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Abstract

When training node embedding models to represent large directed graphs (digraphs),
it is impossible to observe all entries of the adjacency matrix during training. As a
consequence most methods employ sampling. For very large digraphs, however,
this means many (most) entries may be unobserved during training. In general,
observing every entry would be necessary to uniquely identify a graph, however if
we know the graph has a certain property some entries can be omitted - for example,
only half the entries would be required for a symmetric graph.
In this work, we develop a novel framework to identify a subset of entries required
to uniquely distinguish a graph among all transitively-closed DAGs. We give an
explicit algorithm to compute the provably minimal set of entries, and demonstrate
empirically that one can train node embedding models with greater efficiency
and performance, provided the energy function has an appropriate inductive bias.
We achieve robust performance on synthetic hierarchies and a larger real-world
taxonomy, observing improved convergence rates in a resource-constrained setting
while reducing the set of training examples by as much as 99%.

1 Introduction

Consider the directed graph and its associated adjacency matrix in Figure 1. In situations where this
adjacency matrix is sparse, we can store it more efficiently by keeping a list of only the positive
entries, effectively assuming any pairs not in our list are zero. But what about situations where we
cannot assume that we have observed the full graph? For example, when obtaining annotations for
edges of an unknown graph, the full adjacency matrix is unknown to us and we obtain the value of any
particular entry by requesting an annotation. A less obvious scenario is training a model to represent
a given graph. From the model’s perspective, every entry of this adjacency matrix is unknown, and it
is only observed as a consequence of training. Therefore, it is of interest to determine: what is the
smallest set of entries necessary to uniquely determine the graph?
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Figure 1: A transitively closed directed tree with branching factor 2
and depth 2, with the associated adjacency matrix.
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Figure 2: A sufficient set of entries in the adjacency matrix to
uniquely distinguish the graph in Figure 1 among all

transitively-closed DAGs.
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In general, the answer is “all of them”, but if we assume some structural prior on the graph itself, it
may be possible to reduce the number of edges necessary for consideration. For example, if we knew
it was a simple graph (no self-loops) we could omit the diagonal. Similarly, for a symmetric graph,
we could omit half the entries. For the class of acyclic graphs, we can omit certain entries which,
were they to be 1, would form a cycle, and therefore must be 0; however, the explicit characterization
of these entries is not as straightforward as the preceding cases. Focusing on the case when the
graph is a transitively-closed directed acyclic graph (DAG), as in Figure 1, it is easy to see that of
those entries which are 1, we can omit all but the transitive reduction, i.e. the bold edges, which
corresponds to omitting the non-bold “1”s in the adjacency matrix. But what about pruning the zeros?
For the graph in Figure 1, we can prove only 14 of the 49 entries in the adjacency matrix are needed
to uniquely distinguish this graph among all transitively-closed DAGs. (See Figure 2.)

In this work, we first develop a general-purpose framework to identify a subset of entries required
to uniquely distinguish a graph among others with some arbitrary graph property (Section 3.1). We
then use this framework to construct a set of entries in the adjacency matrix sufficient to uniquely
distinguish transitively-closed digraphs (Section 3.2), and prove that this reduced set is also minimal
for transitively-closed DAGs (Section 3.3). We show how this can be leveraged to more efficiently
train node embedding models for graph representation by defining the notion of “transitivity bias”
(Section 4.1), and proving that box embeddings, a common graph representation model, have a
transitivity bias (Section 4.3). We then combine these facts into a formal negative sampling procedure
(Section 5) and demonstrate that box embeddings do benefit from training on this reduced set of
entries (Section 6).1 For related work in graph theory and representation learning, we refer the reader
to Appendix A.

2 Background

We use the shorthand JnK := {1, . . . , n}. A semicolon separates the main arguments of a function
from parameters which are typically held constant (e.g., f(x;µ, σ) = 1

σ
√
2π

e−
1
2 (

x−µ
σ )2). We may

omit these secondary parameters when their values are clear from context. We represent a graph
G = (V,E) by its adjacency matrix AG ∈ {0, 1}N×N , where (AG)u,v = 1 if and only if (u→v) ∈
E. When it is clear from context, we omit the subscript and simply write A. We use arrows to
represent edges: black (a→b) denotes a positive edge in E, and red (a→b) a negative edge in the
edge complement E (see below).

2.1 Directed Graphs (Digraphs)

All graphs G = (V,E) in this work will be finite simple2 directed graphs (digraphs), where the
edges are a subset of the complement of the diagonal, i.e. with diag(V ) := {(v→v) | v ∈ V }, we
have E ⊆ V 2 \ diag(V ) =: offdiag(V ). Given a simple digraph G = (V,E), the complement of G
is G = (V,E) where E := offdiag(V ) \ E. The transitive closure of G is Gtc = (V,Etc) where
(u, v) ∈ Etc if and only if there exists a directed path from u to v in G. A transitive reduction of
a digraph G is a digraph G′ on V with the fewest number of edges such that (G′)tc = Gtc. Note
that a transitive reduction need not be a subgraph of G, and in general is not unique. If G is acyclic,
however, there is a unique transitive reduction, and it is also a subgraph of G [Aho et al., 1972]. In
this case we denote the transitive reduction Gtr = (V,Etr).

2.2 Node Embeddings for Capturing Graph Structure

Given the task of modeling entities V that have a known graph-theoretic structure G = (V,E),
a common approach is to learn a node embedding θ : V → Z which maps a node v 7→ θ(v) in
embedding space Z. The graph structure is extracted from these geometric representations via an
energy function E : V × V → R≥0 which factors through θ, i.e. there exists a dissimilarity function
h : Z × Z → R≥0 such that Eθ(u, v) := E(u, v; θ) = h(θ(u), θ(v)). For example, for undirected
graphs it is common to use Z = RD and Eθ(u, v) = ∥θ(u)− θ(v)∥. This energy is interpreted as

1Our code and data are available at https://github.com/iesl/geometric-graph-embedding.
2A simple digraph is one without multiple edges or self-loops, i.e. the adjacency matrix contains only 0s and

1s, with 0s on the diagonal. We ignore self-loops in the graph modeled by the learned representations.
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the unnormalized negative log-probability of edge existence. We seek to minimize the energy for
positive edges (u→v) by learning representations for which there exists some (global) threshold T
such that Auv = 1 if and only if Eθ(u, v) ≤ T .

One reason to embed nodes is to learn representations end-to-end in conjunction with other objectives
via gradient descent. In such a setting, a typical loss function for the graph structure takes the form

Lfull(θ;G) :=
∑

(u→v)∈E

ℓ+(Eθ(u, v)) +
∑

(u→v)∈E

ℓ−(Eθ(u, v))

where ℓ+ and ℓ− are referred to as the positive and negative loss functions, respectively, and the pairs
in E and E are referred to as positive and negative edges accordingly.

The loss function Lfull has |V |(|V | − 1) terms, and thus is often too computationally demanding to
use for training. For digraphs which are sparse, a common workaround is to define a noise probability
density function (pdf) pn and design a loss function Lnoise which replaces the sum over negative edges
with an expectation with respect to pn. In practice, Monte Carlo sampling is used to calculate a loss
Lsampled which approximates Lnoise.

3 Distinguishing Digraphs via Sidigraphs

We aim to define a new loss function with only a subset of the terms in Lfull (which currently include
all entries of the adjacency matrix AG), while having the same minimizer. Thus, we first attempt to
determine the minimal number of entries in AG which would uniquely distinguish G among all those
with a given property. To this end, we turn to the notion of a signed digraph (a.k.a. “sidigraph”),
a digraph where edges have labels + or −, as a formalism for making explicit the disjoint set of
“positive” and “negative” edges required to uniquely determine G. Edges not present in this sidigraph
will be the entries we can omit from our adjacency matrix, given those edges which are present and
some structural prior.

This framework will allow us to identify the minimal set of entries in the adjacency matrix necessary
to uniquely distinguish a digraph among all those with a given property. We apply this framework to
transitively-closed digraphs, in which case we prove that certain edges can be pruned. We then prove
that, in the case of transitively-closed DAGs, this yields the minimal set of entries. We furthermore
provide a concrete algorithm to construct this set of entries from a given adjacency matrix.

3.1 Preliminary Definitions

While the depiction of the partial adjacency matrix in Figure 2 is clear, in order to formalize this
we need a notion of a graph which has three possible values, e.g. 1, 0, and “missing”. This is
captured formally by the notion of a (simple) signed digraph, or sidigraph for short, which is a triple
(V,E+, E−) where V is the vertex set, and E+, E− are disjoint subsets of offdiag(V ), referred to
as the positive and negative edges, respectively.

Definition 1. Given a digraph G = (V,E) we define the equivalent sidigraph G± := (V,E,E).

This equivalence defines a bijection between digraphs and sidigraphs with |V |(|V | − 1) edges. See
Figure 3 for a depiction of an equivalent sidigraph of the digraph in Figure 1.

Let H and G be two sidigraphs with the same vertex set V . We say that H is a sub-sidigraph of G,
denoted by H ⊆ G, if E+

H ⊆ E+
G and E−

H ⊆ E−
G . Given some digraph G, identifying a subset of

entries in AG is equivalent to specifying a sub-sidigraph of G±. For this reason, we introduce the
following terminology.

Definition 2. We say that a sidigraph H is a potential distinguisher of a digraph G if H ⊆ G±.
Given a sidigraph H , we define the set of digraphs that could potentially be distinguished by H to
be GH := {G | H ⊆ G±}.

That is, GH contains every digraph G such that H is a potential distinguisher. Another way to
interpret GH is that the edge set of every graph G ∈ GH contains all positive edges and no negative
edges of H . More formally: GH = {G | VG = VH , E+

H ⊆ EG, E
−
H ∩ EG = ∅}.
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Root A B A1 A2 B1 B2
Root 0 1 1 1 1 1 1

A 0 0 0 1 1 0 0
B 0 0 0 0 0 1 1

A1 0 0 0 0 0 0 0
A2 0 0 0 0 0 0 0
B1 0 0 0 0 0 0 0
B2 0 0 0 0 0 0 0

(a) Adjacency matrix for G

Root A B A1 A2 B1 B2
Root + + + + + +

A − − + + − −
B − − − − + +

A1 − − − − − −
A2 − − − − − −
B1 − − − − − −
B2 − − − − − −
(b) Equivalent sidigraph G±

Root A B A1 A2 B1 B2
Root + +

A + + − −
B − − + +

A1 −
A2 −
B1 −
B2 −

(c) Minimal sidigraph H∗

Figure 3: An adjacency matrix (a) and a representation of the edges in the associated sidigraph (b), where a + in position (i, j) indicates
(i→j) ∈ E+ and a −indicates (i→j) ∈ E−. The minimal sidigraph (c) formally captures the fact that Figure 2 has the minimal set of

entries in the adjacency matrix to uniquely distinguish G among all transitively-closed DAGs.

Definition 3. Given some property, we let P be a set of all digraphs (on a given set of nodes) with
this property. We say the sidigraph H distinguishes a particular digraph G among all those with the
given property if GH ∩ P = {G}.

3.2 Distinguishing Transitively-Closed Digraphs

In this work, we focus on the case where P contains all transitively-closed digraphs, and we let
G = (V,E) ∈ P be some fixed transitively-closed digraph.

We first focus on reducing the positive edges of G±. An explicit representation of G may well have
Ω(|V |2) edges; however any transitive reduction G′ = (V,E′) often has substantially fewer edges.3
Furthermore, by definition, G is the only transitively-closed digraph which contains the edges E′. As
a consequence, if we let H = (V,E′, E) we have GH ∩P = {G}, which proves the following result.

Proposition 1. Let G = (V,E) be a transitively-closed digraph, and G′ = (V,E′) a transitive
reduction. Then H = (V,E′, E) distinguishes G among transitively-closed digraphs.

The edge complement E might also have Ω(|V |2) edges, which we would like to reduce while
maintaining distinguishability. To see why this should be possible, consider Figure 4.

If (a→b) ∈ E and (a→d) /∈ E then (b→d) /∈ E, since if it were we would need to include (a→d)
due to transitivity. Similarly, if (c→d) ∈ E and (a→d) /∈ E then (a→c) /∈ E, since, if it were,
transitivity would imply (a→d) ∈ E. We formalize this in the following proposition.

Proposition 2. Let G = (V,E) be a transitively-closed digraph; H = (V,E+
H , E−

H) a sidigraph
which distinguishes G among transitively-closed digraphs. If (a→d) ∈ E−

H , then

1. If (a→b) ∈ E, H ′ = (V,E+
H , E−

H \{(b→d)}) distinguishes G among transitively-closed digraphs.

2. If (c→d) ∈ E, H ′ = (V,E+
H , E−

H \{(a→c)}) distinguishes G among transitively-closed digraphs.

Proof. Recall that H distinguishing G among transitively-closed digraphs means that GH∩P = {G},
i.e. G = (V,E) is the only transitively-closed digraph for which E+

H ⊆ E and E−
H ∩ E = ∅. Now,

note that G′ = (V, (E+
H)tc) is the smallest transitively-closed digraph containing the edges E+

H , and
thus G′ ⊆ G. But this implies E−

H ∩ (E+
H)tc ⊆ E−

H ∩ E = ∅, and thus G′ = G.

Now we prove the proposition at hand. We prove the first case, the second follows similarly. Let
(a→d) ∈ E−

H , assume (a→b) ∈ E, and define H ′ = (V,E+
H , E−

H \ {(b→d)}). Note that H ′ ⊆ H ,
and hence GH ⊆ GH′ .

Now suppose K = (V,EK) ∈ GH′ ∩ P , which implies K is a transitively-closed digraph with
E+

H ⊆ EK and (E−
H \ {(b→d)}) ∩ EK = ∅. In particular, as a consequence of our observation

in the first paragraph, this means (a→b) ∈ EK . We prove (b→d) /∈ EK by contradiction, for if
(b→d) ∈ EK , then since K is transitively-closed we would have (a→d) ∈ EK which violates our
preliminary assumption.

3A canonical example is the transitive closure of a directed path of length n, where |E tc| = (n− 1)(n− 2),
but |E tr| = n− 1.
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These two simple prunings, illustrated in Figure 4, lead us to formulate Algorithm 1, FINDMINDIS-
TINGUISHER, which repeatedly removes edges using Proposition 2 until no more can be removed.

a

b

c

d

a

b

c

d

Figure 4: Negative edges removable according to Proposition 2.

Algorithm 1 FINDMINDISTINGUISHER

Require: G = (V,E) transitively-closed DAG
1: E∗ ← E
2: for (a→d) ∈ E do
3: for (a→b) ∈ E do
4: E∗ ← E∗ \ {(b→d)}
5: end for
6: for (c→d) ∈ E do
7: E∗ ← E∗ \ {(a→c)}
8: end for
9: end for

10: return H∗ = (V,E tr, E∗)

3.3 Optimality of FINDMINDISTINGUISHER

We note that H∗ = FINDMINDISTINGUISHER(G) is only defined for DAGs, and indeed for graphs
with cycles it is not possible to uniquely define such a sidigraph. (Recall that the transitive closure is
not unique for graphs with cycles). In the event that G is acyclic, however, we can prove that H∗

is not just capable of distinguishing G among transitively-closed digraphs, but moreover it is the
sidigraph with the minimum number of edges capable of doing so! Below is a proof sketch for the
informal statement. For the full proof refer to Theorem 1 in Appendix B.

Proof sketch: The basic idea is to define a partially ordered set, a.k.a. poset, on the set of negative
edges of G±. We then show that the set of all minimal elements in this poset is necessary and
sufficient to distinguish G among transitively-closed digraphs. Finally, we observe that our algorithm
in the previous section produces the set of all minimal elements and hence its optimality follows.

4 Leveraging Sufficient Sidigraphs for Training Node Embeddings

We would like to leverage a distinguishing sidigraph for more efficient training and improved
accuracy of energy-based node embedding models. The prerequisite is an energy function with a
useful inductive bias for the digraph property under consideration. In the extreme case of an inductive
bias which only permits models capable of representing digraphs in P we should be able to train
using only the positive and negative edges from any H which can distinguish G among those in P .
In some instances, depending on the proportion [|E+

H∗ |+ |E−
H∗ |]/[|V |(|V | − 1)], this may allow full

training on digraphs which would otherwise require sampling. As we show, sampling can still be used
in conjunction with the minimal edge set implied by a sidigraph, and in such situations we expect not
only increased efficiency but increased performance, as Lsampled(θ) will better approximate Lfull(θ).

4.1 Transitivity Bias

First, we formally define “transitivity bias”.
Definition 4. Let Z be an embedding space. We say that an energy function Eθ has transitivity bias
if, for all embeddings θ : V → Z, there exists some threshold T ≥ 0 s.t. for all u, v, w ∈ V , the
inequalities Eθ(u, v),Eθ(v, w) ≤ T imply Eθ(u,w) ≤ T .

We illustrate transitivity bias using the following overly simple embedding model.

Example 1 (Bit Vectors). Let Z = {0, 1}|V |, and EBV(u, v; θ) := − log θ(u)·θ(v)
θ(v)·θ(v) . Then EBV,θ

has a transitivity bias using threshold T = 0, as EBV(u, v; θ) = 0 if and only if ∀i ∈ V ,
θ(v)i = 1 =⇒ θ(u)i = 1. Thus, if EBV(u, v; θ) = EBV(v, w; θ) = 0 we have θ(w)i = 1 =⇒
θ(v)i = 1 =⇒ θ(u)i = 1, hence EBV(u,w; θ) = 0.

For a given digraph G = (V,E), we define the bit vector representation of G as θBV : V → {0, 1}|V |,
where the ith (for i ∈ V ) coordinate is given by
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θBV(v)i :=

{
1 if i equals v or is a descendant of v,
0 otherwise.

Proposition 3. Let G = (V,E) be any digraph, then EBV(u, v; θBV) = 0 if and only if (u, v) ∈ Etc.

Proof. Let (u, v) ∈ Etc, then there is some path u = w1 → w2 → · · · → wn−1 → wn = v in E. By
the definition of θGBV, we have that EBV(wi, wi+1; θ

G
BV) = 0 for i ∈ JnK, and thus by the transitivity

bias observation made in Example 1 this implies EBV(u, v; θ
G
BV) = 0.

Now assume (u, v) /∈ Etc, then v is not a descendant of u, which means θGBV(u)v = 0 while
θGBV(v)v = 1, and hence EBV(u, v; θ

G
BV) > 0.

With an appropriate threshold, any energy function that has transitivity bias in fact represents a
transitively-closed digraph:
Proposition 4. If Eθ is an energy function with transitivity bias, then for any θ there exists a T ≥ 0
such that the digraph with edges {(u, v) | Eθ(u, v) ≤ T} is transitively closed.

This allows us to formalize the notion that training on any H which can distinguish G among
transitively-closed digraphs is sufficient.
Proposition 5. Let G be a transitively-closed digraph, Eθ an energy function with transitivity bias,
and H = (V,E+

H , E−
H) a sidigraph which distinguishes G among transitively closed digraphs. If T

is the threshold associated with the transitivity bias for θ, Eθ(u, v) ≤ T for all (u, v) ∈ E+
H , and

Eθ(u, v) > T for all (u, v) ∈ E−
H , then θ represents the digraph G.

4.2 Box Embeddings and T-BOX

We would like our energy function to be a representation which is tractable and trainable via gradient-
descent, which requires the space Z to have differentiable structure. Box embeddings [Vilnis et al.,
2018] are a trainable region-based embedding method which demonstrate strong performance for
representing digraphs [Boratko et al., 2021a, Zhang et al., 2022]. We provide the requisite background
on box embeddings and define the specific model that we will use for our experiments.

As introduced in Vilnis et al. [2018], box embeddings represent entities using a box or hyperrectangle
in RD, i.e., a Cartesian product of intervals

D∏
d=1

[x⌞
d, x

⌝
d] = [x⌞

1, x
⌝
1]× . . .× [x⌞

D, x⌝
D] ⊆ RD,

where x⌞
d < x⌝

d for d ∈ JDK. Vilnis et al. [2018] proposed modeling a directed graph such that boxes
of parents contain their children with an energy function

EBOX(u, v; θ) := − log

D∏
d=1

FBOX(θ(u)d, θ(v)d),

where the per-dimension parameters are endpoints of an interval, i.e. θ(u)d = [θ(u)⌞d, θ(u)
⌝
d], and the

per-dimension score is defined as

FBOX((x
⌞, x⌝), (y⌞, y⌝)) :=

|[x⌞, x⌝] ∩ [y⌞, y⌝]|
|[y⌞, y⌝]|

=
max(min(x⌝, y⌝)−max(x⌞, y⌞), 0)

max(y⌝ − y⌞, 0)
.

Previous works have highlighted the difficulty of optimizing an objective including these hard min
and max functions [Li et al., 2019, Dasgupta et al., 2020]. We use the Global T-BOX model, the most
recent solution to this issue, introduced in Boratko et al. [2021a]. Global T-BOX (or GT-BOX) softens
the volume calculation by replacing the hard min and max operators with a smooth approximation
LSEt(x) := t log(

∑
i e

xi/t). The per-dimension score function is then given by

FGT-BOX((x
⌞, x⌝), (y⌞, y⌝); τ, ν) :=

LSEν(LSE−τ (x
⌝, y⌝)− LSEτ (x

⌞, y⌞), 0)

LSEν(y⌝ − y⌞, 0)
,

which approximates FBOX for sufficiently small τ, ν > 0. These τ, ν are additional (global) trainable
parameters of the model.
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4.3 Transitivity Bias of Box Embeddings

While the motivation and formulation of the energy for box embedding functions is quite different
than that of the naive bit vector model in Example 1, it actually is more similar than it may at first
appear.

Remark 1. As observed in Boratko et al. [2021b], the box intersection volume calculation can
actually be viewed as the L2 inner-product of characteristic functions of boxes, in which case it
takes an identical form to the energy function for bit vectors. For any functions f, g ∈ L2(RD), the
standard inner product is ⟨f, g⟩ =

∫
RD f(x)g(x) dx. Now, for any box B ⊆ RD, we let 1B(x) be

the characteristic function, which is 1 when x ∈ B and 0 otherwise. Then the volume of intersection
of boxes is

Vol(A ∩B) = ⟨1A(x),1B(x)⟩,

which is also valid if A = B. Thus, we can write the energy function

EBOX(u, v; θ) = − log
⟨1θ(u),1θ(v)⟩
⟨1θ(v),1θ(v)⟩

.

Remark 2. Box embeddings can be quantized into bit vectors in such a way that applying the bit
vector energy function to the resulting quantizations preserves the set of node pairs which have zero
energy. Given a box embedding θ, for each d ∈ JDK let Td be the endpoints of boxes in dimensions
d, i.e. Td := ∪v∈V{θ(v)−d , θ(v)

+
d }. Let Md := |Td|, and assign indices Td =: {td,m}Md

m=1 such that
td,m ≤ td,m+1 for m ∈ JMd − 1K. Then, for each v ∈ V and d ∈ JDK, form the Md-dimensional
vector φ(v)d,m := FBOX(θ(v)d, (td,m, td,m+1)). By construction, this value will be either 0 or 1.
Letting φ(v) ∈ {0, 1}

∑
Md be the concatenation of {φ(v)d}Dd=1, we obtain a bit vector representation,

for which the energy function E(u, v;φ) = − log φ(u)·φ(v)
φ(v)·φ(v) is such that E(u, v;φ) = 0 if and only if

φ(v)d,m = 1 =⇒ φ(u)d,m = 1, which is true if and only if [θ(v)+d , θ(v)
+
d ] ⊆ [θ(u)−d , θ(u)

+
d ].

Most importantly for our purposes, however, is the following proposition.

Proposition 6. The energy function EBOX,θ has a transitivity bias.

Apart from prior empirical observations that box embeddings work well to embed transitively-closed
DAGs Boratko et al. [2021a], Proposition 5 suggests it should be possible to train box embeddings
on the output of FINDMINDISTINGUISHER to represent a transitively-closed DAG. In practice, we
train the smooth approximation provided by GT-BOX. As τ, ν → 0+, which often happens naturally
during training Boratko et al. [2021a], we expect it to capture the transitivity even when trained only
on the positive and negative edges of the distinguisher provided by the algorithm.

5 Hierarchy-Aware Sampling

In this section we formally how we sample edges for our loss function, which we term hierarchy-aware
sampling. Based on the results in the preceding section, given a transitively-closed digraph G, if Eθ

has a transitive bias and the sidigraph H = (V,E−
H , E+

H) can distinguish G among transitively-closed
digraphs, then we can train using the following loss function:

Lha(θ;H) :=
∑

(u→v)∈E+
H

ℓ+(Eθ(u, v)) +
∑

(u→v)∈E−
H

ℓ−(Eθ(u, v)).

In particular, for a transitively-closed DAG G, we can use H∗ as returned by Algorithm 1.

If the cardinality of H∗ is small enough, this may make training using Lha feasible. In gen-
eral, however, we still may need to sample negative edges using some noise distribution, as
mentioned in Section 2.2. In practice, we will compare using the sidigraphs G± and H∗ =
FINDMINDISTINGUISHER(G), which means positives will be sampled from either E or Etr, and
negatives will be sampled from E or E−

H∗ . Even with our reduced set of negatives, there are still far
more negatives than positives, and so we adopt the common practice of sampling k negatives for
every positive within a batch.
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6 Experiments

The main aim of our experiments is to compare the efficacy on graph representation learning of
models with vs without transitivity bias, and random uniform vs hierarchy-aware sampling. As per
Proposition 5, we hypothesize that the greatly reduced edge set in hierarchy-aware sampling will be
sufficient to faithfully represent the graphs in the embedding space if our model has transitivity bias.

Data. We evaluate hierarchy-aware sampling on the heterogeneous synthetic DAGs for which
Boratko et al. [2021a] demonstrated superior performance using GT-BOX and random uniform
negative sampling: balanced trees, where b is the branching factor, the nested Chinese restau-
rant process (nCRP) [Blei et al., 2010], where α is the normalized “new table” probability, and
Price’s model [Price, 1976], where m is the number of connections for a new node and c is a
constant factor added to the probability of a vertex receiving an edge4. We also test on the larger
real-world Medical Subject Headings (MeSH) taxonomy Lipscomb [2000], 2020 release. For de-
tailed statistics about all graphs we refer the reader to Table 1 in Appendix F.

Models. To evaluate the importance of the model having transitivity bias in order to take advantage
of this reduced set of edges, we consider the vector similarity model SIM-VEC which represents
each node by an “in” and “out” vector, and computes edges via dot-product, ESIM-VEC(u, v) :=
− log(σ(θ(u)out · θ(v)in)). Unlike GT-BOX, SIM-VEC does not have transitivity bias Boratko et al.
[2021a]. For all of our experiments we fix the dimension to 64; this corresponds to 64-dimensional
“in” and “out” embeddings for SIM-VEC, and to the two 64-dimensional corners x⌞ and x⌝ of
GT-BOX. This makes the number of parameters per node for both models 128. For details on
hyperparameter tuning, see Appendix E.

Support and Sampling. For the synthetic graphs we iterate over settings relating to the support sets
from which to uniformly randomly sample positive and negative training edges, respectively:

• Sampling positive edges from the transitive reduction Etr vs transitive closure Etc.
• Sampling negative edges from minimal hierarchy-aware set E−

H∗ vs edge complement E.
• Negative sampling ratio k = 4 vs k = 128 (i.e. per each positive edge seen by the model, k

negative edge sampled uniformly randomly from the support set also get seen).

Setting k = 4 mimics the tiny proportion of sampled negatives to the pool of all possible negatives, a
limitation which we expect when scaling to larger graphs, such as MeSH.

Evaluation. Since we are evaluating the representational capacity of each experimental setting (as
opposed to generalization on some held-out edge set), our metric is the F1 between the edges of the
transitively-closed DAG we are modeling and the model’s scores for those edges. In other words, we
are performing binary classification over the full adjacency matrix for the hierarchy in question.

We investigate the impact of the available positive and negative support sets on model training; since
the representational capacities of vector and box models are well-studied, we are not interested in the
best F1 score attainable by these models, but the effect of respective support sets on convergence. To
compare across experimental settings, we plot F1 as a function of the number of total examples (both
positive and negative edges) processed by the model (e.g. Figure 6). To measure the final performance
and rate of convergence, we use the area under the F1 vs. Total Examples curve (AUF1C).

6.1 Results and Discussion

First note that GT-BOX universally outperforms SIM-VEC on the graph modeling experiments. This
is not surprising, as Boratko et al. [2021a] demonstrate the superior inductive bias of GT-BOX for
modeling digraphs generally. The aim of our experiments, however, is to investigate the impact of a
hierarchy’s structure on the convergence for the various sampling settings for GT-BOX specifically.
With this aim, in Figure 5, we present the AUF1C for the convergence curve (area under F1 vs.
number of examples) in the limited-example setting of k = 4. In this regime random uniform
negative sampling may not be able iterate over all of E in a reasonable amount of time, whereas, to
the contrary, it is possible to get through all of E−

H∗ in a limited number of epochs, since in many
cases the sampling pool is reduced by more than 99% (cf. Table 1).

4Preferential attachment exponent γ = 1.0 throughout.
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Model Training Edges Graph Type

Pos. Neg. BT nCRP Price

GT-BOX

0.568 0.796 0.582
0.658 0.775 0.602
0.842 0.904 0.849
0.744 0.877 0.909

SIM-VEC

0.072 0.084 0.158
0.180 0.285 0.336
0.098 0.158 0.300
0.508 0.409 0.494

Figure 5: Convergence measured using AUF1C on three graph types
for SIM-VEC and GT-BOX models with the full or reduced set of
positive and negative edges provided during training, respectively.

Pos. = (resp. ) implies usage of transitive closure (resp.
transitive reduction). Analogously, for Neg., the symbols imply

usage of the set of the edge complement E and E−
H∗ , respectively.

Figure 6: While GT-BOX (black squares) with a transitivity bias
takes full advantage of the hierarchy-aware E−

H∗ , SIM-VEC, which
does not have a transitivity bias, falls apart under this negative

sampling procedure. The reduction in negative examples from using
the pruned negative edges for this particular graph is 95.83%.

Negative ratio k = 4 throughout.

Figure 7: The plots show convergence of GT-BOX for negative ratio k = 4. The top row shows the plots for balanced trees with branching
factors b = 2, 5 and 10. The middle row for nCRP graphs with α = 10, 100, and 500, respectively going left to right. The bottom row shows

the plots for Price’s graph with c = 0.1, γ = 1.0 and three values of m = 1, 5, and 10. The number of vertices in each graph is ≈ 213.

Figure 5 demonstrates a striking trend observed consistently in our experiments. While GT-BOX
with our reduced edge set performs on par or better than with the original edge set, in contrast,
the performance of SIM-VEC degrades significantly. We demonstrate this using a representative
example in Figure 6, where, in stark contrast to GT-BOX taking advantage of E−

H∗ and outperforming
all SIM-VEC settings, both SIM-VEC settings that use E−

H∗ fail to converge even to 0.4 F1. This
dichotomy hearkens back to Proposition 5, which underlines the non-trivial synergy between an
energy function with transitivity bias and the hierarchy-aware output of FINDMINDISTINGUISHER.
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Balanced tree. Figure 11 Row 1 visualizes the impact on convergence of increasing the branching
factor. As branching factor b increases 2 < 5 < 10, we first note that the balanced tree with fixed |V |
becomes more and more shallow. While E−

H∗ performs well on all values of b, it particularly stands
apart from E in the b = 10 setting.

nCRP. α is the normalized “new table” probability, with a smaller α implying more separate clusters
with a deeper hierarchy, and a larger α implying fewer clusters and a more shallow hierarchy. The
relative improvement of using E−

H∗ is more significant for smaller α.

Price. Price’s model is learnable by GT-BOX especially quickly under any setting, as evidenced by
the very high AUF1C scores in Figure 5. Higher c has the effect of making edge attachment more
uniformly distributed among nodes. In Figure 11 Row 3 we examine convergence values for c = 0.1 ,
noting that E−

H∗ typically underperforms E but catches up in the limit. As m (out-degree of newly
added vertices) increases 1 < 5 < 10, looking at Table 1 we note that hierarchy-aware negative
pruning also gets more aggressive as 52.35% < 89.62% < 93.77%.

MeSH. As seen in Figure 8, on the larger real-world MeSH taxonomy, not only does GT-BOX
outperform SIM-VEC, but our minimal negative edge set EH∗ within GT-BOX outperforms sampling
from the edge complement, while being a 99.78% reduction. Meanwhile, EH∗ with SIM-VEC
plummets, consistently with the trend exhibited in Figure 6. This encouraging result on a graph
with ≈ 215 nodes points not only to the economy of our approach, but to the stability and improved
performance on large real-world data.

7 Limitations

Figure 8: Convergence of GT-BOX vs SIM-VEC for E vs EH∗ on
MeSH 2020. The minimal negative edge set EH∗ converges to the

highest F1 when coupled with GT-BOX, but falls apart when combined
with SIM-VEC, consistently with our hypothesis about the requirement

of transitivity bias for utilizing EH∗ .

While the connection between hierarchies and
transitivity bias allows us to capitalize on it in
the form of hierarchy-aware sampling, we ac-
knowledge that the properties demanded of both
the data and model are restricted to transitivity.
While this does encompass a large variety of
relationships observed in real-world graphs, this
specific algorithm does not extend easily to new
combinations of graph properties and inductive
biases, which is a goal of future work.

Another limitation is the extent to which this sort
of method would break down for graphs which
are, strictly speaking, not transitively-closed,
but close (in edit distance) to being transitively-
closed. Strictly speaking, our proofs do not ap-
ply in that setting, and the efficacy of the ap-
proach may vary depending on the type of struc-
tural changes a particular removal of an edge
brings about.

8 Conclusion

In this work, we propose a novel framework for identifying a sufficient subset of entities in the
adjacency matrix which unambiguously specify a digraph, given some prior structural knowledge.
We demonstrate the usability of this framework for the property of transitively-closed DAGs, or
hierarchies. We derive a characterization of the sufficient negative set for such type of graphs, and
based on that we devise a novel hierarchy-aware sampling technique. Our approach is efficient
and robust when used in conjunction with an energy-based node embedding model possessing the
appropriate inductive bias, which, for hierarchies, is transitivity bias.
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A Related Work

A.1 Negative Sampling for Graph Representation Learning

Yang et al. [2020] conceptually unify much of the research on negative sampling (NS) for graph rep-
resentation learning (GRL) into the SampledNCE framework which is grounded in noise-contrastive
estimation [Gutmann and Hyvärinen, 2012, Mnih and Teh, 2012]. Additionally, they demonstrate
that (for vector node representations), the optimal negative sampling distribution is positively but
sub-linearly correlated to the positive sampling distribution, i.e. pn(u | v) ∝ pd(u | v)α, 0 < α < 1,
which supports the empirically-determined 3/4 in Mikolov et al. [2013]’s degree-based sampling.

Examples of better-than-uniform NS for GRL include, in chronological order, Markov chain Monte
Carlo NS (MCNS) [Yang et al., 2020], self-adversarial NS (SANS) [Kamigaito and Hayashi, 2022],
Adaptive NS (AdaNS) [Wang et al., 2023]. A handful of approaches leverage the graph structure
directly to gather negative examples; in particular, Structure Aware NS (also abbreviated SANS) of
Ahrabian et al. [2020] selects negatives from a node’s k-hop neighborhood. Hierarchical Negative
Sampling (HNS) [Chen et al., 2021] is only close to our HANS algorithm in nomenclature, relying
on a hierarchical dirichlet process to model neighbor proximity information, while borrowing its
approach from DeepWalk’s [Perozzi et al., 2014] random walks for skip-gram prediction of the
current vertex.

We emphasize that each of these above approaches presupposes undirected graphs and vector embed-
dings of nodes, aligning them with the vast literature on KG embeddings including TransE [Bordes
et al., 2013], TransR [Lin et al., 2015], RESCAL [Nickel et al., 2011], DistMult [Yang et al., 2015],
ComplEx [Trouillon et al., 2016], RotatE [Sun et al., 2019a], and Rot-Pro [Song et al., 2021] (the last
of which models transitive relations via a projection operator).

A.2 Hierarchical Representations

Box embeddings can represent any DAG [Boratko et al., 2021a], and more recently have been ex-
tended to represent any digraph [Zhang et al., 2022]. Empirically, box embeddings have demonstrated
particularly strong performance on transitively-closed graphs, making them a strong candidate for
modeling hierarchies [Patel et al., 2020]. The use of regions to capture edges in a graph has roots
in classic graph invariants of boxicity [Roberts, 1969] and sphericity [Maehara, 1984], which are
defined in the undirected setting. In general, one might expect region-based embeddings to have a
natural bias toward modeling transitivity, as the containment relation is transitive [Patel et al., 2022].
Additional region-based embeddings which use cones [Vendrov et al., 2016, Lai and Hockenmaier,
2017] or discs [Suzuki et al., 2019] have also been proposed.

Another prominent line of work for graph representation leverages the negative curvature of hyperbolic
space to embed trees without distortion [Sarkar, 2011, Weber and Nickel, 2018, Weber, 2020]. A
variety of approaches to training hyperbolic representations with gradient descent have been proposed,
to great success [Nickel et al., 2015, Law et al., 2019]. The highlight of these methods is their ability
to represent trees, but they are not necessarily well-aligned with representing transitively-closed
digraphs [Boratko et al., 2021a]. Hyperbolic entailment cones [Ganea et al., 2018] combine the
benefits of both hyperbolic space and region-based containment transitivity.

A.3 Learning Node Embeddings

The idea of optimizing a loss which is a sum over positive and negative edges captures the approach
of training node embeddings in all the work mentioned in the preceding section, however, there are
also a variety of other approaches to learning node embeddings. DeepWalk [Perozzi et al., 2014]
and node2vec [Grover and Leskovec, 2016] use random walk-based algorithms to generate node
embeddings for undirected graphs. LINE [Tang et al., 2015] was the first attempt to address the
scalability of learning node embeddings for large-scale graphs. Meanwhile, some works focus on
learning node embeddings for directed graphs [Ou et al., 2016, Sun et al., 2019b, Sim et al., 2021].
While more conventionally used in settings where node features are present, graph neural networks
(GNNs) [Kipf and Welling, 2016], which iteratively aggregate node features using the local graph
structure, have been used to learn node embeddings [Chen et al., 2020, Liu et al., 2020, 2021]. While
these approaches are not directly addressed in this work, the general notion of using a sufficient
sidigraph to reduce the set of edges and non-edges could be leveraged in such contexts as well.
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A.4 Uniquely Distinguishing Graphs

The idea of uniquely distinguishing a graph with respect to a property has been explored in graph
theory literature, albeit without a special focus on DAGs as in the current work. For a property P on
n-vertex graphs, Adamaszek [2014] defines P to be “nonevasive“ (or “nonelusive”) in the context
of a 2-player game where for each turn, player A is only allowed to ask player B whether a pair of
nodes forms an edge or not. P is nonevasive if it can be determined by A in strictly fewer than

(
n
2

)
turns, i.e. by asking fewer questions than edges in a complete graph over n vertices (it follows that
completeness is an evasive property). Kelenc et al. [2018] spotlight minimal uniquely distinguishing
graphs by introducing the concept of an edge metric dimension as the smallest cardinality of a set S
such that every pair of edges in G is distinguished (w.r.t. node-edge distance) by some vertex in S.
An appealing application of this graph-theoretic line of thought might be selecting the smallest set of
edges from an ontology for the purpose of human annotations to facilitate active learning; Peng et al.
[2018] present an algorithm for enumerating consistent subgraphs of DAGs, which are often used for
ontologies in the biomedical domain.
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B Proof of Optimality

For notational convenience, for each vertex a ∈ G, we add a directed self-loop (a→a) to indicate
that a is reachable from itself. This self-loop will be a positive edge in G±. Adding this self-loop
does not destroy the property that G is transitively closed.

B.1 A poset for negative edges

We define an order ⪯ between negative edges as follows.

For every negative edge (a→b), we impose (a→b) ⪯ (a→b). Thus, ⪯ is reflexive. Next, we
define an order between two negative edges outgoing from or incoming to the same vertex. Let a
be an arbitrary vertex in V . Let (a→b) and (a→c) be two negative edges out-going from a. Then
we define (a→b) ⪯ (a→c) if (c→b) is a positive edge in G± (in other words, if (c→b) ∈ E).
We call the edge pair ((a→b), (a→c)) a primitive pair. See Figure 9(a). Similarly, let (x→a)
and (y→a) be any two negative edges incoming to a. We define (x→a) ⪯ (y→a) if (x → y)
is a positive edge. The edge pair (x→a) and (y→a) is also a primitive pair.
Finally, we extend ⪯ to satisfy transitivity: if there exist three edges such that (a→b) ⪯ (c→d)
and (c→d) ⪯ (e→f) such that currently there is no relationship between (a→b) and (e→f)
under ⪯, then we impose (a→b) ⪯ (e→f).

(a) (b)

a

y

x

b

c

e1
e2

et

a

c
d

b

x

Figure 9: (a) Two primitive pairs ((a→b), (a→c)) and ((x→a), (y→a)). (b) Illustrating the proof of Lemma 1.

Our goal is to show that (E,⪯) is a poset. To this end, we characterize all pairs of negative edges
(a→b) and (c→d) such that (a→b) ⪯ (c→d).

Lemma 1. Let (a→b) and (c→d) be two edges such that (a→b) ⪯ (c→d). (It could be that a = c
and/or b = d.) Then (a → c) and (d → b) are positive edges.

Proof. We prove by induction. The base cases are for primitive pairs. If (a→b) and (c→d) are a
primitive pair, then either a = c or b = d. In both cases, the lemma holds by definition of the order ⪯
on primitive pairs.

Let (a→b) = e1 ⪯ e2 ⪯ . . . ⪯ et = (c→d) be a minimal sequence of orders realizing the order
(a→b) ⪯ (c→d) such that every consecutive pair of negative edges (ei, ei+1) for every i ∈ [1, t− 1]
is a primitive pair. Specifically, (e1, e2) is a primitive pair. We consider two cases: (i) e2 = (a→x)
and (ii) e2 = (y→b) for some vertex y. The two cases are symmetric, so we only focus on the first
case; see Figure 9(b). As (a→b) ⪯ (a→x), (x → b) is a positive edge by the definition of ⪯ on
primitive pairs. Since (a→x) ⪯ (c→d), by induction, (a → c) and (d → x) are positive edges. This
means (d → b) is also a positive edge since G is transitively closed. Thus, the lemma holds.

We know that Lemma 1 holds even when (a→b) = (c→d) as in that case a = c and b = d and both
self-loops (a → a) and (b → b) are positive. Now, we are ready to show that ⪯ is anti-symmetric;
the proof uses the fact that G is a DAG.

Lemma 2. If G = (V,E) is a transitively-closed DAG, then (E,⪯) is a poset.

Proof. The order ⪯ is transitive and reflexive by definition. We now show anti-symmetric by
contradiction. Suppose that (a→b) and (x→y) are two different negative edges such that (a→b) ⪯
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(x→y) and (x→y) ⪯ (a→b). Since (a→b) ̸= (x→y), either x ̸= a or b ̸= y. We focus on the case
x ̸= a; the proof for the case b ̸= y is the same.

Since (a→b) ⪯ (x→y), by Lemma 1, (a → x) is a positive edge. Also by Lemma 1, as (x→y) ⪯
(a→b), we have that (x → a) is also a positive edge. However, this contradicts that G is a DAG.

We could reinterpret Proposition 2 in the language of the poset (E,⪯):

Corollary 1. Let G be a transitively closed DAG. Let H = (V,E+
H , E−

H) be a sidigraph which
distinguishes G among transitively-closed digraphs. Let e1, e2 be a primitive pair of negative edges
in E−

H such that e1 ⪯ e2. Then (V,E+
H , E−

H \ {e2}) also distinguishes G among transitively-closed
digraphs.

B.2 A proof of optimality

We have shown in Lemma 2 that (E,⪯) is a poset. Let M⪯ be the set of minimal elements of this
poset; see Figure 10. Our proof to show that Algorithm 1 is optimal has two steps: (Step 1) the
negative edges in M⪯ are necessary and sufficient for any sidigraph which distinguishes G among
transitively-closed digraphs, and (Step 2) the sidigraph H output by our algorithm has E−

H = M⪯.

(a) (b) (c)

a

b c

d

∞

a

b c

d

ad cb da bc

abac dcdb

Figure 10: (a) An equivalent sidigraph G±. (b) The Hasse diagram of the poset on the negative edges with an artificially added element ∞.
Here M⪯ = {(d→a), (b→c), (a→d), (c→b)} (c) a minimal sidigraph (V,Etr,M⪯) which can distinguish G among

transitively-closed digraphs.

Proposition 7. If G = (V,E) is a DAG, then H = (V,Etr,M⪯) can distinguish G among all
transitively-closed digraphs.

Proof. Let L be the linear ordering of all edges in E in non-decreasing order of ⪯. That is, if
(x→y) ⪯ (a→b), then (a→b) appears before (x→y) in L. L can be obtained by visiting the negative
edges in the BFS order in the Hasse diagram with an artificially added maximum element ∞ to define
the root of the BFS tree; see Figure 10(b).

Let X0 = E and i = 0. We then visit all negative edges by the order in L. For each negative edge e
visited in this order, if e ̸∈ M⪯, we define Xi+1 = Xi \ {e} and increase i by 1. Let Xt be the last
set of negative edges after this process terminates. Clearly, Xt = M⪯.

By Proposition 1, (V,Etr, X0) can distinguish G. Inductively, we assume that (V,Etr, Xi) can
distinguish G for some i. Let e be a negative edge such that Xi+1 = Xi \ {e}. Since e ̸∈ M⪯, there
exists a primitive pair of negative edges e′ ⪯ e. Since e′ appears after e in L, both edges are present
in Xi. By Corollary 1, (V,Etr, Xi+1) can distinguish G among transitively closed digraphs.

We have shown by induction that (V,Etr, Xt), which also is (V,Etr,M⪯), is a transitively-closed
distinguisher.

Next, we show that any sidigraph capable of distinguishing G among transitively-closed digraphs
must contain any M⪯ in it’s negative set.

Proposition 8. Let H = (V,E−
H , E+

H) be any sidigraph capable of distinguishing G among
transitively-closed digrphs. Then M⪯ ⊆ E−

H .
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Proof. We prove by contraction: suppose e = (c→d) is such that (c→d) ∈ M⪯ \ E−
H . Let

G′ = (V,E ∪ {e}). We show below that G′ ∈ GH ∩ P , which then means that H cannot distinguish
G from G′ among transitively-closed digraphs.

Note that G contains all positive edges of H since H is a transitively-closed distinguisher. Thus,
G′ contains all positive edges of H . Next, we show that G′ does not contain any negative edge.
Suppose otherwise, G′ contains a negative (a→b) ∈ E−

H . Since (a→b) ̸∈ E, the only way for
(a→b) ∈ E ∪ {e} is because of (c→d), and in particular, (a→c) and (d→b) are both positive edges
in G. Thus, by Lemma 1, (a→b) ⪯ (c→d), contradicting that (c→d) ∈ M⪯.

Finally, we show that G′ is transitively-closed. Suppose otherwise, there are two vertices a and b
such that b is reachable from a but (a → b) ̸∈ G′. Note that b is not reachable from a in G since G is
transitively closed. This implies: (i) the path from a to b in G′ must contain the edge (c→d) and (ii)
(a→b) is a negative edge in G. By (i), it must be that (a→c) and (d→b) are positive edges. By (ii)
and Lemma 1, (a→b) ⪯ (c→d), contradicting that (c→d) ∈ M⪯.

Proposition 7 and Proposition 8 together imply that any transitively closed-distinguisher of G with
M⪯ contains a minimum number of negative edges. Thus, to show that our algorithm gives a
transitively closed distinguisher of G, it suffices to show that the set of negative edges is M⪯.
Theorem 1. Let G = (V,E) be any DAG, and let H be the output of FINDMINDISTINGUISHER(G),
so H = (V,Etr,M⪯). Then H can distinguish G among transitively closed digraphs, and has the
minimal number of edges of any such sidigraph.

Proof. We focus on showing that E−
H = M⪯. The latter claim follows from Proposition 7 and

Proposition 8.

Observe that the algorithm considers primitive pairs and, for each pair, removes the negative edge
with a higher order in the poset (E,⪯). Thus, the algorithm never removes a negative edge in M⪯
from H , giving that M⪯ ⊆ E−

H .

It remains to show that E−
H ⊆ M⪯. Suppose otherwise. Then there exists a negative edge (a→b) ∈

E−
H \M⪯. Then by definition of M⪯, there must be a negative edge (x→y) such that (i) (a→b) and

(x→y) make up a primitive pair, and (ii) (x→y) ⪯ (a→b). Then (a → b) will be removed from H
when the algorithm considers (x→y) in line 4, contradicting that (a→b) ∈ E−

H .

19



C Proofs for Transitivity Bias

Proposition 4. If Eθ is an energy function with transitivity bias, then for any θ there exists a T ≥ 0
such that the digraph with edges {(u, v) | Eθ(u, v) ≤ T} is transitively closed.

Proof. Let (u, v) ∈ Etc. Then there exists a directed path u := w1 → · · · → wN =: v in
E, hence Eθ(wn, wn+1) ≤ T for all n ∈ JN − 1K. Let k ∈ JN − 2K, and assume we have
Eθ(w1, wk+1) ≤ T . Since Eθ(wk+1, wk+2) ≤ T as well, we apply the definition of transitivity bias
to find Eθ(w1, wk+2) ≤ T . Thus, by induction, we have Eθ(w1, wN ) = Eθ(u, v) ≤ T .

Proposition 5. Let G be a transitively-closed digraph, Eθ an energy function with transitivity bias,
and H = (V,E+

H , E−
H) a sidigraph which distinguishes G among transitively closed digraphs. If T

is the threshold associated with the transitivity bias for θ, Eθ(u, v) ≤ T for all (u, v) ∈ E+
H , and

Eθ(u, v) > T for all (u, v) ∈ E−
H , then θ represents the digraph G.

Proof. Let E′ = {(u, v) | Eθ(u, v) ≤ T}, then Proposition 4 implies that the digraph G′ = (V,E′)
is transitively closed. Due to the assumptions on the values of the energy we have E+

H ⊆ E′ and
E−

H ⊆ E′. Since H is sufficient to distinguish transitively-closed digraphs, we have G′ = G, as
desired.

20



D Results with Error Bars

Model Training Edges Graph Type

Pos. Neg. BT nCRP Price

GT-BOX

0.568 ± 0.187 0.796 ± 0.250 0.582 ± 0.240
0.658± 0.103 0.775±0.131 0.602±0.147
0.842±0.154 0.904± 0.058 0.849±0.112
0.744± 0.159 0.877±0.101 0.909±0.042

SIM-VEC

0.072±0.018 0.084±0.071 0.158±0.172
0.180±0.065 0.285±0.112 0.336±0.126
0.098±0.034 0.158±0.172 0.300±0.218
0.508±0.039 0.409±0.023 0.494±0.151

E Hyperparameter Tuning

The experiments were run in a single-node, single-GPU setup on a cluster with the following GPU
architectures:

• NVIDIA Tesla M40 (24GB VRAM)
• NVIDIA GeForce GTX TITAN X (12GB VRAM)
• NVIDIA GeForce GTX 1080 Ti (11GB VRAM)
• NVIDIA RTX 2080ti (11GB VRAM)
• NVIDIA Quadro RTX 8000 (48GB VRAM)

E.1 Synthetic Graphs

To ensure the competitiveness of all experimental configurations for the synthetic graphs, we tune
the learning rate and negative weight λneg for each graph independently by running Bayesian hyper-
parameter optimization with W&B Biewald et al. [2020] and for Etc taking the values that yielded
the best F1 at the end of 12 epochs, which we empirically observed corresponds to the “elbow” of
many per-epoch F1 plots and thus gives a good indication of which settings are resulting in fast
convergence. For Etr, we scaled the number of epochs to 60, since the number of training examples
is substantially smaller for this setting than for transitive closure.

For each of the final experiment runs, we fetch the best learning rate and λneg and run for a full 40
epochs for Etc or 200 for Etr, recording F1 at every epoch to produce a convergence plot.

E.2 MeSH 2020

Since MeSH has at least thrice the number of nodes as any of the synthetic graphs in our experiments,
it was infeasible to tune hyperparameters over all the same settings as for the smaller synthetic graphs.
We therefore fix positive edge set Etc (which empirically performs better than Etr), as well as the
resource-efficient negative ratio k = 4, and do a Bayesian hyperparameter search for learning rate
and negative rate λneg using W&B over the cross-product of model type (SIM-VEC vs GT-BOX) and
negative edge set (E vs EH∗ ).
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F Graph Family Hyperparameters and Edge Statistics

Graph Type Θ |V | |E| |Etc| |Etr| |E| |EH∗ | |E|/|E| 1− |Etr|/|Etc| 1− |EH∗ |/|E|

Balanced Tree

b = 2 8192 90127 90127 8191 67010545 49153 0.1345% 90.91% 99.93%
b = 3 8192 60620 60620 8191 67040052 86277 0.0904% 86.49% 99.87%
b = 5 8192 44271 44271 8191 67056401 148201 0.066% 81.5% 99.78%
b = 10 8192 31534 31534 8191 67069138 262765 0.047% 74.02% 99.61%

nCRP

α = 10 10997.4 40373.6 40373.6 10996.4 120893115.0 1019607.5 0.0334% 72.75% 99.16%
α = 100 9713.8 22090.4 22090.4 9712.8 94326745.4 4035563.3 0.0234% 56.03% 95.72%
α = 500 9277.4 17389.5 17389.5 9276.4 86043713.3 11805777.4 0.0202% 46.66% 86.28%

Price

c = 0.01, γ = 1.0,m = 1 8192 8669.6 8669.6 8191.0 67092002.4 62675524.2 0.0129% 5.43% 6.58%
c = 0.01, γ = 1.0,m = 5 8192 50281.7 50281.7 10294.3 67050390.3 27675479.7 0.075% 79.52% 58.72%
c = 0.01, γ = 1.0,m = 10 8192 99878.0 99878.0 13940.9 67000794.0 22324190.0 0.1491% 86.08% 66.68%
c = 0.1, γ = 1.0,m = 1 8192 13834.2 13834.2 8191.0 67086837.8 31970202.7 0.0206% 40.3% 52.35%
c = 0.1, γ = 1.0,m = 5 8192 75013.5 75013.5 16418.3 67025658.5 6960419.4 0.1119% 78.05% 89.62%
c = 0.1, γ = 1.0,m = 10 8192 138711.9 138711.9 23868.4 66961960.1 4171970.3 0.2072% 82.79% 93.77%

MeSH 2020 N/A 29934 40793 274437 40156 895739985 1953539 0.0046% 85.37% 99.78%
Table 1: Statistics for the synthetic transitively-closed DAGs used in our experiments (Section 6), counts for the number of positive/negative edges in the equivalent and optimal distinguishing sidigraphs, and the ratios for the “full” and

“reduced” experimental settings. While graphs under Balanced Tree are deterministic, the values of each entry for nCRP and Price are averaged over 10 random seeds.
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G Plots for k = 128

Figure 11: The plots show convergence of GT-BOX for negative ratio k = 128. The top row shows the plots for balanced trees with branching
factors b = 2, 5 and 10. The middle row for nCRP graphs with α = 10, 100, and 500, respectively going left to right. The bottom row shows

the plots for Price’s graph with c = 0.1, γ = 1.0 and three values of m = 1, 5, and 10. The number of vertices in each graph is ≈ 213.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract makes concrete and specific claims, which are supported by the
experiment section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 7 discusses the limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate “Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

24



Justification: Section 3 and Section 4 contain propositions and proofs concerning signed
digraphs and transitivity bias, and Appendix B and Appendix C provide full proofs whenever
these were omitted from the main paper due to space constraints.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 6 and Appendix E discuss the settings of the experiments and the
hyperparameter tuning process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide a link to the code and data in a footnote on the second page.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we provide all the details pertaining to experimental settings in Section 6
and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard deviations for the numerical results in Appendix D. The
separation between the models is clear enough to not require statistical significance tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer “Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the types of GPU used for our experiments in Appendix E. However,
we are unable to report the exact compute hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
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