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Abstract

This work considers a practical semi-supervised graph anomaly detection (GAD)
scenario, where part of the nodes in a graph are known to be normal, contrasting
to the extensively explored unsupervised setting with a fully unlabeled graph. We
reveal that having access to the normal nodes, even just a small percentage of
normal nodes, helps enhance the detection performance of existing unsupervised
GAD methods when they are adapted to the semi-supervised setting. However,
their utilization of these normal nodes is limited. In this paper we propose a novel
Generative GAD approach (namely GGAD) for the semi-supervised scenario to
better exploit the normal nodes. The key idea is to generate pseudo anomaly
nodes, referred to as outlier nodes, for providing effective negative node samples
in training a discriminative one-class classifier. The main challenge here lies in
the lack of ground truth information about real anomaly nodes. To address this
challenge, GGAD is designed to leverage two important priors about the anomaly
nodes – asymmetric local affinity and egocentric closeness – to generate reliable
outlier nodes that assimilate anomaly nodes in both graph structure and feature
representations. Comprehensive experiments on six real-world GAD datasets
are performed to establish a benchmark for semi-supervised GAD and show that
GGAD substantially outperforms state-of-the-art unsupervised and semi-supervised
GAD methods with varying numbers of training normal nodes. Code is available
at https://github.com/mala-lab/GGAD.

1 Introduction

Graph anomaly detection (GAD) has received significant attention due to its broad application
domains, e.g., cyber security and fraud detection [9, 16, 33]. However, it is challenging to recognize
anomaly nodes in a graph due to its complex graph structure and attributes [27, 34, 44, 46, 62, 65, 66].
Moreover, most traditional anomaly detection methods [4, 39, 60] are designed for Euclidean data,
which are shown to be ineffective on non-Euclidean data like graph data [8, 17, 28, 44, 51, 66]. To
address this challenge, as an effective way of modeling graph data, graph neural networks (GNN)
have been widely used for deep GAD [34, 45]. These GNN methods typically assume that the labels
of all nodes are unknown and perform anomaly detection in a fully unsupervised way by, e.g., data
reconstruction [8, 11], self-supervised learning [6, 28, 36, 61], or one-class homophily modeling [44].
Although these methods achieve remarkable advances, they are not favored in real-world applications
where the labels for normal nodes are easy to obtain due to their overwhelming presence in a graph.
This is because their capability to utilize those labeled normal nodes is very limited due to their
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inherent unsupervised nature. There have been some GAD methods [12, 16, 26, 34, 49, 50, 52, 54]
designed in a semi-supervised setting, but their training relies on the availability of both labeled
normal and anomaly nodes, which requires a costly annotation of a large set of anomaly nodes. This
largely restricts the practical application of these methods.

Different from the aforementioned two GAD settings, this paper instead considers a practical yet
under-explored semi-supervised GAD scenario, where part of the nodes in the graph are known to be
normal. Such a one-class classification setting has been widely explored in anomaly detection on
other data types, such as visual data [4, 39], time series [57], and tabular data [19], but it is rarely
explored in anomaly detection on graph data. Recently there have been a few relevant studies in this
line [3, 27, 31, 38, 56], but they are on graph-level anomaly detection, i.e., detecting abnormal graphs
from a set of graphs, while we explore the semi-supervised setting for abnormal node detection. We
establish an evaluation benchmark for this problem and show that having access to these normal
nodes helps enhance the detection performance of existing unsupervised GAD methods when they
are properly adapted to the semi-supervised setting (see Table 1). However, due to their original
unsupervised designs, they cannot make full use of these labeled normal nodes.
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Figure 1: Left: An exemplar graph with the edge
width indicates the level of affinity connecting two
nodes, in which normal nodes (e.g., vni and vnj )
have stronger affinity to its neighboring normal
nodes than anomaly nodes (e.g., vai

and vaj
) due to

homophily relation within the normal class. Our
approach GGAD aims to generate outliers (e.g.,
voi and voj ) that can well assimilate the anomaly
nodes. Right: The outliers generated by methods
like AEGIS [7] that ignore their structural rela-
tion often mismatch the distribution of abnormal
nodes (a), due to their false local affinity (c). By
contrast, GGAD incorporates two important priors
about anomaly nodes to generate outliers so that
they well assimilate the (b) feature representation
and (d) local structure of abnormal nodes.

To better exploit those normal nodes, we pro-
pose a novel generative GAD approach, namely
GGAD, aiming at generating pseudo anomaly
nodes, referred to as outlier nodes, for provid-
ing effective negative node samples in train-
ing a discriminative one-class classifier on the
given normal nodes. The key challenge in
this type of generative approach is the ab-
sence of ground-truth information about real
anomaly nodes. There have been many gener-
ative anomaly detection approaches that learn
adversarial outliers to provide some weak su-
pervision of abnormality [37, 47, 59, 64], but
they are designed for non-graph data and fail to
take account of the graph structure information
in the outlier generation. Some recent methods,
such as AEGIS [7], attempt to adapt this ap-
proach for GAD, but the outliers are generated
based on simply adding Gaussian noises to the
GNN-based node representations, ignoring the
structural relations between the outliers and the
graph nodes. Consequently, the distribution of
the generated outliers is often mismatched to
that of the real anomaly nodes, as illustrated in
Fig. 1a, and demonstrates very different local
structure (Fig. 1c).

Our approach GGAD tackles this issue with a
method to generate outlier nodes that assimilate
the anomaly nodes in both local structure and feature representation. It is motivated by two important
priors about the anomaly nodes. The first one is an asymmetric local affinity phenomenon revealed
in recent studies [12, 13, 44], i.e., the affinity between normal nodes is typically significantly stronger
than that between normal and abnormal nodes. Inspired by this, GGAD generates outlier nodes
in a way to enforce that they have a smaller local affinity to their local neighbors than the normal
nodes. This objective aligns the distribution of the outlier nodes to that of the anomaly nodes in
terms of graph structure. The second prior knowledge is that many anomaly nodes exhibit high
similarity to the normal nodes in the feature space due to its subtle abnormality [24,44] or adversarial
camouflage [10, 14, 29, 49]. We encapsulate this prior knowledge as egocentric closeness, mandating
that the feature representation of the outlier nodes should be closed to the normal nodes that share
similar local structure as the outlier nodes. GGAD incorporates these two priors through two loss
functions to generate outlier nodes that are well aligned to the distribution of the anomaly nodes in
both local structure affinity (see Fig. 1d) and feature representation (see Fig. 1b). We can then train a
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discriminative one-class classifier on the labeled normal nodes, with these generated outlier nodes
treated as the negative samples.

Accordingly, our main contributions can be summarized as follows:

• We explore a practical yet under-explored semi-supervised GAD problem where part of the
normal nodes are known, and establish an evaluation benchmark for the problem.

• We propose a novel generative GAD approach, GGAD, for the studied setting. To the best
of our knowledge, it is the first work aiming for generating outlier nodes that are of similar
local structure and node representations to the real anomaly nodes. The outlier nodes serve
as effective negative samples for training a discriminative one-class classifier.

• We encapsulate two important priors about anomaly nodes – asymmetric local affinity and
egocentric closeness – and leverage them to introduce an innovative outlier node generation
method. Although these priors may not be exhaustive, they provide principled guidelines for
generating learnable outlier nodes that can well assimilate the real anomaly nodes in both
graph structure and feature representation across diverse real-world GAD datasets.

• Extensive experiments on six large GAD datasets demonstrate that our approach GGAD
substantially outperforms 12 state-of-the-art unsupervised and semi-supervised GAD meth-
ods with varying numbers of training normal nodes, achieving over 15% increase in AU-
ROC/AUPRC compared to the best contenders on the challenging datasets.

2 Related Work

2.1 Graph Anomaly Detection

Numerous graph anomaly detection methods, including shallow and deep approaches, have been
proposed. Shallow methods like Radar [22], AMEN [43], and ANOMALOUS [42] are often
bottlenecked due to the lack of representation power to capture the complex semantics of graphs.
With the development of GNN in node representation learning, many deep GAD methods show better
performance than shallow approaches. Here we focus on the discussion of the deep GAD methods in
two relevant settings: unsupervised and semi-supervised GAD.

Unsupervised Approach. Existing unsupervised GAD methods are typically built using a conven-
tional anomaly detection objective, such as data reconstruction. The basic idea is to capture the
normal activity patterns and detect anomalies that behave significantly differently. As one of the most
popular methods, reconstruction-based methods using graph auto-encoder (GAE) have been widely
applied for GAD [1]. DOMINANT is the first work that applies GAE on the graph to reconstruct the
attribute and structure leveraging GNNs [8]. Fan et al. propose AnomalyDAE to further improve the
performance by enhancing the importance of the reconstruction on the graph structure. In addition
to reconstruction, some methods focus on exploring the relationship in the graph, e.g., the relation
between nodes and subgraphs, to train GAD models. Among these methods, Qiao et al. propose
TAM [44], which maximizes the local node affinity on truncated graphs, achieving good performance
on the synthetic dataset and datasets with real anomalies. Although the aforementioned unsupervised
methods achieve good performance and help us identify anomalies without any access to class labels,
they cannot effectively leverage the labeled nodes when such information is available.

Semi-Supervised Approach. The one-class classification under semi-supervised setting has been
widely explored in anomaly detection on visual data, but rarely done on the graph data, except
[3, 27, 31, 38, 56] that recently explored this setting for graph-level anomaly detection. To detect
abnormal graphs, these methods address a very different problem from ours, which is focused on
capturing the normality of a set of given normal graphs at the graph level. By contrast, we focus
on modeling the normality at the node level. Some semi-supervised methods have been recently
proposed for node-level anomaly detection, but they assume the availability of the labels of both
normal and anomaly nodes [12, 16, 26, 41, 48, 52]. By contrast, our setting eases this requirement and
requires the labeled normal nodes only.

2.2 Generative Anomaly Detection

Generative adversarial networks (GANs) provide an effective solution to generate synthetic samples
that capture the normal/abnormal patterns [2, 15, 63]. One type of these methods aims to learn latent
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features that can capture the normality of a generative network [30, 58]. Methods like ALAD [59],
Fence GAN [37] and OCAN [64] are early methods in this line, aiming at making the generated
samples lie at the boundary of normal data for more accurate anomaly detection. Motivated by these
methods, a similar approach has also been explored in graph data, like AEGIS [7] and GAAN [6]
which aim to simulate some abnormal features in the representation space using GNN, but they are
focused on adding Gaussian noise to the representations of normal nodes without considering graph
structure information. They are often able to generate pseudo anomaly node representations that are
separable from the normal nodes for training their detection model, but the pseudo anomaly nodes
are mismatched with the distribution of the real anomaly nodes.

3 Methodology

3.1 Problem Statement

Semi-supervised GAD. We focus on the semi-supervised anomaly detection on the attributed graph
given some labeled normal nodes. An attributed graph can be denoted by G = (V,E,X), where
V = {v1, · · · , vN} denotes the node set, E ⊆ V× V with e ∈ E is the edge set in the graph. eij = 1
represents there is a connection between node vi and vj , and eij = 0 otherwise. The node attributes
are denoted as X ∈ RN×F and A ∈ {0, 1}N×N is the adjacency matrix of G. xi ∈ RF is the
attribute vector of vi and Aij = 1 if and only if (vi, vj) ∈ E. Vn and Va represent the normal node
set and abnormal node set, respectively. Typically the number of normal nodes is significantly greater
than the abnormal nodes, i.e., |Vn| ≫ |Va|. The goal of semi-supervised GAD is to learn an anomaly
scoring function f : G→ R, such that f(v) < f(v′), ∀v ∈ Vn, v

′ ∈ Va given a set of labeled normal
nodes Vl ⊂ Vn and no access to labels of anomaly nodes. All other unlabeled nodes, denoted by
Vu = V \ Vl, comprise the test data set.

Outlier Node Generation. Outlier generation aims to generate outlier nodes that deviate from the
normal nodes and/or assimilate the anomaly nodes. Such nodes can be generated in either the raw
feature space or the embedding feature space. This work is focused on the latter case, as it offers a
more flexible way to represent relations between nodes. Our goal is to generate a set of outlier nodes
from G, denoted by Vo, in the feature representation space, so that the outlier nodes are well aligned
to the anomaly nodes, given no access to the ground-truth anomaly nodes.

Graph Neural Network for Node Representation Learning. GNN has been widely used to generate
the node representations due to its powerful representation ability in capturing the rich graph attribute
and structure information. The projection of node representation using a GNN layer can be generally
formalized as

H(ℓ) = GNN
(
A,H(ℓ−1);W(ℓ)

)
, (1)

where H(ℓ) ∈ RN×h(l)

, H(ℓ−1) ∈ RN×h(l−1)

are the representations of all N nodes in the (ℓ)-th layer
and (ℓ− 1)-th layer, respectively, h(l) is the dimensionality size, W(ℓ) are the learnable parameters,
and H(0) is set to X. H(ℓ) = {h1,h2, . . . ,hN} is a set of representations of N nodes in the last
GNN layer, with h ∈ Rd. In this paper, we adopt a 2-layer GCN to model the graph.

3.2 Overview of the Proposed GGAD Approach

The key insight of GGAD is to generate learnable outlier nodes in the feature representation space that
assimilate anomaly nodes in terms of both local structure affinity and feature representation. To this
end, we introduce two new loss functions that incorporate two important priors about anomaly nodes
– asymmetric local affinity and egocentric closeness – to optimize the outlier nodes. As shown in Fig.
2a, the outlier nodes are first initialized based on the representations of the neighbors of the labeled
normal nodes, followed by the use of the two priors on the anomaly nodes. GGAD implements the
asymmetric local affinity prior in Fig. 2b that enforces a larger local affinity of the normal nodes
than that of the anomaly nodes. GGAD then models the egocentric closeness in Fig. 2c that pulls
the feature representations of the outlier nodes to the normal nodes that share the same ego network.
These two priors are implemented through two complementary loss functions in GGAD. Minimizing
these loss functions optimizes the outlier nodes to meet both anomaly priors. The resulting outlier
nodes are lastly treated as negative samples to train a discriminative one-class classifier on the labeled
normal nodes, as shown in Fig. 2d. Below we introduce GGAD in detail.
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Figure 2: Overview of GGAD. (a) It first initializes the outlier nodes based on the feature representa-
tions of the ego network of a labeled normal node. We then incorporate the two anomaly node priors
(b-c) to optimize the outlier nodes so that they are well aligned to the anomalies. (d) The resulting
generated outlier nodes are treated as negative samples to train a discriminative one-class classifier.

3.3 Incorporating the Asymmetric Local Affinity Prior

Outlier Node Initialization. Recall that GGAD is focused on generating learnable outlier nodes in
the representation space. To enable the subsequent learning of the outlier nodes, we need to produce
good representation initialization of the outlier nodes. To this end, we use a neighborhood-aware
outlier initialization module that generates the initial outlier nodes’ representation based on the
representations of the local neighbors of normal nodes. The representations from these neighbor
nodes provide an important reference for being normal in a local graph structure. This helps ground
the generation of outlier nodes to a real graph structure. More specifically, as shown in Fig. 2a, given
a labeled normal node vi ∈ Vl and its ego network N(vi) that contains all nodes directly connected
with vi, we initialize an outlier node in the representation space by:

ĥi = Ψ(vi,N(vi); Θg) =
1

|N(vi)|
∑

vj∈N(vi)

σ(W̃hj), (2)

where Ψ is a mapping function determined by parameters Θg that contain the learnable parameters

W̃ ∈ R
d×d

in this module in addition to the parameters W(ℓ) in Eq. (1), and σ(·) is an activation
function. It is not required to perform Eq. (2) for all training normal nodes. We sample a set of
S normal nodes from Vl and respectively generate an outlier node for each of them based on its
ego network. ĥi in Eq. (2) serves as an initial representation of the outlier node, upon which two
optimization constraints based on our anomaly node priors are devised to optimize the representations
of the outlier nodes, as elaborated in the following.

Enforcing the Structural Affinity Prior. To incorporate the graph structure prior of anomaly nodes
into our outlier node generation, GGAD introduces a local affinity-based loss to enforce the fact that
the affinity of the outlier nodes to their local neighbors should be smaller than that of the normal
nodes. More specifically, the local node affinity of vi, denoted as τ(vi), is defined as the similarity to
its neighboring nodes:

τ (vi) =
1

|N (vi)|
∑

vj∈N(vi)

sim (hi,hj), (3)

The asymmetric local affinity loss is then defined by a margin loss function based on the affinity of
the normal nodes and the generated outlier nodes as follows:

ℓala = max {0, α− (τ (Vl)− τ (Vo))} , (4)

where τ (Vo) =
1

|Vo|
∑

vi∈Vo

τ (vi) and τ (Vl) =
1

|Vl|
∑

vi∈Vl

τ (vi) represent the average local affinity

of the outliers and normal nodes respectively, and α > 0 is a hyperparameter controlling the margin
between the affinities of these two types of nodes. Eq. (4) enforces this prior at the node set level
rather than at each individual outlier node, as the latter case would be highly computationally costly
when Vl or Vo is large.
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3.4 Incorporating the Egocentric Closeness Prior

The outliers generated by solely using this local affinity prior may distribute far away from the
normal nodes in the representation space, as shown in Fig. 3a. For those trivial outliers, although
they achieve similar local affinity to the abnormal nodes, as shown in Fig. 3d, they are still not
aligned well with the distribution of the anomaly nodes, and thus, they cannot serve as effective
negative samples for learning the one-class classifier on the normal nodes. Thus, we further in-
troduce an egocentric closeness prior-based loss function to tackle this issue, which models subtle
abnormality on anomaly nodes, i.e., the anomaly nodes that exhibit high similarity to the normal nodes.

(a) Using ℓala Only (b) Using ℓec only (c) Using GGAD
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Figure 3: (a-c) t-SNE visualization of the
node representations and (d-f) histograms of
local affinity yielded by GGAD and its two
variants on a GAD dataset T-Finance [50].

More specifically, let hi and ĥi be the representations
of the normal node vi and its corresponding generated
outlier node that shares the same ego network as vi
(as discussed in Sec. 3.2), the egocentric closeness
prior-based loss ℓec is defined as follows:

ℓec =
1

|Vo|
∑

vi∈Vo

∥∥∥ĥi − (hi + ε)
∥∥∥2
2
, (5)

where |Vo| is the number of the generated outliers and
ϵ is a noise perturbation generated from a Gaussian
distribution. The perturbation is added to guarantee
a separability between hi and ĥi, while enforcing
its egocentric closeness. It is worth mentioning that
Gaussian noise works like a hyperparameter in the
feature interpolation to diversify the outlier nodes
in the feature representation space. Changes of this
noise distribution do not affect the superiority of the
performance of GGAD over the competing methods.

As shown in Fig. 3c, using this egocentric closeness prior-based loss together with the local affinity
prior-based loss learns outlier nodes that are well aligned to the real anomaly nodes in both the
representation space and the local structure, as illustrated in Figs. 3c and 3f, respectively. Using
the egocentric closeness alone also results in mismatches between the generated outlier nodes and
the abnormal nodes (see Fig. 3e) since it ignores the local structure relation of the generated outlier
nodes.

3.5 Graph Anomaly Detection using GGAD

Training. Since the generated outlier nodes are to assimilate the abnormal nodes, they can be
used as important negative samples to train a one-class classifier on the labeled normal nodes. We
implement this classifier using a fully connected layer on top of the GCN layers that maps the node
representations to a prediction probability-based anomaly score, denoted by η : H→ R, followed by
a binary cross-entropy (BCE) loss function ℓbce:

ℓbce =

|Vo|+|Vl|∑
i

yi log(pi) + (1− yi) log(1− pi), (6)

where pi = η(hi; Θs) is the output of the one-class classifier indicating the probability that a node is
a normal node, and y is the label of node. We set y = 1 if the node is a labeled normal node, and
y = 0 if the node is a generated outlier node. The one-class classifier is jointly optimized with the
local affinity prior-based loss ℓala and egocentric closeness prior-based loss ℓec in an end-to-end
manner. This results in mediation in the feature representation space where the generated outlier
nodes are close to, yet separable from, the labeled normal nodes and their neighbors. Thus, these
outlier nodes can be thought as hard anomalies that lie at the fringe of normal nodes in the feature
representation space. The optimization of these two prior losses is continuously decreasing and
converging finally during the training (see App. E), indicating that these two losses are collaborative
rather than diverged. Thus, the overall loss ℓtotal can be formulated as:

ℓtotal = ℓbce + βℓala + λℓec, (7)
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where β and λ are the hyperparameters to control the importance of the two constraints respectively.
The learnable parameters are Θ = {Θg,Θs}.
Inference. During inference, we can directly use the inverse of the prediction of the one-class
classifier as the anomaly score:

score (vj) = 1− η (hj ; Θ
∗) , (8)

where Θ∗ is the learned parameters of GGAD. Since our outlier nodes well assimilate the real
abnormal nodes, they are expected to receive high anomaly scores from the one-class classifier.

4 Experiments

Datasets. We conduct experiments on six large real-world graph datasets with genuine anomalies
from diverse domains, including the co-review network in Amazon [10], transaction record network
in T-Finance [50], social networks in Reddit [21], bitcoin transaction in Elliptic [55], co-purchase
network in Photo [35] and financial network in DGraph [18]. See App. A for more details about
the datasets. Although it is easy to obtain normal nodes, the human checking and annotation of
large-scale nodes are still costly. To simulate practical scenarios where we need to annotate only a
relatively small number of normal nodes, we randomly sample R% of the normal nodes as labeled
normal data for training, in which R is chosen in {10, 15, 20, 25}, with the rest of nodes is treated
as the testing set. Due to the massive set of nodes, the same R applied to DGraph would lead to
a significantly larger set of normal nodes than the other three data sets, leading to very different
annotation costs in practice. Thus, on DGraph, R is chosen in {0.05, 0.2, 0.35, 0.5} to compose the
training data.

Competing Methods. To our best knowledge, there exist no GAD methods specifically designed for
semi-supervised node-level GAD. To validate the effectiveness of GGAD, we compare it with six
state-of-the-art (SOTA) unsupervised methods and their advanced versions in which we effectively
adapt them to our semi-supervised setting. These methods include two reconstruction-based models:
DOMINANT [8] and AnomalyDAE [11], two one-class classification models: TAM [44] and
OCGNN [53], and two generative models: AEGIS [7] and GAAN [6]. To effectively incorporate the
normal information into these unsupervised methods, for the reconstruction models, DOMINANT and
AnomalyDAE, the data reconstruction is performed on the labeled normal nodes only during training.
In OCGNN, the one-class center is optimized based on the labeled normal nodes exclusively. In TAM,
we train the model by maximizing the affinity on the normal nodes only. As for AEGIS and GAAN,
the normal nodes combined with their generated outliers are used to train an adversarial classifier.
Self-supervised-based methods like CoLA [28], SL-GAD [6], and HCM-A [17] and semi-supervised
methods that require both labeled normal and abnormal nodes like GODM [25]and DiffAD [32] are
omitted because training these methods on the data with exclusively normal nodes does not work.

Evaluation Metric. Following prior studies [5, 40, 51], two popular and complementary evaluation
metrics for anomaly detection, the area under ROC curve (AUROC) and Area Under the precision-
recall curve (AUPRC), are used to evaluate the performance. Higher AUROC/AUPRC indicates better
performance. AUROC reflects the ability to recognize anomalies while at the same time considering
the false positive rate. AUPRC focuses solely on the precision and recall rates of anomalies detected.
The AUROC and AUPRC results are averaged over 5 runs with different random seeds.

Implementation Details. GGAD is implemented in Pytorch 1.6.0 with Python 3.7. and all the
experiments are run on a 24-core CPU. In GGAD, its weight parameters are optimized using
Adam [20] optimizer with a learning rate of 1e− 3 by default. For each dataset, the hyperparameters
β and λ for two constraints are uniformly set to 1, though GGAD can perform stably with a range
of β and λ (see App. C.2). The size of the generated outlier nodes S is set to 5% of |Vl| by default
and stated otherwise. The affinity margin α is set to 0.7 across all datasets. The perturbation in
Eq. (5) is drawn from a Gaussian distribution, with mean and standard variance set to 0.02 and
0.01 respectively, and it is stated otherwise. All the competing methods are implemented by using
their publicly available official source code or the library, and they are trained using their suggested
hyperparameters. To apply GGAD and the competing models to very large graph datasets, i.e.,
DGraph, a min-batch training strategy is applied (see Algorithm 2 for detail).
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Table 1: AUROC and AUPRC on six GAD datasets. The best performance per dataset is boldfaced,
with the second-best underlined. ‘/’ indicates that the model cannot handle the DGraph dataset.

Setting Method
Dataset

AUROC AUPRC
Amazon T-Finance Reddit Elliptic Photo DGraph Amazon T-Finance Reddit Elliptic Photo DGraph

Unsupervised

DOMINANT 0.7025 0.6087 0.5105 0.2960 0.5136 0.5738 0.1315 0.0536 0.0380 0.0454 0.1039 0.0075
AnomalyDAE 0.7783 0.5809 0.5091 0.4963 0.5069 0.5763 0.1429 0.0491 0.0319 0.0872 0.0987 0.0070

OCGNN 0.7165 0.4732 0.5246 0.2581 0.5307 / 0.1352 0.0392 0.0375 0.0616 0.0965 /
AEGIS 0.6059 0.6496 0.5349 0.4553 0.5516 0.4509 0.1200 0.0622 0.0413 0.0827 0.0972 0.0053
GAAN 0.6513 0.3091 0.5216 0.2590 0.4296 / 0.0852 0.0283 0.0348 0.0436 0.0767 /
TAM 0.8303 0.6175 0.6062 0.4039 0.5675 / 0.4024 0.0547 0.0437 0.0502 0.1013 /

Semi-supervised

DOMINANT 0.8867 0.6167 0.5194 0.3256 0.5314 0.5851 0.7289 0.0542 0.0414 0.0652 0.1283 0.0076
AnomalyDAE 0.9171 0.6027 0.5280 0.5409 0.5272 0.5866 0.7748 0.0538 0.0362 0.0949 0.1177 0.0071

OCGNN 0.8810 0.5742 0.5622 0.2881 0.6461 / 0.7538 0.0492 0.0400 0.0640 0.1501 /
AEGIS 0.7593 0.6728 0.5605 0.5132 0.5936 0.4450 0.2616 0.0685 0.0441 0.0912 0.1110 0.0058
GAAN 0.6531 0.3636 0.5349 0.2724 0.4355 / 0.0856 0.0324 0.0362 0.0611 0.0768 /
TAM 0.8405 0.5923 0.5829 0.4150 0.6013 / 0.5183 0.0551 0.0446 0.0552 0.1087 /

GGAD (Ours) 0.9443 0.8228 0.6354 0.7290 0.6476 0.5943 0.7922 0.1825 0.0610 0.2425 0.1442 0.0082

4.1 Main Comparison Results

Table 1 shows the comparison of GGAD to 12 models, in which semi-supervised models use 15%
normal nodes during training while unsupervised methods are trained on the full graph in a fully
unsupervised way. We will discuss results using more/less training normal nodes in Sec. 4.2.

Comparison to Unsupervised GAD Methods. As shown in Table 1, GGAD significantly outper-
forms all unsupervised methods on six datasets, having maximally 21% AUROC and 39% AUPRC
improvement over the best-competing unsupervised methods on individual datasets. The results also
show that the semi-supervised versions of the unsupervised methods largely improve the performance
of their unsupervised counterparts, justifying that i) incorporating the normal information into the
unsupervised approaches is beneficial for enhancing the detection performance and ii) our approach
to adapt the unsupervised methods is effective across various types of GAD models. TAM performs
best among the unsupervised methods. AEGIS which leverages GAN to learn the normal patterns
performs better than AnomalyDAE and DOMINANT on T-Finance, Reddit, and Photo, By contrast,
reconstruction-based methods work well on Amazon and DGraph. Similar observations can be found
for the semi-supervised versions.

Comparison to Semi-supervised GAD Methods. The results in Table 1 show that although the semi-
supervised methods largely outperform unsupervised counterparts, they substantially underperform
our method GGAD. The reconstruction-based approaches show the most competitive performance
among the contenders in semi-supervised settings, e.g., AnomalyDAE performs best on Amazon and
DGraph. Nevertheless, GGAD gains respectively about 1-3% AUROC/AUPRC improvement on these

(a)  Amazon
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(b)  T-Finance
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DOMINANT AnomalyDAE OCGNN
AEGIS GAAN TAM GGAD

Baseline

Figure 4: AUPRC results w.r.t the size
of training normal nodes (R% of |V|).
‘Baseline’ denotes the performance of
the best unsupervised GAD method.

two datasets compared to best-competing AnomalyDAE.
By training on the normal nodes only, methods like TAM
and AEGIS largely reduce the interference of unlabeled
anomaly nodes on the model and work well on most of
the datasets, e.g., TAM on Amazon and Reddit, AEGIS on
T-Finance and Reddit. However, their performance is still
lower than GGAD by a relatively large margin. GGAD
yields the best AUROC on the Photo while yielding the
second-best in AUPRC, underperforming OCGNN. This
indicates that GGAD can detect some anomalies very accu-
rately in Photo, but it is less effective than OCGNN to get a
bit more anomalies rank at the top of normal nodes in terms
of their anomaly score. On average over the six datasets,
GGAD outperforms the best semi-supervised contender AnomalyDAE by 11% in AUROC and 5% in
AUPRC, demonstrating that GGAD can make much better use of the labeled normal nodes through
our two anomaly prior-based losses.

4.2 Performance w.r.t. Training Size and Anomaly Contamination

In order to further illustrate the effectiveness of our method, we also compare GGAD with other
semi-supervised methods using varying numbers of training normal nodes in Fig. 4 and having
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various anomaly contamination rates in Fig. 5. Due to page limitation, we present the AUPRC results
on two datasets here only, showing the representative performance. The full AUROC and AUPRC
results are reported in App. C.

The results in Fig. 4 show that with increasing training samples of normal nodes, the per-
formance of all methods on all four datasets generally gets improved since more normal
samples can help the models more accurately capture the normal patterns during training.
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DOMINANT AnomalyDAE OCGNN

GAANAEGIS TAM GGAD
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U
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(b) T-Finance
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Figure 5: AUPRC w.r.t. contamination.

Importantly, GGAD consistently outperforms all compet-
ing methods with varying numbers of normal nodes, re-
inforcing that GGAD can make better use of the labeled
normal nodes for GAD.

The labeled normal nodes can often be contaminated by
anomalies due to factors like annotation errors. To con-
sider this issue, we introduce a certain ratio of anomaly
contamination into into the training normal node set Vl.
The results of the models under different ratios of contam-
ination in Fig. 5. show that with increasing anomaly contamination, the performance of all methods
decreases. Despite the decreased performance, our method GGAD consistently maintains the best
performance under different contamination rates, showing good robustness w.r.t. the contamination.

4.3 Ablation Study

Importance of the Two Anomaly Node Priors. The importance of the two proposed
losses based on the priors on the anomaly nodes is examined by comparing our full
model with its variant removing the corresponding loss, with the results shown in Ta-
ble 4. It is clear that learning the outlier node representations using one of the
two losses performs remarkably less effectively than our full model using both losses.

Table 2: Ablation study on our two priors.

Metric Component Dataset
ℓala ℓec Amazon T-Finance Reddit Elliptic Photo DGraph

AUROC
✓ 0.8871 0.8149 0.5839 0.6863 0.5762 0.5891

✓ 0.7250 0.6994 0.5230 0.7001 0.6103 0.5513
✓ ✓ 0.9324 0.8228 0.6354 0.7290 0.6476 0.5943

AUPRC
✓ 0.6643 0.1739 0.0409 0.1954 0.1137 0.0076

✓ 0.1783 0.0800 0.0398 0.2683 0.1186 0.0063
✓ ✓ 0.7843 0.1924 0.0610 0.2425 0.1442 0.0087

It is mainly because although using ℓala solely
can obtain similar local affinity of the outliers to
the real anomaly nodes, the outliers are still not
aligned well with the distribution of the anomaly
nodes in the node representation space. Likewise,
only using the ℓec can result in a mismatch be-
tween the generated outliers and real abnormal
samples in their graph structure. GGAD that ef-
fectively unifies both priors through the two losses
can generate outlier nodes that well assimilate the real abnormal nodes on both graph struc-
ture and node representation space, supporting substantially more accurate GAD performance.

Table 3: GGAD vs. alternative outlier generators.

Metric Method Dataset
Amazon T-Finance Reddit Elliptic Photo DGraph

AUROC

Random 0.7263 0.4613 0.5227 0.6856 0.5678 0.5712
NLO 0.8613 0.6179 0.5638 0.6787 0.5307 0.5538
Noise 0.8508 0.8204 0.5285 0.6786 0.5940 0.5779

GaussianP 0.2279 0.6659 0.5235 0.6715 0.5925 0.5862
VAE 0.8984 0.6674 0.6175 0.7055 0.6222 0.5801
GAN 0.8288 0.5487 0.5378 0.6256 0.6032 0.5101

GGAD (Ours) 0.9324 0.8228 0.6354 0.7290 0.6476 0.5943

AUPRC

Random 0.1755 0.0402 0.0394 0.1981 0.1063 0.0061
NLO 0.4696 0.1364 0.0495 0.1750 0.1092 0.0065
Noise 0.5384 0.1762 0.0381 0.1924 0.1200 0.0076

GaussianP 0.0397 0.0677 0.0376 0.1682 0.1194 0.0078
VAE 0.6111 0.0652 0.0528 0.2344 0.1272 0.0063
GAN 0.3715 0.0461 0.0433 0.1263 0.1143 0.0051

GGAD (Ours) 0.7843 0.1924 0.0610 0.2425 0.1442 0.0087

GGAD vs. Alternative Outlier Node Genera-
tion Approaches. To examine its effectiveness
further, GGAD is also compared with four other
approaches that could be used as an alternative
to generating the outlier nodes. These include
(i) Random that randomly sample some nor-
mal nodes and treat them as outliers to train
a one-class discriminative classifier, (ii) Non-
learnable Outliers (NLO) that removes the
learnable parameters W̃ in Eq. (2) in our outlier
node generation, (iii) Noise that directly gener-
ates the representation of outlier nodes from ran-
dom noise, (iv) Gaussian Perturbation (Gaus-
sianP) that directly adds Gaussian perturbations
into the sampled normal nodes’ representations
to generate the outliers. Apart from the Noise and GaussianP, we further employ two advanced
generation approaches, (vi) VAE that generate the outlier representations by reconstructing the raw
attributes of selected nodes where our two anomaly prior-based constraints are applied to the gener-
ation, and (v) GAN that generates the embedding from the noise and adds an adversarial function
to discriminate whether the generated node is fake or real, with our two prior constraints applied in
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the generation as well. The results are shown in Table 3. Random does not work properly, since the
randomly selected samples are not distinguishable from the normal nodes. NLO performs fairly well
on some data sets such as Amazon, T-Finance, and Elliptic, but it is still much lower than GGAD,
showcasing that having learnable outlier node representations can help better ground the outliers
in a real local graph structure. Despite that Noise and GaussianP can generate outliers that have
separable representations from the normal nodes, they also fail to work well since the lack of graph
structure in the outlier nodes can lead to largely mismatched distributions between the generated
outlier nodes and the anomaly nodes. By contrast, the outlier nodes learned by GGAD can better
align with the anomaly nodes due to the incorporation of the anomaly priors on graph structure and
feature representation into our GAD modeling. Both VAE and GAN can work well on some datasets,
which indicates two priors help them learn relevant outlier representations. But both of them are still
much lower than GGAD, showcasing that the outlier generation approach in GGAD can leverage the
two proposed priors to generate better outliers.

GGAD vs. GGAD enabled Unsupervised Methods. We incorporate the outlier generation
into existing unsupervised methods to demonstrate the generation in GGAD can also benefit
the existing unsupervised methods. To allow the unsupervised methods to fully exploit the gen-
erated outliers, we first utilize GGAD to generate outlier nodes by training on randomly sam-
pled nodes from a graph (which can be roughly treated as all normal nodes due to anomaly
scarcity) and then remove possible abnormal nodes from the graph dataset by filtering out Top-K

Table 4: GGAD enabled unsupervised methods.

Metric Method Dataset
Amazon T-Finance Elliptic

#Anomalies/#Top-K Nodes 387/500 351/1000 1448/2000

AUROC

DOMINANT 0.7025 0.6087 0.2960
GGAD-enabled DOMINANT 0.8186 0.6275 0.2986

OCGNN 0.7165 0.4732 0.2581
GGAD-enabled OCGNN 0.8692 0.5931 0.2638

AEGIS 0.6059 0.6496 0.4553
GGAD-enabled AEGIS 0.8395 0.7024 0.5036

GGAD 0.9431 0.8108 0.7225

AUPRC

DOMINANT 0.1315 0.0536 0.0454
GGAD-enabled DOMINANT 0.3462 0.0585 0.0613

OCGNN 0.1352 0.0392 0.0616
GGAD-enabled OCGNN 0.3950 0.0480 0.0607

AEGIS 0.1200 0.0622 0.0827
GGAD-enabled AEGIS 0.3833 0.0784 0.0910

GGAD 0.7769 0.1734 0.2484

most similar nodes to the generated outlier
nodes. By removing these suspicious abnormal
nodes, the unsupervised method is expected to
train on the cleaner graph (i.e., with less anomaly
contamination). This approach to improve unsu-
pervised GAD methods is referred to as GGAD-
enabled unsupervised GAD. We evaluate their
effectiveness on three large-scale datasets. As
shown in Table 4, where #Anomalies/#Top-K
Node represents the number of real abnormal
nodes we successfully filter out and the number
of nodes we choose to filter out (i.e., K) respec-
tively. For example, we use the outlier nodes
generated by GGAD to filter out 500 nodes from
the Amazon dataset, of which there are 387 real
abnormal nodes. This helps largely reduce the anomaly contamination rate in the graph. The results
show that this approach can significantly improve the performance of three different representative
unsupervised GAD methods, including DOMINANT, OCGNN, and AEGIS. Note that although the
GGAD-enabled unsupervised methods achieve better performance, their performance still largely
underperforms GGAD, which provides stronger evidence for the effective capability in anomaly
detection of GGAD.

5 Conclusion and Future Work

In this paper, we investigate a new semi-supervised GAD scenario where part of normal nodes are
known during training. To fully exploit those normal nodes, we introduce a novel outlier generation
approach GGAD that leverages two important priors about anomalies in the graph to learn outlier
nodes that well assimilate real anomalies in both graph structure and feature representation space.
The quality of these outlier nodes is justified by their effectiveness in training a discriminative
one-class classifier together with the given normal nodes. Comprehensive experiments are performed
to establish an evaluation benchmark on six real-world datasets for semi-supervised GAD, in which
our GGAD outperforms 12 competing methods across the six datasets.

Limitation and Future work. The generation of the outlier nodes in GGAD is built upon the
two important priors about anomaly nodes in a graph. This helps generate outlier nodes that well
assimilate the anomaly nodes across diverse real-world GAD datasets. However, these priors are not
exhaustive, and there can be some anomalies whose characteristics may not be captured by the two
priors used. We will explore this possibility and improve GGAD for this case in our future work.
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A Detailed Dataset Description

The key statistics of the datasets are presented in Table 5. A detailed introduction of these datasets is
given as follows.

• Amazon [10]: It includes product reviews under the Musical Instrument category. The users
with more than 80% of helpful votes were labeled as begin entities, with the users with less
than 20% of helpful votes treated as fraudulent entities. There are three relations including
U-P-U (users reviewing at least one same product), U-S-U (users giving at least one same
star rating within one week), and U-V-U (users with top-5% mutual review similarities). In
this paper, we do not distinguish this connection and regard them as the same type of edges,
i.e., all connections are used. There are 25 handcrafted features that were collected as the
raw node features.

• T-Finance [50]: It is a financial transaction network where the node represents an anonymous
account and the edge represents two accounts that have transaction records. The features of
each account are related to some attributes of logging, such as registration days, logging
activities, and interaction frequency, etc. The users are labeled as anomalies when they fall
into the categories of fraud money laundering and online gambling.

• Reddit [21]: It is a user-subreddit graph, capturing one month’s worth of posts shared across
various subreddits at Reddit. The users who have been banned by the platform are labeled
anomalies. The text of each post is transformed into the feature vector and the features of
the user and subreddits are the feature summation of the post they have posted.

• Elliptic [55]: It is a bitcoin transaction network in which the node represents the transactions
and the edge is the flow of Bitcoin currency.

• Photo [35]: It is an Amazon co-purchase network in which the node represents the product
and the edge represents the co-purchase relationship. The attribute of the node is a bag of
works representation of the user’s comments.

• DGraph [18]: It is a large-scale attributed graph with millions of nodes and edges where the
node represents a user account in a financial company and the edge represents that the user
was added to another account as an emergency contact. The feature of a node is the profile
information of users, such as age, gender, and other demographic features. The users who
have overdue history are labeled as anomalies.

B More Information about the Competing Methods

B.1 Competing Methods

A more detailed introduction of the six GAD models we compare with is given as follows.

• DOMINANT [8] leverages the auto-encoder for graph anomaly detection. It consists of an
encoder layer and a decoder layer which are devised to reconstruct the features and structure
of the graph. The reconstruction errors from the features and the structural modules are
combined as an anomaly score.

• AnomalyDAE [11] consists of a structure autoencoder and an attribute autoencoder to learn
both node embeddings and attribute embeddings jointly in a latent space. In addition, an
attention mechanism is employed in the structure encoder to capture normal structural
patterns more effectively.

• OCGNN [53] applies one-class SVM and GNNs, aiming at combining the recognition ability
of one-class classifiers and the powerful representation of GNNs. A one-class hypersphere
learning objective is used to drive the training of the GNN. The sample that falls outside the
hypersphere is defined as an anomaly.

• AEGIS [7] designs a new graph neural layer to learn anomaly-aware node representations
and further employ generative adversarial networks to detect anomalies among new data.
The generator takes noises sampled from a prior distribution as input, and attempts to
generate informative pseudo anomalies. The discriminator tries to distinguish whether an
input is the representation of a normal node or a generated anomaly.
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Table 5: Key statistics of the six datasets used in our experiments.
Dataset Type # Nodes # Edges # Attributes #Anomalies (Rate)

Amazon Co-review 11,944 4,398,392 25 821(6.9%)
T-Finance Transaction 39,357 21,222,543 10 1,803(4.6%)
Reddit Social Media 10,984 168,016 64 366(3.3%)
Elliptic Bitcoin Transaction 46,564 73,248 93 4,545 (9.8%)
Photo Co-purchase 7,535 119,043 745 698(9.2%)
DGraph Financial Networks 3,700,550 73,105,508 17 15,509(1.3%)

• GAAN [6] is based on a generative adversarial network where fake graph nodes are generated
by a generator. To encode the nodes, they compute the sample covariance matrix for real
nodes and fake nodes, and a discriminator is trained to recognize whether two connected
nodes are from a real or fake node.

• TAM [44] learns tailored node representations for a local affinity-based anomaly measure
by maximizing the local affinity of nodes to their neighbors. TAM is optimized on truncated
graphs where non-homophily edges are removed iteratively. The learned representations
result in significantly stronger local affinity for normal nodes than abnormal nodes. So, the
local affinity of a node in the learned representation space is used as anomaly score.

B.2 Official Source Code.

All the competing methods except TAM are implemented by PyGOD Library [23, 24]. The code of
TAM is taken from its authors. The links to their source codes are as follows:

• PyGOD: https://github.com/pygod-team/pygod
• TAM: https://github.com/mala-lab/TAM-master
• AEGIS: https://github.com/pygod-team/pygod
• GAAN: https://github.com/pygod-team/pygod
• DOMINANT: https://github.com/kaize0409/GCN_AnomalyDetection_pytorch
• AnomalyDAE: https://github.com/haoyfan/AnomalyDAE
• OCGNN: https://github.com/WangXuhongCN/OCGNN

C Additional Experimental Results

C.1 More Prior Information

To further verify asymmetric local affinity, we provide more affinity visualization results on other
GAD datasets including Amazon, Reddit, Elliptic, and Photo, as shown in Fig. 6. The results show
that the normal nodes have a much stronger affinity to their neighboring normal node than the sampled
abnormal nodes.

For the egocentric closeness prior, the feature representations of outlier nodes should be closed to the
normal nodes that share similar local structure as the outlier nodes, we verify this prior by analyzing
the similarity between normal and abnormal nodes based on the raw node attributes on the other four
datasets shown in Fig. 7. The results show that the real abnormal nodes can exhibit high similarity to
the normal nodes in terms of local affinity in the raw attribute space. The main reason is that some
abnormalities are weak or the existence of adversarial camouflage that disguises abnormal nodes to
have similar attributes to the local community. This is the key intuition behind the second prior.

C.2 Sensitivity Analysis

This section analyzes the sensitivity of GGAD w.r.t four key hyperparameters, including the affinity
margin α, hyperparameters of structural affinity loss β and egocentric closeness λ, and the number of
generated outlier nodes S. The AUPRC results are reported in Fig. 8. We discuss these results below.
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Figure 6: Histogram of local affinity on more datasets
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Figure 7: Affinity distribution based on raw node attributes

Impact of Margin α in ℓala. α in ℓala denotes the affinity difference we enforce between the normal
and outlier nodes. As Fig. 8(a) shows, GGAD performs best on Amazon and Photo with increasing
α while it performs stably on the other four datasets with varying α, indicating that enforcing local
separability is more effective on Amazon and Photo than the other datasets, as can also be observed
in Table 3.

Impact of Hyperparameters β and λ. As shown in Figs. 8(b)(c), with increasing β and λ, our
model GGAD generally performs better, indicating that a stronger structural affinity or egocentric
closeness constraint is generally preferred to generate outlier nodes that are more aligned with the
real abnormal nodes.

The Number of Generated Outlier Nodes S. As shown in Fig. 8(d), where S indicates that we
generate the outlier nodes in a quantity at a rate of S% of |Vl|, GGAD gains some improvement
with more generated outlier nodes but it maintains the same performance after a certain number of
outlier nodes. This is mainly because the generated outlier nodes may not be diversified enough to
resemble all types of abnormal nodes, even with much more outlier nodes. The declined performance
on Amazon and Photo is mainly due to the fact that the labeled normal data in these two datasets
is small and is overwhelmed by increasing outlier nodes, leading to worse training of the one-class
classifier. The AUROC results of these four key hyperparameters are shown in Fig. 9, which show a
similar trend as the AUPRC results.

C.3 More Results for Models Trained on Varying Number of Normal Nodes

The results of AUPRC and AUROC under different training normal sample sizes are shown in Fig. 10.
and Fig. 11 respectively. The results show that increasing training samples of normal nodes can help
the methods more accurately capture the normality, resulting in a consistent improvement. Among
these methods, GGAD consistently outperforms the competing methods with varying numbers of
training normal nodes, indicating that GGAD can make better use of labeled normal nodes.

C.4 More Results for Robustness w.r.t. Anomaly Contamination

The full AUROC and AUPRC results under different anomaly contamination rates for all six real-
world datasets are shown in Fig. 12 and Fig. 13, respectively. The results show that the performance
of all methods decreases with the increasing rate of contamination. The reconstruction-based methods
DOMINANT and AnomalyDAE are the most sensitive models, followed by GAAN, TAM, and
AEGIS. OCGNN is relatively stable under the contamination. Despite the declined performance for
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Figure 8: AUPRC of GGAD w.r.t hyperparameters α, β, λ, S.
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Figure 13: AUROC w.r.t. different anomaly contamination.

all the methods, our method GGAD still maintains the best performance under different contamination
rates.

C.5 More Analysis on the Generated Outliers

We further employ the Maximum Mean Discrepancy (MMD) distance to measure the distance
between the generated outliers and the real abnormal nodes (and the normal data as well) to illustrate
more in-depth characteristics of the generated outlier nodes. As shown in Table. 6, it is clear that the
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Table 6: Analysis of the generated outlier nodes using MMD distance.

Metric Dataset
Amazon T-Finance Elliptic Photo Reddit

with Abnormal Node 0.1980 0.0784 0.1094 0.3703 0.3409
with Normal Node 0.2318 0.1040 0.1304 0.3880 0.3605

Table 7: Runtimes (in seconds) on the six datasets on CPU.

Method Dataset
Amazon T-Finance Reddit Elliptic Photo DGraph

DOMINANT 1592 10721 125 1119 437 388
AnomalyDAE 1656 18560 161 8296 445 457

OCGNN 765 5717 162 3517 125 /
AEGIS 1121 15258 166 5638 417 1022
GAAN 1678 12120 94 1866 307 /
TAM 4516 17360 432 13200 165 /

GGAD (Ours) 658 9345 368 5146 106 488

distribution of the generated outliers have much smaller MMD distance to the real abnormal nodes
than the normal nodes, indicating the good alignment of the distribution of the generated outliers with
the real abnormal nodes.

D Computational Efficiency Analysis

D.1 Time Complexity Analysis

This subsection analyzes the time complexity of GGAD. We build a GCN to obtain the representation
of each node, which takes O(mdh), where m is the number of non-zero elements in matrix A, d is
the dimension of representation, and h is the number of feature maps. The outliers are generated from
the ego network of a labeled normal node, which takes O(Skd2) where S is the number of generated
outliers and k is the number of average neighbors for each outlier. The affinity calculation will take
O(N2d), where N is the number of nodes. The structural affinity and egocentric closeness losses
take O(N) and O(Sd), respectively. The MLP layer mapping the representation to the anomaly score
takes O(Nd2). Thus, the overall complexity of GGAD is O(mdh+Skd2+N2d+N +Sd+Nd2).

D.2 Runtime Results

The runtimes, including both training and inference time, of GGAD and six semi-supervised com-
peting methods on CPU are shown in Table 7. In GGAD, although calculating the local affinity of
each node requires some overheads, it is still much more efficient than the reconstruction operations
on both the attributes and the structure as in DOMINANT and AnomalyDAE. Compared to the
generative models AEGIS and GAAN, GGAD is generally more efficient on larger graph datasets
like Amazon, T-Finance, and DGraph. OCGNN is a model with the simplest operation, to which our
GGAD can also have comparable efficiency. These results demonstrate the advantage of GGAD in
computational efficiency

E The Training Curves of Optimization

To further demonstrate the collaboration between these two prior-based losses, we visualize the
optimization of loss during the training in Fig. 14, where ‘ala’ and ‘ec’ represent the two priors losses
and the ‘total’ represents the sum of these two priors and the BCE loss. From the results, we can
see that the two prior losses and the total loss are continuously decreasing and converging finally,
indicating that these optimizations are collaborative rather than diverged.
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Figure 14: Loss curve of different modules in GGAD

F Pseudo Code of GGAD

The training algorithms of GGAD are summarized in Algorithm 1 and Algorithm 2. Algorithm 1
describes the full training process of GGAD. Algorithm 2 describes the mini-batch processing for
handling very large graph datasets, i.e., DGraph. Since the number of the outlier nodes is significantly
smaller than that of the normal nodes, we guarantee that each mini-batch consists of both normal and
outlier nodes to address the data imbalance problem. The outputs are the mini-batches of samples
from the graph and corresponding structural information, which can then be used as the input of
GGAD or the competing models to perform GAD on DGraph. Note that when using Algorithm 2 for
the competing models, the steps that involve the generated outliers are not used if they do not have
the outlier generation component.
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Algorithm 1 GGAD

Input: Graph, G=(V,E,X), N : Number of training nodes, , Nu: Number of unlabeled nodes, L:
Number of layers, E: Training epochs, Vtrain:Training set, Vtest:Test set , S: The number of the
generated outlier nodes

Output: Anomaly scores of all nodes.

1: Sample the ego networks of some normal nodes upon which the outlier nodes are to be generated
Vo = [vo1 , ..., vos ]

2: Compose Vtrain with the outlier nodes Vo and the given labeled normal node set Vl

3: Randomly initialize GNN (h
(0)
1 ,h

(0)
2 , ...,h

(0)
N )← X

4: for epoch = 1, · · · , E do
5: for each v in Vtrain do
6: for l = 1, · · · , L do
7: h

(l)
v = ϕ(h

(l−1)
v ;Θ)

8: h
(l)
v = ReLU

(
AGG({h(l)

v′ : (v, v′) ∈ E})
)

9: end for
10: end for
11: for k = 1, · · · , S do
12: Obtain the representations (e.g., ĥk) of the generated outliers using our outlier generation

method using Eq. (2)
13: end for
14: Compute the normal nodes’ affinity τ(Vo) and the outlier nodes’ affinity τ(Vl)
15: Compute the structural affinity loss ℓala and egocentric closeness loss ℓec using Eq. (4) and

Eq. (5) respectively.
16: Compute the BCE loss function ℓbce for our one-class classifier η(hi; Θs) using Eq. (6)
17: Compute the total loss ℓtotal = ℓbce + βℓala + λℓec
18: Update the weight parameters Θ, Θg and Θs by using gradient descent
19: end for
20: for each vi in Vtest do
21: Anomaly scoring by s (vi) = 1− η (hj ; Θ

∗)
22: end for
23: return Anomaly scores s(v1), · · · , s(vNu

)

Algorithm 2 Mini-Batch Processing

Input: Graph, G=(V,E,X), N : Number of nodes, t: Batch size, z: Number of batches, S: The
number of the generated outlier nodes, Vtrain:Training set

Output: Mini-batches and sub-graph structure.

1: Initialize the batch B = (b1, ...,bz), where b = [v1, ..., vt] from given Vtrain

2: for each b in B do
3: Sample S/z nodes as initial outliers [vo1 , ...voS ] from batch b
4: Initialize a node set Vb for batch b
5: for each v in b do
6: Find the 2-hop neighborhoods N2

v of v and add them into the node set Vb

7: end for
8: Build a sub-graph structure Eb for batch b using the node set Vb

9: end for
10: return The batch B = (b1, ...,bz) and sub-graph structure [E1, ...,Ez]
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are elaborated in both the abstract and introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation of our proposed GGAD in Sec. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification: We provide a detailed implementation detail in the paper where the hyper-
parameters like learning rate, batch size, etc. are given for reproducing our experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code of our proposed method and the adapted competing
methods for this new setting with detailed instructions for the reproduction. The datasets are
also publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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