
LLM-based Skill Diffusion for Zero-shot Policy
Adaptation

Woo Kyung Kim1, Youngseok Lee2, Jooyoung Kim1, Honguk Woo1∗
1 Department of Computer Science and Engineering, Sunkyunkwan University

2 Department of Electrical and Computer Engineering, Sungkyunkwan University
{kwk2696,yslee.gs,onsaemiro,hwoo}@skku.edu

Abstract

Recent advances in data-driven imitation learning and offline reinforcement learn-
ing have highlighted the use of expert data for skill acquisition and the development
of hierarchical policies based on these skills. However, these approaches have
not significantly advanced in adapting these skills to unseen contexts, which may
involve changing environmental conditions or different user requirements. In this
paper, we present a novel LLM-based policy adaptation framework LDuS which
leverages an LLM to guide the generation process of a skill diffusion model upon
contexts specified in language, facilitating zero-shot skill-based policy adaptation
to different contexts. To implement the skill diffusion model, we adapt the loss-
guided diffusion with a sequential in-painting technique, where target trajectories
are conditioned by masking them with past state-action sequences, thereby enabling
the robust and controlled generation of skill trajectories in test-time. To have a loss
function for a given context, we employ the LLM-based code generation with itera-
tive refinement, by which the code and controlled trajectory are validated to align
with the context in a closed-loop manner. Through experiments, we demonstrate
the zero-shot adaptability of LDuS to various context types including different
specification levels, multi-modality, and varied temporal conditions for several
robotic manipulation tasks, outperforming other language-conditioned imitation
and planning methods.

1 Introduction

Skill-based learning has demonstrated its potentials in generalizing to novel downstream tasks by
leveraging pre-trained skills learned from the offline dataset. Furthermore, the integration of skill-
based learning and natural language realizes the remarkable ability to perform practical tasks via
the provision of a human-oriented interface where agents are controlled by instructions describing
the goals of the task. Building upon this notion, several previous studies have investigated bridging
the gap between the human instructions and physical world manipulation by learning semantically
meaningful skills given the language-annotated dataset [1, 2, 3]. However, due to the inherently
open-ended nature of language, it is impractical to obtain a dataset annotated with a sufficiently
wide range of contexts, encompassing various environmental conditions and user requirements, to
develop a versatile language-conditioned policy capable of accommodating such diverse contexts.
Consequently, as shown in the left side of Figure 1, these prior works are limited to processing the
narrow scope of instructions that primarily convey only the goal of the task without any contextual
information (presented as case 1).

To address the challenges in language-conditioned skill learning, we explore large language model
(LLM)-based policy adaptation approaches that enable zero-shot adaptation to contexts specified in

∗Honguk Woo is the corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: Zero-shot policy adaptation to contexts: In case 1, the instruction includes only the task
goal. In cases 2 and 3, the instruction is supplemented by the task goal with the context. Conventional
language-conditioned skill approaches struggle to generate trajectories well aligned with the contexts,
and typically succeed only for instructions as in case 1. Conversely, our LLM-based policy adaptation
approach effectively adapts to the contexts in a zero-shot manner across all cases.

language at test-time. Leveraging the effectiveness of diffusion models in controlling their generation
process via loss functions [4], and the code generation capability of LLMs [5], we adapt diffusion with
guidance by the loss function generated through LLMs. As illustrated in the right side of Figure 1,
our LLM-based policy adaptation is capable of adapting to diverse contexts in a zero-shot manner,
such as “target speed of an agent should be 8m/s” or “minimize the power usage of an agent”.

To this end, we present a novel LLM-based Skill Diffusion (LDuS) framework, designed to facilitate
zero-shot adaptation to unseen contexts by generating skill trajectories that are controllable through
loss-guided diffusion. Specifically, we devise a hierarchical skill learning structure in which a diffusion
model is employed as a skill planner with sequential in-painting. This in-painting method sequentially
substitutes consecutive state-action pairs with their originals and learns on the remaining parts, thus
allowing for robust trajectory generation by conditioning the trajectory on past experiences. For
evaluation, LDuS provides an interface where a context specified in language is translated into a loss
function to guide the generation process of the skill diffusion planner. The generation process is then
continuously refined through an iterative process using an LLM as a self-critic, ensuring that the
generating skill trajectory aligns with the given context. As such, our framework stands apart from
existing language-conditioned skill imitation approaches, as it enables the zero-shot adaptation of
skill-based policies to various contexts that extend beyond the training dataset.

The contributions of our work are summarized as follows.

• We present the LDuS framework to address a novel challenge of zero-shot policy adaptation
to unseen contexts specified in language.

• We develop a hierarchical skill learning structure that adapts the skill diffusion planner with
sequential in-painting, enabling robust skill trajectory generation.

• We devise an interface that utilizes LLMs to translate a context into a loss function, which
is then used to control the generation process of the skill diffusion planner. This is further
validated via iterative refinement to adequately align with the given context.

• We experimentally show that LDuS achieves superior performance in zero-shot adaptation
to a wide range of contexts including different specification levels, multi-modality, and
varied temporal conditions for robotic manipulation tasks.

2 Related work

2.1 Language-conditioned skill learning

In the domain of sequential decision-making, several researches have explored techniques for learning
language-conditioned skills [1, 2, 3, 6, 7, 8]. LISA [2] employs hierarchical skill learning to achieve

2

a language-conditioned policy through discretized skill codes. Recently, LCD [3], PlayFusion [6],
and SkillDU [8] commonly adopt diffusion models as a language-conditioned policy to address high-
dimensional vision inputs or to leverage play datasets collected by human. While these approaches
primarily concentrate on learning by direct supervision from language-annotated datasets, our LDuS
aims at adapting to unseen contexts that convey varying environment conditions or different user
requirements beyond the datasets.

Meanwhile, several studies have harnessed the code generation capabilities of LLMs to ground
language instructions to actionable skills [9, 10, 11, 12, 13, 14]. For example, in Kinematic-LLM [14],
an LLM is prompted with in-context samples to generate the waypoints for robotic manipulation
with pre-defined code primitives. The performance of this in-context learning often depends on
the quality and relevance of selected samples, leading to limited generalization to unseen contexts.
Unlike this waypoint-based high-level planning with pre-defined code primitives, our LDuS adapts
the code generation capabilities of LLMs with iterative refinement to enable the fine-grained control
of trajectories, particularly suited for adjusting the generation process of diffusion models.

2.2 Guided control for diffusion models

Diffusion models have shown promising results in various areas including computer vision [15, 16,
17, 18], offline reinforcement learning (RL) [19, 20, 21], and long-horizon planning [22, 23, 24,
25]. The strong generation ability of diffusion models leads to robust adaptability at deployment.
In classifier guidance [26], diffusion models are controlled at test-time, thereby supporting the
generation of images belonging to specific classes. This controlled adaptation concept has been
further investigated for text-driven image generation [27, 28] and noisy inverse problems [29, 30].
Recently, LGD [4] presents a loss-guided diffusion mechanism, by which diffusion models can
be controlled via differentiable loss functions without additional training. To facilitate the query-
compliant scene generation, CTG [5] leverages LLMs as a loss function generator for user queries.

In the RL domain, such guidance schemes for controlling diffusion-based policies have been investi-
gated with pre-trained dynamics models [31] and value functions [22, 23]. Yet, these schemes rarely
accommodate language-specified contexts. Our LDuS is the first to integrate the reasoning capabilities
of LLMs and the controlled generation capabilities of diffusion models, thus enabling zero-shot
policy adaptation to language-specified contexts in the domain of sequential decision-making.

3 Preliminaries

3.1 Problem formulation

Contextual Markov Decision Process (MDP). We consider a task as a contextual MDP [32, 3]
(C, S,A,G, P c, rc, γ, ρ0) where c ∈ C is a context space, s ∈ S is a state space, a ∈ A is an action
space, g ∈ G is a goal space, P c : C × S ×A× S → [0, 1] is a transition probability conditioned on
the context and the goal, rc : C × S ×A× G → R is a reward function conditioned on the context,
γ ∈ [0, 1] is a discount factor, and ρ0 : S → [0, 1] is an initial state distribution. Here, we consider
a goal to be specified in language, denoted as gl, such as “open the drawer” or “close the door”.
Moreover, we assume a context is provided in language [3], denoted as cl, which can affect either the
reward function or the transition probability.

Policy adaptation to contexts. We assume access to a dataset D = {τi}i≤N , where each trajectory
τi is represented as a sequence of state and action pairs with a goal {(st, at, gl)}t≤T for a T -length
episode without any contextual information.

We consider task evaluation scenarios with a context cl which conveys environmental conditions
or user requirements, along with a goal gl. Then, our objective is to develop a policy adaptation
framework ϕ(gl, cl) that maps both goal gl and context cl to a policy πc maximizing the return of
context-conditioned rewards.

ϕ∗ = argmax
ϕ

E
gl∼G,cl∼C,

πc∼ϕ(gl,cl),at∼πc(·|st,gt)

[
T−1∑
t=0

rcl(st, at, gl)

]
(1)

3

Figure 2: Concept of LDuS with skill learning and adaptation phases

3.2 Diffusion probabilistic models

Diffusion models have been explored for task planning [22, 23, 24, 33], offline RL [19, 20, 21], and
language-conditioned skill learning [3, 6, 8]. In [22], a diffusion model for planning was introduced,
which generates h-length state and action sequences, denoted as x in a two-dimensional array.

x =

[
s0 s1 · · · sh
a0 a1 · · · ah

]
(2)

In particular, the diffusion model ϵ(xk, k) based on the U-net architecture [34] predicts a noise
η ∼ N (0, I) given a noise-corrupted trajectory xk as an input [15, 16], and it is optimized through
the following loss.

min
ϵ

Ex∼D,k∼[1,K][||ϵ(xk, k)− η||22] (3)

Here, k ∈ [1,K] is a denoising step, and xk =
√
αkx+

√
1− αkη is generated by adding a Gaussian

noise η to the original trajectory x with a variance schedule parameter αk. At sampling, the diffusion
model generates trajectory x from a random noisy input xK ∼ N (0, I) by sequentially denoising it,

xk−1 =
1√
αk

(
xk − 1− αk

√
1− ᾱk

ϵ(xk, k)

)
+ σkη, (4)

where σk is a parameter for a variance schedule.

4 Our approach

4.1 Overall framework

To address the zero-shot adaptation to various contexts, we develop the LDuS framework comprising
two phases: (i) skill learning via the skill diffusion planner, and (ii) policy adaptation to unseen
contexts via LLM-guided diffusion, as illustrated in Figure 2. (i) In the learning phase, we establish a
hierarchical structure in which skills are learned, conditioned on a goal. This structure includes a skill
encoder, a skill prior, and a skill diffusion planner that generates skill trajectories. These components
are learned on the dataset that contains only goals, without any contextual information. Additionally,
we employ a sequential in-painting technique when training the skill diffusion planner to enhance
robustness in skill trajectory generation. (ii) In the adaptation phase, we guide the generation process
of the skill diffusion planner upon a language-specified context, by harnessing the code generation
capabilities of LLMs. The generated code serves as a loss function that guides the skill diffusion
planner to generate skill trajectories at every denoising step. This facilitates alignment between the
skill trajectories and the given context. Furthermore, LDuS employs an iterative refinement process,
in which generated skill trajectories are repeatedly validated in a closed-loop manner to achieve
robust alignment with the context.

4.2 Skill learning via diffusion planner

To facilitate skill learning using a diffusion model, we adopt a variational autoencoder (VAE) [35]
architecture with three components: a skill encoder q(z|st:t+h, at:t+h), a skill prior pl(z|st, gl), and
a skill diffusion planner ϵ(xk, k, z). Given an h-length skill trajectory x = {st, at}t≤h, the skill
encoder q predicts a skill embedding z, then the skill diffusion planner reconstructs the h-length
skill trajectory x based on z. To optimize both the skill encoder and skill diffusion planner, we
employ a conditional VAE objective that combines a diffusion reconstruction term in (3) and a prior
regularization term such as

min
q,ϵ

Ex∼D,z∼q,k∼[1,K]

[
||ϵ(xk, k, z)− η||22

]
+ βDKL (q(z|st:t+h, at:t+h), p(z)) (5)

4

Figure 3: LDuS framework: In (i), given the dataset annotated with the goals, skills are learned
through the hierarchical structure employing a skill diffusion planner with sequential in-painting
techniques. In (ii), the context specified in language is translated into a loss function, which is then
used to guide the generation process of the skill diffusion planner. This process is further validated
with closed-loop iterative refinement to better align skill trajectories with the given context.

where p(z) is a unit Gaussian N (0, I), DKL is the Kullback-Leibler (KL) divergence, and β is a
weight for regularization [36]. To establish a versatile skill embedding space encapsulating common
skills across multiple tasks, we use the skill encoder without goal conditions. In addition, to learn
skills conditioned on the goal, the skill prior pl, which is conditioned on state st and goal gl, is
tailored to align with the output of the skill encoder. To handle the goal provided in language, we
also use a pre-trained language encoder Φl such as CLIP [37] that produces language embeddings of
gl for the skill prior. Then, the skill prior is jointly trained with the skill encoder and skill diffusion
planner by minimizing the distance with the skill encoder, i.e.,

min
pl

DKL (q(z|st:t+h, at:t+h), pl(z|st,Φl(gl))) . (6)

Using the skill prior, we predict an appropriate skill embedding at deployment based on the current
state and specified goal.

Sequential in-painting. The in-painting technique is adopted in [22] to address goal-conditioned
problems, in which a diffusion model is conditioned by replacing the last state of a generating
trajectory xk with the goal state. We adapt this in-painting to train the skill diffusion planner with
a sequential replacement mechanism, where a sequence of m ∼ [1, h] states and actions of xk is
substituted with the corresponding original state-action pairs to learn the remaining portion of xk, as
illustrated in the bottom left side of Figure 3. Then, for evaluation, unlike conventional methods that
constrain the diffusion model only with the current state [22, 23], our approach constrains the skill
diffusion planner using the previously encountered m states. This in-painting method enables the
diffusion planner to generate more robust and contextually aligned skill trajectories, as described in
Section 5.3.

4.3 Policy adaptation via LLM-guided diffusion

In general, it is challenging for a model to directly acquire the zero-shot adaptation ability for various
contexts, particularly when the training dataset has limited coverage on those contexts. To tackle this
challenge, we harness the controlled generation capabilities of diffusion models [26] along with the
code-generation capabilities of LLMs [5].

In LDuS, for zero-shot adaptation to various contexts, we employ three procedures: translation of a
given context to its corresponding loss function, loss-guided trajectory generation, and closed-loop
iterative refinement, as illustrated in the right side of Figure 3. Initially, the LLM is tasked with
translating the context into a loss function. This loss function then guides the skill diffusion planner in
its trajectory generation process. To ensure the accuracy and relevance of generated skill trajectories,
the process is validated by the LLM in a closed-loop manner, querying the LLM to verify whether
the generated trajectories meet the specifications of the given context.

5

Algorithm 1 Policy adaptation via LLM-guided diffusion
1: Inputs: skill prior pl(z|st, gl), skill diffusion planner ϵ(xk, k, z), goal gl, context cl, LLM ΦLLM,

guidance weight δ
2: Obtain loss function ℓ(x̂0) using ΦLLM through (7)
3: for every environment step t do
4: z ∼ pl(z|st, gl)
5: while not validate do
6: Sample trajectory x0 using ϵ(xk, k, z) without guidance through (4)
7: Sample guided trajectory x̃0 using ℓ(x̂0) and ϵ(xk, k, z) through (8)
8: Validate whether satisfy the context via LLM as ΦLLM(x0, x̃0, gl, cl)
9: Execute am in x0 to the environment

Translation of context to loss function. For converting the context into a loss function in code,
we employ chain-of-thought prompting [38] with a pre-defined list of queries u = [u1, .., un]. The
queries are designed to capture the specifications of the agent and the desired format of loss functions.
Then, the queries are sequentially prompted to the LLM ΦLLM in conjunction with a goal gl and a
context cl, i.e.,

{yj |yj = ΦLLM (gl, cl, {ui, yi}i<j)} (7)
where {ui, yi}i<j represents a set of prompted queries ui and their respective responses yi from the
LLM. The final response yn is then used as the loss function to guide the skill diffusion planner.

Loss-guided skill trajectory generation. Similar to prior work [29, 4], we implement the loss-guided
skill trajectory generation, where the guidance is computed as the gradient of the loss function with
respect to xk at each denoising step k.

ϵ̃ := ϵ(xk, k, z)− δ
√
1− ᾱk∇xkℓ(x̂0) (8)

Here, x̂0 = 1√
ᾱk

(xk + (1 − ᾱk)ϵ(xk, k, z)) is an approximation of x0 given xk [29], and δ is a
hyperparameter to modulate the strength of the guidance.

Closed-loop iterative refinement. In the closed-loop iterative refinement, we employ the LLM
as a self-critic to evaluate both the loss functions and generated trajectories. Specifically, we
prompt the LLM with unguided trajectory x0, guided trajectory x̃0, goal gl, and context cl, i.e.,
ΦLLM(x0, x̃0, gl, cl). The LLM then checks for errors. If errors are detected in the loss function,
it is regenerated. If there is a mismatch between the trajectory and the context, the frequency of
the guidance application is increased. This ensures continuous improvement in the accuracy and
relevance of trajectories generated by the skill diffusion planner. The process of zero-shot policy
adaptation is summarized in Algorithm 1.

5 Experiments

5.1 Experiment Settings

Datasets. We use the MetaWorld benchmark [39], specifically with 10 different robot manipulation
goals. We also utilize long-horizon goals from the multi-stage MetaWorld, where each goal comprises
a sequence of short-horizon manipulation sub-goals. For data collection, we emulate rule-based
expert policies. For each goal, we collect 60 trajectories, varying the speed of the agent as well as the
position and weight of the objects being manipulated.

Contexts. We use two context groups: (i) language context where the context is solely specified in
language, (ii) multi-modal context where additional information is provided through image input
to assist in resolving the given context. These contexts are used to direct the agent with instructions
such as moving below or above a specific speed, adjusting its speed faster or slower along a specified
axis, or exerting more or less force on heavy objects. The context details are in Appendix A.4.

Evaluation metrics. We use two metrics to assess the zero-shot performance of LDuS and the
baselines. Success Rate (SR) quantifies the percentage of goals or sub-goals that are successfully
completed. Context Reward (CR) evaluates the average reward achieved based on how effectively
the models satisfy the given context.

6

Table 1: Zero-shot performance: The baselines and LDuS are trained on 10 different manipulation
goals for MetaWorld and 3 different long-horizon goals for multi-stage MetaWorld. For each manip-
ulation goal, we use 2 ∼ 5 different contexts. The success rate (SR) and context rewards (CR) are
measured in 95% confidence interval. Each is evaluated with 5 random seeds for language contexts
and 3 random seeds for multi-modal contexts. The highest performance is highlighted in bold.

(a) Performance in MetaWorld

Method Without context Language context Multi-modal context

SR (%) CR SR (%) CR SR (%)

LangDT 38.15± 7.42% 27.18± 2.65 33.16± 7.19% 0.00± 0.00 0.00± 0.00%
LISA 11.11± 6.00% 17.58± 6.95 10.32± 4.13% 0.00± 0.00 0.00± 0.00%
LCD 52.98± 8.90% 37.64± 6.10 50.98± 8.44% 4.58± 3.00 11.11± 4.00%
Diffuser 92.16± 3.37% 57.66± 6.20 86.90± 3.71% 0.18± 0.63 0.00± 0.00%

LCD + Guidance - 42.04± 4.70 49.95± 8.35% 22.13± 0.87 0.00± 0.00%
Diffuser + Guidance - 69.77± 4.23 76.42± 5.26% 33.01± 0.52 1.38± 1.01%

LDuS (ours) 97.00 ± 0.73% 87.36 ± 3.40 94.60 ± 1.70% 63.52 ± 4.28 93.05 ± 2.29%

(b) Performance in multi-stage MetaWorld

Method Without context Language context Multi-modal context

SR (%) CR SR (%) CR SR (%)

LangDT 5.83± 2.32% 3.82± 1.71 4.86± 1.91% 0.00± 0.00 4.20± 9.30%
LISA 1.17± 1.25% 30.56± 0.00 0.93± 0.68% 0.00± 0.00 0.00± 0.00%
LCD 35.27± 3.23% 32.11± 7.02 35.84± 2.51% 34.65± 13.69 20.85± 7.94%
Diffuser 35.55± 3.77% 45.49± 4.23 40.66± 3.29% 25.00± 13.79 18.75± 10.36%

LCD + Guidance - 39.37± 4.81 35.28± 2.30% 53.69± 7.06 29.20± 6.89%
Diffuser + Guidance - 45.89± 3.20 36.67± 2.81% 46.73± 7.57 18.75± 7.17%

LDuS (ours) 81.95 ± 2.42% 81.99 ± 2.86 84.03 ± 3.67% 82.03 ± 4.20 60.45 ± 8.46%

Baselines. For comparison, we use several language-conditioned imitation and planning methods.
1) LangDT [40] is an imitation learning method that utilizes a language-conditioned decision
transformer, 2) LISA [2] is a hierarchical skill imitation framework that learns discredited skill
codes conditioned on language instructions, 3) LCD [3] is a hierarchical planning framework that
reconstructs state sequences using a diffusion model conditioned on a language input, 4) Diffuser [22]
is a task planning framework based on diffusion models.

For LLMs, we use GPT-3.5 [41] which is capable of generating loss functions in the form of
executable code. Moreover, for multi-modal contexts, we use GPT-4 [42]. Since these baselines rarely
account for zero-shot adaptation to contexts, we adopt the same diffusion guidance used in LDuS for
those (i.e., Diffuser and LCD) employing diffusion models. In the cases where the diffusion model
is guided by a hand-designed loss function, which is considered optimal, we specify such baselines
with the additional label of Guidance.

5.2 Main results

Zero-shot performance. Table 1 shows the performance of LDuS and the baselines (LangDT, Dif-
fuser, LISA, LCD) across three different context input cases (without context, language context, multi-
modal context) in MetaWorld and multi-stage MetaWorld. As in Table 1(a), LDuS consistently yields
the best SR and CR in MetaWorld, outperforming the most competitive baseline Diffuser+Guidance
by 18.2% higher in SR and 78.7% higher in CR for the cases of language contexts. For multi-stage
MetaWorld, in Table 1(b), LDuS demonstrates superior performance with 41.7% higher in SR and
75.5% higher in CR at average, compared to Diffuser+Guidance.

In these experiments, LangDT and LISA exhibit the lowest performance, even for the cases without
contexts. This is attributed to the multi-modality in the dataset, which tends to hinder the learning
of policies built with multi-layer perceptrons or transformers. In contrast, the baselines employing
diffusion models, such as Diffuser and LCD, show improved performance. However, none of these

7

Table 2: Performance w.r.t various context types

Method Precise context Abstract context Temporal context

CR SR (%) CR SR (%) CR SR (%)

LCD + Guidance 30.35± 6.55 47.96± 8.68% 50.18± 4.17 48.71± 9.04% 25.04± 9.02 33.80± 3.18%
Diffuser + Guidance 65.05± 4.79 70.19± 4.87% 57.33± 2.05 50.58± 4.68% 49.17± 6.59 38.89± 0.68%

LDuS (ours) 89.77± 3.99 97.72± 1.08% 75.52± 3.86 86.98± 3.00% 79.40± 3.32 84.26± 3.79%

baselines achieve robust comparable performance to LDuS for the cases involving language or
multi-modal contexts. This limitation arises because the baselines are primarily designed to handle
goal descriptions, which is the sole form of language annotation in the dataset. Consequently, they
lack the capability to accommodate various contexts that convey environmental conditions or user
requirements. Diffuser and LCD, when used with guidance, exhibit slightly improved CR, as the
hand-designed optimal loss function can provide context-aligned guidance for trajectory generation.
However, in some cases, SR slightly decreases for both the baselines and LDuS when guidance is
applied. This decrease occurs because the gradient-based loss-guidance could generate unexpected
trajectories unless the tuning of the guidance weight δ was carefully managed. Overall, LDuS
outperforms the baselines in CR by employing the iterative refinement that ensures context alignment,
as well as in SR by employing the sequential in-painting that allows for robust trajectory generation.
While the contexts used in Table 1 are mainly related to speed, we provide additional experiments on
different types of contexts, such as energy constraints and spatial limitations, in Appendix C.2.

Various context types. In Table 2, we evaluate the performance across several context types such as
precise, abstract, and temporal contexts, while all given contexts are specified in language. Specifically,
precise contexts include detailed user requirements, such as a specific target speed, e.g., “the agent
speed should move between 5m/s and 6m/s.” In contrast, abstract contexts lack specific details. For
instance, if the user wants the agent to increase its speed, the abstract context could be phrased as “I
am very busy; the agent needs to hurry.” Temporal contexts are dynamic and vary over time, which
are particularly relevant in long-horizon goals. As shown, the results indicate that LDuS significantly
enhances CR, with an increase of 43.7% at average compared to Diffuser+Guidance.

Comparing with waypoint generation. In addition to the learning-based baselines compared
previously, we compare our approach with Kinematic-LLM [14] by which waypoints for pre-defined
skill primitives are generated through an LLM with in-context samples. To implement Kinematic-
LLM, we define basic skill primitives such as move, push, and pull, and use the same samples for
prompting, which are used for LDuS. As shown in Table 3, Kinematic-LLM shows comparable
performance in SR for MetaWorld, but lags in multi-stage MetaWorld. This is attributed to the
increased complexity of planning with LLMs for long-horizon goals. Regarding CR, Kinematic-LLM
consistently demonstrates lower performance compared to LDuS. This result stems from a lack of
versatile samples and skill primitives that are necessary to effectively adapt to various contexts.

Table 3: Comparison with waypoint generation method

Method MetaWorld Multi-stage MetaWorld

CR SR (%) CR SR (%)

Kinematic-LLM 48.83± 3.80 95.24± 1.53% 51.19± 0.93 61.82± 3.05%
LDuS (ours) 90.38± 3.14 95.36± 1.57% 75.99± 3.81 84.03± 3.67%

Inference Time. In Table 4, we present the average inference time (in milliseconds) required per
timestep for LDuS and the baselines. The measurements are conducted on a system equipped with
an Intel(R) Core(TM) i9-10980XE CPU and an NVIDIA RTX A6000 GPU, and we use GPT-3.5
for the LLM. As LDuS requires both diffusion sampling time and LLM inference, we measure these
component separately, denoted as “Diffusion” and “LLM” in the parenthesis. Diffuser and LCD
exhibit the shortest inference time, as these baselines do not require loss guided sampling or LLM
inference. When considering only the diffusion sampling time excluding LLM inference, LDuS
demonstrates an inference time comparable to the baselines that use the loss guidance. However, the
full inference time of LDuS is longer due to its LLM-based code generation and iterative refinement

8

process. This overhead can be mitigated by using a smaller language model, which can be obtained
by distilling the essential knowledge required for LDuS.

Table 4: Inference time required per timestep

Method Diffuser LCD Diffuser+Guidance LCD+Guidance LDuS

Inference Time 55ms 56ms 102ms 100ms 108ms(Diffusion) + 55ms(LLM)

Figure 4: Skill trajectory coverage

Skill trajectory coverage. Figure 4 illustrates the
t-SNE embeddings of h-length trajectories pre-
sented in the dataset (yellow-colored dots) and
skill trajectories generated by LDuS with guid-
ance (blue-colored dots) for MetaWorld. We col-
lect successful skill trajectories from LDuS, using
different contexts and varying the guidance weight
δ ranging from 0.05 to 0.4. This weight setting
regulates the strength of gradient application, as
described in (8). As observed, the embeddings are
expanded via LDuS, specifying that LDuS is ca-
pable of rendering novel skill trajectories, which
are not presented in the dataset but necessary to adapt to different contexts. This demonstrates the
versatility of LDuS that arises from the generation capabilities of the diffusion model.

5.3 Ablation study

LLM-guided skill diffusion planner. Table 5 shows the impact of our LLM-guided skill diffusion
planner. In this ablation study with MetaWorld, we evaluate two variants of LDuS, one without loss
guidance and the other without iterative refinement. LDuS achieves improved CR of 37.8% over the
variant without the loss guidance for language contexts. It also achieves improved CR of 46.8% on
average over the variant without iterative refinement. These results underscore the effectiveness of
LDuS with loss guidance and iterative refinement for zero-shot adaptation.

Table 5: Ablation on LLM-guided skill diffusion planner

Method Language context Multi-modal context

CR SR (%) CR SR (%)

LDuS 90.38± 3.14 95.36± 1.57% 63.52± 4.28 93.05± 2.29%
− Loss Guidance 65.58± 5.02 95.50± 0.96% 0.58± 0.10 0.00± 0.00%
− Iterative Refinement 85.74± 4.28 94.34± 1.17% 33.75± 0.48 4.17± 1.36%

Figure 5: Ablation on sequential in-painting

Sequential in-painting. Figure 5 shows the ef-
fect of our sequential in-painting technique. With
multi-stage MetaWorld, the hatched bars denote
the performance of LDuS and Diffuser without se-
quential in-painting, while the solid-colored bars
indicate that of these models with sequential in-
painting. SR and CR are significantly improved
for both LDuS and Diffuser, when the in-painting
technique is applied. This is attributed to condi-
tioning on the past m experiences, which function
as long-term memory. This memory feature en-
hances performance, particularly for long-horizon
goals like multi-stage MetaWorld. Furthermore,
the performance enhancement is more pronounced
for LDuS, as it benefits from learning common
skills from the dataset containing trajectories of
multiple goals.

9

6 Conclusion and limitations

In this work, we presented the LDuS framework for zero-shot skill-based policy adaptation to contexts
specified in language. The framework employs a hierarchical structure for skill learning, in which the
skill encoder learns task-agnostic skill abstractions and the skill diffusion planner generates various
skill trajectories. The skill diffusion planner is enhanced with sequential in-painting, thus enabling
context-aligned trajectory generation for the skills. At test-time, given a specific context describing
environmental conditions or user requirements, LDuS directly influences the generation process
of the skill diffusion planner, allowing for skill-based policies to adapt to the context. This zero-
shot adaptation is achieved by a combination of LLM-based loss function generation and iterative
refinement, along with the controllable structure of the skill diffusion planner. LDuS stands apart from
other language-conditioned approaches, which are limited to certain variations of the instructions
present in the dataset and generalize insufficiently to a range of unseen contexts.

Limitations. LDuS has several limitations which direct us to future work. One limitation is related to
the inference time, as LDuS relies on iterative LLM inferences for refinement. This issue could be
mitigated by distilling only essential knowledge, such as code generation and verification capabilities
of an LLM, into a smaller language model. Furthermore, since LDuS relies on the LLM for multiple
components, including code generation and iterative refinement, another limitation is its robustness,
which can be affected by the variability in the LLM’s performance and the design of the prompts.

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2022-II220043 (2022-0-
00043) Adaptive Personality for Intelligent Agents, RS-2022-II221045 (2022-0-01045) Self-directed
multi-modal Intelligence for solving unknown, open domain problems, RS-2019-II190421, Artificial
Intelligence Graduate School (Sungkyunkwan University)), by ICT Creative Consilience Program
through the Institute of Information & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. Rs-2020-II201821), by the National Research
Foundation of Korea (NRF) grant funded by MSIT (No. RS-2023-00213118), by BK21 FOUR
Project (No. S-2024-0580-000), and by Samsung electronics.

References
[1] Suraj Nair et al. “Learning Language-Conditioned Robot Behavior from Offline Data and

Crowd-Sourced Annotation”. In: Proceedings of the 5th Annual Conference on Robot Learning.
2021.

[2] Divyansh Garg et al. “LISA: Learning Interpretable Skill Abstractions from Language”. In:
Proceedings of the 36th Conference on Neural Information Processing System. 2022.

[3] Edwin Zhang et al. “Language Control Diffusion: Efficiently Scaling through Space, Time,
and Tasks”. In: Proceedings of the 12th International Conference on Learning Representations.
2024.

[4] Jiaming Song et al. “Loss-Guided Diffusion Models for Plug-and-Play Controllable Genera-
tion”. In: Proceedings of the 40th International Conference on Machine Learning. 2023.

[5] Ziyuan Zhong et al. “Language-Guided Traffic Simulation via Scene-Level Diffusion”. In:
Proceedings of the 7th Annual Conference on Robot Learning. 2023.

[6] Lili Chen, Shikhar Bahl, and Deepak Pathak. “PlayFusion: Skill Acquisition via Diffusion
from Language-Annotated Play”. In: Proceedings of the 7th Annual Conference on Robot
Learning. 2023.

[7] Zhaoxun Ju et al. “Rethinking Mutual Information for Language Conditioned Skill Discov-
ery on Imitation Learning”. In: Proceedings of the 38th Annual Conference on Artificial
Intelligence. 2024.

[8] Zhixuan Liang et al. SkillDiffuser: Interpretable Hierarchical Planning via Skill Abstractions
in Diffusion-Based Task Execution. 2023. arXiv: 2312.11598.

[9] Wenlong Huang et al. “VoxPoser: Composable 3D Value Maps for Robotic Manipulation with
Language Models”. In: Proceedings of the 7th Conference on Robot Learning. 2023.

10

https://arxiv.org/abs/2312.11598

[10] Wenke Xia et al. “Language to Rewards for Robotic Skill Synthesis”. In: Proceedings of the
IEEE International Conference on Robotics and Automation. 2024.

[11] Jacky Liang et al. “Code as Policies: Language Model Programs for Embodied Control”. In:
Proceedings of the IEEE International Conference on Robotics and Automation. 2023.

[12] Kevin Lin et al. Text2Motion: From Natural Language Instructions to Feasible Plans. 2023.
arXiv: 2303.12153.

[13] Junting Chen et al. “Language to Rewards for Robotic Skill Synthesis”. In: Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics. 2024.

[14] Wenke Xia et al. Kinematic-aware Prompting for Generalizable Articulated Object Manipula-
tion with LLMs. 2024. arXiv: 2311.02847.

[15] Jonathan HO, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Models”. In:
Proceedings of the 34th Conference on Neural Information Processing System. 2020.

[16] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising diffusion implicit models”. In:
Proceedings of the 9th International Conference on Learning Representations. 2021.

[17] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. 2022. arXiv: 2207.
12598.

[18] Manuel Brack et al. “SEGA: Instructing Diffusion using Semantic Dimensions”. In: Pro-
ceedings of the 34th IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2023.

[19] Anurag Ajay et al. “Is Conditional Generative Modeling all you need for Decision-Making?”
In: Proceedings of the 11th International Conference on Learning Representations. 2023.

[20] Cheng Lu et al. “Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling
in Offline Reinforcement Learning”. In: Proceedings of the 40th International Conference on
Machine Learning. 2023.

[21] Zhendong Wang, Jonathan J. Hunt, and Mingyuan Zhou. “Diffusion Policies as an Expressive
Policy Class for Offline Reinforcement Learning”. In: Proceedings of the 11th International
Conference on Learning Representations. 2023.

[22] ZMichael Janner et al. “Planning with Diffusion for Flexible Behavior Synthesis”. In: Pro-
ceedings of the 39th International Conference on Machine Learning. 2022.

[23] Zhixuan Liang et al. “AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners”.
In: Proceedings of the 40th International Conference on Machine Learning. 2023.

[24] Chang Chen et al. “Simple Hierarchical Planning with Diffusion”. In: Proceedings of the 12th
International Conference on Learning Representations. 2024.

[25] Woo Kyung Kim, Minjong Yoo, and Honguk Woo. “Robust Policy Learning via Offline Skill
Diffusion”. In: Proceedings of the 38th Annual Conference on Artificial Intelligence. 2024.

[26] Prafulla Dhariwal and Alexander Quinn Nichol. “Diffusion Models Beat GANs on Image
Synthesis”. In: Proceedings of the 35th Conference on Neural Information Processing System.
2021.

[27] Omri Avrahami, Dani Lischinski, and Ohad Fried. “Blended Diffusion for Text-driven Editing
of Natural Images”. In: Proceedings of the 33th IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022.

[28] Alexander Quinn Nichol et al. “GLIDE: Towards Photorealistic Image Generation and Editing
with Text-Guided Diffusion Models”. In: Proceedings of the 33th IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2022.

[29] Hyungjin Chung et al. “Diffusion Posterior Sampling for General Noisy Inverse Problems”. In:
Proceedings of the 11th International Conference on Learning Representations. 2023.

[30] Hyungjin Chung et al. “Improving Diffusion Models for Inverse Problems using Manifold
Constraints”. In: Proceedings of the 36th Conference on Neural Information Processing System.
2022.

[31] Fei Ni et al. “MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL”. In:
Proceedings of the 40th International Conference on Machine Learning. 2023.

[32] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov Decision Processes.
2015. arXiv: 1502.02259.

[33] Siyuan Zhou et al. “Adaptive Online Replanning with Diffusion Models”. In: Proceedings of
the 37th Conference on Neural Information Processing System. 2023.

11

https://arxiv.org/abs/2303.12153
https://arxiv.org/abs/2311.02847
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/1502.02259

[34] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. 2015. arXiv: 1505.04597.

[35] Yoshua Bengio and Yann LeCun. “Auto-Encoding Variational Bayes”. In: Proceedings of the
2nd International Conference on Learning Representations. 2014.

[36] Irina Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained Variational
Framework”. In: Proceedings of the 4th International Conference on Learning Representations.
2016.

[37] Alec Radford et al. “Learning Transferable Visual Models From Natural Language Supervi-
sion”. In: Proceedings of the 38th International Conference on Machine Learning. 2021.

[38] Jason Wei et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”.
In: Proceedings of the 36th Conference on Neural Information Processing System. 2022.

[39] Tianhe Yu et al. “Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Rein-
forcement Learning”. In: Proceedings of the 3rd Conference on Robot Learning. 2019.

[40] Lili Chen et al. “Decision Transformer: Reinforcement Learning via Sequence Modeling”. In:
Proceedings of the 35th Conference on Neural Information Processing System. 2021.

[41] Tom B. Brown et al. “Language Models are Few-Shot Learners”. In: Proceedings of the 34th
Conference on Neural Information Processing System. 2020.

[42] OpenAI et al. GPT-4 Technical Report. 2024. arXiv: 2303.08774.
[43] Sangwoo Shin et al. “One-shot Imitation in a Non-Stationary Environment via Multi-Modal

Skill”. In: Proceedings of the 40th International Conference on Machine Learning. 2023.
[44] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI blog

1.8 (2019), p. 9.
[45] Mohsen Soori, Behrooz Arezoo, and Roza Dastres. “Optimization of energy consumption in

industrial robots, a review”. In: Cognitive Robotics 3 (2023), pp. 142–157.
[46] Yecheng Jason Ma et al. Eureka: Human-Level Reward Design via Coding Large Language

Models. 2023. arXiv: 2310.12931.
[47] Wenhao Yu et al. “Language to Rewards for Robotic Skill Synthesis”. In: Proceedings of the

7th Annual Conference on Robot Learning. 2023.

12

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2310.12931

A Benchmark environments

In this section, we provide detailed information about our environment settings, dataset collection
strategy, and context configurations used for zero-shot evaluation.

A.1 MetaWorld

For evaluation, we use MetaWorld [39], where an agent is tasked with manipulating an object to
achieve a given goal. We use 10 different manipulating goals in MetaWorld including press button,
open window, close window, open door, open drawer, close drawer, pick place cube, insert peg, push
cube, open faucet. The left side of Figure 6 illustrates several manipulating goals in MetaWorld.
For zero-shot evaluation, we utilize all manipulating goals for language contexts and select two
manipulating goals for multi-modal contexts.

A.2 Multi-stage MetaWorld

To evaluate long-horizon secenarios, we modify MetaWorld to configure the long-horizon goals [43].
Each goal in the multi-stage Metaworld consists of four existing MetaWorld sub-goals including slide
puck, close drawer, push button and insert peg. The agent is then tasked to complete these sub-goals
in a specified order. We use 3 different long-horizon goals in this multi-stage MetaWorld, each with a
unique sub-task completion sequence. The goal description for multi-stage MetaWorld is formed by
concatenating the descriptions of the sub-goals in the specified order, such as “close drawer and insert
peg and push button and slide puck”. The right side of Figure 6 illustrates an example of long-horizon
goal used in the multi-stage MetaWorld. For zero-shot evaluation, we utilize all three long-horizon
goals for language contexts and one long-horizon goal for multi-modal context.

Figure 6: Visualization of Benchmark Environments

A.3 Dataset collection

To generate training datasets, we implement rule-based policies for each goal in Metaworld and
multi-stage MetaWorld. These rule-based policies are configured using 6 different skill primitives:
move along the x-axis, move along the y-axis, move along the z-axis, push, pull, and grab. Each skill
primitive operates based on Proportional-Integral-Derivative (PID) control. To emulate diverse expert
behaviors, we vary the speed of the agent, as well as the position and weight of the manipulation
objects. For each goal, we collect 60 successful trajectories.

A.4 Context configuration

We configure various contexts specified in natural language to evaluate the zero-shot adaptability of
LDuS and the baselines. These contexts are defined based on different specification levels (abstract

13

and precise), multi-modality, and varied temporal conditions. To assess whether LDuS and the
baselines align with the given context, we manually design context-specific reward functions for each
scenario.

For precise contexts, a concrete user requirement is given with a numerical value. We define four
different precise contexts as follows:

• The agent should move at a speed slower than x m/s

• The agent should move at a speed greater than x m/s

• The agent should move at a speed faster than x m/s but slower than x m/s

• The agent should move at speed along the y-axis a minimum of x m/s.

Here, x is filled with different numerical values, depending on the specific goal and the context. To
configure the zero-shot adaptation settings, we test the model with speeds different from those used
in the training dataset.

For abstract contexts, a user requirement is conveyed with some degree of ambiguity. We define two
different abstract contexts as follows:

• I want to be relaxed, but the agent is too distracting.

• I’m very busy, the agent should hurry up.

For multimodal context, the agent is required to exert greater force only when in context with the
manipulating object, aiming to minimize energy consumption of the end executor. In this scenario,
the agent utilizes image input to determine whether it is in context with the manipulating object.

• The agent should exert a greater speed of x m/s only when in contact with the object.

For temporally varying context, the context changes over time to one of the precise contexts.

B Implementation details

In this section, we provide the implementation details of LDuS and other baselines, along with the
hyperparameter settings used for training. All experiments are conduced on a system equipped with
an Intel(R) Core(TM) i9-10980XE CPU and an NVIDIA RTX A6000 GPU.

B.1 LangDT

We implement LangDT based on Decision Transformer [40]. LangDT consists of a single decision
transformer, built on GPT-2 [44], conditioned by the goal specified in language. Since LangDT is
trained solely by conditioning on goals, which are the only language annotations in the dataset, it
struggles with unseen contexts. Therefore, for zero-shot evaluation, we condition the model solely on
the given goal. The hyperparameter settings for LangDT are summarized in Table 6 Note that short
refers to MetaWorld, while long refers to multi-stage MetaWorld.

Table 6: Hyperparameter settings for LangDT

Hyperparameter Value
Total timesteps 1e6
Batch size 8 (per goal)
Learning rate 3e-5
Embedding size 128
Hidden size 512
Number of heads 4
Number of layers 2
Planning horizon 8 (short), 16 (long)

14

B.2 LISA

We implement LISA [2] using the open source project 2. LISA consists of a skill predictor and a
policy, both implemented with causal transformers. The skill predictor generate discrete skill codes
given a goal and a current state. Then, the policy generates a h-length skill based on the predicted
skill code. Similar to LangDT, LCD is evaluated by conditioning the model solely on the goal. The
hyperparameter settings for LISA are summarized in Table 7.

Table 7: Hyperparameter settings for LISA

Hyperparameter Value
Epoch 2500
Batch size 8 (per goal)
Policy learning rate 1e-4
Skill predictor learning rate 1e-4
Language model learning rate 1e-6
Skill horizon 10
Number of skills 20

B.3 LCD

We implement LCD [3] using the open source projects Jax 3 and Haiku 4. LCD consists of a diffusion
model, which generates a state trajectory given a current state and a goal, and an inverse dynamics
mode, which reconstructs actions given a pair of states. For zero-shot adaptation, we implement LCD
controlled with a loss function, denoted as LCD+Guidance in the main manuscript. The loss functions
are hand-designed for each context, and loss guidance is applied at each denoising timestep of the
diffusion model, following the same approach as in the loss-guided trajectory generation process of
LDuS. The hyperparameter settings for LCD are summarized in Table 8.

Table 8: Hyperparameter settings for LCD

Hyperparameter Value
Total timesteps 1e6
Batch size 8 (per goal)
Learning rate 3e-5
Denoising timesteps 20
Variance scheduler cosine
Planning horizon 8 (short), 16 (goal)

B.4 Diffuser

We implement Diffuser [22] using the open source projects Jax and Haiku. Diffuser is butile with
a diffusion model that generates a trajectory given a current state and a goal. Similar to LCD,
we implement Diffuser controlled with a manually designed loss function, which is denoted as
Diffuser+Guidance in the main manuscript. The hyperparameter settings for Diffuser are summarized
in Table 9.

B.5 Kinematic-LLM

We implement Kinematic-LLM [14] using GPT-3.5 [41]. Kinematic-LLM consists of a kinematic
knowledge parser and a kinematic-aware planner. The kinematic knowledge parser generates an XML
file that describes the current state of the environment, including details about the kinematic properties

2https://github.com/Div99/LISA
3https://github.com/google/jax
4https://github.com/google-deepmind/dm-haiku

15

Table 9: Hyperparameter settings for Diffuser

Hyperparameter Value
Total timesteps 1e6
Batch size 8 (per goal)
Learning rate 3e-5
Skill embedding size 128
Denoising timesteps 20
Variance scheduler cosine
Planning horizon 8 (short), 16 (long)

of both the manipulating object and the agent. Following this, the kinematic-aware planner generates
an abstract manipulation sequence along with 3D manipulation waypoints. The abstract manipulation
sequence provides the description of the procedure, while the 3D manipulation waypoints give
the numerical values of the skill primitives in a structured format. The LLM is prompted with the
generated XML file containing current kinematic information, a goal description, the available skill
primitive, and sufficient in-context samples. For skill primitives, we use the 6 different skills defined
for rule-based expert policy emulation, as described in Section A.3. To evaluate zero-shot performance
on unseen contexts, the language context is concatenated to the goal description. Below, we provide
the prompt used for Kinematic-LLM.

N Number of In -context Samples

In -context Sample 1

Goal Description:
Faucet Open

Object Kinematic Knowledge:
<hand pos="0.006 0.400 0.195"/>
<joint pos="0.007 0.839 0.124" type="hinge" range=" -1.57 1.57"
axis="0 0 1"/>
<faucet pos="0.007 0.689 0.124"/>

Guidance:
First generate abstract sequence , further convert into waypoints

Actions for execution:
[MOVE_X] target_x (grab)
[MOVE_Y] target_y (grab)
[MOVE_Z] target_z (grab)
[GRIP]
[PUSH] target_x target_y target_z (grab)
[PULL] target_x target_y target_z (grab)

Abstract Manipulation Sequence:
1 Align with faucet ’s y position (0.689)
2. Go to faucet ’s x position (0.007)
3. Go smaller x value than faucet ’s x position (-0.093)
4. Align with faucet ’s z position (0.124)
5. Now push the faucet toward front left direction (0.207 , 0.889,
0.124)

3D Manipulation Waypoints:
[MOVE_Y] 0.683
[MOVE_X] 0.007
[MOVE_X] -0.093
[MOVE_Z] 0.124
[PUSH] 0.207 0.889 0.124

In -context Sample 2
...

16

In -context Sample N
...

It is your turn to generate the waypoints for the specified task.

You should fill in Abstract Manipulation Sequence and 3D
Manipulation Waypoints sections.

Goal Description:
Faucet Open

Object Kinematic Knowledge:
<hand pos="0.006 0.400 0.195"/>
<joint pos=" -0.013 0.840 0.124" type="hinge" range=" -1.57 1.57"
axis="0 0 1"/>
<faucet pos=" -0.013 0.690 0.124"/>

Guidance:
First generate abstract sequence , further convert into waypoints

Actions for execution:
[MOVE_X] target_x (grab)
[MOVE_Y] target_y (grab)
[MOVE_Z] target_z (grab)
[GRIP]
[PUSH] target_x target_y target_z (grab)
[PULL] target_x target_y target_z (grab)

Abstract Manipulation Sequence:

3D Manipulation Waypoints:

Listing 1: The prompt used for Kinematic-LLM

B.6 LDuS

We implement LDuS using the open source projects Jax and Haiku. LDuS consists of a skill encoder
based on an LSTM, a skill prior based on MLPs, and a skill diffusion planner. At test-time, the skill
prior is used to predict the skill embedding given a goal and a current state. Then, the skill diffusion
planner generates skill trajectory based on the skill embedding. To embed goals specified in language,
we utilize CLIP [37]. The hyperparameter settings for LDuS are summarized in Table 10.

Table 10: Hyperparameter settings for LDuS

Hyperparameter Value
Total timesteps 1e6
Batch size 8 (per goal)
Learning rate 3e-5
Input embedding size 128
Skill embedding size 64
Hidden size 128
Denoising timesteps 20
Variance scheduler cosine
Planing horizon 8 (short), 16 (long)

Translation of context to loss function. We manually design queries that describe the specifications
of the agent and the desired format of the loss function. These queries are used in chain-of-thought
(CoT) prompting to guide the LLM in generating a loss function form a given context. We utilize
GPT-3.5 [41]. Below, we present the prompt used to translate contexts to loss functions for LDuS.

17

Query 1: "The shape of the action sequence of the agent is (B, H, 4)
where B is the batch size , H is the number of sequences , and 4
represents the (x, y, z, grab on/off) in corresponding agent
coordinate of the agent. Explain the configuration the agent ’s
action"

Query 2: "The agent should satisfy the given user requirement. The
user requirement is given as follows: [context]. Note that the
speed of the agent is determined by the L2 norm of the actions. In
order to satisfy the user requirement , what should be considered?

"

Query 3: "Now , generate a loss function that guides the generating
trajectory to satisfy the given user requirement. Generated Python
based loss function should follow the following format: ‘def

_loss_fn(x, obs_dim): act = [x:,:,obs_dim] return loss ’, where act
is a numpy array representing the action sequences."

Listing 2: The prompt used for generating loss function

Then, the generated loss function is used to guide the generation process of our skill diffusion planner.
Below, we present an example of code generated by the LLM.

Goal Description
Faucet Open

Context:
The agent should move at a speed faster than 0.38 but slower than

0.40.

Generated Loss Function:
def _loss_fn(x, obs_dim):

act = x[:,:,obs_dim]
speed = np.linalg.norm(act , axis=-1)
min_speed = 0.38
max_speed = 0.40
loss = np.maximum(speed - max_speed , 0) + jnp.maximum(min_speed -
speed , 0)
return np.mean(loss)

Listing 3: An example of code generated by the LLM

Loss-guided skill trajectory generation. We implement the loss-guided skill trajectory generation
based on previous studies [4, 29]. In practice, instead of predicting noise from a noise-corrupted
trajectory xk, our skill diffusion planner reconstructs the original trajectory x0 to ensure robust
generation. Thus, we do not need to explicitly calculate x̂0 from xk, and the loss-guidance is directly
applied to the output of the skill diffusion planner. The frequency of guidance applications, denoted
as n, is determined by an iterative refinement procedure, where n is gradually increasedfrom 1
to a pre-defined maximum value until the generated trajectory aligns with the given context. The
procedure of loss-guided skill trajectory generation is summarized in Algorithm 2.

Closed-loop iterative refinement. We use an LLM to detect errors in the loss function and identify
any mismatch between the generated trajectory and the given context. Below, we present the prompt
used to regenerate the loss function when LDuS detects such errorsn.

Query : "The previously generated code has an error. Regenerate the
Python code. Note that the user requirement was [context]."

Listing 4: The prompt used to detect error in the loss function

Below, we present the prompt use to detect a mismatch. If a mismatch is found between the generated
trajectory with guidance and the context, the frequency of the guidance application is increased. This
validation process is conducted every h steps using the LLM.

18

Algorithm 2 Loss-guided skill trajectory generation
1: Inputs: skill diffusion planner ϵ(xk, k, z), loss function ℓ, total denoising timestep K, guidance

weight δ, frequency for guidance application n
2: xK ∼ N (0, I)
3: for k = K − 1, ..., 0 do
4: xk

s0:sm ← s0:m
5: ϵ̃← ϵ(xk, k, z)
6: for i = 1, ...n, do
7: ϵ̃← ϵ̃− δ∇xkℓ(x̂0 = ϵ̃)
8: η ∼ N (0, I)

9: xk−1 ←
√
αk(1−ᾱk−1)

1−ᾱk xk +
√
αk−1βk

1−ᾱk ϵ̃+ σkη

10: return x0

Query 1: "The originally generated trajectory is [unguided trajectory]
and modified trajectory is [trajectory with guidance]. Did the

modified action satisfy the given user requirement? The user’s
requirement is [context]."

Query 2: "According to the answer above , did the modified action meet
user’s requirement? Answer with ‘Yes’ or ‘No’".

Listing 5: The prompt used to detect a mismatch between generated trajectory and the context

Multi-modal context. For a multi-modal context, LDuS needs to determine whether the agent
is in contact with the manipulating object from an image input. We utilize GPT-4 [42], as it can
concurrently process both image and text inputs. If the LLM detects that the agent is in contact with
the object, the loss-guidance is applied. Initially, we generate a caption describing the image using
the LLM. Then, we prompt the LLM to assess whether the agent is in contact with the object based
on the caption. To further enhance the reasoning capability of the LLM, we prompt the LLM with the
previous image and the corresponding answer to better understand the context of the current image.
Below, we present the prompt used for a multi-modal context.

Caption : "In the image , the red robot arm is attempting to close the
green drawer with white drawer handle. The robot’s arm has a
cylindrical blue and white tool attached to its end , which is
called as an end effector. The background is an indoor setting
with a wooden floor and a gray wall."

Query : "[caption]. [current image] Given the image , is the robot
contacting on the handle of the drawer? [previous image] The
asnwer for the previous image was ‘No ’."

Listing 6: The prompt used for multi-modal context

C Additional experiments

C.1 Detailed experiment results

Table 11 and 12 shows the detailed experiment results in MetaWorld and multi-stage MetaWorld,
respectively, under the conditions where no contexts are provided. As shown, LDuS consistently
achieves the best performance in SR for all goals. The low performance of LangDT and LISA
is attributed to the multi-modal nature of the dataset, which hinders the learning of policies built
with MLPs or transformers. LCD and Diffuser mitigate this issue to some extent by employing the
diffusion models, but their performance is still lower compared to LDuS. This performance gap is
more pronounced in multi-stage MetaWorld. This is because LDuS leverages as sequential in-painting
method, which contributes to more robust trajectory generation.

Table 13 and 14 show the detailed experiment results in MetaWorld under precise language contexts,
as described in A.4. In these table, we report the results of LCD and Diffusion with guidance only,

19

Table 11: Performance without context in MetaWorld

Method Press Button Open Window Close Window Open Door Open Drawer

LangDT 36.7± 5.5% 68.3± 9.7% 83.3± 8.5% 6.7± 3.1% 23.3± 8.6%
LISA 27.8± 9.2% 19.4± 12.4% 30.6± 14.8% 8.3± 4.7% 5.5± 6.0%
LCD 31.6± 12.0% 60.0± 11.0% 93.3± 3.1% 20.0± 8.8% 36.7± 2.4%
Diffuser 96.7± 2.4% 100.0± 0.0% 100.0± 0.0% 100.0± 0.0% 93.3± 4.9%

LDuS (ours) 100.0± 0.0% 100.0± 0.0% 100.0± 0.0% 80.0± 0.0% 100.0± 0.0%

Method Close Drawer Pick Place Cube Insert Peg Push Cube Open Faucet

LangDT 40.0± 5.7% 45.0± 15.1% 3.3± 2.4% 41.6± 12.5% 33.3± 3.1%
LISA 8.3± 4.7% 0.0± 0.0% 0.0± 0.0% 0.0± 0.0% 11.1± 8.1%
LCD 90.0± 3.3% 41.6± 14.2% 33.3± 14.9% 53.3± 14.9% 70.0± 4.3%
Diffuser 80.0± 0.0% 83.3± 8.1% 86.6± 9.7% 91.7± 5.3% 90.0± 3.3%

LDuS (ours) 100.0± 0.0% 96.7± 2.4% 93.3± 4.9% 100.0± 0.0% 100.0± 0.0%

Table 12: Performance without context in multi-stage MetaWorld: We abbreviate each goal by using
initials of its words (e.g. “Close Drawer” is CD, and “Push Button” is PB)

Method CD-SP-IP-PB SP-CD-PB-IP PB-CD-SP-IP

LangDT 12.5± 3.9% 4.2± 2.5% 0.8± 0.6%
LISA 0.7± 0.8% 1.4± 1.5% 1.4± 1.5%
LCD 40.0± 3.7% 43.3± 3.4% 22.5± 2.6%
Diffuser 46.7± 1.4% 36.7± 5.1% 23.3± 4.7%

LDuS (ours) 78.3± 1.4% 75.0± 3.5% 92.5± 2.4%

as they are the most comparable baselines. As shown, LDuS consistently delivers robust zero-shot
performance in both CR and SR across all configurations. In multi-stage MetaWorld, the performance
fluctuates in the baselines, due to their limited ability to generate plans for long-horizon goals.

Table 13: Zero-shot performance with language context in MetaWorld

Method Context1 Context2

CR SR (%) CR SR (%)

LCD + Guidance 30.6± 8.5 55.7± 8.8% 34.7± 4.5 53.7± 8.4%
Diffuser + Guidance 64.0± 3.0 57.7± 8.4% 63.5± 6.6 91.5± 2.6%

LDuS (ours) 82.1± 5.9 94.3± 1.7% 91.0± 1.7 96.3± 1.0%

Method Context3 Context4

CR SR (%) CR SR (%)

LCD + Guidance 49.1± 3.5 53.8± 8.1% 53.8± 2.3 45.7± 9.3%
Diffuser + Guidance 73.8± 3.7 85.1± 6.4% 77.8± 3.6 86.7± 4.7%

LDuS (ours) 86.7± 3.2 96.7± 0.8% 89.6± 2.0 90.0± 3.6%

Table 14: Zero-shot performance with language context in multi-stage MetaWorld

Method Context1 Context2

CR SR (%) CR SR (%)

LCD + Guidance 58.2± 1.4 35.3± 2.7% 20.5± 8.2 35.3± 1.9%
Diffuser + Guidance 48.1± 3.4 10.6± 1.8% 43.2± 3.4 62.8± 3.8%

LDuS (ours) 75.1± 3.2 87.0± 3.2% 88.9± 2.5 81.0± 3.6%

20

C.2 Performance on different context types

In Table 15, we present additional experiments involving two different context types: energy con-
straints and spatial limitations. We conduct these experiment on a single task in MetaWorld. For
the energy context, the agent aims to minimize its energy consumption by reducing acceleration
or deacceleration [45]. For the spatial context, the agent is tasked with stying within a specified
spatial boundary without crossing it. As shown, LDuS outperforms the baselines in CR and SR,
demonstrating its scalability cross diverse context types.

However, for complex tasks such as dexterous control, interactions with the environment [46] or AP
functions [47] are necessary. This is because LLMs are not inherently grounded in these complex
environments, making it challenging for them to directly generate directly loss functions. We believe
that incorporating such approaches will enable LDuS to accommodate more complex tasks, which
we plan to explore as part of our future research directions.

Table 15: Zero-shot performance with energy and spatial context in MetaWorld

Method Energy Context Spatial Context

CR SR (%) CR SR (%)

LCD + Guidance 56.3± 0.3 66.7± 30.8% 29.4± 38.8 33.3± 0.0%
Diffuser + Guidance 62.3± 0.3 66.7± 30.8% 75.4± 37.5 100.0± 0.0%

LDuS (ours) 88.8± 0.1 100.0± 0.0% 87.0± 16.6 100.0± 0.0%

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction include claims made in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We include the limitations of our work in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

22

Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include details of our environment settings and implementation with
hyperparameter settings in Appendix A and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

23

Answer: [Yes]
Justification: We submit the code and shows the details of our implementations in Ap-
pendix B.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include how we emulate the dataset and how we evaluate the models in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We include the confidence interval in our tables of the main manuscript.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We include the details of our computer resources in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed in our work

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

25

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include the url of open source projects in Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

26

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Related work
	Language-conditioned skill learning
	Guided control for diffusion models

	Preliminaries
	Problem formulation
	Diffusion probabilistic models

	Our approach
	Overall framework
	Skill learning via diffusion planner
	Policy adaptation via LLM-guided diffusion

	Experiments
	Experiment Settings
	Main results
	Ablation study

	Conclusion and limitations
	Benchmark environments
	MetaWorld
	Multi-stage MetaWorld
	Dataset collection
	Context configuration

	Implementation details
	LangDT
	LISA
	LCD
	Diffuser
	Kinematic-LLM
	LDuS

	Additional experiments
	Detailed experiment results
	Performance on different context types

