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Abstract

Intent learning, which aims to learn users’ intents for user understanding and item1

recommendation, has become a hot research spot in recent years. However, the2

existing methods suffer from complex and cumbersome alternating optimization,3

limiting the performance and scalability. To this end, we propose a novel intent4

learning method termed ELCRec, by unifying behavior representation learning5

into an End-to-end Learnable Clustering framework, for effective and efficient6

Recommendation. Concretely, we encode users’ behavior sequences and initialize7

the cluster centers (latent intents) as learnable neurons. Then, we design a novel8

learnable clustering module to separate different cluster centers, thus decoupling9

users’ complex intents. Meanwhile, it guides the network to learn intents from10

behaviors by forcing behavior embeddings close to cluster centers. This allows11

simultaneous optimization of recommendation and clustering via mini-batch data.12

Moreover, we propose intent-assisted contrastive learning by using cluster centers13

as self-supervision signals, further enhancing mutual promotion. Both experimental14

results and theoretical analyses demonstrate the superiority of ELCRec from six15

perspectives. Compared to the runner-up, ELCRec improves NDCG@5 by 8.9%16

and reduces computational costs by 22.5% on Beauty dataset. Furthermore, due to17

the scalability and universal applicability, we deploy this method on the industrial18

recommendation system with 130 million page views and achieve promising results.19

The codes are available at Anonymous GitHub.20

1 Introduction21

Sequential Recommendation (SR), which aims to recommend relevant items to users by learning22

patterns from users’ historical behavior sequences, is a vital and challenging task in machine learning23

domain. In recent years, benefiting the strong representation learning ability of deep neural networks24

(DNNs), DNN-based sequential recommendation methods[95, 32, 85, 111, 43, 98, 45, 58] have25

achieved promising recommendation performance and attracted researchers’ high level of attention.26

More recently, intent learning has become a hot topic in both research and industrial field of recom-27

mendation. It aims to model users’ intents by learning from users’ historical behaviors. For example,28

a user interacted the shoes, bag, and racket in history. Thus, the user’s potential intent can be inferred29

as playing badminton. Then, the system may recommend the intent-relevant items to the user. Follow30

this principle, various intent learning methods [37, 11, 38, 15, 42, 46, 5] have been proposed to31

achieve better user understanding and item recommendation.32

The optimization paradigm of the recent representative intent learning methods can be summarized33

as a generalized Expectation Maximization (EM) framework. To be specific, at the E-step, clustering34

algorithms are adopted to learn the latent intents from users’ behavior embeddings. And, at the35
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M-step, the self-supervised learning methods are utilized to embed behaviors. The optimizations of36

these two steps are conducted alternately, achieving promising performance.37

However, we highlight two issues in this complex and tedious alternating optimization. (1) At38

the E-step, we need to apply the clustering algorithm on the whole data, limiting the model’s39

scalability, especially in large-scale industrial scenarios, e.g., apps with billion users. (2) In the EM40

framework, the optimization of behavior learning and the clustering algorithm are separated, leading41

to sub-optimal performance and increasing the implementation difficulty.42

To this end, we propose a novel intent learning model named ELCRec via integrating represen-43

tation learning into an End-to-end Learnable Clustering framework, for effective and efficient44

Recommendation. Specifically, the user’s behavioral process is first embedded into the latent space.45

Cluster centers, recognized as the users’ latent intents, are initialized as learnable neural network46

parameters. Then, a simple yet effective learnable clustering module is proposed to decouple users’47

complex intents into different simple intent units by separating the cluster centers. Meanwhile, it48

makes the behavior embeddings close to cluster centers to guide the models to learn more accurate49

intents from users’ behaviors. This improves the model’s scalability and alleviates the issue (1) by50

optimizing the cluster distribution on mini-batch data. Furthermore, to further enhance the mutual51

promotion of representation learning and clustering, we present intent-assisted contrastive learning to52

integrate the cluster centers as self-supervision signals for representation learning. These settings53

unify behavior learning and clustering optimization in an end-to-end optimizing framework, improv-54

ing recommendation performance and simplifying deployment. Therefore, the issue (2) has been also55

solved. The contributions of this paper are summarized as follows.56

• We innovatively promote the existing optimization framework of intent learning by unifying57

behavior representation learning and clustering optimization.58

• A new intent learning model termed ELCRec is proposed with a simple yet effective learnable59

cluster module and intent-assisted contrastive learning.60

• Comprehensive experiments and theoretical analyses show advantages of ELCRec from six61

aspects, including superiority, effectiveness, efficiency, sensitivity, convergence, and visualization.62

• We successfully deployed it on industrial recommendation system with 130 million page views63

and achieve promising results, providing various practical insights.64

2 Related Work65

We provide a brief overview of the related work for this paper. It can be divided into three parts,66

including sequential recommendation, intent learning, and clustering algorithms. At first, Sequential67

Recommendation (SR) focuses on recommending relevant items to users based on their historical68

behavior sequences. In addition, intent learning has emerged as a promising and practical technique in69

recommendation systems. It aims to capture users’ latent intents to achieve better user understanding70

and item recommendation. Lastly, clustering algorithms play a crucial role in recommendation71

systems since they can identify patterns and similarities in the users or items. Due to the limitation of72

the pages, we introduce the detailed related methods in the Appendix 7.9.73

3 Methodology74

We present our proposed framework, ELCRec, in this section. Firstly, we provide the necessary75

notations and task definition. Secondly, we analyze and identify the limitations of existing intent76

learning. Finally, we propose our solutions to address these challenges.77

3.1 Basic Notation78

In a recommendation system, U denotes the user set, and V denotes the item set. For each user u ∈ U ,79

the historical behaviors are described by a sequence of interacted items Su = [su1 , s
u
2 , ..., s

u
t , ..., s

u
|Su|].80

Su is sorted by time. |Su| denotes the interacted items number of user u. sut denotes the item which81

is interacted with user u at t step. In practice, during sequence encoding, the historical behavior82

sequences are limited with a maximum length T [29, 32, 15]. The sequences truncated and remain83

the most recent T interacted items if the length is greater than T . Besides, the shorter sequences are84
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filled with “padding” items on the left until the length is T . Due to the limitation of the pages, we list85

the basic notations in Table 5 of the Appendix 7.1.86

3.2 Task Definition87

Given the user set U and the item set V , the recommendation system aims to precisely model the user88

interactions and recommend items to users. Take user u for an example, the sequence encoder firstly89

encodes the user’s historical behaviors Su to the latent embedding Eu. Then, based on the historical90

behavior embedding, the target of the recommendation task is to predict the next item that is most91

likely interacted with by user u at |Su|+ 1 step.92

3.3 Problem Analyses93

Among the techniques in recommendation, intent learning has become an effective technique to94

understand users. We summarize the optimization procedure of the intent learning as the Expectation95

Maximization (EM) framework. It contains two steps including E-step and M-step. These two steps96

are conducted alternately, mutually promoting each other. However, we find two issues of the existing97

optimization framework as follows.98

(1) In the process of E-step, it needs to perform a clustering algorithm on the full data, easily99

leading to out-of-memory or long-running time problems. It restricts the scalability of the100

model on large-scale industrial data.101

(2) The alternative optimization approach within the EM framework separates the learning process102

for behaviors and intents, leading to sub-optimal performance and increased implementation103

complexity. Also, it limits the training and inference on the real-time data. That is, when users’104

behaviors and intents change over time, there is a long lag in the training and inference process105

Therefore, we aim to develop a new optimization framework for intent learning to solve issue (1) and106

issue (2). For the issue (1), a new learnable online clustering method is the key solution. For the issue107

(2), we aim to break the alternative optimization in the EM framework.108

3.4 Proposed Method109

To this end, we present a new intent learning method termed ELCRec by unifying sequence rep-110

resentation learning into an End-to-end Learnable Clustering framework, for Recommendation. It111

contains three parts, including behavior encoding, end-to-end learnable cluster module (ELCM), and112

intent-assisted contrastive learning (ICL).113

3.4.1 Behavior Encoding114

In this process, we aim to encoder the users’ behavior sequences. Concretely, given the user set U ,115

the item set V , and the users’ historical behavior sequence set {Su}|U|
u=1, the behavior encoder F116

embeds the behavior sequences of each user u into the latent space as follows.117

Eu = F(Su), (1)

where Eu ∈ R|Su|×d′
denotes the behavior sequence embedding of user u, d′ is the dimension118

number of latent features, and |Su| denotes the length of behavior sequence of user u. Note that the119

behavior sequence lengths of different users are different. Therefore, all user behavior sequences120

are pre-processed to the sequences with the same length T by padding or truncating. The encoder121

F is designed as a Transformer-based [91] architecture. Subsequently, to summarize the behaviors122

over different time of each user, the behavior sequence embedding is aggregated by the concatenate123

pooling function P as follows.124

hu = P(Eu) = concat(eu1 ||...eui ...||euT ), (2)

where eui ∈ R1×d′
denotes the embedding of user behavior at i-th step and hu ∈ R1×Td′

denotes the125

aggregated behavior embedding of user u. We re-denote Td′ as d for convenience. By encoding and126

aggregation, we obtain the behavior embeddings of all users H ∈ R|U|×d.127
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3.4.2 End-to-end Learnable Cluster Module128

After behavior encoding, we guide the model to learn the users’ latent intents from the behavior129

embeddings. To this end, an end-to-end learnable cluster module (ELCM) is proposed to break the130

alternative optimization in the previous mentioned EM framework. This module can groups the uers’131

behaviors embeddings into various clusters, which represent the users’ latent intents or interests.132

Concretely, at first, the cluster centers C ∈ Rk×d are initialized as the learnable neural parameters,133

i.e., the tensors with gradients. Then, we design a simple yet effective clustering loss to train the134

networks and cluster centers as formulated as follows.135

Lcluster =
−1

(k − 1)k

k∑
i=1

k∑
j=1,j ̸=i

∥ĉi − ĉj∥22︸ ︷︷ ︸
Intent Decoupling

+
1

bk

b∑
i=1

k∑
j=1

∥∥∥ĥi − ĉj

∥∥∥2
2︸ ︷︷ ︸

Intent-behavior Alignment

,
(3)

where ĥi = hi/∥hi∥2, ĉi = ci/∥ci∥2. In Eq. (3), k denotes the number of clusters (intents), and b136

denotes the batch size. hi ∈ R1×d denotes the i-th user’s behavior embedding and cj ∈ R1×d denotes137

the j-th cluster center. For better network convergence, we constrain the behavior embeddings and138

cluster center embeddings to distribute on a unit sphere. Concretely, we apply the l-2 normalization139

to both the user behavior embeddings H and the cluster centers C during calculating Lcluster.140

In the proposed clustering loss, the first term is designed to disentangle the complex users’ intents141

into simple intent units. Technically, it pushes away different cluster centers, therefore reducing the142

overlap between different clusters (intents). The time complexity and space complexity of this term143

are O(k2d) and O(kd), respectively. The number of users’ intents is vastly less than the number of144

users, i.e., k ≪ |U|. Therefore, the first term will not bring significant time or space costs.145

In addition, the second term of the proposed clustering loss aims to align the users’ latent intents146

with the behaviors by pulling the behavior embeddings to the cluster centers. This design makes147

the in-class cluster distribution more compact and guides the network to condense similar behaviors148

into one intention. Also, on another aspect, it forces the model to learn users’ intents from behavior149

embeddings. Note that the behavior embedding hi is pulled to all center centers cj , j = 1, ..., k150

rather than the nearest cluster center. The main reason is that the practical clustering algorithm151

is imperfect, and pulling to the nearest center easily leads to the confirmation bias problem [67].152

To this end, the proposed clustering loss Lcluster aims to optimize the clustering distribution in an153

adversarial manner by pulling embeddings together to cluster centers while pushing different cluster154

centers away. Besides, it enables the optimization of this term via mini-batch samples, avoiding155

performance clustering algorithms on the whole data. Time complexity and space complexity of the156

second term are O(bkd) and O(bk + bd+ kd), respectively. Since the batch size is essentially less157

than the number of users, namely, b ≪ |U|, the second term of clustering loss Lcluster alleviates the158

considerable time or space costs. Besides, theoretically, based on the Rademacher complexity, we159

investigate the generalization bounds of Lcluster in the Appendix 7.3.160

In the existing EM optimization framework, the clustering algorithm needs to be applied on the entire161

users’ behavior embeddings H ∈ R|U|×d. Take the classical k-Means clustering as an example,162

at each E-step, it leads to O(t|U|kd) time complexity and O(|U|k + |U|d+ kd) space complexity,163

where t denote the iteration steps of k-Means clustering algorithm. We find that, at each step, the164

time and space complexity is linear to the number of users, thus leading to out-of-memory or running165

time problems (issue (1)), especially on large-scale industrial data with millions or billions of users.166

Fortunately, our proposed end-to-end learnable cluster module can solve this issue (1). By summaris-167

ing previous analyses, we draw that the overall time and space complexity of calculating the clustering168

loss Lcluster are O(bkd+k2d+bd) and O(bk+bd+kd), respectively. They are both linear to the batch169

size b at each step, enabling the model’s scalability. Besides, the proposed module is plug-and-play170

and easily deployed in real-time large-scale industrial systems. We provide detailed evidence and171

practical insights in Section 5. The proposed ELCM can not only improve the recommendation172

performance (See Section 4.2 & 4.3) but also promote efficiency (See Section 4.4).173

3.4.3 Intent-assisted Contrastive Learning174

Next, we aim to enhance further the mutual promotion of behavior learning and clustering. To this end,175

Intent-assisted contrastive learning (ICL) is proposed by adopting cluster centers as self-supervision176
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signals for behavior learning. Firstly, we conduct contrastive learning among the behavior sequences.177

The new views of the behavior sequences are constructed via sequential augmentations, including178

mask, crop, and reorder. The two views of behavior sequence of user u are denoted as (Su)v1179

and (Su)v2. According to Section 3.4.1, the behaviors are encoded to the behavior embeddings180

hv1
u ,hv2

u ∈ R1×d. Then, the sequence contrastive loss of user u is formulated as follows.181

Lu
seq_cl = −

(
log

esim(hv1
u ,hv2

u )∑
neg e

sim(hv1
u ,hneg)

+ log
esim(hv1

u ,hv2
u )∑

neg e
sim(hv2

u ,hneg)

)
, (4)

where “sim” denotes the dot-product similarity, “neg” denotes the negative samples. Here, the same182

sequence with different augmentations is recognized as the positive sample pairs, and the other183

sample pairs are recognized as the negative sample pairs. By minimizing Lseq_cl =
∑

u Lu
seq_cl, the184

similar behaviors are pulled together, and the others are pushed away from each other, therefore185

enhancing the representation capability of users’ behaviors. The learned cluster centers C ∈ Rk×d186

are adopted as the self-supervision signals. Index of the assigned cluster of hv1
u is queried as follows.187

idx = argmin
i

(
∥∥ci − hv1

u

∥∥2
2
), (5)

where ci ∈ R1×d denotes the i-th cluster (intent) center embedding. Then, the intent information is188

fused to the user behavior during the sequence contrastive learning. Here, we consider two optional189

fusion strategies, including the concatenate fusion hv1
u = concat(hv1

u ||cidx) and the shift fusion190

hv1
u = hv1

u + cidx. A similar operation is applied to the second view of the behavior embedding hv2
u .191

After fusing the intent information to user behaviors, the networks are trained by minimizing Lseq_cl.192

In addition, to further collaborate intent learning and sequential representation learning, we conduct193

contrastive learning between the user’s behaviors and the learnable intent centers. The intent194

contrastive loss is formulated as follows.195

Lu
intent_cl = −

(
log

mini e
sim(hv1

u ,ci)∑
neg e

sim(hv1
u ,cneg)

+ log
mini e

sim(hv2
u ,ci)∑

neg e
sim(hv2

u ,cneg)

)
, (6)

where hv1
u ,hv2

u are two-view behavior embedding of the user u. Besides, “neg” denotes the negative196

behavior-intent pairs among all pairs. Here, we regard the behavior embedding and the corresponding197

nearest intent center as the positive pair and others as negative pairs. By minimizing the intent198

contrastive loss Lintent_cl =
∑

u Lu
intent_cl, behaviors with the same intents are pulled together, but199

behaviors with different intents are pushed away. The objective of ICL is formulated as follows.200

Licl = Lseq_cl + Lintent_cl. (7)

The effectiveness of ICL is verified in Section 4.3. With the proposed ELCM and ICL, we develop a201

new end-to-end optimization framework for intent learning, improving performance and convenience.202

By these designs, the issue (2) is also solved.203

3.4.4 Overall Objective204

The neural networks and learnable clusters are trained with multiple tasks, including intent learning,205

intent-assisted contrastive learning, and next-item prediction. The intent learning task aims to capture206

the users’ underlying intents. Besides, intent-assisted contrastive learning aims to collaborate with207

intent learning and behavior learning. In addition, the next-item prediction task is a widely used task208

for recommendation systems. The overall objective of ELCRec is formulated as follows.209

Loverall = Lnext_item + 0.1× Licl + α× Lcluster, (8)

where Lnext_item, Licl, and Lcluster denotes the next item prediction loss, intent-assisted contrastive210

learning loss, and clustering loss, respectively. α is a trade-off hyper-parameter. We present the211

overall algorithm process of the proposed ELCRec method in Algorithm 1 in Appendix.212

4 Experiment213

This section aims to comprehensively evaluate ELCRec by answering research questions (RQs).214

5



(i) Superiority: does it outperform the state-of-the-art sequential recommendation methods?215

(ii) Effectiveness: are the ELCM and ICL modules effective?216

(iii) Efficiency: how about the time and memory efficiency of the proposed ELCRec?217

(iv) Sensitivity: what is the performance of the proposed method with different hyper-parameters?218

(v) Convergence: have the loss function and recommendation performance converged?219

(vi) Visualization: Can the visualized learned embeddings reflect the promising results?220

We answer RQ(i), (ii), (iii) in Section 4.2, 4.3, 4.4, respectively. Due to the limited pages, RQ(iv), (v),221

(vi) are answered in the Appendix 7.5, 7.6, and 7.7 respectively.222

4.1 Experimental Setup223

4.1.1 Experimental Environment224

Experimental results on the public benchmarks are obtained from the desktop computer with one225

NVIDIA GeForce RTX 4090 GPU, six 13th Gen Intel(R) Core(TM) i9-13900F CPUs, and the226

PyTorch platform. During training, we monitored the training process via the Weights & Biases.227

4.1.2 Public Benchmark228

We performed our experiments on four public benchmarks: Sports, Beauty, Toys, and Yelp1. The229

Sports, Beauty, and Toys datasets are subcategories of the Amazon Review Dataset [62]. The Sports230

dataset contains reviews for sporting goods, the Beauty dataset contains reviews for beauty products,231

and the Toys dataset contains toy reviews. On the other hand, the Yelp dataset focuses on business232

recommendations and is provided by Yelp company. Table 6 summarizes the datasets’ details. We233

only kept datasets where all users and items have at least five interactions. Besides, we adopted the234

dataset split settings used in the previous method [15].235

4.1.3 Evaluation Metric236

To evaluate ELCRec, we adopt two groups of metrics, including Hit Ratio@k (HR@k) and Normal-237

ized Discounted Cumulative Gain@k (NDCG@k), where k ∈ {5, 20}.238

4.1.4 Compared Baseline239

We compare our method with nine baselines including BPR-MF [79], GRU4Rec [29], Caser [87],240

SASRec [32], DSSRec [60], BERT4Rec [85], S3-Rec [111], CL4SRec [98], and ICLRec [15].241

Detailed introductions to these methods are in the Appendix 7.9.2.242

4.1.5 Implementation Detail243

For the baselines, we adopt their original code with the original settings to reproduce the results on244

four benchmarks. Due to page limitation, the detailed implementation of the baselines are listed in245

Appendix 7.10. The proposed method, ELCRec, was implemented using the PyTorch deep learning246

platform. In the Transformer encoder, we employed self-attention blocks with two attention heads.247

The latent dimension, denoted as d, was set to 64, and the maximum sequence length, denoted as T ,248

was set to 50. We utilized the Adam optimizer with a learning rate of 1e-3. The decay rate for the249

first moment estimate was set to 0.9, and the decay rate for the second moment estimate was set to250

0.999. The cluster number, denoted as k, was set to 256 for the Yelp and Beauty datasets and 512251

for the Sports and Toys datasets. The trade-off hyper-parameter, denoted as α, was set to 1 for the252

Sports and Toys datasets, 0.1 for the Yelp dataset, and 10 for the Beauty dataset. During training, we253

monitored the training process via the Weights & Biases.254

4.2 Superiority255

In this section, we aim to answer the research question (i) and demonstrate the superiority of256

ELCRec. To be specific, we compare ELCRec with nine state-of-the-art recommendation baselines257

1https://www.yelp.com/dataset

6



Table 1: Recommendation performance on benchmarks. Bold values and underlined values denote
the best and runner-up results. ∗ indicates that, in the t-test, the best method significantly outperforms
the runner-up with p < 0.05. "-" indicates models do not converge.
Dataset Metric BPR-MF

[79]
GRU4Rec

[29]
Caser
[87]

SASRec
[32]

BERT4Rec
[85]

DSSRec
[60]

S3-Rec
[111]

CL4SRec
[98]

DCRec
[100]

MAERec
[102]

IOCRec
[42]

ICLRec
[15]

ELCRec
Ours Impro. p-value

Sports

HR@5 0.0141 0.0162 0.0154 0.0206 0.0217 0.0214 0.0121 0.0217 0.0172 0.0225 0.0246 0.0263 0.0286 8.75%↑ 2.34e-6∗

HR@20 0.0323 0.0421 0.0399 0.0497 0.0604 0.0495 0.0344 0.0540 0.0357 0.0488 0.0641 0.0630 0.0648 1.09%↑ 2.29e-4∗

NDCG@5 0.0091 0.0103 0.0114 0.0135 0.0143 0.0142 0.0084 0.0137 0.0118 0.0152 0.0162 0.0173 0.0185 6.94%↑ 3.54e-5∗

NDCG@20 0.0142 0.0186 0.178 0.0216 0.0251 0.0220 0.0146 0.0227 0.0170 0.0225 0.0280 0.0276 0.0286 2.14%↑ 7.87e-3∗

Beauty

HR@5 0.0212 0.0111 0.0251 0.0374 0.0360 0.0410 0.0189 0.0423 0.0368 0.0414 0.0408 0.0495 0.0529 6.87% ↑ 3.18e-6∗

HR@20 0.0589 0.0478 0.0643 0.0901 0.0984 0.0914 0.0487 0.0994 0.0674 0.0854 0.0916 0.1072 0.1079 0.65%↑ 3.30e-3∗

NDCG@5 0.0130 0.0058 0.0145 0.0241 0.0216 0.0261 0.0115 0.0281 0.0269 0.0283 0.0245 0.0326 0.0355 8.90%↑ 4.48e-6∗

NDCG@20 0.0236 0.0104 0.0298 0.0387 0.0391 0.0403 0.0198 0.0441 0.0357 0.0407 0.0444 0.0491 0.0509 3.67%↑ 9.08e-6∗

Toys

HR@5 0.0120 0.0097 0.0166 0.0463 0.0274 0.0502 0.0143 0.0526 0.0399 0.0477 0.0311 0.0586 0.0585 0.17%↓ 1.22e-1
HR@20 0.0312 0.0301 0.0420 0.0941 0.0688 0.0975 0.0235 0.1038 0.0679 0.0904 0.0781 0.1130 0.1138 0.71%↑ 4.20e-3∗

NDCG@5 0.0082 0.0059 0.0107 0.0306 0.0174 0.0337 0.0123 0.0362 0.0296 0.0336 0.0197 0.0397 0.0403 1.51%↑ 2.87e-4∗

NDCG@20 0.0136 0.0116 0.0179 0.0441 0.0291 0.0471 0.0162 0.0506 0.0374 0.0458 0.0330 0.0550 0.0560 1.82%↑ 3.72e-5∗

Yelp

HR@5 0.0127 0.0152 0.0142 0.0160 0.0196 0.0171 0.0101 0.0229

-

0.0166 0.0222 0.0233 0.0236 1.29% ↑ 7.81e-3∗

HR@20 0.0346 0.0371 0.0406 0.0443 0.0564 0.0464 0.0314 0.0630 0.0460 0.0640 0.0645 0.0653 1.24%↑ 3.73e-4∗

NDCG@5 0.0082 0.0091 0.0080 0.0101 0.0121 0.0112 0.0068 0.0144 0.0105 0.0137 0.0146 0.0150 2.74%↑ 1.23e-2∗

NDCG@20 0.0143 0.0145 0.0156 0.0179 0.0223 0.0193 0.0127 0.0256 0.0186 0.0263 0.0261 0.0266 1.14%↑ 6.82e-3∗

(a) Sports (b) Beauty (c) Toys (d) Yelp

Figure 1: Ablation studies of the proposed end-to-end learnable cluster module (ELCM) and the
intent-assisted contrastive learning (ICL). The results are the sum of four metrics, including HR@5,
HR@20, NDCG@5, and NDCG@20.

[79, 29, 87, 32, 60, 85, 111, 98, 15]. Experimental results are the mean values of three runs. As shown258

in Table 1, the bold values and underlined values denote the best and runner-up results, respectively.259

From these results, we have four conclusions as follows. (a) The non-sequential model BPR-MF [79]260

has not achieved promising performance since the shallow method lacks the representation learning261

capability of users’ historical behaviors. (b) The conventional sequential methods [29, 87, 32] improve262

the recommendation via different DNNs such as CNN [35], RNN [105], and Transformer [91]. But263

they perform worse since limiting self-supervision. (c) The recent methods [85, 111, 98] enhance264

the self-supervised capability of models via the self-supervised learning techniques. However, they265

neglect the underlying users’ intent, thus leading to sub-optimal performance. (d) More recently, the266

intent learning methods [37, 11, 38, 15, 42, 46, 5] have been proposed to mine users’ underlying267

intent to assist recommendation. Motivated by their success, we propose a new intent learning method268

termed ELCRec. Befitting from the strong intent learning capability of ELCRec, it surpasses all other269

intent learning methods.270

To further verify the superiority of ELCRec, we conduct the t-test between the best and runner-271

up methods. As shown in Table 1, the most p-value is less than 0.05 except HR@5 on the Toys272

dataset. It indicates that ELCRec significantly outperforms runner-up methods. Overall, the extensive273

experiments demonstrate the superiority of ELCRec. In addition, we also conduct comparison274

experiments on recommendation datasets of other domains, including movie recommendation and275

news recommendation, as shown in the Appendix 7.4.1 and 7.4.2. These experimental results276

demonstrate a broader applicability of our proposed ELCRec.277

4.3 Effectiveness278

This section is dedicated to answering the research question (ii) and evaluating the effectiveness of279

the End-to-end Learnable Cluster Module (ELCM) and Intent-assisted Contrastive Learning (ICL).280

To achieve this, we conducted meticulous ablation studies on four benchmarks. Figure 1 illustrates281

the experimental results. In each sub-figure, “B”, “B+ICL,” “B+ELCM,” and “ELCRec” correspond282

to the backbone, backbone with ICL, backbone with ELCM, and backbone with both ICL and ELCM,283
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respectively. Through the ablation studies, we draw three key conclusions. (a) “B+ICL” outperforms284

the backbone “B” on all four benchmarks. It indicates that the proposed ICL effectively improves285

behavior learning. (b) “B+ELCM” surpasses the backbone “B” significantly on all benchmarks.286

This phenomenon demonstrates that our proposed end-to-end learnable cluster module helps the287

model better capture the users’ underlying intents, thus improving recommendation performance. (c)288

ELCRec achieves the best performance on three out of four datasets. It shows the effectiveness of289

the combination of these two modules. On the Toys dataset, ELCRec can outperform the “B” and290

“B+ICL” but perform worse than “B+ELCM”. This phenomenon indicates it is worth researching291

the better collaboration of these two modules in the future. To summarize, these extensive ablation292

studies verify the effectiveness of the proposed intent-assisted contrastive learning and end-to-end293

learnable cluster module in ELCRec.294

4.4 Efficiency295

We test the efficiency of ELCRec on four benchmarks and answer the research question (iii). Con-296

cretely, the efficiency contains two perspectives, including running time costs (in second) and GPU297

memory costs (in MB). Note that we use the same epoch number of our method and the baseline298

when we test the running time. Besides, we calculate the average GPU memory cost during the299

training process. We have two observations as follows. (a) ELCRec can speed up ICLRec on three300

out of four datasets (See Table 2). Overall, on four datasets, the running time is decreased by 7.18%301

on average. The reason is that our proposed end-to-end optimization of intent learning breaks the302

alternative optimization of the EM framework, saving computation costs. (b) The results demonstrate303

that the GPU memory costs of our ELCRec are lower than that of ICLRec on four datasets (See304

Table 2). On average, the GPU memory costs are decreased by 9.58%. It is because we enable the305

model to conduct intent learning via the mini-batch users’ behaviors. Therefore, in summary, we306

demonstrate the efficiency of ELCRec from both time and memory aspects. Please note that, due to307

the relatively small size of the open benchmarks, the efficiency improvements are not particularly308

significant. However, on large-scale data, our method can achieve more substantial improvements.309

Table 2: Running time and memory costs. Bold values denote better results.

Cost Dataset Sports Beauty Toys Yelp Average

ICLRec 5282 3770 4374 4412 4460

Time ELCRec 5360 2922 4124 4151 4139

Improvement 1.48% ↑ 22.49% ↓ 5.72% ↓ 5.92% ↓ 7.18% ↓

ICLRec 1944 1798 2887 3671 2575

Memory ELCRec 1781 1594 2555 3383 2328

Improvement 8.38% ↓ 11.35% ↓ 11.50% ↓ 7.85% ↓ 9.58% ↓

5 Application310

Our proposed ELCRec is versatility and plug-and-play. Benefiting its advantages, we aim to apply it311

to real-time large-scale industrial recommendation systems with millions of users. First, we introduce312

the background and settings of the application. Then, we conduct extensive A/B testing and analyze313

the experimental results. Besides, due to the page limitation, we provide deployment details and314

practical insights in Appendix 7.11 and 7.8, respectively.315

5.1 Application Background316

The applied scenario is the livestreaming recommendation on the front page of the Alipay app.317

The user view (UV) and page view (PV) of this application are about 50 million and 130 million,318

respectively. Note that most users are new to this application, therefore leading to the sparsity of users’319

behaviors. To solve this cold-start problem in the recommendation system, we adopt our proposed320

method to group users and recommend items based on the groups. Concretely, due to the sparsity321

of users’ behaviors, we first replace the users’ behavior with the users’ activities features in this322

application and model them via the multi-gate mixture-of-expert (MMOE) model [59]. Then we aim323
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Table 3: A/B testing on real-time large-scale industrial recommendation. Bold values denotes the
significant improvements with p < 0.05. The symbol “-” denotes business secret.

Method
Livestreaming Metrics Merchandise Metrics

PVCTR VV PVCTR UVCTR

Baseline - - - -

Impro. 2.45% ↑ 2.28% ↑ 2.41% ↑ 1.62% ↑

to group the users into various groups. For the existing intent learning methods, they are easily lead to324

the long-running time or the out-of-memory problems. To solve this problem we adopt the end-to-end325

learnable cluster module to group the users into various groups effectively and efficiently. Through326

this module, the high-activity users and new users are grouped into different clusters, alleviating the327

cold-start issue and assisting in better recommendations. Besides, during the learning process of the328

cluster embeddings, the low-activity users can transfer to high-activity users, improving the overall329

users’ activities in the application. Eventually, the networks are trained with multiple tasks. In the330

next section, we conduct experiments to demonstrate the effectiveness of our proposed method on331

real-time large-scale industrial data.332

5.2 A/B Testing on Real-time Large-scale Data333

We conduct A/B testing on the real-time large-scale industrial recommendation system. The exper-334

imental results are listed in Table 3. We evaluate the models with two metric systems, including335

livestreaming metrics and merchandise metrics. livestreaming metrics contain Page View Click336

Through Rate (PVCTR) and Video View (VV). Merchandise metrics contain PVCTR and User View337

Click Through Rate (UVCTR). The results indicate that our method can improve the recommendation338

performance of the baseline by about 2%. Besides, the improvements are significant with p < 0.05339

in three out of four metrics.340

In addition, to further explore why our method can work well in real-time large-scale recommendation341

systems, we further analyze the recommendation performance on different user groups. The results342

are shown in Table 4. Based on the users’ activity, we classify them into five groups, including343

Pure New users (PN), New users (N), Low-Activity users (LA), Medium-Activity users (MA), and344

High-Activity users (HA). Compared with the general recommendation algorithms that are unfriendly345

to new users, the experimental results show that our module not only improves the recommendation346

performance of high-activity users but also improves the recommendation performance of new users.347

Therefore, it can alleviate the cold-start problem and construct a more friendly user ecology.348

Table 4: Results on different user groups. Bold values denotes improvements with p < 0.05.

Metric PN N LA MA HA

PVCTR 6.96% ↑ 1.67% ↑ 1.98% ↑ 0.35% ↑ 19.02% ↑

VV 6.81% ↑ 1.50% ↑ 1.50% ↑ 0.04% ↑ 16.90% ↑

6 Conclusion349

In this paper, we explore intent learning in recommendation systems. To be specific, we summarize350

and analyze two drawbacks of the existing EM optimization framework of intent learning. The351

complex and cumbersome alternating optimization limits the scalability and performance of existing352

methods. To this end, we propose a novel intent learning method termed ELCRec with an end-to-end353

learnable cluster module and intent-assisted contrastive learning. Extensive experiments on four354

benchmarks demonstrate ELCRec’s six abilities. In addition, benefiting from the versatility of355

ELCRec, we successfully apply it to the real-time large-scale industrial scenario and also achieve356

promising performance. Due to the limited pages, We discuss the limitations and future work of this357

paper in Appendix 7.12, such as pre-defined cluster number, limited recommendation domains, and358

uncontrollable update rate of cluster centers.359
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7 Appendix656

7.1 Notation and Dataset657

We list the basic notations in Table 5. And Table 6 summarizes the datasets’ details.658

Table 5: Basic notations.

Notation Meaning
U User set
V Item set

{Su}|U|
u=1 Users’ behavior sequence set

(Su)vk Users’ behavior sequence set in view k

d′ Dimension number of latent features
d Dimension number of aggregated latent features
b Batch size
k Cluster number
T Maximum sequence length

Lcluster Clustering loss
Lseq_cl Behavior sequence contrastive loss
Lintent_cl Intent contrastive loss
Licl intent-assisted contrastive learning loss

Lnext_item Next item prediction loss
Loverall Overall loss of the proposed ELCRec
F Behavior Encoder
P Concatenate pooling function

Eu ∈ R|Su|×d′
Behavior sequence embedding of user u

H ∈ R|U|×d Behavior embeddings of all users
Ĥ ∈ R|U|×d Normalized Behavior embeddings of all users
Hvk ∈ R|U|×d Behavior embeddings of all users in view vk

C ∈ Rk×d Learnable cluster center embeddings
Ĉ ∈ Rk×d Normalized Learnable cluster center embeddings
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Table 6: Statistical information of four public datasets.

Dataset #User #Item #Action Avg. Len. Sparsity
Sports 35,598 18,357 0.3M 8.3 99.95%
Beauty 22,363 12,101 0.2M 8.9 99.95%
Toys 19,412 11,924 0.17M 8.6 99.93%
Yelp 30,431 20,033 0.3M 8.3 99.95%

7.2 Algorithm Table659

We summarize the overall process of the ELCRec method in Algorithm 1.660

Algorithm 1 End-to-end Learnable Clustering Framework for Recom-
mendation (ELCRec)

Input: user set U ; item set V; historical behavior sequences {Su}|U|
u=1;

cluster number k; epoch number E; learning rate; trade-off parameter
α.
Output: Trained ELCRec.

1: Initialize model parameters in encoders.
2: for epoch = 1, 2, ..., E do
3: for u = 1, 2, ..., |U| do
4: Obtain u-th user’s behavior sequence embedding Eu ∈

R|Su|×d′
via encoding Su in Eq. (1).

5: Obtain u-th user’s aggregated behavior embedding hu ∈
R1×d via aggregating Eu in Eq. (2)

6: end for
7: Obtain behavior embeddings of all users H ∈ R|U|×d.
8: Initialize cluster centers C ∈ Rk×d as learnable.
9: Calculate clustering loss to conduct intent learning.

10: Generate two views of behaviors via data augmentations.
11: Encode the two views of the behavior sequences.
12: Calculate Lseq_cl to conduct behavior contrastive learning.
13: Query cluster index of the behavior embeddings via Eq. (5).
14: Fuse the intent information to behavior embeddings.
15: Calculate Lintent_cl to conduct intent contrastive learning.
16: Calculate Lnext_item to conduct next item prediction task.
17: Minimize Loverall to train the model in Eq. (8).
18: end for
19: Return Well-trained ELCRec model.

661

7.3 Theoretical Analyses662

In this subsection, we investigate the generalization bounds of the proposed clustering loss. Our663

analysis is based on the Rademacher complexity and investigates how it improves the generalization664

bound of the algorithm.665

Without loss of generality, we have the following notation. Let x ∈ X be the input, where x are666

generated from a underlying distribution x ∼ P . Given n training samples S ≜ {xi}i∈[n] generated667

from distribution P , we denote its empirical distribution by Pn. For every hyperparameter ω ∈ Ω,668

we define Fω as a distribution-dependent hypothesis space corresponding to the ω, where Ω is a finite669

set of hyperparameters. Fω is defined as {fω|fω = Aω(S), S ∈ S}, where Aω is an algorithm that670

outputs the hypothesis fω given a dataset S.671

In the subsequent analysis, we denote Lcluster(S, fω) = ℓ (fω(x, c)) as the proposed cluster loss672

Lcluster with the embedding c. Let u, v are the upper and lower bounds of the cluster loss re-673

spectively. In other words, u ≥ ℓ (fω(x, c)) ≥ v. In this paper, u = 4 and v = −4.674
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Rℓ
n(Fω) is the rademacher complexity of the set {x 7→ ℓ(fω(x, c) : fω ∈ Fω}. Besides, we have675

Ex∼Pn [ℓ(fω(x, c)] =
1
n

∑n
i=1 ℓ (fω(xi, c)).676

With the notation above, we have the following theorem.677

Theorem 7.1. For any δ > 0 and ω ∈ Ω, for all fω ∈ Fω, with the probability at least 1 − δ, we678

have:679

Ex∼P [ℓ(fω(x, c))]− Ex∼Pn [ℓ(fω(x, c))]

≤ 2

√
2lnΠFω (n)

n
+ (u− v)

√
ln(1/δ)
2n

.
(9)

where lnΠFω (n) denotes the growth function.680

Remark 7.2. For each fixed Fω, the generalization bound in Theorem 1 goes to zero since681

lnΠFω
(n)/n → 0 and ln(1/δ)/n → 0 when n → ∞. In conclusion, the generation gap is ap-682

proximately O(1/
√
n). Therefore, the generalization bound is promised.683

To prove the above theorem, we need the following lemma.684

Lemma 7.3. [6] Let F be a class of real-valued function that map from X to [v, u]. Let D be a685

probability distribution on X × [v, u], and suppose that sample set X = {x1, x2, . . . , xn} are chosen686

independently according to the distribution D. For all f ∈ F , with probability at least 1 − δ, we687

have:688

Φ(S) ≤ 2Rn(F) + (u− v)

√
ln(1/δ)
2n

, (10)

where Φ(S) = supf∈F (Ex∼P [f ]− Ex∼Pn [f ]), Rn(·)) is the correspondent rademacher complex-689

ity.690

Lemma 7.4. [65] Let F be the hypothesis space. The Rademacher complexity Rn(F) and the691

growth function ΠF (n) have:692

Rn(F) ≤
√

2lnΠF (n)

n
. (11)

Proof. With the above lemma, we have the following derivation693

Let Φ(S) = sup
fω∈Fω

(Ex∼P [L (fω(x, c))]− Ex∼Pn [L (fω(x, c))])

= sup

(
Ex∼P [L (fω(x, c))]−

1

n

n∑
i=1

[L (fω(xi, c))]

)
.

(12)

We first provide an upper bound on Φ(S) by using McDiarmid’s inequality. To apply McDiarmid’s694

inequality, we compute an upper bound on |Φ(S)− Φ(S′)| where S and S′ be two training datasets695

differing by exactly one point of an arbitrary index i0; i.e., xi = x′
i for all i ̸= i0 and xi0 ̸= x′

i0
.696

Then, |Φ(S)− Φ(S′)|

=

∣∣∣∣∣sup(Ex∼P [L (fω(x, c))]−
1

n

n∑
i=1

[L (fω(xi, c))])−

sup(Ex∼P [L (fω(x, c))] +
1

n

n∑
i=1

[L (fω(x
′
i, c))])

∣∣∣∣∣
≤ 1

n
sup
fω∈F

(∣∣L (fω(xi0 , c))− L
(
fω(x

′
i0 , c)

)∣∣)
≤ u− v

n
.

(13)

697
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In this way, Φ(S′) − Φ(S) ≤ u−v
n . We could obtain the similar bound Φ(S) − Φ(S′) ≤ u−v

n .698

Therefore, for any δ > 0, with Lemma A.3, at least the probability 1− δ:699

Φ(S) ≤ 2Rn(Fω) + (u− v)

√
ln(1/δ)

2n
. (14)

Furthermore, with Lemma A.4, we have:700

Φ(S) ≤ 2

√
2lnΠF (n)

n
+ (u− v)

√
ln(1/δ)
2n

. (15)

Based on above proof, we obtain that for any δ > 0 and all fω ∈ Fω , with probability at least 1− δ:701

Ex∼P [ℓ(fω(x, c))]− Ex∼Pn [ℓ(fω(x, c))]

≤ 2

√
2lnΠF (n)

n
+ (u− v)

√
ln(1/δ)
2n

.
(16)

7.4 Applicability on Diverse Domains702

To further demonstrate the applicability of ELCRec on different recommendation domains, we703

conduct additional experiments on movie recommendation and news recommendation.704

7.4.1 Movie Recommendation705

For the movie recommendation, we conducted experiments on the MovieLens 1M dataset (ML-1M)706

[24]. This dataset contains 1M ratings from about 6K users on about 4K movies, as shown in Table 7.707

In this experiment, we compared our proposed ELCRec with the most related baseline ICLRec. The708

experimental results are presented in the Table 8.709

Table 7: Statistical information of ML-1M dataset.

Dataset #User #Movie #Rating Rating per User Rating per Movie

ML-1M 6,040 3,706 1,000,209 166 270

Table 8: Recommendation performance on ML-1M dataset. Bold values denote the best results. *
indicates the p-value<0.05.

Method HR@5 HR@20 NDCG@5 NDCG@20

ICLRec 0.0293 0.0777 0.0186 0.0320

ELCRec 0.0333 0.0836 0.0208 0.0347

Impro. 13.65%↑ 7.59%↑ 11.83%↑ 8.44%↑
p-value 4.03e-6* 6.68e-9* 6.36e-6* 1.66e-6*

From these experimental results, we draw two conclusions as follows.710

(a) ELCRec achieves better recommendation performance, as evidenced by higher values for all711

four metrics: HR@5, HR@20, NDCG@5, and NDCG@20. For example, with the HR@5712

metric, ELCRec outperforms ICLRec by 13.65%.713

(b) We calculated the p-value between our method and the runner-up. The results indicate that all714

the p-values are less than 0.05, suggesting that our ELCRec significantly outperforms ICLRec.715

(c) We demonstrate the applicability and superiority of the proposed ELCRec in the movie recom-716

mendation domain.717
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7.4.2 News Recommendation718

In addition, for news recommendation, we aim to conduct experiments on the MIND-small dataset719

[96]. MIND contains about 160k English news articles and more than 15 million impression logs720

generated by 1 million users. Every news article contains rich textual content including title, abstract,721

body, category and entities. Each impression log contains the click events, non-clicked events and722

historical news click behaviors of this user before this impression. To protect user privacy, each user723

was de-linked from the production system when securely hashed into an anonymized ID. MIND-small724

is a small version of the MIND dataset by randomly sampling 50,000 users and their behavior logs725

from the MIND dataset. We list the experimental results in Table 9.726

Table 9: Recommendation performance on MIND-small dataset. Bold values denote the best results.
* indicates the p-value<0.05.

Method HR@5 HR@20 NDCG@5 NDCG@20

ICLRec 0.0890 0.2128 0.0578 0.0926

ELCRec 0.0944 0.2332 0.0603 0.0994

Impro. 6.07%↑ 9.59%↑ 4.33%↑ 7.34%↑
p-value 7.09e-17* 9.57e-09* 6.11e-7* 1.09e-7*

From these experimental results, we have three conclusions as follows.727

(a) ELCRec supasses the runner-up for all four metrics, including HR@5, HR@20, NDCG@5,728

and NDCG@20. Significantly, ELCRec improve the runner-up by 9.59% with HR@20.729

(b) We conduct t-test for ELCRec and the runner-up method and find all the p-values are less than730

0.05. It indicates that our method significantly outperform the runner-up method.731

(c) We demonstrate the applicability and superiority of the proposed ELCRec in the news recom-732

mendation domain.733

Overall, we further demonstrate the applicability of ELCRec on diverse domains from the news and734

movie aspects.735

7.5 Sensitivity736

This section aims to answer the research question (iv). To verify the sensitivity of the proposed EL-737

CRec to hyper-parameters, we test the performance on four datasets with different hyper-parameters.738

The experimental results are demonstrated in Figure 2. The x-axis denotes the values of hyper-739

parameters, and the y-axis denotes the values of the HR@5 metric. We obtain two conclusions as740

follows.741

(a) Trade-off α (b) Cluster number k

Figure 2: Sensitivity analyses of ELCRec. The results are evaluated by the HR@5 metric.

(a) For the trade hyper-parameter α, we test the performance with α ∈ {0.01, 0.1, 1, 10, 100}. We742

find that our proposed ELCRec is not very sensitive to trade-off α. And ELCRec can achieve743

promising performance when α ∈ [0.1, 10].744
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(b) For the cluster number k, we test the recommendation performance with α ∈745

{32, 64, 128, 256, 512}. The results show that ELCRec is also not very sensitive to cluster746

number k and can perform well when k ∈ [256, 512].747

(a) Sports (b) Beauty (c) Toys (d) Yelp

Figure 3: Convergence analyses. The first and second row denotes HR@5 on the evaluation set and
training loss, respectively.

7.6 Convergence748

To answer the research question (v), we monitor the recommendation performance and training loss749

as shown in Figure 3. We find that the losses gradually decrease and eventually converge. Besides,750

during the training process, the recommendation performance gradually increases and eventually751

reaches a promising value.752

7.7 Visualization753

We conduct visualization experiments on four public datasets to further demonstrate ELCRec’s754

capability to capture users’ underlying intents. Concretely, the learned behavior embeddings are755

visualized via t-SNE during training. As shown in Figure 6, the first row to the fourth row denotes756

the results on Sports, Beauty, Toys, and Yelp, respectively. From these experimental results, we have757

three observations as follows.758

7.8 Practical Insights759

In this section, we provide practical experiences and insights for the deployment of our proposed760

method. They contain three parts, including case study, solutions to rapid shift problm, and solutions761

to balance problem.762

7.8.1 Case Study763

To explore how our proposed method works well, we conduct case studies on large-scale industrial764

data. They contain two parts: case studies on user group distribution and case studies on the learned765

clusters.766

Firstly, for the user group distribution, the results are demonstrated in Figure 4. We visualize the767

cluster distribution of different user groups. “top” denotes the cluster IDs that have the highest768

proportion in the user group. “bottom” denotes the cluster IDs that have the lowest proportion in the769

user group. From these analyses, we have two findings as follows.770

(a) As the user activity increases, the distribution becomes sharper. Namely, the users who have771

higher activities tend to distribute to one or two clusters. For example, about 60% of the772

high-activity users are attributed to cluster 10.773
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(a) New users (b) Low-activity users (c) Medium-activity users (d) High-activity users

Figure 4: Case studies on different user groups. The distributions of different user groups are
visualized. “top” denotes the cluster IDs, which have the highest proportion in the user group.
“bottom” denotes the cluster IDs, which have the lowest proportion in the user group.

(b) The “top” cluster IDs of the high-activity user group, such as cluster 10 and cluster 8, are774

exactly the “bottom” cluster IDs of the low-activity user group. Similarly, the “bottom” cluster775

IDs of the high-activity user group, such as cluster 9, are exactly the “top” cluster IDs of776

the low-activity user group. This indicates that the learned cluster centers can well separate777

different user groups.778

(a) Cluster 6 (b) Cluster 8 (c) Cluster 10 (d) Cluster 13

Figure 5: Case studies on the learned cluster. We visualize the distribution of the learned clusters.
“HA”, “MA”, “LA”, and “N” denotes the high-activity, medium-activity, low-activity, and new user
groups, respectively.

Secondly, we also conduct extensive case studies on the learned clusters. To be specific, we analyze779

the user distribution of each cluster, as shown in Figure 5. From the results, we can observe that, in780

cluster 6, most users are new. Besides, in the cluster 8, the most users are with medium activity. In781

addition, in cluster 10, most users are with high activity and medium activity. Moreover, in cluster 13,782

most users are with low activity and medium activity. Previous observations show that the learned783

centers can separate the users into different groups based on their activities.784

In summary, these case studies further verify the effectiveness of ELCRec. Also, they provide insights785

for future work.786

7.8.2 Solutions to Rapid Shift Problem787

On real-time large-scale industrial data, the users’ behaviors and intents will shift rapidly. Therefore,788

we argue that the existing EM optimization can not capture the latest users’ intents, thus easily789

misunderstanding users and harming recommendation performance. Fortunately, our proposed790

ELCRec method can alleviate this problem. Concretely, the end-to-end learnable cluster module can791

guide the network to learn users’ intents dynamically. It can update the learned clusters (intents) at792

each batch, satisfying the requirement of rapid update. However, our method is hard to control the793
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update rate of the users’ intents. That is one of drawbacks of ELCRec, we will discuses it and the794

potential solution in 7.12.795

7.8.3 Solutions to Balance Problem796

Balancing the different loss functions in our model is indeed an important challenge. Our overall loss797

function consists of next-item prediction loss, intent-assisted contrastive loss, and cluster loss. It is798

formulated as follows: Loverall = Lnext_item + 0.1× Licl + α× Lcluster. We set the weight of Licl as799

0.1 to maintain it in the same order of magnitude as the first term. This reduces the number of hyper-800

parameters and simplifies the selection process. The weight of Lcluster is set as a hyper-parameter α.801

We test different values of α ∈ {0.01, 0.1, 1, 10, 100} and find that our ELCRec method is not very802

sensitive to the trade-off α. Promising performance is achieved when α ∈ [0.1, 10]. The sensitivity803

analysis experiments are presented in Figure 2 (b). In our proposed model, we set α to 1 for the804

Sports and Toys datasets, 0.1 for the Yelp dataset, and 10 for the Beauty dataset. The selection of α is805

mainly based on the model performance. We provide several practical strategies to balance multiple806

losses in multi-task learning.807

• Weighted Balancing. Assign weights to each loss function to control their contribution to the808

overall loss. By adjusting the weights, a balance can be achieved between different loss functions.809

This can be determined through prior knowledge, empirical rules, or methods like cross-validation.810

• Dynamic Weight Adjustment. Adjust the weights of the loss functions in real time based on the811

model’s training progress or the characteristics of the data. For example, dynamically adjust the812

weights based on the model’s performance on a validation set, giving relatively smaller weights to813

underperforming loss functions.814

• Multi-objective Optimization. Treat different loss functions as multiple optimization objectives815

and use multi-objective optimization algorithms to balance these objectives. This allows for the816

simultaneous optimization of multiple loss functions and seeks balance between them.817

• Gradient-based Adaptive Adjustment. Adaptively adjust the weights of loss functions based on818

their gradients. If a loss function has a larger gradient, it may have a greater impact on the model’s819

training, and its weight can be increased accordingly.820

• Ensemble Methods. Train multiple models based on different loss functions and use ensemble821

learning techniques to combine their prediction results. By combining the predictions of different822

models, a balance between different loss functions can be achieved.823

In the future, we will continue to improve our model based the above strategies.824

(a) At the beginning of training, the behavior embeddings are disorganized and can not reveal the825

underlying intents.826

(b) During the training process, the latent distribution is optimized, and similar behaviors are827

grouped into latent intents.828

(c) After optimization, the users’ underlying intents appear, and we highlight them with circles in829

Figure 6. These intents can assist recommendation systems in better modeling users’ behavior830

and recommending items. In summary, the above experiments and observations verify the831

effectiveness of our proposed ELCRec.832

7.9 Detailed Related Work833

7.9.1 Sequential Recommendation834

Sequential Recommendation (SR) poses a significant challenge as it strives to accurately capture835

users’ evolving interests and recommend relevant items by learning from their historical behavior836

sequences. In the early stages, classical techniques such as Markov Chains and matrix factorization837

have assisted models [27, 77, 78] in learning patterns from past transactions. Deep learning has838

garnered significant attention in recent years and has demonstrated promising advancements across839

various domains, including vision and language. Inspired by the remarkable success of Deep840

Neural Networks (DNNs), researchers have developed a range of deep Sequential Recommendation841

(SR) methods. For instance, Caser [87] leverages Convolutional Neural Networks (CNNs) [35] to842

embed item sequences into an "image" representation over time, enabling the learning of sequential843
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(a) 0 epoch (b) 50 epoch (c) 100 epoch (d) 150 epoch (e) 200 epoch (f) final epoch

Figure 6: t-SNE visualization on four public datasets. The first row to the fourth row denotes the
results on Sports, Beauty, Toys, and Yelp.

patterns through convolutional filters. Similarly, GRU4Rec [29] utilizes Recurrent Neural Networks844

(RNNs) [105], specifically the Gated Recurrent Unit (GRU), to model entire user sessions. The845

Transformer architecture [91] has also gained significant popularity and has been extended to the846

recommendation domain. For example, SASRec [32] employs a unidirectional Transformer to847

model users’ behavior sequences, while BERT4Rec [85] utilizes a bidirectional Transformer to848

encode behavior sequences from both directions. To enhance the time and memory efficiency of849

Transformer-based SR models, LSAN [43] introduces aggressive compression techniques for the850

original embedding matrix. Addressing the cold-start issue in SR models, ASReP [57] proposes851

a pre-training and fine-tuning framework. Furthermore, researchers have explored the layer-wise852

disentanglement of architectures [110] and introduced novel modules like the Wasserstein self-853

attention module in STOSA [22] to model item-item position-wise relationships. In addition to854

Transformers, graph neural networks [101, 109, 45, 14] and multilayer perceptrons [41, 40, 112]855

have also found applications in recommendation systems. More recently, Self-Supervised Learning856

(SSL) [103, 75], particularly contrastive learning [31], has gained popularity due to its ability to learn857

patterns from large-scale unlabeled data. As a result, SSL-based SR models have been increasingly858

introduced. For instance, in CoSeRec [56], Liu et al. propose two informative augmentation operators859

that leverage item correlations to generate high-quality views. They then utilize contrastive learning860

to bring positive sample pairs closer while pushing negative pairs apart. Subsequently, TiCoSeRec861

[17] is designed by considering the time intervals in the behavior sequences. Another contrastive SR862

method, ECL-SR [113], ensures that the learned embeddings are sensitive to invasive augmentations863

while remaining insensitive to mild augmentations. Additionally, DCRec [100] addresses the issue864

of popularity bias through a debiased contrastive learning framework. Moreover, DuoRec [74] is865

proposed to solve the representation degeneration problem in contrastive recommendation methods.866

Techniques such as hard negative mining [21, 70] have also proven beneficial for recommendation867

systems. Besides, motivated by the success of Mask Autoencoder (MAE) [26], MAERec [102] is868

proposed with the graph masked autoencoder.869

7.9.2 Intent Learning for Recommendation870

The preferences of users towards items are implicitly reflected in their intents. Recent studies871

[37, 11, 38, 15, 42, 46, 5] have highlighted the significance of users’ intents in the user understanding872

and enhancing the performance of recommendation systems. For instance, MCPRN [94] introduces873

a mixture-channel method to model subsets of items with multiple purposes. Inspired by capsule874

networks [83], MIND [37] utilizes dynamic routing to learn users’ multiple interests. Furthermore,875

ComiRec [11] employs a multi-interest module to capture diverse interests from user behavior se-876
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quences, while the aggregation module combines items from different interests to generate overall877

recommendations. Besides, MITGNN [55] treats intents as translated tail entities and learns embed-878

dings using graph neural networks. In addition, Pan et al. [69] propose an intent-guided neighbor879

detector to identify relevant neighbors, followed by a gated fusion layer that adaptively combines the880

current session with the neighbor sessions. Moreover, Ma et al. [60] aims to disentangle the intentions881

underlying users’ behaviors and construct sample pairs within the same intention. Meanwhile, the882

ASLI method [88] incorporates a temporal convolutional network layer to extract latent users’ intents.883

More recently, a general latent learning framework called ICLRec [15] is introduced, which utilizes884

contrastive learning and k-Means clustering to group the users’ behaviors to intents. Chang et885

al. [12] formulate users’ intents as latent variables and infer them based on user behavior signals886

using the Variational Auto Encoder (VAE) [33]. To mitigate noise caused by data augmentations in887

contrastive SR models, IOCRec [42] proposes building high-quality views at the intent level. Besides,888

ICSRec [73] is proposed to solve this issue by conducting contrastive learning on cross sub-sequences.889

DIMPS [5] aims to build dynamic and intent-oriented document representations for intent learning.890

PoMRec [19] insert the specific prompts into user interactions to make them adaptive to different891

learning objectives. Furthermore, Teddy [46] is proposed by utilizing the intent trend and diversity.892

Firstly, we want to clearly claim the target of this paper and the demand of the industrial scenario as893

follows. 1) For the open benchmarks, we aim to develop an intent learning method to decoupling894

user’s intents for better recommendation based the appropriate intents of the user. 2) For the industrial895

data, we aim to design a user grouping method to cluster the users into different groups to solve896

the cold-start problem via mapping the new users into the user group, which contains more useful897

information. Therefore, the designed method needs to have the following abilities. 1) It can explicitly898

decouple users’ behaviours into different intents (grouping users into different clusters). 2) It can899

be easily adopted to the large-scale real-time industrial data, saving the memory and time costs.900

Secondly, we surveyed massive recent state-of-the-art methods to solve the above challenges in the901

related work part of this paper. We highlight the drawbacks of the related methods [42] [3] and claim902

why they will fail in our scenario. In the IOCRec method [42], they define the prototype intention of903

users as a k × d matrix. And the these prototype intention are directly used to calculate the relevance904

weights and the intentions. However, there are no designs for the initialization and optimization of905

the prototype intention, e.g., guiding the prototype intention to represent the users’ behaviours, and906

different intentions are separated. Therefore, it lacks explainability and persuasiveness, especially in907

the scenario where there is a need to conduct different recommendation strategies for different groups,908

i.e., user grouping recommendations. Also, we do not find theoretical or experimental evidence909

to support that the learned intents are separated well and reveal the representative behaviours of910

users in the original paper [42]. For the DCCF method [76], 1) it is based on the graph neural911

networks, limiting the model scalability and efficiency on large-scale data due to the large costs912

of graph constructing, graph storage, and neighbour sampling. And the sequential methods are913

more efficient since our data is naturally the sequences of the user behaivors. 2) Besides, in the914

DCCF method, the intents are randomly initialized via xavier normalization. Then, they are used915

to aggregate information. In the loss function part, we notice that there is only a penalty item to916

limit the complexity of the parameters of intent embeddings. Thus, there are no operations or loss917

functions to explicitly optimize the users’ intents, such as separating different intents, learning intents918

from behaviours, etc. We claim this intent decoupling is relatively weak and may not really learn919

well and separate the different intents of users. Also, in Figure 4 of the original paper [76], we find920

that the cluster pattern is not revealed well in the sampled data. We speculate the cluster pattern921

will also not be revealed well on the whole samples of the datasets. Thirdly, we explain why we922

chose ICLRec [15] as our baseline. 1) ICLRec is a sequential recommendation method, which is923

more suitable for our data. Compared to the GNN-based methods, it can save more time and memory924

costs. 2) ICLRec adopt the clustering algorithm to explicitly separate the users’ intents, which can925

also be adapted for user grouping. It explicitly optimizes the intents based on the users’ behaviour926

embeddings. We believe this technique can better seperate the users’ intents well and also better927

obtain the users’ intents from their behaviors. In Figure 7 of the original paper [15], we find that928

ICLRec can reveal the cluster pattern well on the sampled data. Fourthly, we claim our motivation.929

Although ICLRec can achieve promising performance and effectively decouple users’ intents, the EM930

optimization framework limits the scalability and performance. 1) At the E-step, we need to apply931

the clustering algorithm on the whole data, limiting the model’s scalability, especially in large-scale932

industrial scenarios, e.g., apps with billion users. 2) In the EM framework, the optimization of933

behaviour learning and the clustering algorithm are separated, leading to sub-optimal performance934
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and increasing the implementation difficulty. We admit that our analyses of the problems start from935

ICLRec methods. But, actually, there are many intent learning methods [73, 61, 63, 66, 89] that adopt936

the clustering algorithms and the EM framework. They will meet the above problems and may fail937

when scaling to real-time large-scale data. Therefore, we claim our mentioned challenges are general938

recommendation systems, especially for intent decoupling methods. And we believe our proposed939

end-to-end learnable clustering module can bring performance improvement and saving time and940

space costs for these methods.941

7.9.3 Clustering Algorithm942

Clustering is a fundamental and challenging task that aims to group samples into distinct clusters943

without supervision. By leveraging the power of unlabeled data, clustering algorithms have found944

applications in various domains, including computer vision [13], natural language processing [3],945

graph learning [53], and recommendation systems [15, 73]. In the early stages, several traditional946

clustering methods [25, 92, 80, 20, 81] were proposed. For instance, the classical k-Means clustering947

[25] iteratively updates cluster centers and assignments to group samples. Spectral clustering [92]948

constructs a similarity graph and utilizes eigenvalues and eigenvectors to perform clustering. Addi-949

tionally, probability-based Gaussian Mixture Models (GMM) [80] assume that the data distribution is950

a mixture of Gaussian distributions and estimate parameters through maximum likelihood. More-951

over, the repulsive clustering methods [36, 18, 2] cluster data via the repulsive terms. In contrast,952

density-based methods [20, 81, 16] overcome the need for specifying the number of clusters as a953

hyperparameter. In recent years, the impressive performance of deep learning has sparked a growing954

interest in deep clustering [44, 82, 64, 4, 72, 39]. For instance, Xie et al. propose DEC [97], a deep955

learning-based approach for clustering. They initialize cluster centers using k-Means clustering and956

optimize the clustering distribution using a Kullback-Leibler divergence clustering loss [97]. IDEC957

[23] improves upon DEC by incorporating the reconstruction of original information from latent958

embeddings. JULE [99] and DeepCluster [8] both adopt an iterative approach, updating the deep959

network based on learned data embeddings and clustering assignments. SwAV [9], an online method,960

focuses on clustering data and maintaining consistency between cluster assignments from different961

views of the same image. DINO [10] introduces a momentum encoder to address representation962

collapse. Additionally, SeCu [71] proposes a stable cluster discrimination task and a hardness-aware963

clustering criterion. While deep clustering has been extensively applied to image data, it is also uti-964

lized in graph clustering [49, 50, 93, 104, 68, 53, 54, 52] and text clustering [3, 48, 30, 84]. However,965

the application of clustering-based recommendation [15, 73] is relatively unexplored. Leveraging966

the unsupervised learning capabilities of clustering could benefit intent learning in recommendation967

systems.968

7.10 Implementation Details of Baselines969

For the baseline methods, we adopt the public source code with the default parameter settings970

and reproduce their results on the used four benchmarks. The source codes of these meth-971

ods are available at Table 10. Besides, for the used benchmarks, following [15], we only972

kept datasets where all users and items have at least five interactions. Besides, we adopted973

the dataset split settings used in [15]. The Sports, Beauty, and Toys datasets [62, 28] are ob-974

tained from: http://jmcauley.ucsd.edu/data/amazon/index.html. The yelp dataset is obtained from975

https://www.yelp.com/dataset.976

For the results which have already existed in the original papers, we reuse them in our paper. For977

the results that do not exist in the original papers, we adopt the official codes of the baselines to978

reproduce the experimental results. Concretely, for the hyperparameters, we adopt and try several979

sets of the default hyperparameters on different datasets released by the original authors. We report980

the best result obtained from the best hyper-parameters. By the way, we also observe these results981

have already converged well. Besides, we conducted three runs on different random seeds for all982

experimental results and reported the average performance.983

7.11 Deployment Details984

We aim to apply our proposed method to the real-time large-scale industrial recommendation systems.985

Concretely, the ELCRec algorithm is applied to livestreaming recommendation in the front page of986

the Alipay app. The user view (UV) and page view (PV) of this application are about 50 million987
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Table 10: Implementation URLs of baseline methods.

Method Url
BPR-MF [79] https://github.com/xiangwang1223/neural_graph_collaborative_filtering
GRU4Rec [29] https://github.com/slientGe/Sequential_Recommendation_Tensorflow

Caser [87] https://github.com/graytowne/caser_pytorch
SASRec [32] https://github.com/kang205/SASRec

BERT4Rec [85] https://github.com/FeiSun/BERT4Rec
DSSRec [60] https://github.com/abinashsinha330/DSSRec
S3-Rec [111] https://github.com/RUCAIBox/CIKM2020-S3Rec
CL4SRec [98] https://github.com/HKUDS/SSLRec
ICLRec [15] https://github.com/salesforce/ICLRec
DCRec [100] https://github.com/HKUDS/DCRec

MAERec [102] https://github.com/HKUDS/MAERec
IOCRec [42] https://github.com/LFM-bot/IOCRec

and 130 million, respectively. Since most of the users are new to this application, it easily leads to988

the sparsity of users’ behaviors, namely, the cold-start problem in recommendation systems. Our989

proposed ELCRec can alleviate this problem by grouping users and then making recommendations.990

This method can map a new user to a user group, which contains more intent behaviour information991

from similar users, such as other similar new users and similar users with low/middle activities. In992

this manner, we can guide the model to learn the behaviour of new users and provide more precise993

recommendations for them even with the sparse behaviours.994

At first, we introduce the online baseline of this project. Since the sparsity of the users’ behaviors,995

we replaced the users’ behaviors with the users’ activities. Then, the online baseline multi-gate996

mixture-of-expert (MMOE) [59] models the users’ activities. In this model, the experts are designed997

to extract the features of users, and the multi-gates are designed to select specific experts. The inputs998

of the multi-gates are the activities of the users. This design aims to train an activity-awarded model999

to group different users and then conduct recommendations.1000

However, we found the performance of this model is limited, and the output of the gates is smooth,1001

indicating that this model may fail to group users. Meanwhile, on the open benchmarks, extensive1002

experiments demonstrate the proposed end-to-end learnable clustering module is effective and1003

scalable. Thus, to solve the above problem, ELCRec is adopted in this project. It is designed to1004

assist the gate to group users. For example, the high-activity users and new users are grouped into1005

different clusters, and then the users in different groups will be recommended differently. Therefore, it1006

alleviates the cold-start issue and further improves the recommendation performance. Besides, during1007

the learning process of the cluster embeddings, the low-activity users can transfer to high-activity1008

users, improving the overall users’ activities in the application. It is worth mentioning that the1009

networks are trained with multi-task targets, e.g., CTR prediction, CVR prediction, etc. Following the1010

previous online baseline, the method is implemented with the TensorFlow deep learning platform [1].1011

7.12 Limitations & Future Work1012

In this paper, we propose a novel intent learning method named ELCRec based on the end-to-end1013

learnable clustering framework. It can better mine users’ underlying intents via unifying represen-1014

tation learning and clustering optimization. Besides, the end-to-end learnable clustering module1015

optimizes the clustering distribution via mini-batch data, thus improving the scalability and conve-1016

nience of deployment. Moreover, we demonstrate the superiority, effectiveness, efficiency, sensitivity,1017

convergence, and visualization of ELCRec on four benchmarks. ELCRec is also successfully applied1018

in the real-time large-scale industrial recommendation system. Although achieving promising results,1019

we admit the proposed ELCRec algorithm has several limitations and drawbacks. We summarize1020

them as follows.1021

• Pre-defined Cluster Number. The cluster number in ELCRec is a pre-defined hyper-parameter.1022

In the real-time large scale data, it is hard to determine the cluster number, especially under the1023

unsupervised conditions. In this paper, for the open benchmarks, we search the cluster number in1024
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{32, 64, 128, 256, 512}. Besides, for the industrial application, the cluster number is set to 201025

based on the number of user groups. However, either the search method or the expert knowledge1026

can not determine the cluster number well at once. The cluster number may change dynamically1027

during model training, and the proposed method may fail to achieve promising performance.1028

• Limited Recommendation Domains. In this paper, we adopt four recommendation benchmarks,1029

including Sports, Beauty, Toys, and Yelp, for the main experimental results. But, these four1030

datasets are all buying recommendation datasets. Besides, we adopt ML-1M [24] and MIND-1031

small [96] for the movie and news recommendation for the additional experiments. However, the1032

recommendation domains are still limited. In the future, we can further demonstrate the boarder1033

applicability of ELCRec in other domains.1034

• Uncontrollable Update Rate of Cluster Centers. In the real-time recommendation system, the users’1035

behaviors and intents usually change rapidly. Although our proposed ELCRec can dynamically1036

learn the users’ intents, it is hard to control the update rate of the underlying clusters (intents).1037

To solve these issues, we summarize several future works and the potential technical solutions as1038

follows.1039

• Density-based Clustering. As mentioned above, the cluster number is a pre-defined value in this1040

paper, limiting the recommendation performance and flexibility of the method. To solve this1041

issue in the future, firstly, we can determine the cluster number based on some cluster number1042

estimation methods. They can help to determine the cluster number by performing multiple1043

clustering runs and selecting the best cluster number based on the unsupervised criterion. The1044

mainstream cluster number estimation methods [34] include the thumb rule, ELBOW [86], t-SNE1045

[90], etc. The thumb rule simply assigns the cluster number k with
√
n/2, where n is the number1046

of samples. This manual setting is empirical and can not be applicable to all datasets. Besides, the1047

ELBOW is a visual method. Concretely, they start the cluster number k = 2 and keep increasing1048

k in each step by 1, calculating the WSS (within-cluster sum of squares) during training. They1049

choose the value of k when the WSS drops dramatically, and after that, it reaches a plateau.1050

However, it will bring large computational costs since the deep neural network needs to be trained1051

with repeated times. Another visual method termed t-SNE visualizes the high-dimension data1052

into 2D sample points and helps researchers determine the cluster number. The effectiveness of1053

t-SNE heavily relies on the experience of researchers. Therefore, secondly, we can determine the1054

cluster number based on the data density [81, 82]. Concretely, the areas with high data density1055

are identified as the cluster centers, while the areas with low data density are identified as the1056

decision boundaries between cluster centers. Besides reinforcement learning is also a potential1057

solution [51]. Through these designs, the cluster number will be changeable during the training1058

process. It will be determined based on the embeddings itself, better revealing the users’ behavior1059

and may achieve better recommendation performance.1060

• More Recommendation Domains. As mentioned above, the applied recommendation domains1061

of our method are limited. We aim to test ELCRec on more recommendation domains, such as1062

music recommendation [107, 7], group recommendation [108, 47], group buying [106], bundle1063

recommendation [114], etc.1064

• Controllable Intent Learning. As mentioned above, in the real-time recommendation system, the1065

intents of the users may change rapidly. Our method makes it hard to control the intent update1066

rate during training and inference. To this end, in the future, we can propose a controllable1067

cluster center learning method, such as the momentum update, to control the change rate of the1068

users’ intents. Concretely, Ct = m ·Ct + (1−m) ·Ct−1. Here, Ct denote the cluster center1069

embeddings at t and m denotes the momentum. Then, the cluster centers (intents of users) will1070

be changed rapidly when m is large, and the cluster centers (intents of users) will be changed1071

slowly when m is small. This strategy will control the change rate of the users’ intent embeddings,1072

therefore alleviating the above problem.1073

NeurIPS Paper Checklist1074

The checklist is designed to encourage best practices for responsible machine learning research,1075

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1076

the checklist: The papers not including the checklist will be desk rejected. The checklist should1077
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follow the references and precede the (optional) supplemental material. The checklist does NOT1078

count towards the page limit.1079

Please read the checklist guidelines carefully for information on how to answer these questions. For1080

each question in the checklist:1081

• You should answer [Yes] , [No] , or [NA] .1082

• [NA] means either that the question is Not Applicable for that particular paper or the1083

relevant information is Not Available.1084

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).1085

The checklist answers are an integral part of your paper submission. They are visible to the1086

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1087

(after eventual revisions) with the final version of your paper, and its final version will be published1088

with the paper.1089

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1090

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1091

proper justification is given (e.g., "error bars are not reported because it would be too computationally1092

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1093

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1094

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1095

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1096

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1097

please point to the section(s) where related material for the question can be found.1098

IMPORTANT, please:1099

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",1100

• Keep the checklist subsection headings, questions/answers and guidelines below.1101

• Do not modify the questions and only use the provided macros for your answers.1102

1. Claims1103

Question: Do the main claims made in the abstract and introduction accurately reflect the1104

paper’s contributions and scope?1105

Answer: [Yes]1106

Justification: See the abstract and introduction part. We propose a novel intent learning1107

method termed ELCRec, by unifying behavior representation learning into an end-to-end1108

learnable clustering framework, for effective and efficient Recommendation. We clearly1109

introduce the existing methods and their drawbacks. To solve the problem, we design the1110

corresponding novel modules. And experimental results and theoretical analyses demonstrate1111

ELCRec from six aspects.1112

Guidelines:1113

• The answer NA means that the abstract and introduction do not include the claims1114

made in the paper.1115

• The abstract and/or introduction should clearly state the claims made, including the1116

contributions made in the paper and important assumptions and limitations. A No or1117

NA answer to this question will not be perceived well by the reviewers.1118

• The claims made should match theoretical and experimental results, and reflect how1119

much the results can be expected to generalize to other settings.1120

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1121

are not attained by the paper.1122

2. Limitations1123

Question: Does the paper discuss the limitations of the work performed by the authors?1124

Answer: [Yes]1125
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Justification: See section 7.12: Limitations & Future work. We summarize the drawbacks1126

of our proposed method, such as, pre-defined cluster number, limited recommendation1127

domains, and uncontrolleable update rate of cluster centers. And then we provide the1128

potential solutions.1129

Guidelines:1130

• The answer NA means that the paper has no limitation while the answer No means that1131

the paper has limitations, but those are not discussed in the paper.1132

• The authors are encouraged to create a separate "Limitations" section in their paper.1133

• The paper should point out any strong assumptions and how robust the results are to1134

violations of these assumptions (e.g., independence assumptions, noiseless settings,1135

model well-specification, asymptotic approximations only holding locally). The authors1136

should reflect on how these assumptions might be violated in practice and what the1137

implications would be.1138

• The authors should reflect on the scope of the claims made, e.g., if the approach was1139

only tested on a few datasets or with a few runs. In general, empirical results often1140

depend on implicit assumptions, which should be articulated.1141

• The authors should reflect on the factors that influence the performance of the approach.1142

For example, a facial recognition algorithm may perform poorly when image resolution1143

is low or images are taken in low lighting. Or a speech-to-text system might not be1144

used reliably to provide closed captions for online lectures because it fails to handle1145

technical jargon.1146

• The authors should discuss the computational efficiency of the proposed algorithms1147

and how they scale with dataset size.1148

• If applicable, the authors should discuss possible limitations of their approach to1149

address problems of privacy and fairness.1150

• While the authors might fear that complete honesty about limitations might be used by1151

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1152

limitations that aren’t acknowledged in the paper. The authors should use their best1153

judgment and recognize that individual actions in favor of transparency play an impor-1154

tant role in developing norms that preserve the integrity of the community. Reviewers1155

will be specifically instructed to not penalize honesty concerning limitations.1156

3. Theory Assumptions and Proofs1157

Question: For each theoretical result, does the paper provide the full set of assumptions and1158

a complete (and correct) proof?1159

Answer: [Yes]1160

Justification: See section 7.3: Theoretical analyses. This section provide the theoretical1161

analyses and the complete and correct proof.1162

Guidelines:1163

• The answer NA means that the paper does not include theoretical results.1164

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1165

referenced.1166

• All assumptions should be clearly stated or referenced in the statement of any theorems.1167

• The proofs can either appear in the main paper or the supplemental material, but if1168

they appear in the supplemental material, the authors are encouraged to provide a short1169

proof sketch to provide intuition.1170

• Inversely, any informal proof provided in the core of the paper should be complemented1171

by formal proofs provided in appendix or supplemental material.1172

• Theorems and Lemmas that the proof relies upon should be properly referenced.1173

4. Experimental Result Reproducibility1174

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1175

perimental results of the paper to the extent that it affects the main claims and/or conclusions1176

of the paper (regardless of whether the code and data are provided or not)?1177

Answer: [Yes]1178
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Justification: See section 7.10, 7.11, we provide the details about the experiments and1179

deployments.1180

Guidelines:1181

• The answer NA means that the paper does not include experiments.1182

• If the paper includes experiments, a No answer to this question will not be perceived1183

well by the reviewers: Making the paper reproducible is important, regardless of1184

whether the code and data are provided or not.1185

• If the contribution is a dataset and/or model, the authors should describe the steps taken1186

to make their results reproducible or verifiable.1187

• Depending on the contribution, reproducibility can be accomplished in various ways.1188

For example, if the contribution is a novel architecture, describing the architecture fully1189

might suffice, or if the contribution is a specific model and empirical evaluation, it may1190

be necessary to either make it possible for others to replicate the model with the same1191

dataset, or provide access to the model. In general. releasing code and data is often1192

one good way to accomplish this, but reproducibility can also be provided via detailed1193

instructions for how to replicate the results, access to a hosted model (e.g., in the case1194

of a large language model), releasing of a model checkpoint, or other means that are1195

appropriate to the research performed.1196

• While NeurIPS does not require releasing code, the conference does require all submis-1197

sions to provide some reasonable avenue for reproducibility, which may depend on the1198

nature of the contribution. For example1199

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1200

to reproduce that algorithm.1201

(b) If the contribution is primarily a new model architecture, the paper should describe1202

the architecture clearly and fully.1203

(c) If the contribution is a new model (e.g., a large language model), then there should1204

either be a way to access this model for reproducing the results or a way to reproduce1205

the model (e.g., with an open-source dataset or instructions for how to construct1206

the dataset).1207

(d) We recognize that reproducibility may be tricky in some cases, in which case1208

authors are welcome to describe the particular way they provide for reproducibility.1209

In the case of closed-source models, it may be that access to the model is limited in1210

some way (e.g., to registered users), but it should be possible for other researchers1211

to have some path to reproducing or verifying the results.1212
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