scenarios. Our
data and code are available at https://github.com/hry98kki/PatternBERP.

1 Introduction

Exploring potential associations among triple-wise biological entities (e.g., drug-target protein-
adverse reaction) [1–6] holds significant implications for elucidating underlying biological mecha-
nisms and advancing personalized therapies [7–9], thus promoting pharmaceutical innovation and
ensuring human health. Recent deep learning-based methods have propelled auxiliary prediction tasks
concerning biological entity relationship, with most focusing on binary associations (e.g., drug-target
protein), while only a few methods offer insights for more complex triple-wise associations. Existing
solutions for the association prediction task can be broadly categorized into three types: (1) non-graph
methods [10–12]; (2) graph-based methods [13–16]; (3) hypergraph-based methods [17–22].

As illustrated in Figure 1, non-graph methods typically concatenate the features of different entities,
which are independently mapped by their respective entity encoders, to serve as representations.
Graph-based methods adopt nodes and edges of the graph to represent entities and their relationships,
and leverage the graph structure for feature propagation, thereby achieving effective representation
learning of entity nodes. Similar yet distinct, hypergraph-based methods employ the hypergraph
structure to obtain entity representations using the complex feature aggregation strategy. However,
none of the aforementioned methods consider the significance of path patterns in the graph structure,
which contain a vast amount of crucial information including hidden context and co-occurrence.
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(a) Non-graph Methods

(c) Hypergraph-based Methods

(d) Association Pattern-aware Method

(b) Graph-based Methods
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Figure 1: Comparisons of feature update strategy among non-graph methods, graph-based methods,
hypergraph-based methods, and the proposed association pattern-aware method. Unlike existing
methods that map or aggregate node features, the proposed method mines and then fuses association
patterns for each target entity node in the graph to enhance the model’s representative ability.

To this end, we introduce a novel association pattern-aware message propagation strategy as shown
in Figure 1(d). The module leverages the potential relationships, such as commonality and diversity,
of association patterns as the rule for facilitating message passing among entity features, which
can efficiently expand the potential for representing complex interactions within the perspective of
both basic graph structure and intrinsic biological mechanisms. Specifically, the related patterns
within the graph structure are sampled through the pre-defined distance relation for each entity node.
The message passing is driven by the interaction of its assigned patterns, i.e., the feature of the
entity node is subsequently updated through feature fusion using adaptive coefficients that capture
pattern commonality, generated during the pattern interaction stage. This process is followed by the
acquisition of potential common patterns with genuine biological significance for various entities.

In this paper, we propose a novel Association Pattern-aware Fusion method for Biological Entity
Relationship Prediction, namely Pattern-BERP. First, we devise an association pattern-aware strategy
to solve the limitation caused by entity-centric feature mapping and aggregation. The strategy utilizes
the association patterns related to each entity node within the graph to extract the common feature
based on the attention mechanism for these patterns, thus expanding the ability to represent hidden
complex interactions. In addition, to preserve the information interaction of different entities, a
hypergraph-based block is incorporated with the association pattern-aware fusion module, thereby
enhancing the model ability to capture relationships among various types of entities. Furthermore, to
explore low-order associations of biological bind relations, we introduce a bind-relation enhancement
module which can reconstruct missing feature of bind-relation entities and thus generate harder nega-
tive sample than random selection. Experimental results conducted on different biological datasets
show that the proposed method achieves superior performance compared to advanced baselines,
demonstrating its effectiveness and robustness in handling various biological entity relationships.
More importantly, the obtained association patterns for the relationship of drug, microbe, and disease
are quantitatively visualized with the following biological verification in detail.

Our main contributions are summarized as follow:

• We propose a novel association pattern-aware fusion method for biological entity relationship
prediction. The introduce of association pattern-aware strategy can enhance the representation
of complex interactions by aggregate features with potential association patterns.

• A bind-relation enhancement module is devised to acquire low-order associations that reveal
the biological bind relations, which is essential for reconstructing missing bind-relation entity
features and generating challenging negative triplets to enhance the model training.

• Extensive experiments are conducted to verify the superiority of Pattern-BERP, demonstrating
its robustness for various biological scenarios. Uniquely compared to the other methods, the
interpretability of association patterns is explained to reveal intrinsic biological mechanisms.
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2 Related Work

In this section, we elaborate on the related work from two distinct yet interconnected perspectives:
Biological Entity Relationship Prediction and Network Search and Mining. Each perceptive represents
a fundamental aspect of our research, addressing specific challenges and methodologies in applying
machine learning techniques to the prediction task.

Biological Entity Relationship Prediction. The latest advancements in artificial intelligence have
motivated researchers to employ deep learning methodologies for predicting triple-wise biological
entity associations. Hypergraph neural network (HGNN)-based methods [17–22] have become the
mainstream research direction in this field. Tu et al. [17] proposed a deep hyper-network embedding
model to preserve both local and global proximities in the embedding space. Building upon this,
Jiang et al. [18] incorporated a dynamic hypergraph construction strategy to capture the hidden and
important relations in data structures. Zhang et al. [19] developed a self-attention-based graph neural
network applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes.
Liu et al. [20] proposed a multi-way relation-enhanced hypergraph representation learning method to
predict anti-cancer drug synergy. Liu et al. [21] proposed a multi-view contrastive learning-enhanced
hypergraph model for drug-microbe-disease association prediction. In addition, Chen and Li [23]
attempted to adopt the tensor decomposition strategy to predict which target a drug binds to when
administered to a disease, and further proposed a neural tensor network model [24] that seamlessly
combines tensor algebra and deep neural networks to effectively capture the complex nonlinear
dependencies among drugs, targets, and diseases.

Network Search and Mining. Network search and mining techniques, particularly those utilizing
path information including random walks [25–28] and meta-path [29–32], have been widely employed
to extract local structural information from networks. These methods have found applications in areas
such as content recommendation and community detection [33–37]. Brin and Page [25] introduced
a classic ranking algorithm PageRank to determine the importance of web pages based on their
link structure. Jeh and Widom [26] adopted a similarity measure based on pairwise random walk,
which can capture the structural similarity between nodes, and further extended PageRank with
a personalized version [27]. Perozzi et al. [28] proposed Deepwalk that leverages local random
walk information to learn vertex latent representations based on deep learning techniques. These
above methods are applicable to homogeneous networks and cannot fully utilize the rich semantic
information in heterogeneous networks. To address the limitation, Sun et al. [29] introduced a meta
path-based similarity framework for heterogeneous information networks, which can capture the
subtle semantics of similarity among objects of the same type. Dong et al. [30] proposed a deep
learning-based heterogeneous network representation learning method that automatically learns
hidden meta-path semantics, generating general node embedding representations. Wang et al. [31]
introduced a graph-based fraud detection method that addresses the issue of low homophily by
integrating label information to generate distinguishable neighborhood information. Furthermore
within the bioinformatics field, Chen et al. [32] proposed a computational algorithm that performs
random walks on an integrated network to infer potential relations between proteins and ADRs.

In line with the above methods, Pattern-BERP utilizes path information for triple-wise heterogeneous
biological network mining. By leveraging the fusion of association patterns, it facilitates message
passing among various biological entities, which will be described comprehensively in Section 4.2.

3 Problem Formulation

Given three distinct entity types in biological networks, termed as A = {a1, a2, · · · , ai, · · · , a|A|},
B = {b1, b2, · · · , bj , · · · , b|B|}, and C = {c1, c2, · · · , cm, · · · , c|C|}, their Cartesian product S =
A × B × C is a set of all possible triple-wise biological entity associations. For simplicity, the
relation A-B-C is used to represent complex relational semantics for biological entities, such as
“drug-microbe-disease”, “synergistic drug-drug-cell line” or “drug-target protein-adverse reaction”.

For each triplet (ai, bj , cm) ∈ S, we assign a label p ∈ {0, 1}. A label of p = 1 indicates that the
existence of certain association has been confirmed, while p = 0 represents an unknown association
which denotes that the association is not yet known and could potentially exist. The objective is to
develop a credible model that can predict these potential associations from unknown ones.
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Figure 2: Overall framework of Pattern-BERP. First, entity attributes are initialized with different
types of bio-encoders. Then, these existing associations are constructed into one hypergraph G and
two bipartite graphs GA,B, GB,C . After that, the hypergraph is encoded with Association Pattern-aware
Fusion module based on the pattern commonality, thereby affecting target entity representation. In
addition, the bipartite graphs are encoded to output the missing bind-relation feature and thus generate
hard negative samples. Finally, the integrated entity feature are used for final association prediction.

4 Pattern-BERP

To enhance the ability to represent complex interactions, we propose the first association pattern-
aware method, termed as Pattern-BERP to extract the rich semantic information embedded within the
intricate structures of biological networks. As illustrated in Figure 2, the section is divided into four
parts: First, these entity relationships are represented in hypergraph and bipartite graph structures
for subsequent module input. Next, the association pattern-aware fusion module is proposed to
update entity node feature through association pattern-aware interaction. In addition, the bind-relation
enhancement module is introduced to reconstruct bind-relation feature and thus generate hard negative
samples. Finally, the detailed summary of loss function and complexity analysis is provided.

4.1 Graph Construction

Given the adjacency relationships among entity nodes, the hypergraph and bipartite graph structures
are constructed to facilitate the subsequent extraction of structural information and relational associa-
tion patterns within the respective graphs, which serve for association pattern-aware fusion module
and bind-relation enhancement module.

The attributes of each entity are initialized as node features on the graphs with the domain knowledge
of bio-entities through its own type. Finally, the initialized node attributes of X ∈ R|V|×d consist of
features XA, XB and XC , where d denotes the feature dimensional of initialized entity attributes.
Details about entity attribute are provided at Appendix A.1.

Hypergraph Construction. Triple-wise biological entity associations can be modeled as a hyper-
graph G = (V, E), which includes a vertex set V = A ∪ B ∪ C and a hyperedge set E ⊂ S that
represents all known associations. Technically, G is further formulated as an attributed hypergraph
with node attributes X ∈ R|V|×d and an incidence matrix H ∈ {0, 1}|V|×|E|, which is defined as:

h(v, e) =

{
1, if v ∈ e

0, if v /∈ e.
(1)

Bipartite Graph Construction. The premise of constructing the bind-relation module is to decom-
pose the original triple-wise associations to separately obtain pairwise relations of different types
of entities. Since the original triplet is in the form of (ai, bj , cm), and generally the interaction
relationships between the three entities are hierarchical (e.g. drug ai acts on protein bj , and the
activated bj then leads to certain adverse reaction cm). Hence in this paper, we construct two bipartite
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graphs: GA,B1 for entity A → entity B1
2, GB2,C for entity B2 → entity C. Then the edge sets of the

bipartite graphs can be formulated as:

EA,B1 = {(a, b) | a ∈ A, b ∈ B1,∃ e ∈ H such that a, b ∈ e}, (2)
EB2,C = {(b, c) | b ∈ B2, c ∈ C,∃ e ∈ H such that b, c ∈ e}. (3)

Note that, the relationship of A → C is not under consideration due to there is no direct connection in
this context. The constructed bipartite graphs GA,B1

,GB2,C serve as input for bind-relation module.

4.2 Association Pattern-aware Fusion

To comprehensively account for the feature interactions within association patterns, the proposed
Association Pattern-aware Fusion (APF) method comprises two fundamental components: Firstly,
Association Pattern Sampling (APS) block is designed to sample association patterns by utilizing the
distance tokens relevant to target nodes. Secondly, Association Pattern-aware Interaction (API) block
is introduced to update node features by message interaction within the sampled association patterns
and mine the intrinsic pattern commonality with biological support.

4.2.1 Association Pattern Sampling

Definition 1. Given certain entity node, the distance token between the node and one hyperedge
or association pattern is defined as u-hop. Here, 1-hop patterns represent the hyperedges directly
covering the node, 2-hop patterns represent the hyperedges directly covering all the 1-hop neighbor
nodes of the node, and the relation continues for higher hop counts. If the node is unreachable when
u reaches the max step U, we define these patterns as no-relation and set the distance to −∞.

Based on the above definition3, we generate the distance tokens between each node and all hyperedges,
ultimately obtaining a distance matrix D ∈ R|V|×|E|, defined as follows:

d(v, e) =

{
u, if node v is u-hop away from pattern e

−∞, if node v is unreachable from pattern e
(4)

where d(v, e) represents the defined distance from node v to pattern e; u indicates the number of
hops from node v to pattern e.

To represent an entity node with association patterns, the general principle is to prioritize and retain
patterns that are closer for each node based on the distance tokens, with a total of N patterns sampled.
Formally, given an entity node v, let Dv ∈ RN and Pv ∈ RN×3d represent the distance tokens
and feature vectors of the selected sampled patterns, where each sampled pattern consists of three
entity nodes and the d-dimensional feature embeddings of each node are defined within the initial
node embeddings X. Then, the output pattern feature zv for node v considers the relative position
of these related patterns, which is thus formulated as zv = Pv + POS(Dv), where POS(·) denotes
the position encoding layer that maps from RN → RN×(3d). Finally, the integrated embedding
zv ∈ RN×3d with distance information is produced for use in the subsequent API block.

4.2.2 Association Pattern-aware Interaction

Before put into the API block, we adopt a hypergraph convolution layer implemented by [40] on
the constructed hypergraph G to facilitate neighbor-based information propagation among different
entities. Then the updated node feature X∗ after hypergraph convolutions is used to construct the
feature of patterns mentioned in the APS block, thereby yielding zv for the information interaction of
these sampled patterns. Details of hypergraph convolution are provided at Appendix.

Pattern Interaction. The API block is designed to search for and extract commonalities among
different sampled patterns related to a specific entity node, and thus consists of a composition of
Transformer layers [38]. Each Transformer layer has two modules: a multi-head self-attention
mechanism (MHA) and a position-wise feed-forward network (FFN). For simplicity, we consider
the single-head setting, and the extension to multi-head attention is standard and straightforward.
Specifically, let Z(0) = [z

(0)
1 , . . . , z

(0)
|V|] ∈ R|V|×N×(3d) denotes the input of the self-attention module

2To facilitate distinction, we set the entity term B1 = B2 = B.
3The definition is analogous to positional embedding in Transformer [38] and ViT [39].
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where zv ∈ RN×(3d) is the representation for node v. The input zv is projected by three matrices
WQ ∈ R(3d)×dK , WK ∈ R(3d)×dK , and WV ∈ R(3d)×dV to obtain the corresponding query, key,
and value representations Qv , Kv , and Vv for node v:

Qv = zvWQ,Kv = zvWK ,Vv = zvWV ,Av =
QvK

⊤
v√

dK
,Attn(zv) = softmax(Av)Vv, (5)

where Av ∈ RN×N is a matrix capturing the similarity between queries and keys; dK , dV denotes
the feature dimensional of the key representations Kv and the value representations Vv

4. Then
we will get the output of the self-attention module z′v ∈ RN×(3d). To summarize the process of
transformer layer, the output of association pattern-aware attention block is computed as:

Z′(l) = MHA(LN(Z(l−1))) + Z(l−1),Z(l) = FFN(LN(Z′(l))) + Z′(l), (6)

where LN denotes layer normalization, and Z(l) is the output of the current transformer layer. After
L1-layer transformers, we get the encoding output Z(L1) = [z

(L1)
1 , . . . , z

(L1)
|V| ] ∈ R|V|×N×(3d), and

then apply the mean function to similar entities in N association patterns for each node v to obtain
the learned embedding zv ∈ Rd.

Pattern Commonality. To mine the commonality of N sampled patterns, a score is defined to
represent the quantitative relation of these association patterns, termed by Pattern Commonality
Coefficient, based on the attention scores Av of trained API block, which is formulated as follows:

Ãv = softmax(Av),Cv =
1

N

N∑
n=1

Ãv[n, :], (7)

where Cv ∈ RN and Cv[n] ∈ (0, 1) indicates the commonality coefficient of the n-th pattern. Pat-
terns with relatively high commonality coefficients tend to share the same or similar pathways, while
showing significant differences in response compared to low commonality patterns. Corresponding
biological validations are presented in the Section 5.3.

4.3 Bind-relation Enhancement

In the context of multi-entity relationships, there often exist strong pairwise bind relation between
entities, such as drug Aspirin to treat common cold [41, 42]. To mitigate the weakening or overlooking
of low-order bind relation, a Bind-relation Enhancement (BE) module is designed to effectively
reconstruct the missing feature by capturing these important pairwise associations. Additionally, the
module can generate confident and challenging negative samples to aid the training.

Bind-relation Feature Reconstruction. To efficiently learn entity representations in pairwise bind
relations, we introduce an edge prediction classification task on the bipartite graphs EA,B, EB,C with
the initial embeddings X(0)

A = XA,X
(0)
B1

= X
(0)
B2

= XB,X
(0)
C = XC . Specifically, a L2-layer self-

supervised BGNN model [43] is employed to learn node features on the bipartite graphs, followed by
the Multi-layer Perception (MLP) [10] layer to output association probabilities, which is defined as:

X
(l+1)
A ,X

(l+1)
B1

= BGNN(X
(l)
A ,X

(l)
B1
,GA,B1),X

(l+1)
B2

,X
(l+1)
C = BGNN(X

(l)
B2
,X

(l)
C ,GB2,C), (8)

p̂(a,b1) = MLP(x(L2)
a ∥ x(L2)

b1
), p̂(b2,c) = MLP(x

(L2)
b2

∥ x(L2)
c ), (9)

where X
(l)
A ,X

(l)
B1
,X

(l)
B2
,X

(l)
C represent the node features at layer l; x(L2)

a ,x
(L2)
b1

,x
(L2)
b2

,x
(L2)
c denote

the final learned representations of entity a, b1, b2, c respectively; p̂(a,b1), p̂(b2,c) represent the esti-
mated probability of association between entities a, b1 and entities b2, c respectively. After that, the
loss of the supervised prediction task can be formulated as:

LA,B1
/LB2,C = − 1

|EA,B1
|/|EB2,C |

∑
e∈EA,B1

/EB2,C

(pe log p̂e + (1− pe) log (1− p̂e)) . (10)

The loss LBE of bind-relation task is defined as LBE = αLA,B1
+ (1 − α)LB2,C , where α is the

balancing coefficient for the two losses.
4In the single-head setting, dK = dV = 3d.
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Hard Negative Sampling. Based on the above bind-relation task, negative samples are adaptively
generated for triple-wise associations, instead of randomly selecting from the vast sample space.
Moreover, the generated negative samples are challenging, which contributes to efficient learning. As
illustrated in Figure 2, three kinds of negative samples are considered as follows:

E⊗ = {(a, b′, c) | (p(a,b′) < γ) ∨ (p(b′,c) < γ)}, (11)
where b′ ∈ B represents another entity with random selection that differs from entity b in the original
triplet to form the negative sample (a, b′, c); E⊗ is the set of generated negative triplets; γ represents
the threshold for the prediction probability to determine whether the association exists.

4.4 Total Loss

Base on the above modules, zv of node v learned by the APF module is updated with reconstructed
features xv from the BE module according to the entity type, thereby generate the enhanced em-
bedding of v with z∗v = zv + xv for the association predictor network. Hence, for the triple-wise
association prediction, we utilize the learned embeddings z∗a, z∗b , and z∗c of entity a, b, c to output the
probability of the association p̂ through a scoring function p̂(a,b,c) = MLP(z∗a ∥ z∗b ∥ z∗c). The loss of
the association prediction task for true sample set E and negative sample set E⊗ can be formulated as:

LAPF = − 1

|E ∪ E⊗|
∑

e∈(E∪E⊗)

(pe log p̂e + (1− pe) log (1− p̂e)) . (12)

Hence, the total loss L is computed through an alternating training strategy of the two modules, where
the BE module is trained for the first 4 epochs of every 5-epoch cycle, followed by the APF module,
which is trained for the final epoch of each cycle. During the training of each module, the parameters
of the other one are frozen. The equation for L is defined as follows:

L(o) = LBE(o) · (1−
⌊
o mod 5

4

⌋
) + LAPF (o) ·

⌊
o mod 5

4

⌋
, (13)

where o represents the current epoch; ⌊·⌋ denotes floor function; mod denotes modulo operation.

4.5 Complexity Analysis

Considering the significantly higher complexity of the APF module in comparison to other network
components, we only consider APF which aggregates multiple patterns across various entity nodes.
Specifically, for one entity node with N sampled patterns from the APS module, the input and hidden
features in the MHA layers are of dimension fM , and hidden features in the FFN layers are fF . In
APF, the query, key, and value matrices are derived from the same input sequence and share length
N . The primary operations for APF include scaled dot-product attention, multiplication of attention
weights and values, MHA linear transformation, and FFN linear projection. The time complexity is
expressed as O(N2 · fM +N · f2

M +N · fM · fF ). Hence, for the entire graph, the total complexity
is O

(
|V| · (N2 · fM +N · f2

M +N · fM · fF )
)
, where |V| is the number of entity nodes.

5 Experiment

5.1 Experimental Settings

Datasets. In this paper, we adopt three biological entity association datasets with significant biological
meaning, namely DMD (Drug-Microbe-Disease), DDC (synergistic Drug-Drug-Cell line) and DPA
(Drug-target Protein-Adverse reaction), among which DPA dataset is directly constructed. In line
with DMD and DDC, we utilize preprocessing tools provided by [21] to deal with the original data
from ADReCS-Target [44], and collect a total of 1,079 triplets that are structured into the data schema
<drug, protein, adr>. Appendix Table 3 presents the statistics and characteristics of these datasets.

Baselines. To verify the effectiveness of Pattern-BERP, we compare it with three kinds of methods:
(1) Non-graph methods. Following the work from [21], five non-graph methods are adopted including
Random Forest (RF) [45], MLP [10], CP [11], Tucker [11], CoSTCo [12]; (2) Graph-based methods.
We select four classical architectures of graph neural network, including GCN [13], GraphSAGE
[14], GAT [15], GIN [16]; (3) Hypergraph-based methods. Recent hypergraph learning methods to
address triple-wise biological entities associations or similar tasks are considered as the baselines,
including DHNE [17], HyperSAGNN [19], HGSynergy [20], MCHNN [21].
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Table 1: Performance comparison on three datasets of different biological entity associations. Each
result of these methods is from the average of 5-fold cross-validation experiments with four scenarios.
The best result for each dataset and metric is marked in bold. All the presented hits scores are in %.

DMD DDC DPA

Methods hits@1 hits@3 hits@5 hits@1 hits@3 hits@5 hits@1 hits@3 hits@5

RF 34.06 57.28 68.31 8.93 18.63 28.29 26.62 37.45 44.95
MLP 42.72 65.40 75.33 13.27 27.98 39.88 27.55 40.65 48.80
CP 44.73 66.74 76.47 13.71 28.67 41.03 31.30 45.46 54.03

Tucker 45.27 66.54 76.98 13.24 28.55 39.77 28.80 43.10 50.74
CoSTCo 38.69 60.38 71.77 10.93 22.95 33.60 31.06 41.95 47.87

GCN 62.66 76.57 79.74 25.86 47.06 58.27 18.38 30.56 38.66
GraphSAGE 56.98 73.52 77.42 22.23 41.73 52.98 12.36 23.84 31.48

GAT 47.13 67.90 75.24 21.60 43.91 54.41 21.53 33.24 41.53
GIN 40.08 60.93 69.29 12.68 28.41 37.52 16.44 30.05 39.12

DHNE 81.86 93.66 96.02 43.42 62.61 72.01 32.64 47.69 56.30
HyperSAGNN 87.04 93.99 96.09 41.31 66.38 76.29 33.24 49.58 58.38

HGSynergy 88.68 92.10 94.51 41.07 60.74 70.76 28.19 40.36 48.44
MCHNN 90.04 93.92 95.19 41.91 61.12 72.10 32.27 43.29 50.32

Pattern-BERP 93.94 97.53 98.24 48.01 68.40 76.39 43.52 57.36 63.89
∆ +3.90 +3.54 +2.15 +4.59 +2.02 +0.10 +10.28 +7.78 +5.51

Implementation Details. To accurately evaluate model performance and prevent overfitting, 5-fold
cross-validation is used to evaluate the performance. Specifically, we randomly split the dataset into
a 90% cross-validation set and a 10% independent test set. On the cross-validation set, the 5-fold
cross-validation is implemented. Moreover, the independent testing, in which the model is trained on
the cross-validation set and tested on the independent test set, is conducted to obtain the prediction
results. In the training stage, Binary Cross Entropy loss is adopted to measure model performance
and Adam optimizer is adopted to optimize all of model parameters with a learning rate of 0.0015.

Evaluations. To evaluate the prediction performance on the triplet associations, hit ratio (hit@n) and
normalized discounted cumulative gain (ndcg@n), which are widely used in recommendation tasks
[46, 47], are employed for model ability to provide a comprehensive assessment for the task.

5.2 Performance Comparison with Advanced Baselines

Table 1 summarizes the prediction performances of Pattern-BERP in comparison with other baselines
across the DMD, DDC and DPA datasets. It is evident that Pattern-BERP significantly surpasses
the previous state-of-the-art baselines, including non-graph, graph-based, and hypergraph-based
methods, across all three datasets by a large margin, with a particularly notable hit@1 improvement
of approximately 23.6% on the DPA dataset (from 33.24 to 43.52). The results underscore the broad
accuracy and applicability of the proposed method in various biological association scenarios.

A salient observation is that hypergraph-based methods achieve superior performance than those of
the other two types. This phenomenon empirically demonstrates the advantages of utilizing high-order
structure information over the other methods that we compare. Additionally, we observe that graph-
based methods exceed non-graph methods for DMD and DDC datasets. The relatively large number
of associations and proportion of DMD and DDC datasets, as shown in Appendix Table 3, indicate
a higher density and stronger interconnectivity within the underlying entity relationships. Hence,
graph-based methods acquire abundant information of entity interactions based on the graph structure.
Furthermore, hypergraph-based methods acquire high-order structure information, ultimately leading
to better performance. In contrast, for the DPA dataset, non-graph methods outperform graph-based
methods, even demonstrating competitive performance compared to hypergraph-based methods. This
can be attributed to the fact that the association proportion within the DPA dataset is conspicuously
low (around 0.002%), indicating a relatively sparse graph structure. Under such conditions, the
non-graph methods are able to obtain more robust association information compared to graph-based
models, which may struggle to capture meaningful patterns from the limited graph connectivity.

5More details about the experiments can be found at Appendix B.
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(#53, #41, #80) (#76, #37, #128) (#132, #41, #9) (#102, #38, #8)

2-hop 2-hop 2-hop

(#227, #44, #80)

2-hop

#102 Econazole #227 Tobramycin#132 Hetacillin#53 Cefadroxil #76 Chlorhexidine acetate

Drug #53

1-hop

1.03% 1.58% 1.57% 1.55% 0.001%

... ...(a)

(#207, #54, #55) (#100, #54, #47) (#209, #54, #62) (#78, #28, #69)

2-hop 2-hop 2-hop

(#160, #16, #110)

2-hop

#209 Salicylic Acid #160 Moxifloxacin#100 Diphenyl Disulfide#207 S-(2-Thienyl)-L-cysteine #78 Chrysophanic Acid

Drug #207

1-hop

1.37% 2.98% 2.98% 2.98% 0.001%

... ...(b)

Figure 3: The interpretability cases of N=100 association patterns related to drug #53 and #207 in
DMD dataset. The pattern commonality coefficients are represented in the form of a percentage to
indicate the contribution for visualization, with each pattern typically assigned a default value of
1%. Larger pattern commonality coefficients indicate a more significant contribution to the target
drugs, and these patterns frequently exhibit similar or even identical biological pathways. Conversely,
smaller commonality coefficients suggest a lack of relevance to these drugs.

5.3 Association Pattern Interpretability

In order to investigate the potential relation among different association patterns, we visualize the
pattern commonality coefficients of Cefadroxil (drug #53) and S-(2-Thienyl)-L-cysteine (drug #207)
in DMD dataset, as shown in Figure 3. Larger pattern commonality coefficients contribute more to the
original drug pathway, whereas smaller coefficients often relate to different biological mechanisms.
It can be observed that:

• For Cefadroxil (drug #53), the common patterns consisted by Chlorhexidine acetate (drug #76)
[48], Hetacillin (drug #132) [49], and Econazole (drug #102) [50, 51] are considered more
similar as the mechanism [52] that actives on the cell wall and envelope leading the change of
microbe physiological activities, thus treating the diseases. Instead, Tobramycin (drug #227)
inhibits mRNA be translated into protein and thus promotes microbe cell death [53, 54].

• For S-(2-Thienyl)-L-cysteine (drug #207), the common patterns consisted by Diphenyl Disulfide
(drug #100) [55, 56], Salicylic Acid (drug #209) [57], and Chrysophanic Acid (drug #78)
[58, 59] are considered more similar as the mechanism that [60–62] inducts oxidative stress
in bacteria and thus damage all components of the microbe cell. Instead, Moxifloxacin (drug
#160) inhibits DNA gyrase and topoisomerase IV enzymes to separate bacterial DNA, thereby
inhibiting cell replication [63, 64].

In summary, the analyzed cases illustrate the high-commonality patterns derived from Pattern-BERP,
demonstrating how these small molecule drugs influence microbial activities to treat diseases, gener-
ally following a consistent physiological route. These cases indicate that our method can discover
potential common patterns through the API block, and obtain larger pattern coefficients through the at-
tention mechanism, which drives the nodes to learn these important common interactions and acquire
more expressive representations. Details about additional cases can be found at Appendix B.3.2.
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Table 2: Ablation study results on DDC dataset with different module designs. “BFR” denotes Bind-
relation Feature Reconstruction; “HNS” denotes Hard Negative Sampling; “HC” denotes Hypergraph
Convolution block; “DE” denotes Distance Embedding; “API” denotes Association Pattern-aware
Interaction block. All the presented scores are in %, and the best result is marked in bold.
w/o BFR w/o HNS w/o HC w/o DE w/o API hits@1 hits@3 hits@5 ndcg@1 ndcg@3 ndcg@5

✓ ✓ - - - 44.76 64.74 73.08 44.76 56.42 59.85
✓ - - - - 45.03 65.86 74.97 45.03 57.19 60.95
- ✓ - - - 42.81 64.48 74.02 42.81 55.41 59.33
- - - ✓ - 40.29 62.87 72.44 40.29 53.41 57.35
- - - ✓ ✓ 44.69 65.17 74.51 44.69 56.62 60.45
- - ✓ - - 47.11 66.56 74.89 47.11 58.47 61.90
- - - - - 48.01 68.40 76.39 48.01 59.84 63.13

5.4 Ablation Study

To investigate the necessity of each component in Pattern-BERP, we conduct several comparisons be-
tween Pattern-BERP and its variants on the test set. As illustrated in Table 2, when basic components
of Pattern-BERP have been removed, the performances of corresponding variants on DDC dataset
significantly decline, indicating that these components all contribute to the performance. Besides, we
have other observations: (1) when only DE module is removed, the performance is inferior to the
one removing the entire APA module containing DE, demonstrating that inaccurate entity distance
information has a more detrimental impact on the prediction performance; (2) eliminating HNS
module results in a significant drop in the performance, highlighting its crucial role in enhancing
the model’s robustness and discrimination capability and thus indicating that the proposed negative
sampling strategy contributes to efficient learning; (3) when removing HC module leads to a slight
performance degradation, the impact is relatively limited which suggests that the capability of HC
module in representing complex associations is relatively modest for the highly dense-association
DDC dataset, but it still provides some beneficial effects towards the final performance improvement.

To verify the affect of hyperparameter settings to model performance, we first conduct ablation
experiments on the three main parameters of the APF module, namely number of attention heads,
number of max pattern distance, and number of sampled association patterns. As illustrated in
Appendix Figure 5, when the three hyperparameters are increased, the prediction performance on
DDC dataset exhibits an overall upward trend, suggesting that increasing these hyperparameters helps
the model better capture the complex association patterns, thereby improving the final performance.
Additionally, we conduct experiments on the loss-balanced coefficient α and the bind-relation
prediction probability threshold γ, both adjusted from 0.1 to 0.9. Results in Appendix Figure 6 show
that setting α and γ to 0.5 yields the best performance. Specifically, for α, since the final prediction
task involves predicting the associations among entity A, B, and C, the two tasks of A → B and
B → C are intuitively of equal importance, therefore the balanced coefficient α set to 0.5; for γ,
bind-relation prediction is fundamentally a binary classification task, thus the threshold γ is set to 0.5.
Details about ablation experiments are presented at Appendix B.3.3.

6 Conclusion

In this work, we propose a novel association pattern-aware fusion method Pattern-BERP for biological
entity relationship prediction, which effectively combines the related association pattern information
into entity representation learning. In addition, to enhance the missing information of the low-order
message passing, we devise a bind-relation module that considers the strong bind of low-order entity
associations. The evaluation on three biological datasets quantitatively demonstrate that the proposed
method consistently achieve superior performance over the competing baselines. Moreover, the
interpretability explanations of association patterns reveal the intrinsic biological mechanisms and
thus promote the method to be deployed in real-world scenarios.

Due to the domain-specific task, Pattern-BERP focuses on the fixed-length association patterns.
Extending the approach to capture variable-length pathways could further enhance the representational
power. Additionally, exploring the applicability of the method in other domains beyond biology, such
as general knowledge graph completion, would help evaluate its broader generalizability.
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Appendix

In this appendix, we provide a comprehensive elaboration of the methodologies, experimental details,
and additional insights that support the findings presented in the main manuscript. The appendix
is structured into details of the proposed method, details of the experiments, and other discussion
contents including limitation and extension. Furthermore, our data, code and all raw experimental
results are provided in the Github repository https://github.com/hry98kki/PatternBERP.

A Details of Pattern-BERP Method

A.1 Entity Attribute

Before constructing the graphs, the attributes of each entity are initialized as node features on the
graphs with the domain knowledge of bio-entities. Due to the varying types of entities being studied,
multiple encoders are employed to align the attribute embeddings for different types of entities.
Hence, three specific types of encoders are considered as follows:

• For drug entities D, their SMILES strings can be converted into molecular graphs GD =
(SD,AD), where SD is the attribute matrix of all nodes representing the atoms and AD is the
adjacency matrix of these nodes. Vallina GIN [16] is adopted to learn atom representations
and then these atom representations are summarized into a drug-level feature vector through a
global max pooling (GMP), which is formulated as:

X
(l+1)
D = MLP(l+1)((AD + (1 + ϵ)I)X

(l)
D ), (14)

where l is the current epoch of GIN, I is the identity matrix, ϵ is a fixed scalar, and X
(0)
D = SD.

After applying the GMP over all molecular graphs, the features of all drug entities can be
compiled into XD ∈ R|D|×d, where d represents the dimension of entity attribute vector.

• For protein entities P , taken the one-dimensional protein sequence T as the input, we first
convert the sequence string to an integer vector as the initialized embedding SP ∈ RT . Then,
considering X

(0)
P = SP , the 1D CNN [65] model is used to extract the protein representation.

The propagation mechanism of each CNN layer works as follows:

X
(l+1)
P = σ(CNN(X

(l)
P , d

(l)
in , d

(l)
out, ks

(l))), (15)

where X
(l)
P , X(l+1)

P are the hidden feature vectors of the lth and (l + 1)th CNN layer, respec-
tively; d(l)in , d(l)out, ks

(l) are the number of channels in the input, number of channels produced by
the convolution and the convolving kernel size of the lth CNN layer; σ(·) represents nonlinear
activation function, specially ReLU. After CNN layers, the d-dimensional feature vectors of all
target proteins are denoted as XP ∈ R|P|×d.

• For other entities O (such as diseases), we compile similarity matrices to acquire the initial
embedding SO ∈ R|O|×|O| based on the methods provided by [32, 66–68] and followed by
fully-connected networks to obtain the entity representation, denoted as XO ∈ R|O|×d. More
specifically, for microbe nodes, cell lines and disease nodes, we compile similarity matrices
SM ∈ {1, 0}|M|×|M|, SL ∈ R|L|×|L| and SN ∈ R|N |×|N| based on the methods provided by
[66–68], which then are transformed into XM ∈ R|M|×d, XL ∈ R|L|×d and XN ∈ R|N |×d

by fully-connected networks. For ADRs nodes, we first use the co-occurrence of drugs to
evaluate ADRs similarity. For two ADRs i and j, the Jaccard score is calculated as follows:

Jaccard_score =
|Di ∩Dj |
|Di ∪Dj |

, (16)

where Di and Dj denote drug sets that cause ADR i and ADR j, respectively. The ADR
similarity matrix SR ∈ R|R|×|R| is constructed according to the Jaccard score, finally denoted
as XR ∈ R|R|×d.

Based on the above construction rules, we generate the corresponding initial attributes for entity
datasets A, B, and C through the entity types. Finally, the entity attributes X consists of features XA,
XB and XC . When encountering specific datasets, the three entity types can be substituted into (A,
B, C) respectively. For example, X consists of XD, XP and XR in DPA dataset.

16

https://github.com/hry98kki/PatternBERP


Table 3: Detailed information of three datasets of different biological entity association.
Datasets Entity Types #Nodes #Associations Ratio

DMD Drugs Microbes Diseases 270 58 167 2,763 0.106%
DDC synergistic Drugs Drugs Cell lines 87 87 55 2,044 0.491%
DPA Drugs Proteins ADRs 298 552 280 1,079 0.002%

A.2 Association Pattern Distance

Given the maximum number of hops U (i.e., the max positional distance for certain entity node), the
distance matrix D ∈ R|V|×|E| is constructed based on Definition 1 as follows:

• 1-hop distance: For each node v and hyperedge e, if hyperedge j directly contains node i, then
Dv,e = 1 represents the association of hyperedge j is the 1-hop pattern.

• 2-hop distance: If hyperedge e does not directly contain node v but shares a node with a
hyperedge that does, then Dv,e = 2 represents the association of hyperedge e is the 2-hop
pattern.

• u-hop distance: Recursively calculate further distances up to u-hop, then Dv,e = u.
• Unreachable: If node v cannot reach hyperedge e within U -hop, then Dv,e = −∞.

Hence, the distance tokens Dv for node v are transformed by one position encoding layer, thereby
yielding the positional embeddings for the self-attention mechanism of the subsequent API block.

A.3 Theory Analysis

As an empirical method, the Pattern-BERP method extracts common patterns or rules from large
bio-associated networks, similar to the k-means clustering. Specifically, given a triplet-wise dataset
S = {s1, s2, . . . , st, . . . , sT } and K common patterns, the optimization goal is to minimize the
total distance of sampled patterns to their respective pattern centers. First, initialize the pattern
centers M = {m1,m2, . . . ,mk, . . . ,mK}. Next, assign each sample to the nearest pattern center
by computing the center index with argmink ∥si − mk∥ for all the centers in M. Then, update
the position of these pattern centers using mk = 1

|Ck|
∑

st∈Ck
st, where Ck is the set of samples

assigned to pattern k calculated as above. Iterate these assignment and update steps until the pattern
centers converge. The objective function to minimize is J =

∑K
k=1

∑
st∈Ck

∥st −mk∥2, and by
minimizing J , Pattern-BERP extracts representative biological association patterns effectively.

B Details of the Experiments

B.1 Datasets

In this paper, three biological datasets are used to evaluate the efficacy of the proposed method. Each
dataset encompasses three different entities and their associations. Appendix Table 3 provides a
detailed presentation of the specific entities within each dataset, including the count of nodes per
entity, the number of associations among these nodes, and the corresponding association ratio. All
entity associations are structured into triplet scheme, such as <drug, protein, adr> for DPA dataset.

DPA dataset. DPA dataset is first constructed and preprocessed with the origin data from [44].
Specifically, only <drug, target, adr> triplets that have complete field information are retained, that is,
drug Pubchem CID, target protein identifier UniProt ID, ADR term name. Then, the detail information
is obtained through these unique identifiers, respectively. For drugs, the PubChem database [69] is
queried with the PubChem CID of each drug, and their Canonical SMILES are recorded. For proteins,
the UniProtKB database [70] is queried with the UniProtKB ID of each protein, and their protein
sequences are recorded. For ADRs, the incidence matrix about the reaction of specific ADRs to
∼15,000 drugs is obtained from publicly available datasets [71]. In this matrix, a value of 1 indicates
that a particular drug causes a specific ADR, while a value of 0 denotes no relation between them.
Furthermore, following the method described in Appendix A.1, the ADR similarity matrix can be
constructed for subsequent feature generation fo ADR entities.
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Table 4: Detailed information of memory usage (GB) with varying the number of sampled patterns
N across three datasets on a single NVIDIA A6000 GPU with Intel(R) Xeon CPU (24 cores).

Datasets Number of Nodes Number of Associations N = 5 N = 10 N = 20 N = 50 N = 100

DMD 495 2,763 10.52 10.65 10.93 11.77 13.30
DDC 229 2,044 4.35 4.40 4.58 4.96 5.64
DPA 1,130 1,079 9.68 10.01 10.62 12.55 16.01

B.2 Details of Implementation

B.2.1 Implementation of Baselines

The implementation of all baseline methods is conducted using their respective publicly accessible
source codes. Optimal or default configurations for each method are employed to ensure robustness.
Specifically, for methods such as RF, MLP [10], CP and Tucker [11], meticulous parameter tuning is
engaged in to elicit their peak performance levels. For GCN [13], GAT [15], GraphSAGE [14] and
GIN [16], the original triple-wise associations are initially decomposed into two pair-wise associations.
Subsequently, each pair-wise association is independently modeled using the corresponding graph
neural network model, and the prediction probabilities of the two pair-wise associations are multiplied
to obtain the final prediction value for the triple-wise association. Additionally, for DHNE [17] and
HyperSAGNN [19], biological embeddings are integrated with their original structural embeddings
to ensure fairness. For CoSTCo [12], HGSynergy [20] and MCHNN [21], the parameter settings
outlined in the original publications are followed. It is important to note that for the sake of equitable
comparison, all of these methods utilize negative sampling setting from MCHNN that is consistent
across implementations.

B.2.2 Implementation Settings

The initialized entity embedding size d is fixed to 128. The number of BGNN, APF layers are all
fixed to 2. The training epoch is setting to 1,000 for DMD, DPA datasets and 2,000 for DDC dataset.
The number of max hop in pattern sampling U is setting to 3. The number of sampled patterns N
is setting to 100. The number of attention heads is 32 for DMD dataset, 16 for DDC dataset, 4 for
DPA dataset. The loss-balanced coefficient for bind-relation task α is fixed to 0.5. The threshold for
bind-relation prediction probability γ is fixed to 0.5. In addition, in line with the evaluation strategy
of [21], 29 negative samples are randomly generate for each test triplet in four scenarios for the
evaluation of all methods, and thus display the average metrics over all test triplets. These scenario
settings can comprehensively evaluate the model ability to identify positive and negative samples
under these stringent conditions.

Furthermore, all experiments are conducted on a single NVIDIA A6000 Tensor Core GPU (48GB)
and Intel(R) Xeon CPU with 24 cores and 500G memory. The whole training time for DMD, DDC,
DPA datasets is about 8, 8, 4 hours, respectively. In addition, Appendix Table 4 exhibits the GPU
memory usage with varying the number of sampled patterns N across three datasets, and Appendix
Figure 7 presents the inference time of Pattern-BERP in comparison with these advanced baselines
for each 100 samples with milliseconds.

B.3 Details of Results

B.3.1 Additional Performance Comparison on the ndcg

As a supplement to Table 1, Appendix Table 5 incorporates additional metrics ndcg@1, ndcg@3
and ndcg@5. Considering all these metrics, Pattern-BERP significantly outperforms previous SOTA
baselines on all three datasets, exhibiting the remarkable advantages of association pattern mining.

Furthermore, each result of these methods is from the average of 5-fold cross-validation experiments
with four scenarios. However, significant variation in prediction difficulty across different scenarios
makes it relatively unreasonable to provide an error bar for all 20 results. Instead, to demonstrate the
statistical validity of Pattern-BERP, we have provided the raw experimental results.
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Table 5: Performance comparison on three datasets of different biological entity associations. Each
result of these methods is from the average of 5-fold cross-validation experiments with four scenarios.
The best result for each dataset and metric is marked in bold. All the presented ndcg scores are in %.

DMD DDC DPA

Methods ndcg@1 ndcg@3 ndcg@5 ndcg@1 ndcg@3 ndcg@5 ndcg@1 ndcg@3 ndcg@5

RF 34.06 47.51 52.08 8.93 14.50 18.45 26.62 32.86 35.94
MLP 42.72 55.88 59.99 13.27 21.73 26.63 27.55 35.13 38.47
CP 44.73 57.50 61.51 13.71 22.31 27.37 31.30 39.53 43.05

Tucker 45.27 57.64 61.92 13.24 22.03 26.61 28.80 37.10 40.23
CoSTCo 38.69 51.21 55.93 10.93 17.73 22.13 31.06 37.43 39.86

GCN 62.66 71.00 72.31 25.86 38.07 42.70 18.38 25.39 28.71
GraphSAGE 56.98 66.84 68.45 22.23 33.43 38.05 12.36 19.01 22.17

GAT 47.13 59.35 62.38 21.60 34.53 38.85 21.53 28.26 31.65
GIN 40.08 52.27 55.71 12.68 21.74 25.50 16.44 24.24 27.95

DHNE 81.86 88.88 89.86 43.42 54.54 58.40 32.64 41.45 45.00
HyperSAGNN 87.04 91.18 92.05 41.31 55.88 59.97 33.24 42.73 46.36

HGSynergy 88.68 90.82 91.28 41.07 51.51 55.19 28.19 35.21 38.10
MCHNN 90.04 92.38 92.91 41.91 53.03 57.54 32.27 38.59 41.49

Pattern-BERP 93.94 96.10 96.39 48.01 59.84 63.13 43.52 51.67 54.36
∆ +3.90 +3.72 +3.48 +4.59 +3.96 +3.16 +10.28 +8.94 +8.00

(#52, #41, #8) (#52, #41, #26) (#53, #41, #8) (#162, #50, #9) (#207, #2, #26)

1-hop 2-hop 2-hop 2-hop

(#266, #41, #8)

2-hop

Drug #207 Drug #266

Drug #162Drug #53

Drug #52

Drug #52

1-hop

0.41% 0.65% 2.23% 2.05% 2.03% 0.31%

... ...

Figure 4: The interpretability case of N=100 association patterns related to drug #52 in DMD dataset.
The pattern commonality coefficients are represented in the form of a percentage to indicate the
contribution for visualization. Larger pattern commonality coefficients indicate a more significant
contribution to the target drug #52, and these patterns frequently exhibit similar or even identical
biological pathways. Conversely, smaller coefficients suggest a lack of relevance to drug #52.

B.3.2 Additional Interpretability Analysis

In order to investigate the potential relation among different association patterns, we visualize the
pattern coefficients of drug #52 in DMD dataset, as shown in Appendix Figure 4. It can be observed
that the patterns that make important contributions are not necessarily 1-hop patterns, with pattern
coefficients of 0.41% and 0.65%. In contrast, the 2-hop patterns can exhibit considerable relevance,
due to the similar mechanisms of toxicity against microbes exhibited by the corresponding drugs
(#53, #162, #207) compared to the target drug #52 under investigation. Additionally, the weakening
of drug #52 itself is because the original drug #52 is a complex peptide structure with repetitive and
redundant information, thus acquiring simpler and more straightforward representations through the
aforementioned information interaction.

Furthermore, from the view of structural and functional groups mentioned by [72–75], we have
several salient observations as follows: (1) As the drug in the most influenced pattern, drug #53
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Table 6: Ablation study results on DMD dataset with different module designs. “BFR” denotes Bind-
relation Feature Reconstruction; “HNS” denotes Hard Negative Sampling; “HC” denotes Hypergraph
Convolution block; “DE” denotes Distance Embedding; “API” denotes Association Pattern-aware
Interaction block. All the presented scores are in %.
w/o BFR w/o HNS w/o HC w/o DE w/o API hits@1 hits@3 hits@5 ndcg@1 ndcg@3 ndcg@5

✓ ✓ - - - 77.67 91.72 95.16 77.67 86.06 87.48
✓ - - - - 78.96 92.71 95.98 78.96 87.15 88.52
- ✓ - - - 92.85 97.10 98.06 92.85 95.39 95.80
- - - ✓ - 92.83 96.94 97.88 92.83 95.31 95.70
- - - ✓ ✓ 93.76 97.38 98.09 93.76 95.95 96.24
- - ✓ - - 93.59 97.27 98.06 93.59 95.97 96.18
- - - - - 93.94 97.53 98.24 93.94 96.10 96.39

Table 7: Ablation study results on DPA dataset with different module designs. “BFR” denotes Bind-
relation Feature Reconstruction; “HNS” denotes Hard Negative Sampling; “HC” denotes Hypergraph
Convolution block; “DE” denotes Distance Embedding; “API” denotes Association Pattern-aware
Interaction block. All the presented scores are in %.
w/o BFR w/o HNS w/o HC w/o DE w/o API hits@1 hits@3 hits@5 ndcg@1 ndcg@3 ndcg@5

✓ ✓ - - - 37.73 53.94 62.41 37.73 47.15 50.64
✓ - - - - 34.21 52.18 60.79 34.21 44.62 48.17
- ✓ - - - 42.27 57.45 62.96 42.27 51.12 53.39
- - - ✓ - 41.57 55.65 63.01 41.57 49.74 52.77
- - - ✓ ✓ 46.16 60.60 67.22 46.16 54.63 57.36
- - ✓ - - 44.68 58.52 64.91 44.68 52.79 55.44
- - - - - 43.52 57.36 63.89 43.52 51.67 54.36

contains β-lactam as shown in the red rectangle of Figure 3. β-lactam is the crucial component of
β-lactam antibiotics [76], which is one of the most widely used classes of antibiotics available. In
addition, Islam et al. [77] also prove that pyridine scaffold (aromatic ring with nitrogen) bearing
poor basicity generally improves water solubility in pharmaceutically potential molecules and has
led to the discovery of numerous broad-spectrum therapeutic agents. (2) Similar with drug #53,
drug #162 has acetanilide structure, which serves as the basis for antimicrobial activity and disease
treatment [78]. (3) Drug #207 has the dimethylglycine structure, which is crucial to Tigecycline [79].
Tigecycline binds to the bacterial ribosome, blocking the binding of amino-acyl-tRNA to the acceptor
site on the mRNA-ribosome complex, thereby inhibiting protein synthesis. (4) Unlike the previous
three, drug #266 may interact with membrane lipids to alter membrane fluidity and permeability,
thereby exerting its effect on microorganisms. However, this mechanism of action is distinct from the
specific functional group interactions of the previous three drugs.

As a compound with a complex structure containing multiple functional groups, drug #52 is similar
to the previous three drugs due to its complex structure and diverse functional groups. These
characteristics enable it to exert toxicity through specific interactions with the critical pocket of
microbes. Compared to drug #266, these complex drugs have more diverse and specific toxicity
mechanisms, which is why they have received less attention.

B.3.3 Ablation Results

Network Module Designs. To investigate the necessity of each component in Pattern-BERP, we
conduct several comparisons between Pattern-BERP and its variants on the independent test set.
Table 2, 6, 7 denotes the results of DDC, DMD, DPA dataset, respectively.

When basic components of Pattern-BERP have been removed, the performances of corresponding
variants on all datasets exhibit significant declines, though the degree of performance degradation
varies. This indicates that these components all contribute to the performance. Besides, we have other
observations: (1) for the relatively sparse datasets, DMD and DPA, the performance decline after
removing BFR is more significant compared to the DDC dataset. (2) for all datasets, eliminating HNS
module results in a drop in the performance, highlighting its effect in enhancing the model’s robustness
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Figure 5: Ablation study results with different hyperparameter settings. The three rows are for DMD,
DDC, DPA dataset, respectively.

and discrimination capability and thus indicating that the proposed sampling strategy contributes to
efficient learning; (3) for all datasets, when only DE module is removed, the performance is inferior to
the one removing the entire API module containing DE, demonstrating that inaccurate entity distance
information has a more detrimental impact on the prediction performance; (4) when removing HC
module leads to a slight performance degradation, the impact is relatively limited which suggests
that the capability of HC module in representing complex associations is relatively modest for the
relatively dense-association DDC and DMD dataset, but it still provides some beneficial effects
towards the final performance improvement. But for highly sparse DPA datasets, removing HC
module leads to performance improvement, demonstrating that the combined performance of HC
and APA is instead constrained by the confusion introduced by the two aggregation modes on the
extremely sparse structures.

Hyperparamter Settings. To verify the ablation of hyperparameter settings, we conduct ablation
experiments on the three main parameters, namely number of attention heads, number of max pattern
distance, and number of sampled association patterns. As illustrated in Appendix Figure 5, when
the number of attention head are increased, the prediction performance on all datasets exhibits an
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Figure 6: Ablation study results on the loss-balanced coefficient α and the probability threshold of
bind-relation task γ, both varying from 0.1 to 0.9. Note that the red cross in (b) indicates that valid
negative samples cannot be generated when γ = 0.1, hence the predictions cannot be made.
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Figure 7: Inference time comparison on three datasets of different biological entity associations. Each
result of these methods is for 100 triplet samples. All the presented scores are in milliseconds (ms).
Note that the original implementation of CP, Tucker and MCHNN is CPU-only based.

overall upward trend, suggesting that increasing the attention heads helps the model better capture
the complex association patterns, thereby improving the final performance. In addition, given the
significant disparity in the association ratios across the three datasets, the performance of DDC
dataset improves as the max hop hyperparameter is increased. In contrast, for the relatively sparse
DMD dataset, it is advisable to restrict the max hop to the range from 1 to 3, as the performance drops
sharply when the parameter is set to 4. Moreover, for the sparsest DPA dataset, selecting only 1-hop
patterns appears to be the optimal choice. Moreover, regarding the number of sampled patterns, a
similar trend is observed across the datasets. For DMD and DPA datasets, which are relatively sparse,
increasing the number of sampled patterns is not necessarily beneficial for performance. In contrast,
on DDC dataset, augmenting the number of sampled patterns continues to yield performance.

Furthermore, we also conduct ablation experiments on another two parameters, namely loss-balanced
coefficient α and the bind-relation prediction probability threshold γ. Results in Appendix Figure 6
show that when α and γ are both set to 0.5 by our default, the performance surpasses those of other
settings. Specifically, for α, since the final prediction task involves predicting the associations among
entity A, B, and C, the two tasks of A → B and B → C should be intuitively considered to be of
equal importance, therefore the balanced coefficient α set to 0.5; for γ, bind-relation prediction is
fundamentally a binary classification task, thus the threshold γ is set to 0.5.

C Discussions

Computation Complexity Discussion. To facilitate applying across a wider range of dataset types
and particularly large datasets, it is imperative to rigorously address the issue of complexity explosion.
Regarding computation complexity, the discussion in Section 4.5 indicates that the decisive factors
are the number of entity nodes |V| and the number of sampled patterns N . Hence, when encountering
larger datasets or more complex biological networks, we can employ the following two strategies to
avoid a computation complexity explosion: (1) Graph Sampling. By sampling smaller subgraphs [80],
computational resource consumption reduces significantly, boosting algorithm speed and efficiency;
(2) High-confidence Pattern Selection. As shown in Appendix Figure 5 (g)-(i), reducing N from 100
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to 5 across three datasets slightly decreases performance but still surpasses these baselines. Thus,
adjusting the sampling quantity is acceptable to effectively reduce time complexity.

Moreover, Appendix Table 4 shows the GPU usage varying from the number of sampled pattern across
three datasets with significant differences in the number of entities and associations. The inference
time of each 100 samples with milliseconds compared to baselines are provided in Appendix Figure 7.
It is evident that the current computational resources are sufficient to handle existing datasets, and the
difference in inference time for our method is constant and even faster than several baselines.

Potential Application in Real-world Scenarios. The preliminary evaluation results on three bio-
logical datasets quantitatively demonstrate that the proposed method consistently achieves superior
performance over the competing baselines. Additionally, the learned association patterns show
potential in interpreting biological mechanisms. This finding provides hope for the future practical
application of our approach, particularly in addressing the “black box” issue in the field of bioinformat-
ics. As a computer-aided tool, our method holds the potential to exhibit a broad array of applications
in real-world scenarios, contingent upon sufficient clinical tests or validations. Consequently, it may
significantly contribute to human health and well-being.

Limitations and Future Work. While the proposed Pattern-BERP has demonstrated strong per-
formance on biological entity relationship prediction, there are several limitations and potential
directions for future research. One limitation is that the current model only considers fixed-length
association patterns. In real-world biological systems, relevant relationships may be expressed
through variable-length pathways involving multiple intermediate entities and relations. Extending
the model to capture and leverage such variable-length association patterns could further enhance
its representational power and predictive accuracy. Additionally, the applicability of Pattern-BERP
method has so far been explored only in the biological domain. Investigating the effectiveness of
this approach in other domains, such as knowledge graph completion for general entities or relation
extraction from text, would help evaluate its broader generalizability and potential to benefit other
fields that rely on structured knowledge representations. Adapting the model architecture and training
strategies to accommodate the unique characteristics of different domains could lead to fruitful
avenues for future research.

By addressing these limitations and exploring these future research directions, we believe Pattern-
BERP can be further improved and extended to have an even greater impact on advancing our
understanding of complex biological systems and knowledge representation in general.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See “Limitations and Future Work” part in the Appendix C.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 4.2 - “Association Pattern-aware Fusion” & Section 5.2 - “Perfor-
mance Comparison with Advanced Baselines”. Furthermore, the data and source code are
also provided in the Github repository.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and source code are provided at https://github.com/hry98kki/
PatternBERP.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5.1 - “Implementation Details” & Appendix B.2.2 - “Implementa-
tion Settings”.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have provided the raw experimental results of all 5-fold cross-validation
results across the four scenarios, resulting in a total of 20 individual results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix B.2.2-“Implementation Settings”.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper adheres to the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix C-“Application in Real-world Scenarios”.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

27

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The source code & citations in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code provided in our own repository.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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