
Towards Scalable and Stable Parallelization of
Nonlinear RNNs

Xavier Gonzalez1,2, Andrew Warrington1,2,3, Jimmy T.H. Smith2,4,5, Scott W. Linderman1, 2

1Department of Statistics, Stanford University.
2Wu Tsai Neurosciences Institute, Stanford University.

3GE Healthcare. 4ICME, Stanford University. 5Liquid AI.
{xavier18,scott.linderman}@stanford.edu

Abstract

Transformers and linear state space models can be evaluated in parallel on modern
hardware, but evaluating nonlinear RNNs appears to be an inherently sequential
problem. Recently, however, Lim et al. [1] developed an approach called DEER,
which evaluates nonlinear RNNs in parallel by posing the states as the solution
to a fixed-point problem. They derived a parallel form of Newton’s method to
solve the fixed-point problem and achieved significant speedups over sequential
evaluation. However, the computational complexity of DEER is cubic in the state
size, and the algorithm can suffer from numerical instability. We address these
limitations with two novel contributions. To reduce the computational complex-
ity, we apply quasi-Newton approximations and show they converge comparably
to Newton, use less memory, and are faster. To stabilize DEER, we leverage a
connection between the Levenberg-Marquardt algorithm and Kalman smoothing,
which we call ELK. This connection allows us to stabilize Newton’s method while
using efficient parallelized Kalman smoothing algorithms to retain performance.
Through several experiments, we show that these innovations allow for parallel
evaluation of nonlinear RNNs at larger scales and with greater stability.

1 Introduction

Parallel computation has helped fuel the rise of deep learning [2]. Architectures such as transform-
ers [3] and linear RNNs [4–8] are specifically designed to allow parallelization over the length of
the input sequence. However, most conventional nonlinear RNNs (e.g. Elman RNNs, GRUs [9],
LSTMs [10] etc.) are not readily parallelizable over the sequence length due to their sequential
architecture. Thus, they do not benefit as much from parallel hardware. Nonetheless, these nonlin-
ear RNN architectures are still used widely across the scientific community [11–13]. Furthermore,
recent work has suggested that linear RNNs (and transformers) are fundamentally limited in their
expressivity compared to nonlinear RNNs [14]. Finally, nonlinear RNNs continue to be of signif-
icant interest in computational and theoretical neuroscience as models of neural systems [15–22].
Therefore, scalable and stable parallelization methods for nonlinear RNNs offer significant benefits
across many fields.

Towards this goal, Lim et al. [1] proposed DEER, a method for evaluating a nonlinear RNN in
parallel. DEER casts inference as finding the solution of a fixed-point equation designed specifically
to capture the nonlinear dynamics of the RNN. Newton’s method is used to solve the resulting fixed-
point equation. With good initialization, Newton’s method enjoys quadratic convergence rates [23,
Chapter 11]. Lim et al. [1] also show that the inversion of the structured Jacobian matrix required
by Newton’s method can be cast as an associative parallel scan [24]. DEER therefore reduces the
evaluation runtime over sequential evaluation by as much as factor of twenty.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Scalability:

+ Diagonal Jacobian

DEER [1] Quasi-DEER

ELK Quasi-ELK

Stability:

+ Trust region

+ Kalman filter

Figure 1: Overview of the paralleliz-
able methods we consider in this paper.
We introduce diagonal approximations
to improve complexity (quasi-DEER,
Section 4.1) and link to Kalman filter-
ing and trust regions to improve stability
(ELK, Section 4.2). We combine these
ideas in quasi-ELK (Section 4.2).

Table 1: Description of the relative strengths and
weaknesses of the five evaluation methods we consider.
We discuss further in Section 7.

Method
Desiderata

Parallel Work Memory Stability

Sequential No O(TD2) O(D) Very high

DEER [1] Yes O(TD3) O(TD2) Low
Quasi-DEER Yes O(TD) O(TD) Low
ELK Yes O(TD3) O(TD2) High
Quasi-ELK Yes O(TD) O(TD) Moderate

However, DEER also inherits the weaknesses of Newton’s method and parallel scans. The first
weakness is scalability. Let D denote the state dimension and T denote sequence length. Using
a parallel scan to evaluate updates from Newton’s method, DEER inherits O(TD2) memory com-
plexity and O(TD3) computational work [24]. These costs can be prohibitive in practical deep
learning settings. The second limitation of DEER is numerical stability, inherited from Newton’s
method. In general, undamped Newton’s method does not provide global convergence guarantees
and in practice often diverges [23]. We seek to ameliorate both of these weaknesses.

To do this, we leverage two techniques: quasi-Newton approximations and trust regions. Quasi-
Newton approximations are a common adaptation of Newton’s method, where approximate, but
faster and less memory intensive updates are used instead of exact Newton steps. Empirically, these
methods often expedite convergence in terms of wall-clock time, even though more iterations are
performed. We apply quasi-Newton approximations to reduce the memory and compute required
by DEER, and we find accelerated convergence and reduced memory consumption. Secondly, we
leverage a connection between Newton’s method with a trust region and Kalman smoothing in se-
quential models [25]. This connection allows us to stabilize the Newton iteration by limiting the
step size to the radius of the trust region, preventing large and numerically unstable steps. The
update can be computed with a parallel Kalman smoother [26, 27], achieving a runtime that is log-
arithmic in the sequence length. We refer to DEER accelerated with a quasi-Newton approximation
as quasi-DEER, and DEER stabilized with trust regions as “Evaluating Levenberg-Marquardt via
Kalman” (ELK). We then combine these approaches to yield a fast and stable algorithm, which we
call quasi-ELK.

Crucially, DEER, ELK, and their “quasi” variants are algorithms for parallelizing any discrete-
time nonlinear dynamical system, including stateful architectures such as RNNs, that may or may
not include stochasticity. We use “parallel” to refer to the fact that each iteration of our iterative
algorithm operates on the entire T -length sequence (and not on each sequence element one at a
time).

We outline the key contributions and organization of the paper here. First, we introduce background
material, particularly focusing on DEER [1], in Sections 2 and 3. We then present three short
novel proofs: that DEER is globally convergent; that this convergence is robust to modifications of
the linearized dynamics (Proposition 1); and that there is a unique solution with no local minima
(Appendices A.1 and A.2). We then introduce quasi-Newton approximations to DEER to improve
efficiency (quasi-DEER, Section 4.1), and trust regions to stabilize DEER (ELK, Section 4.2) We
also provide an interpretation of how trust regions stabilize the dynamics by damping the eigenvalues
of the Jacobians (Appendix A.3). We show empirically that quasi-DEER remains accurate, with
reduced runtime and memory consumption (Section 6). In regimes where DEER is numerically
unstable or convergences slowly, we show ELK and quasi-ELK can enjoy fast, numerically stable
convergence. We conclude by discussing the relative strengths and weaknesses of each method,
providing guidance on how to select and tune them, and highlighting avenues for future research
(Section 7). We provide our code at https://github.com/lindermanlab/elk.

2

https://github.com/lindermanlab/elk

2 Problem Statement

We consider nonlinear Markovian state space models, with the state at time t denoted st ∈ RD and
nonlinear transition dynamics f : RD → RD. We denote the full sequence of T states as s1:T ∈
RT×D. Note that we primarily focus on the transition dynamics, so we suppress any (possibly
random) input dependence of the model in the notation. However, the algorithms in this paper
extend easily to these situations.

For any collection of candidate states {st}Tt=1 and an initial state s0 we can define the residual

r(s1:T) := [s1 − f(s0), s2 − f(s1), s3 − f(s2), . . . , sT − f(sT−1)] ∈ RT×D. (1)

This residual can be interpreted as the one-step error incurred by assuming the tth state is st in-
stead of f(st−1). The solution of the state space model, s∗1:T , is the only trace with zero residual.
Equivalently, it is the unique solution to the fixed-point equation

r(s∗1:T) = 0. (2)

The conventional way to obtain s∗1:T is to apply f sequentially T times. Sequential evaluation always
yields a valid trace, but it requires O(T) sequential operations (i.e. computational depth or span),
and hence does not fully leverage the capabilities of parallel hardware. We aim to compute s∗1:T in
sublinear time using parallel computation.

Jacobian of the Residual For notational brevity, we overload s and r to also denote vectors in
RTD, representing flattened versions of s1:T and r1:T . We can therefore write the Jacobian of the
residual for the whole sequence, J(s), as a TD × TD matrix with block bidiagonal structure of the
form

J(s) :=
∂r

∂s
(s) =

ID 0 . . . 0 0

−∂f
∂s (s1) ID . . . 0 0

...
...

. . .
...

...
0 0 . . . ID 0

0 0 . . . −∂f
∂s (sT−1) ID

 . (3)

3 DEER: Newton’s Method for Parallel Evaluation of Sequential Models

Lim et al. [1] propose DEER, an algorithm using Newton’s method for parallel evaluation of non-
linear sequential models, including both discrete-time nonlinear RNNs (GRUs, LSTMs, etc.) and
neural ODEs [28, 29]. In this paper, we focus on the discrete-time setting, and address questions that
arise from Lim et al. [1]: how to scale Newton’s method, and how to make it numerically stable.

In this section we introduce DEER. We begin with a simplified derivation that emphasizes the link
between Newton’s method on vector spaces and parallelizable linear recurrences. We then present
a new proof that DEER theoretically always converges globally. This proof also highlights why
global convergence can be numerically unstable and/or slow in practice. We conclude by using these
insights to discuss the weaknesses of DEER, and to motivate the methods we develop in Section 4.

3.1 Derivation of DEER from Newton’s Method

The original derivation of DEER used Newton’s method on Banach spaces and the Fréchet derivative
for continuous-time systems to derive the update [1]. We specialize to the setting of discrete-time
RNNs, and present a streamlined derivation that more directly connects the structure of the Jacobian
in (3) to the linear recurrence relation in (6). This connection highlights why DEER incurs cubic
work in D and may encounter numerical instabilities. We will also use this form to prove DEER’s
global convergence in Section 3.2.

The ith Newton iterate for (2), starting at s(i), is given by

s(i+1) ← s(i) − J(s(i))−1 r(s(i)), (4)

or equivalently,

∆s(i+1) := s(i+1) − s(i) = −J(s(i))−1 r(s(i)). (5)

3

Note this uses the root-finding view of Newton’s method, see Appendix C.2.

The Jacobian defined in (3) is invertible and all of the eigenvalues are equal to one.1 Storing and
naively inverting the Jacobian is infeasible for large D or T . However, since J(s) is block bidiago-
nal, we can solve for ∆s in (5) by forward substitution. This reduces to a simple recursion with the
initial condition ∆s

(i+1)
1 = −r1(s(i)), and for t > 1,

∆s
(i+1)
t =

[
∂f

∂s
(s

(i)
t−1)

]
∆s

(i+1)
t−1 − rt(s

(i)). (6)

DEER uses the linearity of this recursion, solving it in parallel with a parallel associative scan [1, 5,
24]. Therefore, with O(T) processors, each Newton iteration can be performed in O(log T) time.

We emphasize that the computation of the Newton step ∆s in (5) is being parallelized. J would, in
general, be a TD× TD matrix that is prohibitive to store or invert. But by formulating this solve as
an LDS in (6), we are able to parallelize the computation of ∆s (which consists of T state updates,
each of dimension D) over the sequence length. With sufficient processors, each update in (5) can be
computed in O(log T) time. Our implementation uses the parallel associative scan from JAX [30]
(see Appendix B.6).

3.2 Global Convergence of DEER

We present a proof that DEER converges globally for discrete-time RNNs to the solution s∗1:T of (2)
in at most T steps.
Proposition 1. Undamped Newton’s method will converge to the true solution, s∗1:T , of the fixed-
point equation (2) in at most T Newton iterations, for any initial s(0)1:T .

Proof sketch. For the full proof by induction, see Appendix A.1. The structure of J(s) determines
the recurrence in (6). The update applied at time t, ∆s

(i+1)
t , from (6) is the summation of a linearized

f applied to the update at time t − 1, and the residual one-step error at time t. Therefore, if the
previous timestep is correct (i.e. ∆s

(i+1)
t−1 = 0), then the update at time t is just the one-step residual,

which is defined exactly as the error. Therefore, if the previous value is correct, the updated current
value will be correct. Given that f and s0 are fixed and known, the result follows that all T timesteps
will have zero residual after T iterations.

It is not immediately obvious from (4) or past work Lim et al. [1] that DEER converges globally,
but Proposition 1 shows that it does, at least theoretically. This result has two crucial corollaries.
First, after i Newton iterations, s(i)1:T will have zero error for all t ≤ i. Therefore, if the iteration
encounters numerical instabilities, as Newton is prone to, we can simply use a heuristic of resetting
s
(i)
t to a finite value for all t > i. This preserves the solution for time indices t ≤ i and allows

the optimization to continue, but it is equivalent to running Newton’s method from scratch on si:T .
This process is repeated until the entire trace has zero residual. A second corollary is that any set of
finite matrices can replace {∂f/∂s}Tt=2 in (3) or (6), and the resulting quasi-Newton method will still
converge globally in at most T iterations. This preservation of global convergence provides further
motivation for exploring quasi-Newton methods, as we discuss in the next section.

3.3 Weaknesses of DEER

Despite the theoretical convergence of DEER, its formulation as a linear recurrence relation in (6)
highlights its limited scalability and stability. Scalability is limited because, in general, ∂f/∂s is a
dense D × D matrix. Therefore the parallel associative scan, which uses matrix-matrix multipli-
cations, has O(TD3) computational work and O(TD2) memory complexity. Stability is limited
because we often have no control over the eigenvalues of ∂f/∂s. If sufficiently many of these eigen-
values over the sequence length are larger in magnitude than one, then the linear recurrence relation
will be numerically unstable. The heuristic approach of resetting unstable values is sufficient to
ensure global convergence, but as we show in Section 6.3, it comes at the cost of runtime, as conver-
gence is dramatically slower. These weaknesses motivate the development of two new techniques
for parallel evaluation of RNNs: quasi-DEER and ELK, which we discuss in the next section.

1To see this fact, note that the characteristic polynomial of J(s) in (3) is (λ− 1)TD .

4

4 Scaling and Stabilizing Newton’s Method for Parallel Evaluation

In Section 4.1 we introduce quasi-DEER, a quasi-Newton method that addresses the intractability
of DEER for large state sizes. In Section 4.2 we introduce Evaluating Levenberg-Marquardt with
Kalman (ELK), a damped Newton method for numerically stable, parallel evaluation of nonlinear
RNNs. We also introduce quasi-ELK, which combines quasi-DEER and ELK to create a damped
Newton’s method for parallel sequential evaluation that is scalable and numerically stable.

4.1 Quasi-DEER: Scaling DEER with Diagonal Jacobian Approximations

As a consequence of our Proposition 1, replacing the Jacobians {∂f/∂s}Tt=2 with an arbitrary ma-
trix will still result in global convergence of the resulting DEER-like algorithm in at most T it-
erations. A straightforward way to reduce the computational cost is to replace {∂f/∂s}Tt=2 with
{diag (∂f/∂s)}Tt=2, i.e. take the diagonal entries of the Jacobians of the dynamics functions. The
resulting linear recursion requires onlyO(TD) memory because it only needs to store diagonal ma-
trices, and O(TD) work, because the parallelized associative scan only uses element-wise vector
multiplies. Position-wise matrix-vector multiplies are still required to obtain the residuals, but this
computation can be naively parallelized across the sequence.

Quasi-Newton methods approximate the Jacobian for computational reasons, so we refer to this
algorithm as quasi-DEER. In Section 6, we show that quasi-DEER outperforms DEER on wall-
clock time and memory usage on the tests from Lim et al. [1]. Quasi-DEER improves the scalability
of DEER, but it does not address stability concerns. We propose a more stable solution below.

4.2 ELK: Stabilizing DEER with Trust Regions

Rather than treating RNN evaluation as a fixed-point finding problem, let us instead consider it as
an optimization problem. First, we define the merit function

L(s) := 1

2
∥r(s)∥22 . (7)

As in the fixed-point formulation, the unique minimizer of this objective is s∗. In fact, the only
local minimum of the merit function (7) is s∗, as proved in Proposition 3 in Appendix A.2. One
way of minimizing this nonlinear sum of squares objective is via the Gauss-Newton algorithm [23],
which alternates between linearizing the terms in the merit function and solving the resulting linear
sum-of-squares problem. The linearized objective at iteration i is

L̃s(i)(∆s) =
1

2

∥∥∥r(s(i)) + J(s(i))∆s
∥∥∥2
2
. (8)

The solution is ∆s(i+1) = −J(s(i))−1 r(s(i)), which is exactly the DEER update from (5).

Formulating evaluation as nonlinear least squares also suggests more stable algorithms. The
Levenberg-Marquardt algorithm [23] uses updates that solve a constrained optimization problem

min
∆s
L̃s(i)(∆s) subject to ∥∆s∥2 ≤ Di+1, (9)

where Di+1 is an upper bound on the step size. We recognize this constraint as a trust region, which
is often used in conjunction with Newton’s method to improve numerical stability and convergence.

Finally, minimizing this constrained optimization is equivalent to minimizing the Lagrangian

L̂(∆s, λi+1) = L̃s(i)(∆s) +
λi+1

2
∥∆s∥22 (10)

for some λi+1 ≥ 0. As noted by Särkkä and Svensson [25], the minimizer of this Lagrangian can
be obtained by a Kalman smoother. We emphasize this connection in the following proposition.

Proposition 2. Solving for the Levenberg-Marquardt update that minimizes (10) with fixed λi+1 is
equivalent to finding the maximum a posteriori (MAP) estimate of s1:T in a linear Gaussian state
space model, which can be done in O(log T) time on a sufficiently large parallel machine.

5

Proof. Expanding the residual and Jacobian functions in (8), we see that up to an additive constant,
the negative Lagrangian can be rewritten as,

− L̂(∆s, λi+1)
·
= logN (s1 | f(s0), ID) +

T∑
t=1

logN
(
s
(i)
t

∣∣∣ st, 1

λi+1
ID

)

+

T∑
t=2

logN
(
st

∣∣∣ f(s(i)t−1) +

[
∂f

∂s
(s

(i)
t−1)

]
(st−1 − s

(i)
t−1), ID

)
, (11)

where N (x | µ,Σ) denotes the probability density function of the multivariate normal distribution.

We recognize (11) as the log joint probability of a linear Gaussian state space model (LGSSM) [31]
on (s1, . . . , sT). The means of the dynamics distributions are given by the linearization of f , and
the emissions are the previous iteration’s states, s(i). The parameter λi+1 sets the precision of the
emissions, governing how far the posterior mode deviates from the previous states.

The minimizer of (10) is the posterior mode of the LGSSM (11), and can be obtained by Kalman
smoothing [31]. As with the linear recursions in DEER, the Kalman smoother can be implemented
as a parallel scan that scales as O(log T) in time on a machine with O(T) processors [26, 27].

Therefore, we can evaluate an RNN by minimizing the merit function with the Levenberg-Marquardt
algorithm. Since each step of the algorithm is performed by parallel Kalman smoothing, we call this
approach Evaluating Levenberg-Marquardt with Kalman (ELK). Note that DEER is a special case
of ELK, where λ = 0, which can be seen as minimizing the unpenalized linearized objective (8),
or, alternatively, taking a Newton step with an infinitely large trust region. Moreover, under certain
conditions, ELK also enjoys global convergence guarantees [23, Thms. 11.7, 11.8].

Quasi-ELK: Scalability and Stability As with DEER, we can substitute an approximate Jacobian
into the Lagrangian to obtain the quasi-ELK algorithm. Quasi-ELK enjoys the compute and memory
scaling of quasi-DEER, as well as stability from the trust region damping from ELK. We show
empirically in Section 6.3 that while quasi-ELK takes more iterates to converge than ELK, each
quasi-ELK iterate is faster, giving overall runtime speedups.

Implementation Details The convergence rate of (quasi-)ELK depends on the trust region radius
Di (or alternatively λi). Although there exist methods to analytically set λi [23, Algorithm 4.3],
these approaches require factorizing ∂r/∂s, which is intractable at scale. Therefore, we treat λ as a
hyperparameter set by a sweep over log-spaced values (cf. Appendix B.4).

We also use Kalman filtering instead of smoothing. We do so for two main reasons: filtering requires
less work and memory; and we also found it to converge in fewer Newton iterations than smoothing.
We hypothesize that this follows from Proposition 1, where the early part of the trace converges
first. In Appendix A.3 we also discuss an alternative interpretation of ELK and the Kalman filter
as defining a linear recurrence where the trust region attenuates the eigenvalues used in the parallel
scan.

Limitations The quasi-Newton methods lose the local quadratic convergence properties of New-
ton but remain globally convergent (cf. Proposition 1). Our implementation of quasi-DEER for
training uses approximate gradients (cf. Section 6.2). The heuristic of resetting to the states to
zero when they become unstable is also motivated by Proposition 1, but it slows convergence in
(quasi-)DEER methods. As a result, we develop ELK to stabilize evaluation. Like DEER, ELK
has cubic complexity in D, which we combat with quasi-ELK. However, quasi-ELK adds an ad-
ditional hyperparameter. Note that all four parallelized methods discussed in this paper, as well
as sequential evaluation of RNNs, have different regimes where they are fastest. For example, in
our evaluation of autoregressive RNNs (Section 6.3), the ELK methods are faster than the DEER
methods on wall-clock time, but they are slower than sequential. In our evaluation of the Lorenz96
system (Appendix B.5), ELK is more stable than DEER, but DEER is faster on wall-clock time. An
area for future research is characterizing the properties of dynamical systems and hardware where
each method is fastest. Finally, at the core of the implementation of the parallelized methods is the
parallel associative scan (cf. Appendix B.6), which is currently available in JAX [30] but not in the
standard PyTorch package.

6

5 Related Work

RNNs and Parallelism Nonlinear RNNs are a natural choice for modeling sequential data be-
cause of their inductive biases and memory efficiency. However, most nonlinear RNNs are not
parallelizable over the sequence length, and architectures that can exploit parallel computational
hardware have been core to the success of deep learning. Therefore, a range of sequence architec-
tures that inherently admit parallelism have been proposed, including transformers [3], deep linear
RNNs [4–8, 32–35], and convolutions [36–39]. These methods obtain parallelism by developing
new architectures, and do not consider parallelizing existing nonlinear architectures. DEER [1] is
notable as it considers parallel evaluation and training of arbitrary nonlinear RNNs.

Root Finding in Deep Learning Beyond DEER, there has been broad interest in using root
finders/fixed-point iterations in deep learning and sequence modeling. Deep implicit layers [40–43]
and neural ODEs [28, 44] replace conventional feed forward network layers [45] with an implicit
layer whose output is the root of an equation. Moreover, Song et al. [46] parallelize the evaluation
of feedforward nets using Jacobi and Gauss-Siedel iterations. In sequence modeling, parallel decod-
ing methods [47–49] adapt ideas from Jacobi and Gauss-Siedel iterations to evaluate autoregressive
sequence models in parallel. These approaches iteratively refine inputs by repeatedly feeding in
previous outputs back into a parallelized sequence model. However, these methods presuppose the
existence of a parallelized forward pass for the sequence model and do not leverage additional gra-
dient information to obtain sublinear convergence.

Parallelizing Dynamical Systems over Time Other work has investigated evaluating other non-
linear dynamical systems over time. ParaDIGMS [50] parallelizes sampling from diffusion models
but uses Picard iterations instead of Newton’s method, while Selvam et al. [51] use Parareal itera-
tions. In the numerical ODE and PDE communities there has been great interest in Parallel in Time
methods; see Gander [52], Ong and Schroder [53] for surveys. Vargas et al. [54] parallelized the
evaluation of chaotic dynamical systems over time, but instead of casting Newton’s method as a
parallel scan, they resort to multi-grid methods to evaluate at different hierarchies. Moreover, these
methods have not yet been applied to parallelizing RNNs.

Scaling and Stabilizing Newton’s Method Quasi-Newton methods are efficient algorithms that
use an approximation of the Jacobian or Hessian in Newton’s method, and include approaches
like BFGS [55–58] and L-BFGS [59]. Other approaches use Newton’s method to optimize deep
nets [60]. However, these quasi-Newton algorithms do not admit efficient parallel scans. There
are also conjugate gradients methods for exploiting structured Jacobians or Hessians [61], though
they often do not attain the fast convergence rates of Newton or quasi-Newton methods [23]. Meth-
ods for stabilizing and ensuring Newton’s method converges globally include regularization ap-
proaches [62, 63], backtracking line search [64], and trust regions [65]. All these stabilization
methods have strengths and weaknesses, but as noted by Nocedal and Wright [23]: “the trust-region
Newton method has proved to be highly effective in practice,” leading us to apply it to evaluating
RNNs.

Nonlinear Least Squares and Kalman Smoothing Bell and Cathey [66] and Bell [67] draw
connections between the Gauss-Newton method and the iterated extended Kalman filter and
smoother [68, 31]. Because Gauss-Newton is unstable, it is natural to use Levenberg-Marquardt [69,
70] to stabilize the filtering/smoothing problem [25, 71, 72]. These approaches start with a smooth-
ing problem and stabilize it using approaches from nonlinear equations, whereas we start with a
nonlinear equation to solve and make the connection with Kalman filtering to leverage parallelized
algorithms [26]. We also discuss the practicalities of this connection for modern deep networks.

6 Experiments

We now experimentally examine the relative performance of these methods. Specifically, we eval-
uate: 1) whether quasi-DEER can provide memory savings over DEER and runtime savings over
sequential evaluation, while retaining the accuracy of training and evaluation; and 2) whether ELK
and quasi-ELK can be used to stabilize evaluation in regimes where DEER is unstable. In Sec-
tions 6.1 and 6.2 we use experimental designs from Lim et al. [1] and show that quasi-DEER retains

7

10−1

100

101

W
a
ll

cl
o
ck

(s
)

D = 8 D = 16 D = 32 D = 64

Sequential DEER Quasi-DEER

30K 100K 300K 1M

100

101

M
em

o
ry

(G
B

)

30K 100K 300K 1M 30K 100K 300K 1M 30K 100K 300K 1M

Sequence Length (T)

Figure 2: Evaluating an untrained GRU. Relative performance of sequential, DEER and quasi-
DEER for evaluating a randomly initialized (and untrained) GRU on (Top Row) wall-clock time,
averaged over 20 random seeds and (Bottom Row) memory, averaged over 3 random seeds. All
experiments use a 16GB V100 SMX2 (memory capacity indicated by the black dashed line) and
Newton methods were run to convergence. Missing points in each series indicate the GPU ran
out of memory. Quasi-DEER has a runtime commensurate with DEER, but with lower memory
consumption, allowing quasi-DEER to work at scales where DEER cannot. The accuracy of the
final converged solution is similar for all methods (see Figure 5 in Appendix B.1).

the fast runtime and accuracy of DEER and can reduce memory consumption by up to an order
of magnitude. In Section 6.3 we show that (quasi-)ELK remains stable when DEER becomes un-
stable, and that quasi-ELK is the fastest of all parallelized methods. We provide further details in
Appendix B.

6.1 Quasi-DEER for Evaluation

We first use an experimental design from Lim et al. [1]. The task is to evaluate an untrained GRU
across a range of hidden state sizes (D) and sequence lengths (T) on a 16GB V100 GPU; the inputs
to the RNN also have dimension D. We compare the wall-clock time and memory usage of three
methods: sequential evaluation, DEER, and quasi-DEER. Results are shown Figure 2.

Both DEER and quasi-DEER are up to twenty times faster than sequential evaluation. The runtimes
are similar between DEER and quasi-DEER for small networks, because although quasi-DEER
steps are faster, quasi-DEER takes more iterations to converge. For larger networks, the difference
in runtime is more pronounced. We also see that quasi-DEER requires as much as an order of mag-
nitude less memory than DEER, thus allowing the application to architectural regimes previously
infeasible with DEER. In Figure 6 of Appendix B.1.1 we show that in smaller T and D regimes we
observe the expected sublinear time scaling with sequence length. This experiment confirms that
quasi-DEER can replicate the performance of DEER, but with a smaller memory footprint.

6.2 Quasi-DEER for Training

We verify that quasi-DEER expedites training nonlinear RNN models. We replicate the third exper-
iment from Lim et al. [1], where a GRU is trained to classify C. elegans phenotypes from the time
series of principal components of the worms’ body posture [73].

We show results in Figure 3. We see that the training dynamics under quasi-DEER leads to the
similar validation accuracy trajectories. However, every quasi-DEER training step is faster by a
factor of 2.5, despite performing around 2 times more Newton iterations per training step. This
finding highlights how quasi-DEER can replace DEER when training nonlinear RNNs, yielding
both time and memory savings. In our experiment, we use the quasi-DEER approximation for the
backward pass as well, leading to gradients that are different from DEER in this setting. However,
we find that there is negligible degradation in performance (Figure 3, left).

8

0 50K 100K

Training Step

0

50

100

V
a
li

d
a
ti

o
n

A
cc

u
ra

cy
(%

)

Sequential

DEER

Quasi-DEER

0 50K 100K

Training Step

0.0

0.2

0.4

W
a
ll

cl
o
ck

ti
m

e
p

er
p

a
ra

m
u

p
d

a
te

(s
)

0 50K 100K

Training Step

0

5

10

15

N
ew

to
n

it
er

s
p

er
u

p
d

a
te

Figure 3: Training a GRU with DEER. Comparison of DEER and quasi-DEER during GRU
training for the C. elegans time-series classification task (Section 6.2). Each time series has length
T = 17, 984. We show the median, and 5-95% interval across a rolling window of 20 training
steps. (Left) DEER and quasi-DEER have the similar validation accuracy trajectories, indicating
similar training dynamics. The sequential trace shown is for 24 hours of training (compared to 11
and 4 hours for the whole DEER and quasi-DEER traces). (Center) Each quasi training iteration
is 2.5 times faster than each DEER training iteration. Sequential training steps took more than 6
seconds each (not pictured). (Right) Each quasi training iteration requires (approximately) 2 times
more Newton iterations to converge, indicating that each quasi Newton step is approximately 5 times
faster than the corresponding DEER Newton step.

DEER is prone to “spikes”, where orders of magnitude more steps are required for convergence
(Figure 3, right). While quasi-DEER is not as susceptible to these spikes (never more than half an
order of magnitude), these instabilities motivated the study of stabilizing methods.

6.3 ELK and Quasi-ELK for Evaluating Autoregressive RNNs

We conclude by studying an application where these numerical instabilities in DEER are critical.
We use a small autoregressive GRU (hidden dimension Nh = 3), where the previous sampled value
is input into the GRU at the next step. Such autoregressive architectures were not examined by Lim
et al. [1], but are an important class of models. We describe the precise details of the AR GRU we
use in Appendix B.3. Crucially, the Markovian state st used by all four parallelized methods must
be expanded to include the current sampled output value, as well as the current GRU state.

Initialized AR GRU We first repeat the analysis in Section 6.1 (and similar to the evaluation in
Lim et al. [1]) for evaluating a randomly initialized autoregressive GRU. We see in the top left
panel of Figure 4 that all four parallelized methods converge rapidly and stably to the correct trace,
indicated by a low mean absolute discrepancy (MAD) between the true trace and the generated trace.

Trained AR GRU We then study a pre-trained GRU that generates a noisy sine wave (see Figure 4,
bottom). The linear recurrence relation (6) was numerically unstable in DEER and quasi-DEER. To
remedy these instabilities, we take the approach described earlier of setting the unstable parts of the
trace to a fixed value (here zero). Doing so ensures convergence, but at the cost of “resetting” the
optimization for large swathes of the trace (Figure 4, bottom) and slowing convergence (see Figure 4,
top right). This finding highlights how the instabilities of DEER — which are inherited from both
pathologies of Newton’s method and the parallel recurrence — can be crippling in even very simple
scenarios. While resetting allows for convergence, the resulting convergence is very slow.

We then apply ELK and quasi-ELK. We show the results in the top right and bottom panels of Fig-
ure 4. We select the trust region size with a one-dimensional search over log-spaced values between
100 and 107. We see ELK has stabilized convergence, with the evaluation never incurring numerical
instabilities or requiring heuristics. Crucially, by taking more stable steps (and not needing stabiliz-
ing heuristics) ELK and quasi-ELK converge faster than DEER and quasi-DEER. ELK can stabilize
and expedite the convergence of DEER, with quasi-ELK faster still (by wall-clock time).

However, on this task, all parallelized methods (including DEER) are slower than sequential gen-
eration. Quasi-ELK is the fastest parallel method, taking 221 milliseconds, compared to sequential
evaluation, taking 96 milliseconds. For comparison, DEER took 1,225 milliseconds. Quasi-ELK
therefore still represents a large improvement in runtime over previous parallel methods. We pro-
vide timing details and further discussion in Appendix B.3.2.

9

0 5 10 15
Newton Iterations

10−10

10−7

10−4

U
n
tr

a
in

ed
A

R
G

R
U

M
A

D

0 2000 4000 6000 8000 10000
Newton Iterations

10−6

10−3

100

103

T
ra

in
ed

A
R

G
R

U
M

A
D

DEER Quasi-DEER ELK Quasi-ELK

-20
0

20

1

-20
0

20

1
0
0

-20
0

20

1
0
0
0

0 2000 4000 6000 8000 10000
Timestep, t

-20
0

20

2
0
0
0T

im
e

se
ri

es
a
ft

er
N

ew
to

n
it

er
a
ti

o
n
:

Figure 4: ELK stabilizes parallel evaluation of an AR GRU. (Top Left) The mean absolute differ-
ence (MAD) evaluated on the outputs converges rapidly for all four methods on a sequence gener-
ated by an untrained AR GRU. (Top Right) The MAD for evaluating a trained AR GRU. Undamped
DEER variants are unstable and converge slowly (using the reset heuristic). ELK stabilizes and ac-
celerates convergence. (Bottom) The output after 1, 100, 1000, and 2000 Newton iterations. The
black dotted line is the true trace. ELK and quasi-ELK converge rapidly, but DEER and quasi-DEER
are unstable. The lines where DEER and quasi-DEER are zero depict the zeroing heuristic.

7 Conclusion

In this paper we proposed methods for scalable and stable parallel evaluation of nonlinear RNNs.
DEER [1] achieved speedups over sequential evaluation, but incurred quadratic memory, cubic work,
and numerical instabilities. We therefore extended DEER to use quasi-Newton approximations that
reduced computational complexity, and we provided a novel proof that both DEER and quasi-DEER
converge globally. To stabilize DEER, we leveraged a connection between the Levenberg-Marquardt
method and Kalman smoothing to enable parallel evaluation of RNNs, allowing us to stabilize DEER
while still leveraging fast parallel filtering. We empirically verified that quasi-DEER, ELK, and
quasi-ELK improve convergence across a range of metrics and examples. This result allows parallel
evaluation of nonlinear RNNs to be scaled beyond what is possible with DEER.

When selecting an approach, we offer the following advice: If rapid convergence is reliably ob-
served, our experiments show that quasi-DEER provides the fastest convergence in terms of wall-
clock time. However, if the dynamics are on the edge of stability, then ELK offers the most stable
performance of these parallelized methods, but quasi-ELK could be faster in wall-clock time and
just as stable. In such settings, it is worth sweeping the hyperparameter to choose the best version of
ELK (note that for λ = 0, ELK specializes to DEER). However, in the setting of chaotic dynamics,
standard sequential evaluation may ultimately be faster.

Our experiments and these observations also highlight avenues for future research. While we found
success with a diagonal approximation, structured approximations of the Jacobian that still admit fast
parallelism but are more faithful approximations may allow for more accurate quasi-Newton steps
to be taken. Secondly, quantifying the convergence rates of quasi-ELK would allow us to provide
tighter bounds than those derived in Proposition 1. Finally, theoretically investigating whether fur-
ther improvements to parallelized methods can prove faster than sequential evaluation for dynamical
systems on the edge of stability, or whether there are fundamental limitations to the computational
benefit of parallelization, are interesting questions for future work.

10

Acknowledgments

We thank John Duchi, David Zoltowski, and the members of the Linderman Lab for their help-
ful feedback. We thank Amber Hu for her work on preliminary versions of this project, and Leo
Kozachkov for pointing out that the conditions we established for the merit function are equivalent
to invexity. We thank the anonymous NeurIPS reviewers whose feedback improved this paper.

This work was supported by grants from the NIH BRAIN Initiative (U19NS113201, R01NS131987,
& RF1MH133778), the NSF/NIH CRCNS Program (R01NS130789). X.G. would also like to ac-
knowledge support from the Walter Byers Graduate Scholarship from the NCAA. S.W.L. is sup-
ported by fellowships from the Simons Collaboration on the Global Brain, the Alfred P. Sloan Foun-
dation, and the McKnight Foundation. The authors have no competing interests to declare.

Some of the experiments were performed on the Sherlock cluster. We thank Stanford University and
the Stanford Research Computing Center for providing computational resources and support that
contributed to these research results.

References
[1] Yi Heng Lim, Qi Zhu, Joshua Selfridge, and Muhammad Firmansyah Kasim. Parallelizing

non-linear sequential models over the sequence length. In International Conference on Learn-
ing Representations, 2024.

[2] Sarah Hooker. The hardware lottery. Communications of the ACM, 64(12):58–65, 2021.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pages 6000–6010, 2017.

[4] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers
are RNNs: Fast autoregressive transformers with linear attention. In International Conference
on Machine Learning, pages 5156–5165. PMLR, 2020.

[5] Jimmy T.H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers
for sequence modeling. In International Conference on Learning Representations (ICLR),
2023.

[6] Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. In Inter-
national Conference on Machine Learning, pages 26670–26698. PMLR, 2023.

[7] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
In First Conference on Language Modeling, 2024.

[8] Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, and Hossein Hajimir-
sadeghi. Were rnns all we needed? arXiv, 2024. URL https://doi.org/10.48550/arXiv.
2410.01201.

[9] Kyunghyun Cho, Bart van Merriënboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

[11] Ibomoiye Domor Mienye, Theo G. Swart, and George Obaido. Recurrent neural networks: A
comprehensive review of architectures, variants, and applications. Information, 15:517, 2024.
doi: 10.3390/info15090517. URL https://doi.org/10.3390/info15090517. Academic
Editor: María N. Moreno García.

[12] Oleksandr Shchur, Marin Bilos, and Stephan Gunnemann. Intensity-free learning of temporal
point processes. In Internatinal Conference on Learnng Representations, 2020.

11

https://doi.org/10.48550/arXiv.2410.01201
https://doi.org/10.48550/arXiv.2410.01201
https://doi.org/10.3390/info15090517

[13] Dieterich Lawson, Allan Raventós, Andrew Warrington, and Scott Linderman. SIXO: Smooth-
ing inference with twisted objectives. In Advances in Neural Information Processing Systems,
volume 35, 2022.

[14] William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space
models. In Forty-first International Conference on Machine Learning, 2024.

[15] Saurabh Vyas, Matthew D. Golub, David Sussillo, and Krishna V. Shenoy. Computa-
tion through neural population dynamics. Annual Review of Neuroscience, 43:249–275,
2020. doi: 10.1146/annurev-neuro-092619-094115. URL https://doi.org/10.1146/
annurev-neuro-092619-094115.

[16] David Sussillo and Omri Barak. Opening the black box: Low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Computation, 25(3):626–649, 2013.

[17] Chethan Pandarinath, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D.
Stavisky, Jonathan C. Kao, Eric M. Trautmann, Matthew T. Kaufman, Stephen I. Ryu, Leigh R.
Hochberg, Jaimie M. Henderson, Krishna V. Shenoy, L. F. Abbott, and David Sussillo. Infer-
ring single-trial neural population dynamics using sequential auto-encoders. Nature Methods,
15:805–815, 2018.

[18] Jimmy Smith, Scott Linderman, and David Sussillo. Reverse engineering recurrent neural
networks with Jacobian switching linear dynamical systems. Advances in Neural Information
Processing Systems, 34:16700–16713, 2021.

[19] Marine Schimel, Ta-Chu Kao, Kristopher T. Jensen, and Guillaume Hennequin. ILQR-VAE:
Control-Based Learning of Input-Driven Dynamics with Applications to Neural Data. In Pro-
ceedings of the International Conference on Learning Representations (ICLR). ICLR, 2022.

[20] Fatih Dinc, Adam Shai, Mark Schnitzer, and Hidenori Tanaka. CORNN: Convex optimization
of recurrent neural networks for rapid inference of neural dynamics. Adv. Neural Inf. Process.
Syst., November 2023.

[21] Carina Curto and Katherine Morrison. Graph rules for recurrent neural network dynamics.
Notices of the American Mathematical Society, 70(4), April 2023. doi: 10.1090/noti2661.
URL https://doi.org/10.1090/noti2661.

[22] J. C. Costacurta, S. Bhandarkar, D. M. Zoltowski, and S. W. Linderman. Structured flexibility
in recurrent neural networks via neuromodulation. NeurIPS, 2024. doi: 10.1101/2024.07.26.
605315.

[23] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2 edition, 2006.

[24] Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190,
Carnegie Mellon University, School of Computer Science, 1990.

[25] Simo Särkkä and Lennart Svensson. Levenberg-Marquardt and line-search extended Kalman
smoothers. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5875–5879. IEEE, 2020. doi: 10.1109/ICASSP40776.
2020.9054764.

[26] Simo Särkkä and Ángel F. García-Fernández. Temporal parallelization of bayesian smoothers.
IEEE Transactions on Automatic Control, 66(1):299–306, 2021. doi: 10.1109/TAC.2020.
2976316.

[27] Peter Chang, Giles Harper-Donnelly, Aleyna Kara, Xinglong Li, Scott Linderman, and Kevin
Murphy. Dynamax: State space models library in JAX, 2023. URL https://github.com/
probml/dynamax.

[28] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, volume 31,
pages 6571–6583, 2018.

[29] Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

12

https://doi.org/10.1146/annurev-neuro-092619-094115
https://doi.org/10.1146/annurev-neuro-092619-094115
https://doi.org/10.1090/noti2661
https://github.com/probml/dynamax
https://github.com/probml/dynamax

[30] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/google/jax.

[31] Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University Press, Cambridge,
UK, 2013. ISBN 978-1-107-03385-3.

[32] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with struc-
tured state spaces. In International Conference on Learning Representations (ICLR), 2021.

[33] Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length.
In International Conference on Learning Representations, 2018.

[34] Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prud-
nikova, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xl-
stm: Extended long short-term memory. In Thirty-eighth Conference on Neural Information
Processing Systems, 2024. URL https://arxiv.org/abs/2405.04517.

[35] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear
transformers with the delta rule over sequence length. In Proceedings of NeurIPS, 2024.

[36] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative
model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[37] David W. Romero, Anna Kuzina, Erik J Bekkers, Jakub Mikolaj Tomczak, and Mark Hoogen-
doorn. CKConv: Continuous kernel convolution for sequential data. In International Confer-
ence on Learning Representations, 2022.

[38] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pages 28043–28078.
PMLR, 2023.

[39] Rom Parnichkun, Stefano Massaroli, Alessandro Moro, Jimmy T.H. Smith, Ramin Hasani,
Mathias Lechner, Qi An, Christopher Re, Hajime Asama, Stefano Ermon, Taiji Suzuki,
Michael Poli, and Atsushi Yamashita. State-free inference of state-space models: The transfer
function approach. In Forty-first International Conference on Machine Learning, 2024.

[40] Zico Kolter, David Duvenaud, and Matt Johnson. Deep implicit layers - Neural ODEs, Deep
Equilibrium Models, and Beyond, 2020. NeurIPS 2020 Tutorial.

[41] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Advances in
Neural Information Processing Systems, volume 32, 2019.

[42] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. In
Advances in Neural Information Processing Systems, volume 33, pages 5238–5250, 2020.

[43] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Neural deep equilibrium solvers. In Interna-
tional Conference on Learning Representations, 2021.

[44] Stefano Massaroli, Michael Poli, Sho Sonoda, Taiji Suzuki, Jinkyoo Park, Atsushi Yamashita,
and Hajime Asama. Differentiable multiple shooting layers. Advances in Neural Information
Processing Systems, 34:16532–16544, 2021.

[45] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
ISBN 978-0262035613.

[46] Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. Accelerating feedforward compu-
tation via parallel nonlinear equation solving. In International Conference on Machine Learn-
ing, 2021.

13

http://github.com/google/jax
https://arxiv.org/abs/2405.04517

[47] Tsvetomila Mihaylova and André F. T. Martins. Scheduled sampling for transformers. In Fer-
nando Alva-Manchego, Eunsol Choi, and Daniel Khashabi, editors, Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: Student Research Work-
shop, pages 351–356, Florence, Italy, July 2019. Association for Computational Linguistics.
doi: 10.18653/v1/P19-2049.

[48] Andrea Santilli, Silvio Severino, Emilian Postolache, Valentino Maiorca, Michele Mancusi,
Riccardo Marin, and Emanuele Rodolà. Accelerating transformer inference for translation via
parallel decoding. In Proceedings of the 61st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 12336–12355, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.689.

[49] Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of
LLM inference using lookahead decoding. In Forty-first International Conference on Machine
Learning, 2024.

[50] Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sam-
pling of diffusion models. 37th Conference on Neural Information Processing Systems, 2023.
URL https://doi.org/10.48550/arXiv.2305.16317. 37th Conference on Neural Infor-
mation Processing Systems.

[51] Nikil Roashan Selvam, Amil Merchant, and Stefano Ermon. Self-refining diffusion samplers:
Enabling parallelization via parareal iterations. In Advances in Neural Information Processing
Systems (NeurIPS 2024), 2024.

[52] Martin J. Gander. 50 years of time parallel time integration. In Thomas Carraro, Markus
Geiger, Sebastian Körkel, and Rolf Rannacher, editors, Multiple Shooting and Time Domain
Decomposition Methods, volume 9 of Contributions in Mathematical and Computational Sci-
ences, pages 69–113. Springer, Cham, 2015. doi: 10.1007/978-3-319-23321-5_3. URL
https://doi.org/10.1007/978-3-319-23321-5_3.

[53] B. W. Ong and J. B. Schroder. Applications of time parallelization. Computing and Vi-
sualization in Science, 23:1–10, 2020. doi: 10.1007/s00791-020-00323-3. URL https:
//doi.org/10.1007/s00791-020-00323-3.

[54] D. A. Vargas, R. D. Falgout, S. Günther, and J. B. Schroder. Multigrid reduction in time
for chaotic dynamical systems. SIAM Journal on Scientific Computing, 45(4):A2019–A2042,
2023. doi: 10.1137/22M1519605.

[55] C.G. Broyden. The convergence of a class of double-rank minimization algorithms. IMA
Journal of Applied Mathematics, 6(1):76–90, 1970.

[56] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13(3):
317–322, 1970.

[57] D. Goldfarb. A family of variable-metric methods derived by variational means. Mathematics
of Computation, 24(109):23–26, 1970.

[58] D.F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics
of Computation, 24(111):647–656, 1970.

[59] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming, 45(1-3):503–528, 1989.

[60] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored ap-
proximate curvature. In International conference on machine learning, pages 2408–2417.
PMLR, 2015.

[61] T. Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM
Journal on Numerical Analysis, 20(3):626–637, 1983.

[62] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

14

https://doi.org/10.48550/arXiv.2305.16317
https://doi.org/10.1007/978-3-319-23321-5_3
https://doi.org/10.1007/s00791-020-00323-3
https://doi.org/10.1007/s00791-020-00323-3

[63] Nikita Doikov and Yurii Nesterov. Gradient regularization of Newton method with Bregman
distances. Mathematical Programming, pages 1–25, 2023.

[64] James M Ortega and Werner C Rheinboldt. Iterative Solution of Nonlinear Equations in Sev-
eral Variables. SIAM, 2000.

[65] A.R. Conn, N.I.M. Gould, and Ph.L. Toint. Trust Region Methods, volume 1. Society for
Industrial and Applied Mathematics, 2000.

[66] S. M. Bell and F. W. Cathey. The iterated Kalman filter update as a Gauss-Newton method.
IEEE Transactions on Automatic Control, 38(2):294–297, 1993.

[67] B. M. Bell. The iterated Kalman smoother as a Gauss–Newton method. SIAM Journal on
Optimization, 4(3):626–636, 1994. doi: 10.1137/0804035.

[68] H. W. Sorenson. Kalman filtering techniques. In H. W. Sorenson, editor, Kalman Filtering:
Theory and Application, page 90. IEEE Press, New York, 1966.

[69] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares.
Quarterly of Applied Mathematics, 2:164–168, 1944.

[70] Donald W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.
Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

[71] Y. Chen and D. S. Oliver. Levenberg–Marquardt forms of the iterative ensemble smoother for
efficient history matching and uncertainty quantification. Computational Geosciences, 17(4):
689–703, 2013. doi: 10.1007/s10596-013-9351-5.

[72] J. Mandel, E. Bergou, S. Gürol, S. Gratton, and I. Kasanickỳ. Hybrid Levenberg–Marquardt
and weak-constraint ensemble Kalman smoother method. Nonlinear Processes in Geophysics,
23(2):59–73, 2016.

[73] André EX Brown, Eviatar I Yemini, Laura J Grundy, Tadas Jucikas, and William R Schafer.
A dictionary of behavioral motifs reveals clusters of genes affecting caenorhabditis elegans
locomotion. Proceedings of the National Academy of Sciences, 110(2):791–796, 2013.

[74] B. D. Craven and B. M. Glover. Invex functions and duality. Journal of the Australian Mathe-
matical Society, 39(1):1–20, 1985. ISSN 0263-6115. doi: 10.1017/S1446788700022126.

[75] A. Ben-Israel and B. Mond. What is invexity? The ANZIAM Journal, 28(1):1–9, 1986. ISSN
1839-4078. doi: 10.1017/S0334270000005142.

[76] Kevin Murphy. Probabilistic Machine Learning. Cambridge, 2022.

[77] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2004. ISBN 9780521833783.

[78] Yurii Nesterov. Lectures on Convex Optimization, volume 137 of Springer Optimization and
Its Applications. Springer, 2nd edition, 2018. ISBN 978-3-319-91577-4. doi: 10.1007/
978-3-319-91578-1. URL https://doi.org/10.1007/978-3-319-91578-1.

[79] Chee K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University Press, Ox-
ford, UK, 1993. ISBN 978-0-19-512537-3.

15

https://doi.org/10.1007/978-3-319-91578-1

A Theoretical Results

A.1 Proof of Proposition 1

Proposition 1 Undamped Newton’s method will converge to the true solution, s∗, of the fixed-point
equation(2) in at most T Newton iterations, for any initial s(0).

Proof. We prove this result by induction on the sequence length.

In general, the guess s(0) need not equal the solution s∗ anywhere. However, the initial state s0 and
the dynamics functions f are fixed. Therefore, s∗1 = f(s0) and in general s∗t = f(s∗t−1). Thus, it
follows from the initial condition of the DEER recurrence relation that s(i)1 = s∗1 for all i ≥ 1.

Furthermore, we observe that if s(i)t = s∗t for all t less than some t(i), then rt(s
(i)) = 0 for all

t < t(i) by the definition of the residual in (1). Therefore, the DEER linear recurrence relation
necessarily gives ∆s

(i+1)
t = 0 for all t < t(i). Furthermore, because s∗

t(i)
= f(s

(i)
t), it follows that

∆s
(i+1)

t(i)
= −rt(i)(s(i)) = s∗

t(i)
− s

(i)

t(i)
. Thus, it follows that after applying another Newton iteration

that s(i+1)
t = s∗t for all t < t(i) + 1. The global convergence result and bound on Newton iterates

follows by induction.

We note that this proof technique (induction) is very similar to that used to prove Proposition 1
of Shih et al. [50]. However, Shih et al. [50] proves a result about Picard iterations (zeroth or-
der method). Our proof about the global convergence of Newton iterations contains the additional
complication of dealing with a LDS (as a consequence of using a first order method). Note, that
the global convergence comes from the zeroth order update; however, the first order gradient in-
formation can accelerate convergence. The fact that both Picard and Newton iterations have very
similar proofs of global convergence suggests that they are closely related, and we will expand on
this connection in future work.

Discussion of corollaries of Proposition 1 Corollaries of Proposition 1 include that the fixed-
point iterations will converge (in at most T iterations) to s∗ even if the Jacobians ∂f/∂s are replaced
by arbitrary matrices, and that we can reset the values of s(i)t for t > i arbitrarily and still enjoy
convergence.

In more detail, the elements in the sub-block-diagonal of J := ∂r/∂s can be replaced with arbitrary
values – but the main block diagonal must remain as the identity and all other entries must be
zero. Retaining convergence under modifications to the sub-block-diagonal portion is a corollary of
Proposition 1, and can be seen from (6): If all the states up to and including position t − 1 at the
(i)th Newton iteration are correct, then the update in (6) at Newton iteration (i + 1) for position t

will use ∆s
(i+1)
t−1 = 0 (no update is required at position t− 1), and so the update to s

(i+1)
t no longer

depends on the Jacobian.

We exploit this to develop quasi-DEER, retaining only the diagonal of the Jacobians. Doing so
reduces the parallel scan from O(D3) work to O(D) work, making each iteration faster (while
still admitting global convergence as above), but needs more Newton iterations to converge due to
approximate updates. We find that this trade-off often yields a faster wall-clock time (cf. Figure 8).

Explicitly, the global convergence of quasi-DEER is a theoretical result (a corollary of Proposi-
tion 1), but the fast runtime of quasi-DEER in practice is an empirical result (cf. Figure 3).

A.2 The Merit Function Has No Local Minima or Saddle Points

Proposition 3. The merit function L(s) defined in (7) has a global minimum at the true trace s∗,
satisfying L(s∗) = 0. It has no other critical points, i.e. no s such that∇L(s) = 0 other than at the
unique s∗ for which r(s∗) = 0.

Proof. First, we observe that∇L(s) = J(s)T r(s), where J(s) is defined as in (3). Because J(s) is a
lower triangular matrix with all entries on its diagonal equal to 1, it follows that all of its eigenvalues

16

are equal to 1. Therefore, J(s) is nonsingular for all s. Thus, J(s) has trivial nullspace for all s, i.e.
J(s)T r(s) = 0 ⇐⇒ r(s) = 0. But only s∗ satisfies r(s∗) = 0.

Since there are no critical points other than s∗, the merit function cannot have local minima or
saddle points. Since we have shown that every stationary point is a global minimum, it follows that
the merit function L(s) is invex (cf. [74, 75]).

We also discuss further the uniqueness of the global minimizer s∗ of the merit function L.

For a deterministic forward function f and fixed inputs there is a fixed sequence of states and outputs
(note that any stochastic dynamics function can be reparameterized as deterministic by conditioning
on the random inputs). Thus, s∗ is the only sequence with zero residual (i.e. there is a unique
sequence generated by the deterministic dynamics).

Furthermore, DEER cannot get stuck at any point that is not this sequence. We prove this in Propo-
sition 1. Another way to see this however is that each update step (4) is equal to J−1r. But, J is
always invertible and so has trivial nullspace. Furthermore, the residual r can only be zero at the
unique solution s∗. Thus J−1r is nonzero everywhere except at the true solution, where it is zero.
Thus, DEER cannot get stuck en route to finding the true and unique solution.

A.3 Kalman Filtering Damps the Eigenvalues of the Dynamics Matrices

A complementary perspective on how ELK results in more stable evaluation of nonlinear RNNs is to
see how the Kalman filter damps the eigenvalues of the Jacobian matrices of the transition dynamics.
We first provide a high-level overview, and then provide a more detailed derivation.

Overview Let At be the Jacobians ∂f/∂s used in the linear recurrence relations and bt be the
offsets. Then the prediction step of the Kalman filter (ELK) is the same as DEER. However, after
applying the update step in ELK (which imposes the trust region), we obtain a second linear recur-
rence relation where the linear operator is given by ΓtAT . Note that Γt is a symmetric positive
definite matrix with eigenvalues bounded above by 1/1+λ. Thus, by the Spectral Theorem, it fol-
lows that the norms of the eigenvalues of ΓtAt are bounded above by the max of the norms of the
eigenvalues of At, scaled by 1/1+λ. Note that larger λ corresponds to more regularization/smaller
trust region; and therefore correspondingly results in smaller effective eigenvalues in the scan. We
recover DEER exactly if λ = 0. Thus, while large eigenvalues in At are the cause of the insta-
bility of DEER when evaluating unstable dynamical systems, ELK directly attenuates these large
eigenvalues, explaining why the intermediate iterations using ELK remain stable.

Derivation We define our dynamics used in Newton iteration (i+ 1) as

At =
∂ft+1

∂s
(s

(i)
t)

bt = ft+1(s
(i)
t)− ∂ft+1

∂s
(s

(i)
t)s

(i)
t .

Now At ∈ RD×D and bt ∈ RD.

In line with considering the system as the LDS in (11), we set the process noise to be ID, and with
the emissions governed by

s
(i+1)
t ∼ N (s

(i)
t , σ2ID),

where σ2 controls the size of our trust region (note that in the notation of developed in Section 4.2
we have λ = 1/σ2).

In the notation of Murphy [76], we see that the predict step is

µ(t+1)|t = Jtµt|t + bt

Σ(t+1)|t = AtΣt|tA
T
t + ID.

Meanwhile, the update step is

µ(t+1)|(t+1) = µ(t+1)|t +Σ(t+1)|t(Σ(t+1)|t + σ2ID)−1(yt+1 − µ(t+1)|t)

Σ(t+1)|(t+1) = Σ(t+1)|t −Σ(t+1|t)(Σ(t+1|t) + σ2ID)ΣT
(t+1|t).

17

To unpack this further, we first define the attenuation matrix

Γt = σ2
(
AtΣt|tA

T
t + (σ2 + 1)ID

)−1

.

Because Σt|t is a covariance matrix, it is also symmetric positive definite, and so AtΣt|tA
T
t is

symmetric positive definite, and so all of its eigenvalues are greater than zero. Therefore, all the
eigenvalues of AtΣt|tA

T
t + (σ2 + 1)ID are greater than σ2 + 1.

We note that Γt is also symmetric and positive definite. Thus, by the Spectral Theorem, all eigen-
values of Γt are positive. By the above argument, the eigenvalues of Γt are all less than σ2

1+σ2 < 1.

Thus, we observe that the resulting filtering is given by the recurrence relation

µ(t+1)|(t+1) =

linear︷ ︸︸ ︷
ΓtAtµt|t +

offset︷ ︸︸ ︷
Γtbt + (AtΣt|tA

T
t + ID)

(
AtΣt|tA

T
t + (σ2 + 1)ID

)−1

yt+1

Σ(t+1)|(t+1) = Γt(AtΣt|tA
T
t + ID).

Given
{
Σt|t

}T−1

t=0
, we see that the filtered means (the updates for ELK) come from a linear recur-

rence relation with linear term ΓtAt.

We therefore compare the eigenvalues of ΓtAt to eigenvalues of At. Because Γt is symmetric
positive definite, by the Spectral Theorem we can write Γt = QΛtQ

T , where Q is an orthogonal
(and therefore unitary) matrix, and Λt is a diagonal matrix where every entry is in (0, 1) (the entries
of Λt are the eigenvalues of Γt, which are greater than 0 by the Spectral Theorem and less than
σ2

1+σ2 < 1 by the argument above).

Now, let’s consider any arbitrary unit vector v ∈ CD, and let Λmax
t denote the maximum of the

norms of all eigenvalues of At. Then ∥Atv∥2 ≤ Λmax
t by the definition of Λmax

t . However, we want
to know ∥QΛtQ

TAtv∥2 for any arbitrary unit vector v ∈ RD. However, we know that the action
of a unitary matrix cannot change the 2-norm of a vector, so ∥QΛtQ

TAtv∥2 = ∥ΛtQ
TAtv∥2.

Moreover, multiplying a vector by a diagonal matrix cannot increase the 2-norm of a vector by more
than the absolute value of the diagonal matrix, which in the case of Λt is bounded above by σ2

/σ2+1.
Thus, ∥QΛtQ

TAtv∥2 ≤ σ2

σ2+1∥Atv∥, or

∥QΛtQ
TAtv∥2 ≤

σ2

1 + σ2
Λmax

t

for any unit vector v ∈ CD. This highlights that we can interpret reducing σ2 (reducing the size
of the trust region and increasing stabilization) as directly attenuating the eigenvalues in the linear
recurrence, helping to combat eigenvalues with large magnitude.

A.4 Scale-ELK

Motivated by our derivation in Appendix A.3, which shows that ELK reduces the magnitude of the
eigenvalues of the Jacobian matrices in the transition dynamics, we recommend a more lightweight
version of ELK which we call scale-ELK.

Scale-ELK uses a hyperparameter k ∈ [0, 1] (as opposed to λ ∈ [0,∞) used by ELK). Scale-ELK
uses a linear dynamical system just like DEER, with the dynamics defined as

At = (1− k)
∂ft+1

∂s
(s

(i)
t)

bt = ft+1(s
(i)
t)− (1− k)

∂ft+1

∂s
(s

(i)
t)s

(i)
t .

Thus, setting k = 0 recovers DEER, while setting k = 1 recovers a (computationally expensive
form of) sequential evaluation. Ideally, k is chosen to keep the magnitude of the eigenvalues of
{At}Tt=1 below 1. By Proposition 1, scale-ELK also enjoys global convergence.

Scale-ELK enjoys two primary benefits over ELK. First, an evaluation of scale-ELK uses fewer
FLOPs than ELK, as scale-ELK is just parallelizing an LDS with ELK uses a parallelized Kalman
filter. Second, the Kalman filter involves inverses which run the risk of introducing numerical insta-
bility, while scale-ELK avoids these complications.

18

9800 9820 9840 9860 9880 9900 9920 9940 9960 9980

0.5

0.0

0.5

GRU outputs for last 200 indices, DEER vs Sequential

DEER
Sequential

0 2000 4000 6000 8000 10000
2

0

2
1e 7
Difference between sequential and DEER outputs

9800 9825 9850 9875 9900 9925 9950 9975 10000
Sequence index

(a)

0.5

0.0

0.5

GRU outputs for last 200 indices, quasi-DEER vs Sequential

Quasi-DEER
Sequential

0 2000 4000 6000 8000 10000
Sequence index

(b)

1

0

1e 5
Difference between sequential and quasi-DEER outputs

Figure 5: The accuracy of evaluating with parallelized methods (DEER and quasi-DEER) as op-
posed to sequential evaluation. The parallelized methods converge to the correct trace within nu-
merical precision. The hidden state size is D = 4 and the sequence length is T = 10, 000.

B Experimental Details

B.1 Quasi-DEER for Evaluation

In this section we elaborate on our Experiment 1, discussed in Section 6.1. We closely follow
the experimental design in Section 4.1 of Lim et al. [1], including 5 warm-up steps for all timing
experiments and a batch size of 16. However, instead of running 5 seeds for 20 repetitions each, we
run 20 seeds for 5 repetitions each, to get more coverage over different evaluation (as the timing for
each evaluation are observed to be low variance). We also include memory profiling experiments
not present in Lim et al. [1]. For these experiments we use 3 random seeds and only one repetition,
because the memory usage is extremely stable in between runs. We discus the memory profiling
experiments in more detail in Section B.1.3.

For runs with the same specifications (sequence length T , hidden state size D, and algorithm), we
observe that sometimes runs with memory profiling ran out of memory whereas runs with timing
profiling did not run out of memory. A difference between our time profiling runs and memory
profiling runs was how we handled preallocation of memory. For time profiling, we allowed JAX
to preallocate memory because that is how JAX usually runs, and so gives a better indication of
wall-clock time in practice. For memory profiling, we did not allow JAX to preallocate memory so
we could get a more fine-grained measure of memory usage.

However, JAX provides this following discussion of memory preallocation (see https://jax.
readthedocs.io/en/latest/gpu_memory_allocation.html#):

However, [not preallocating memory] is more prone to GPU memory fragmenta-
tion, meaning a JAX program that uses most of the available GPU memory may
OOM with preallocation disabled.

Because the specifications where the time profile runs stay within memory but the memory runs run
out of memory are likely very close to the 16GB threshold, our hypothesis is that this phenomenon
is a manifestation of this documented memory fragmentation.

B.1.1 Numerical Precision of DEER and Quasi-DEER

In Figure 5 we qualitatively show that for the same example used in Figure 3 of Lim et al. [1]
that quasi-DEER converges within numerical precision to the correct trace in the untrained GRU
benchmarking task discussed in Section 6.1. Similar results for DEER can be found in Section 4.1
of Lim et al. [1].

19

https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html#
https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html#

10−4

10−2

100

W
a
ll

cl
o
ck

(s
)

D = 1 D = 2

Sequential DEER Quasi-DEER

D = 4 D = 8 D = 16 D = 32 D = 64

1
K

3
K

1
0
K

3
0
K

1
0
0
K

3
0
0
K

1
M

100

101

M
em

o
ry

(G
B

)

1
K

3
K

1
0
K

3
0
K

1
0
0
K

3
0
0
K

1
M 1
K

3
K

1
0
K

3
0
K

1
0
0
K

3
0
0
K

1
M 1
K

3
K

1
0
K

3
0
K

1
0
0
K

3
0
0
K

1
M 1
K

3
K

1
0
K

3
0
K

1
0
0
K

3
0
0
K

1
M 1
K

3
K

1
0
K

3
0
K

1
0
0
K

3
0
0
K

1
M 1
K

3
K

1
0
K

3
0
K

1
0
0
K

3
0
0
K

1
M

Sequence Length (T)

Figure 6: Evaluating an untrained GRU. Sublinear and linear timing regimes for parallelized
algorithms. The above experiments were run on a 32 GB V100 with a batch size of 1. As in
Figure 2, we use 20 seeds for timing, 3 seeds for memory, and the dashed black line indicates the
memory capacity of the GPU (32 GB). We observe that in smaller regimes in D and T that the
wall-clock time shows sublinear scaling indicative of the use of parallel algorithms. However, when
the GPU becomes saturated, the benefits of parallelization are reduced and we begin to see linear
scaling in wall-clock time with T .

B.1.2 Different Scaling Regimes Depending on GPU Saturation

In Figure 6, we run the timing benchmarks of Section 6.1 on a wider range of sequence lengths T
and hidden state sizes D, on a larger GPU (a V100 with 32 GB) and with a smaller batch size of
1. In doing so, we highlight that the parallel nature of DEER and quasi-DEER, as their wall-clock
time scales sublinearly in the sequence length T in smaller (D, T) regimes. However, we note
that in the larger regimes considered in our main text and in Lim et al. [1], we often observe linear
scaling in the sequence length T for the wall-clock time of DEER and quasi-DEER, even though
these algorithms are still faster than sequential evaluation. Figure 6 shows good evidence that these
parallel algorithms are suffering from saturation of the GPU, and would benefit from even more
optimized parallel hardware

The parallel scan, given sufficiently many processors, scales as O(log T). As we show in Figure 6,
we see this speedup at low model sizes and sequence lengths. Once the processors are saturated, we
see a linear increase in the runtime (since the amount of work done is linear), but it is making much
more effective use of the GPU, resulting in a constant factor speedup over sequential application at
larger model sizes/sequence lengths.

20

B.1.3 Memory Profiling Details

As we discussed in Section 4.1, quasi-DEER is O(TD) in memory while DEER is O(TD2) in
memory because DEER uses dense Jacobians ∂f/∂s while quasi-DEER uses a diagonal approxi-
mation, diag(∂f/∂s). However, to implement quasi-DEER with automatic differentiation, the most
standard approach would be to compute the dense Jacobian, and then to take the diagonal; how-
ever, such an approach would still be O(TD2) in memory required. There are two implementation
workarounds. One is to loop over computing partial derivatives, effectively trading time for mem-
ory. The second is simply derive the diagonal entries of the Jacobian for the architecture of interest.
For the purpose of showcasing the O(TD) memory usage of quasi-DEER in Section 6.1, we take
this second approach, deriving the diagonal entries of the Jacobian of the GRU nonlinear dynamics
and implementing them in JAX. However, for our other experiments, where memory capacity is not
a problem, we simply use the less memory efficient version of quasi-DEER.

We also see linear memory scaling in evaluating the RNN sequentially. This behavior occurs because
we JIT compile a lax.scan in JAX, and we track the maximum memory used on the GPU at any
point in the computation. Because the inputs and the hidden states of the RNN scales are both
of length T , the memory usage of O(T). While there may be more memory efficient ways to
sequentially evaluate an RNN, we keep the same benchmarking structure as Lim et al. [1] for to
make comparison easier.

B.2 Quasi-DEER for Training

Here we discuss the experimental details for Experiment 2 in Section 6.2. We follow the same
experimental setup as in Section 4.3 and Appendix B.3 of Lim et al. [1]. As an aside, we note that
the choice of hardware can impact behavior of the algorithms dramatically. For replicability, we
run on the same hardware as Lim et al. [1], using a 16GB V100 SXM2. However, we note that if
we try to run these same experiments on A100, DEER struggles to converge numerically, although
quasi-DEER shows no such difficulty. If we run on a CPU, both DEER and quasi-DEER converge
numerically. On balance, on the eigenworms time series classification task, both DEER and quasi-
DEER are numerically stable for the most part; the numerical instabilities we have observed for
DEER on an A100 are likely specific to some particular detail of JAX/hardware interaction.

In our implementation of quasi-DEER for this experiment, for ease of implementation we do not use
the memory efficient version, i.e. we instantiate the full Jacobian and then take the diagonal of it.
Nonetheless, we still demonstrate speed gains. Directly implementing the diagonal derivative would
likely lead to further speed and memory gains.

The RNN used in this experiment is a 5 layer GRU. When we evaluate this architecture in parallel,
we evaluate each layer in parallel using (quasi)-DEER. In Figure 3 (right), we report the number of
(quasi)-DEER iterations averaged over all layers and batches. In Figure 7, we report the number of
iterations needed for convergence in the last layer only.

B.3 ELK and Quasi-ELK for Evaluating Autoregressive RNNs

Here we discuss our experimental details for our Experiment 3, discussed in Section 6.3.

B.3.1 AR GRU Architecture

The architecture is a GRU with hidden states ht ∈ R3 and scalar inputs xt ∈ R. However, at every
point in the sequence t, we readout the hidden state ht ∈ R3 and use it to parameterize a mean
µt+1 ∈ R and a variance σ2

t+1 ∈ R+. We then sample xt+1 according to xt+1 ∼ N (µt+1, σ
2
t+1);

this output xt+1 is then fed into as the input to the AR GRU at time step t + 1 to make the new
hidden step ht+1.

This AR GRU is trained using standard sequential evaluation and backpropagation-through-time to
produce a noisy sine wave of length 10,000. We train the AR GRU on 1024 traces x1:T generated
from a sine wave with amplitude 10 and white noise applied to each time step, and the training
objective is to minimize the the negative log probability of the x1:T .

Once the AR GRU has been trained, it can generate its own trace x̃1:T given an initial hidden state
h0 and noises ϵ1:T .

21

0 50K 100K

Training Step

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
ew

to
n

it
er

s
(d

ee
p

es
t

la
y
er

)
p

er
u
p

d
a
te

DEER

Quasi-DEER

Figure 7: The number of Newton iterations needed for the deepest layer of the 5 layer GRU used
for the time-series classification task in Section 6.2.

We note that such a system is Markovian with dimension D = dim(h) + dim(x), as together the
hidden state ht and output xt+1 determine the next hidden state ht+1 and output xt+2. Thus, in
the notation of Section 2, a hidden state st of the Markovian state space model is st = (xt+1,ht).
Therefore, we can apply fixed-point methods to try to find the correct trace s∗ in a parallelized
manner instead of autoregressively.

We note that one distinction of this set-up with respect to the notation developed in Section 2 is that
the dynamics functions f are effectively time-varying because the way in which xt+2 is generated
from (xt+1, ht) depends on the noise ϵt+2, the value of which varies across the sequence. However,
all the results in the paper still apply after subsuming the input dependence into a time-varying
dynamics function ft.

B.3.2 Wall-clock Time Benchmark

The timing experiments were carried out as follows on an Nvidia A100 GPU with 80 GB of GPU
memory, using python 3.9 and jax 0.4.11. Exact wall-clock times will vary depending on hardware,
software, and implementation.

We ran sequential evaluation of the trained AR GRU to produce noisy sine waves of length T =
10,000, as well as the four parallelized method we consider in this paper (DEER, quasi-DEER,
ELK, and quasi-ELK).

We ran 20 different random seeds (which lead to different values of the ϵ1:T and therefore different
nonlinear dynamics), and timed each for a total of 4 repetitions (i.e. 80 timing runs per method). We
record the wall-clock time needed to evaluate the length T sequence sequentially, as well as wall-
clock time, divided by T needed to run T Newton iterations of each of the parallelized methods
(thus, we obtain the time per Newton iteration for each of the parallelized methods).

Over these 80 timing runs, the sequential evaluation took an average of 96 milliseconds, with stan-
dard deviation of 1.55 ms. We report the average time per Newton iteration, the total number of
iterations needed for convergence, and the total wall-clock time to convergence in Table 2. Note that
the third column of Table 2 is the product of the first two columns.

We effectively read the number of Newton iteration to convergence off of the graphs in Figure 4,
but find the number of Newton iterations to convergence to be quite stable across random seeds (see
Figure 8).

These timing results are illustrative of multiple themes of our paper. We see that while the undamped
Newton steps are individually faster because they are carrying out fewer computations (they are
just computing a linear recurrence relation, or equivalently an undamped Newton step, instead of

22

Table 2: Time to evaluate a length T = 10, 000 trained AR GRU using sequential vs parallelized
methods. We note the dynamax package [27] we used for the parallel Kalman filter implementation
in ELK is not optimized for speed, and hence these run times could be further improved.

Algorithm Time per New-
ton step (ms,
mean ± std)

Newton steps to
convergence

Total time to
convergence
(ms)

Sequential Evaluation

Sequential N/A N/A 96

Parallelized Methods

DEER 0.282± 0.0005 4449 1255
Quasi-DEER 0.087± 0.0002 7383 642
ELK 3.600± 0.0670 172 619
Quasi-ELK 0.141± 0.0004 1566 221

computing a filtering pass, or equivalently solving a trust region problem). However, because the
undamped Newton methods are numerically unstable, they take dramatically more Newton steps to
convergence.

Similarly, we see that the quasi methods are dramatically faster than their dense counterparts as they
are replace O(D3) matrix-matrix multiplication with O(D) diagonal matrix multiplication. The
O(D3) work required by a parallel scan on a dense linear recurrence likely saturates the GPU). We
see in Table 2 that individual steps in the dense DEER/ELK are (approximately) a factor of between
3.5 and 30 times slower per step than their quasi (diagonal) variants. However, they take a factor of
between 2 and 10 fewer iterations.

Thus, we find that our fastest parallelized method on wall-clock time is quasi-ELK, but even so it is
approximately two times slower than sequentially evaluating this AR GRU. Therefore, an interest-
ing direction for future work would be to characterize regimes where parallel methods can outper-
form sequential methods, and to investigate whether this autoregressive setting is such a regime, or
whether parallelized methods can benefit from further speed-ups by leveraging adaptive trust region
sizes, clever initialization strategies, or even more modern parallelized hardware.

B.4 Setting the Hyperparameter for the AR GRU

We provide more details on how to set the hyperparameters for ELK. Figure 8 shows how to set the
hyperparameter for ELK in the context of the evaluating the AR GRU that generates a noisy sine
wave (Figure 4).

We sweep over the hyperparamter for 15 different input sequences, and plot the median and quartiles
of the cost to convergence in terms of Newton iterates and runtime (left column of Figure 8). We
see a bathtub curve: large λ takes needlessly small steps, slowing progress; small λ results in many
resets, slowing convergence. Crucially, we see there is little variance across individual sequences.
These results show that there is a well-behaved dependence that can be optimized on a validation set
with a simple 1-d grid search.

We also chart the approximation error against cost for the AR GRU (center and right column of
Figure 8). We see that the approximation error reduces in fewer Newton steps with full DEER as
opposed to quasi-DEER, but, crucially, the wall-clock time (the more important of the two metrics)
is notably lower across all accuracies for quasi-DEER. This indicates that our more efficient – but
approximate – quasi-DEER is broadly preferable to the more expensive – but exact – DEER updates.
Furthermore, the stabilized ELK and quasi-ELK are better still. We also show the steps/time to
convergence for a range of accuracy thresholds, and see that our methods outperform DEER across
the full range of thresholds and metrics.

These experiments were run on a single Nvidia A100 with 80GB of onboard memory.

23

10−3 10−1

λ

102

103

104

N
ew

to
n

st
ep

s

fo
r

M
A

D
<

0
.0

0
1

0 5000 10000

Newton steps

109

1025

M
A

D

10−310−210−1100

ε

102

103

N
ew

to
n

st
ep

s

fo
r

M
A

D
<
ε

10−3 10−1

λ

100

101

W
a
ll
cl

o
ck

ti
m

e
(s

)

fo
r

M
A

D
<

0
.0

0
1

0.0 0.5 1.0 1.5

Wallclock time (s)

109

1025

M
A

D
10−310−210−1100

ε

0.1

1.0

W
a
ll
cl

o
ck

ti
m

e

fo
r

M
A

D
<
ε

(s
)

DEER q-DEER ELK q-ELK

Figure 8: Experiment to show how to set the hyperparameters for (quasi)-ELK on the AR GRU pre-
trained to generate a noisy sine wave (Figure 4 in the main text). Top row plots Newton steps; bottom
row plots wall-clock time. Lower is better for all plots. (Left) median steps/time to convergence
over λ over 15 sequences. Quartiles are shaded but are very small. DEER methods are independent
of λ. (Center) Updated version of Figure 4 instead plotting MAD as a function of wall-clock
time. (Right) Time to convergence is robust as a function of convergence threshold ϵ. Median
and quartiles across 15 sequences are shown. DEER methods are nearly constant at the thresholds
considered (very slight positive slope). Note we plot for increasing λ corresponding to a smaller
trust region, and reducing ϵ corresponding to a tighter convergence threshold.

B.5 Additional Experiment: Evaluating Chaotic Lorenz96 Systems

We include an extra experiment where we tackle the parallel evaluation of the classic non-linear 5-
dimensional Lorenz-96 system, with F = 8 which results in chaotic dynamics. We seek to evaluate
this system (for T = 1000 timesteps) using (quasi)-DEER and (quasi)-ELK. We directly use the
Lorenz-96 dynamics as our nonlinear dynamics function f , i.e. the architecture/time evolution is
the Lorenz-96 ODE system. The state is the five-dimensional Lorenz system state. The input is
therefore the initial condition of the ODE; and the outputs are the T × 5 subsequent system states.

We demonstrate that all the parallelized methods converge to the correct trace, but that (quasi)-ELK
is dramatically more stable at intermediate Newton iterations prior to convergence. We see that
DEER and ELK methods converge in a comparable number of steps (this makes sense as DEER
is a special case of ELK for λ → 0). DEER is faster (in terms of wall-clock time) because of
the extra work done per ELK iteration. However, ELK has stabilized convergence, whereas DEER
relies heavily on resetting. Interestingly we see that quasi is slower by all metrics, suggesting that
the chaotic dynamics may require the more accurate updates. Quasi methods can be implemented to
consume notably lower memory, however, and so may be preferable in certain circumstances.

In Figure 9, we report mean absolute deviation (MAD) of the time series at Newton iteration (i)
against the true state sequence. “Iteration” then refers to the number of Newton iterations, i.e. the
number of updates applied to the entire state sequence. We set hyperparameters using 10 different
evaluations of the Lorenz96 (i.e. starting from 10 different initial points).

These experiments were run on a single Nvidia A100 with 80GB of onboard memory.

B.6 Background on Parallel Scans

For a more detailed reference on parallel scans, the interested reader should refer to Appendix H of
Smith et al. [5] or to Blelloch [24].

In our codebase, we leverage jax.lax.associative_scan with the correct binary associative
operator. The binary associative operator for DEER and quasi-DEER is simply the composition of

24

https://github.com/lindermanlab/elk

10−3 10−2 10−1 100

λ

102

103

N
ew

to
n

st
ep

s

fo
r

M
A

D
<

0
.1

0 500 1000

Newton steps

109

1025

M
A

D

10−210−1100

ε

100

1000

N
ew

to
n

st
ep

s

fo
r

M
A

D
<
ε

10−3 10−2 10−1 100

λ

100

W
a
ll
cl

o
ck

ti
m

e
(s

)

fo
r

M
A

D
<

0
.1

0.0 0.5 1.0 1.5

Wallclock time (s)

109

1025

M
A

D
10−210−1100

ε

0.1

1.0

W
a
ll

cl
o
ck

ti
m

e

fo
r

M
A

D
<
ε

(s
)

DEER q-DEER ELK q-ELK

Iteration 50

True trace DEER q-DEER ELK q-ELK

Iteration 100 Iteration 200 Iteration 500

Figure 9: Evaluating the Lorenz96 system in parallel. (Top two rows): Same format as Figure 8.
(Bottom row): Plot of Lorenz96 trajectory during optimization. DEER methods are noticeably
more unstable than ELK methods.

affine maps, while the binary associative operation for Kalman filtering can be found in Särkkä and
García-Fernández [26] and in dynamax [27].

C Additional Background on Newton’s Method

In this appendix, we provide additional background on Newton’s method, and why it is of use for
parallelizing nonlinear RNNs.

Newton’s method provably enjoys quadratic (very fast) convergence in a basin near the true solution.
Moreover, as exhibited by the widespread usage of Newton’s method across many domains, New-
ton’s method can exhibit fast convergence in practice. However, a major motivation for this paper
is that globally, Newton’s method can be unstable and converge slowly. This instability is a major
motivation for our development of ELK.

A core insight from Lim et al. [1] is that in the setting of evaluating RNNs, Newton’s method can
be cast as a parallel scan (called DEER). At each “Newton iteration,” DEER linearizes the nonlinear
dynamics of the RNN it is evaluating. To the extent that linear approximations are a very powerful
tool across a wide variety of domains (e.g. Taylor expansions), this linear approximation can be
a good approximation, leading to rapid convergence. For example, if we were dealing with linear
RNNs, DEER would converge in one Newton iteration. In this paper, we are instead dealing with
nonlinear RNNs, so more Newton iterations are required.

25

C.1 Newton’s Method for Root-Finding

We provide a brief discussion of Newton’s method for root finding. A great resource for further
study is Nocedal and Wright [23].

Let’s say we want to find the solution s∗ to the nonlinear equation r(s) = 0, and we have a guess
s(i) at iteration i. Newton’s method linearizes r(s) at the guess s(i), i.e.

r̂(s) := r(s(i)) +
∂r

∂s
(s(i))(s− s(i)).

Thus, we get our new guess s(i+1) as the solution to r̂(s) = 0. Therefore, s(i+1) satisfies

s(i+1) − s(i) = −J−1r(s(i)),

where we define J :=
∂r

∂s
.

C.2 Newton, Gauss-Newton, Root-Finding, and Optimization

In this paper, we seek to find the root of a nonlinear equation r(s) = 0. In Appendix C.1 we discuss
how to use Newton’s method for root finding to obtain the update

s(i+1) ← s(i) − J−1r.

However, another approach is to consider minimizing the merit function L(s) := ∥r(s)∥22/2. The
root s∗ of r will also minimize L(s), so the goal of root-finding to solve r(s) = 0 is the same as
trying to find the minimize of L(s). However, if one applies Newton’s method for optimization to
try to minimize L(s) (see Boyd and Vandenberghe [77] for a great reference on Newton’s method
and optimization), the update obtained is actually

s(i+1) ← s(i) −H(s(i))−1g(s(i)),

where H is the Hessian of L and g = JT r is the gradient of L with respect to s. The Gauss-Newton
method approximates this optimization update for minimizing the merit function by making the
approximation H ≈ JTJ, and so the Gauss-Newton update for minimizing the merit function ends
up being the same as the Newton update for the finding the root of r.

C.3 Convergence of Newton’s Method

Newton’s method only converges within a suitable basin [78, §1.2.4, p. 37], but establishing best
practices for initialization is an open problem. For instance, Yap provides a bound on the norm of the
basin [79, Lecture IV, §10, p. 174]. However, this definition requires bounding the derivative of the
objective function, which is harder than the original problem. Nesterov derives a basin for quadratic
convergence around the true solution [78, Thm 1.2.5, §1.2.4, p. 39], but does not provide information
on how to locate this basin a priori. Indeed, Nesterov defaults to taking standard gradient steps early
in optimization until you assume you are in the basin, and then using Newton steps [78, §1.2.4,
p. 39].

D Algorithm Block

For the reader’s convenience, we provide an algorithm block depicting “the ungulates”2 (parallelized
RNN algorithms, i.e. DEER, ELK, and the quasi-variants).

2An ungulate is a large hooved mammal, and our affectionate term for DEER, ELK, and the quasi-variants

26

Algorithm 1 ParallelizeRNN

1: procedure PARALLELIZERNN(f , s0, init_guess, tol, method, quasi)
2: diff←∞
3: states← init_guess
4: while diff > tol do
5: shifted_states← [s0, states[: −1]]
6: fs← f(shifted_states)
7: Js← GETJACOBIANS(f, shifted_states)
8: if quasi then
9: Js← DIAG(Js)

10: bs← fs− Js · shifted_states
11: if method = ‘deer’ then
12: new_states← PARALLELSCAN(Js, bs, s0)
13: else if method = ‘elk’ then
14: new_states← PARALLELKALMANFILTER(Js, bs, states, s0)
15: diff← ∥states− new_states∥∞
16: states← new_states
17: return states

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claim in the abstract and introduction is that we improve the lim-
itations of parallelizing the evaluation of nonlinear RNNs with Newton’s method by ad-
dressing scalability and stability concerns. We develop quasi-DEER to address scalability
concerns and ELK to address stability concerns. We combine them in quasi-ELK.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the con-

tributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See limitations.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

27

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We prove Proposition 1.

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental details to allow for reproducibility, including hard-
ware used, in Section 6 and Appendix B. We also provide our code at https://github.
com/lindermanlab/elk

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed

28

https://github.com/lindermanlab/elk
https://github.com/lindermanlab/elk

instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide our code at https://github.com/lindermanlab/elk
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new pro-
posed method and baselines. If only a subset of experiments are reproducible, they should
state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental details to allow for reproducibility, including hard-
ware used, in Section 6 and Appendix B. We provide out code https://github.com/
lindermanlab/elk.
Guidelines:
• The answer NA means that the paper does not include experiments.

29

https://github.com/lindermanlab/elk
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/lindermanlab/elk
https://github.com/lindermanlab/elk

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we provide standard deviations in Table 2. Sometimes we don’t provide
error bars when the runs are extremely similar (low variance).
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or fig-
ures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we are very careful to specify the type of hardware, including memory
capacity.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and followd the NeurIPS code of ethics. We do not use human
subjects; we use publicly available datasets; and our research is in ways to accelerate stan-
dard machine learning algorithms so their broader impacts are to allow current machine
learning techniques to be more scalable and stable.

30

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss how we make machine learning more scalable. Such scalability
can lead to more energy efficient usage. Any negative impacts would occur from more
efficient machine learning being used for pernicious ends.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We have written an algorithms paper. We do not produce a pretrained lan-
guage model, an image generator, or a scraped dataset.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets

31

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite Lim et al. [1], whose work and code was an inspiration for this paper,
and Chang et al. [27], which we used to scaffold our implementation of ELK.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We provide our code at https://github.com/lindermanlab/elk

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license, limi-
tations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data col-
lector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

32

paperswithcode.com/datasets
https://github.com/lindermanlab/elk

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not use crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Problem Statement
	DEER: Newton's Method for Parallel Evaluation of Sequential Models
	Derivation of DEER from Newton's Method
	Global Convergence of DEER
	Weaknesses of DEER

	Scaling and Stabilizing Newton's Method for Parallel Evaluation
	Quasi-DEER: Scaling DEER with Diagonal Jacobian Approximations
	ELK: Stabilizing DEER with Trust Regions

	Related Work
	Experiments
	Quasi-DEER for Evaluation
	Quasi-DEER for Training
	ELK and Quasi-ELK for Evaluating Autoregressive RNNs

	Conclusion
	Theoretical Results
	Proof of Proposition 1
	The Merit Function Has No Local Minima or Saddle Points
	Kalman Filtering Damps the Eigenvalues of the Dynamics Matrices
	Scale-ELK

	Experimental Details
	Quasi-DEER for Evaluation
	Numerical Precision of DEER and Quasi-DEER
	Different Scaling Regimes Depending on GPU Saturation
	Memory Profiling Details

	Quasi-DEER for Training
	ELK and Quasi-ELK for Evaluating Autoregressive RNNs
	AR GRU Architecture
	Wall-clock Time Benchmark

	Setting the Hyperparameter for the AR GRU
	Additional Experiment: Evaluating Chaotic Lorenz96 Systems
	Background on Parallel Scans

	Additional Background on Newton's Method
	Newton's Method for Root-Finding
	Newton, Gauss-Newton, Root-Finding, and Optimization
	Convergence of Newton's Method

	Algorithm Block

