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Abstract

Large Language Models (LLMs) are recognized for their potential to be an im-
portant building block toward achieving artificial general intelligence due to their
unprecedented capability for solving diverse tasks. Despite these achievements,
LLMs often underperform in domain-specific tasks without training on relevant
domain data. This phenomenon, which is often attributed to distribution shifts,
makes adapting pre-trained LLMs with domain-specific data crucial. However, this
adaptation raises significant privacy concerns, especially when the data involved
come from sensitive domains. In this work, we extensively investigate the privacy
vulnerabilities of adapted (fine-tuned) LLMs and benchmark privacy leakage across
a wide range of data modalities, state-of-the-art privacy attack methods, adaptation
techniques, and model architectures. We systematically evaluate and pinpoint criti-
cal factors related to privacy leakage. With our organized codebase and actionable
insights, we aim to provide a standardized auditing tool for practitioners seeking to
deploy customized LLM applications with faithful privacy assessments.

1 Introduction

The rapid evolution of large language models (LLMs) has made them fundamental to many modern
natural language processing tasks [1, 2]. These capabilities are typically powered by vast amounts of
model parameters, scaling to trillions, and intensive pre-training on massive text corpora (e.g., nearly
a terabyte of English text [3]). However, the large-scale pre-training required for these models incurs
significant computational costs, making it financially prohibitive for most practitioners. Additionally,
pre-trained models often need additional fine-tuning to achieve satisfactory performance in specific
domains [4, 5, 6]. Consequently, the current best practice involves acquiring an open-source LLM as
a pre-trained foundation model and then adapting it for domain-specific data.

However, the common “pre-training, adaptation tuning” pipeline inadvertently raises privacy con-
cerns regarding the leakage of sensitive domain data used for adapting pre-trained LLMs [7, 8, 9,
10, 11]. Indeed, recent research has demonstrated that LLMs can memorize substantial volumes of
sensitive data, leading to a high risk of unintentional privacy leakage to third parties [12, 13, 14].
These issues contribute to the ongoing debate about the privacy implications of LLMs and may trigger
violations of modern privacy regulations, e.g., the General Data Protection Regulation (GDPR),
underscoring the urgent need to address the privacy challenges associated with LLMs.

To analyze the privacy issues related to the usage of LLMs, existing research primarily focuses on the
leakage of pre-training data when querying a deployed general-purpose LLM [12, 14, 13]. Building
on this foundation, in-depth investigations regarding such leakage, with respect to various factors
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including model size and the degree of training data repetition, have been presented [10, 15, 16, 17].
Yet, in the context of fine-tuning/adaptation scenarios, recent privacy risk assessments have typically
been limited to specific model architectures (mainly encoder-based models), a narrow selection of
fine-tuning methods, and a certain choice of attack methods [7, 8, 9, 10, 11, 18]. A comprehensive
benchmark evaluation is still missing, despite its importance for providing critical insights and
accurate privacy assessments to facilitate the practical application of domain-specific LLMs. In
particular, this gap highlights a crucial research question: To what extent, and in what ways, do
different adaptation methods influence the privacy risk of LLMs?

To address the research question, this paper presents, to the best of our knowledge, the first benchmark
investigating the privacy implications of LLM adaptation techniques, accompanied by a comprehen-
sive empirical study. We focus on membership inference attack (MIA) techniques [19], which aim to
determine whether a given query sample was used for adapting the target LLM, due to their popularity
and close relationship to a broader class of topics [12, 20, 21]. Our investigation encompasses
five types of LLMs with different architectures (T5 [3], LLaMA [22], OPT [23], BLOOM [24],
and GPT-J [25]), seven LLM adaptation techniques representative of the current state of the art,
and three datasets from different domains that closely mimic real-world sensitive fields. With our
presented benchmark and comprehensive study, we aim to provide critical insights into the privacy
risks associated with LLM adaptation techniques and guide the secure development of new models.

2 Privacy Measurement for Large Language Models

We evaluate the privacy vulnerabilities of LLMs through the lens of MIAs [19], which are widely
recognized for their extensive applicability. MIAs are also closely associated with other privacy
concerns, such as training data reconstruction [12, 15] and the retrieval of personally identifiable
information [13, 26, 14], underscoring its critical role in privacy assessments.

2.1 Formulation

Notation. We denote fθ as the target language model, parameterized by θ, which starts from a
pre-trained model and is further adapted to a private dataset D. Each text sample x(i) is represented as
a sequence of tokens, i.e., x(i) =(x

(i)
1 , x

(i)
2 , ..., x

(i)
L ). The sample index i may be omitted for clarity

when it is not relevant to the discussion. During inference, the model allows estimating the token
likelihood fθ(xl|x1, ..., xl−1) and generates new text by iteratively sampling x̂l ∼ fθ(xl|x1, ..., xl−1)
conditioned on the prefix (x1, ..., xl−1). Starting with the initial token x1, the model feeds each newly
sampled token x̂l back into itself to generate the subsequent token x̂l+1, continuing this process until
a predetermined stopping criterion is met.

Threat Model. The attacker A aims to determine whether a given query text sample was included
in the private dataset D used to customize the target model for the private domain. We adopt the
conventional threat model where the attacker may have either black-box or white-box access to the
target model. In the black-box scenario, the attacker can access only the model’s output probability
predictions, typically via a prediction API call. In contrast, the white-box scenario permits the attacker
to access the model’s internal structure and parameters.

We follow the standard evaluation framework, where the adversary has access to a query set
S = {(x(i),m(i))}Mi=1. This set includes both member (i.e., seen by the target model fθ) sam-
ples and non-member (unseen) samples drawn from the same data distribution. Each m(i) indicates
the membership status, where m(i) =1 if x(i) is a member. The attack A(x(i), fθ) acts as a binary
classifier, predicting m(i) for a given query sample x(i) with access to the target model.

2.2 Attack Approaches

We conducted a broad literature search to identify representative approaches for membership inference
attacks, aiming to provide a comprehensive benchmark. Below, we present an overview of each
approach under a unified notation to facilitate comprehension and comparison.

Likelihood-based [27]. Given that LLMs are typically trained using a maximum likelihood objective
on the training data, the most basic method for predicting membership involves using the (normalized)
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log-likelihood of the target query sample as the metric: a higher likelihood score indicates a better fit
of the target model fθ on the query data point x =(x1, ..., xL), suggesting it is likely a member of
the training set. Formally, the attack can be summarized as:

A(x, fθ) = 1
[ 1
L

L∑
l=1

log fθ(xl|x1, ..., xl−1) > τL

]
, (1)

where τL denotes the threshold score above which the attack predicts the sample to be a member.

Likelihood with Reference [12]. While the basic likelihood score provides evidence for membership
detection, it often fails to achieve high precision. This is because high-likelihood samples are not
always present in the training data, but can also be uninformative texts frequently encountered in the
pre-training dataset. A natural improvement involves calibrating the likelihood score by comparing it
with the score obtained from a reference model not tailored for the private data. This leads to the
likelihood ratio evaluated on the target versus the reference model. Formally,

A(x, fθ) = 1
[ 1
L

L∑
l=1

(
log fθ(xl|x1, ..., xl−1)− log fϕ(xl|x1, ..., xl−1)

)
> τLref

]
, (2)

where fϕ denotes a reference model not trained on the private dataset and τLref
is the threshold.

Zlib Entropy as Reference [12]. While using a reference for calibrating the inherent frequency
of text is essential for membership inference, it is not necessary to fix the reference to be another
neural language model. In principle, any technique that quantifies the normality or informativeness
for a given sequence can be useful. Following [12], we compute the zlib entropy of the text, which
is the number of bits of entropy when the text sequence is compressed using zlib compression [28].
Subsequently, the ratio of the average negative log-likelihood of a sequence and the zlib entropy is
used as the membership inference metric. Formally,

A(x, fθ) = 1
[
− 1

L

L∑
l=1

log fθ(xl|x1, ..., xl−1)/H(x) < τzlip

]
, (3)

where H(x) denotes the zlib entropy of x.

Neighborhood-based [29]. To account for the normality of text samples for membership inference,
one can calibrate their likelihood scores using their semantic neighbors. This can be achieved by
generating neighbors of the data point and measuring their likelihood scores using the target model,
which then serve as an estimation for the normality of the query text. The neighbors are designed
to preserve semantics and are well-aligned with the context of the original words. These neighbors
are obtained through semantically-preserving lexical substitutions proposed by transformer-based
masked language models [30]. Formally, the membership score is expressed by comparing the
log-likelihood of the query sample to the averaged log-likelihood of its neighbors:

A(x, fθ) = 1
[ 1
L

L∑
l=1

log fθ(xl|x1, ..., xl−1)−
1

kL

k∑
i=1

L∑
l=1

log fϕ(x̃
(i)
l |x̃(i)

1 , ..., x̃
(i)
l−1) > τLnbr

]
,

(4)
where {x̃(i)}ki=1 corresponds to k neighbors of the given sample x.

Min-K% Probability [21]. The MIN-K% Probability score captures the intuition that a non-member
example is more likely to include a few outlier words with high negative log-likelihood (or low
probability), while a member example is less likely to include words with such low likelihood scores.
Following [21], we select the K% of tokens from x with the minimum token probability to form a
set, and compute the average log-likelihood of the tokens in this set

A(x, fθ) = 1
[ 1

|Min-K%(x)|
∑

xl∈Min-K%(x)

log fθ(xl|x1, ..., xl−1) > τMin-K

]
, (5)

where Min-K%(x) denotes the set of tokens with the lowest K% likelihood conditioned on its prefix.

Min-K%++ [31]. In the context of maximum likelihood training, it has been observed that training
samples tend to form local maxima in the modeled distribution along each input dimension. As
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exploring an input dimension can be viewed as substituting the current token with alternative
candidates from the model’s vocabulary, the membership score is defined by the normalized log
probability under the conditional categorical distribution fθ(·|x<l), where a high probability indicates
likely membership. In line with [21], the score is calculated using the Min-K% least probable tokens:

A(x, fθ) = 1
[ 1

|Min-K%(x)|
∑

xl∈Min-K%(x)

log fθ(xl|x1, ..., xl−1)− µ<l

σ<l
> τMin-K++

]
, (6)

while µ<l =Ez∼fθ(·|x<l)[log fθ(z|x<l)] represents the expectation of the next token’s log prob-
ability over the vocabulary of the model given the prefix x<l =(x1, ..., xl−1), and the term
σ<l =

√
Ez∼fθ(·|x<l))[(log fθ(z|x<l)− µ<l)2] is the standard deviation.

Gradient Norm-based [11]. The phenomenon of local minimality at training data points is often
evidenced by the smaller magnitudes of parameter gradients observed at these points [32, 33, 11]. A
practical approach would be to utilize the gradient norm of a target data point as the membership
score. This concept is mathematically represented as follows:

A(x, fθ) = 1
[∥∥− 1

L

L∑
l=1

∇θ log fθ(xl|x1, ..., xl−1)
∥∥ < τgrad

]
. (7)

Notably, computing this gradient requires white-box access to the target model, unlike the previously
mentioned methods, which rely solely on the model’s output predictions.

3 LLM Adaptation Techniques

Existing LLM adaptation techniques can be roughly categorized into regular fine-tuning, parameter-
efficient fine-tuning, and in-context learning. Below, we briefly discuss representative techniques
from each of these categories. For a more detailed comparison of parameter-efficient fine-tuning
techniques, we refer readers to prior work [34].

Regular Fine-tuning. The basic fine-tuning approach involves taking a pre-trained model and
adapting all its parameters for a task-specific downstream dataset, i.e., full fine-tuning. This enables
the model to learn specific patterns in the new data domain, thereby improving its accuracy and
relevance for the target application. However, as models increase in size, full fine-tuning becomes
impractical due to the high computational cost. Additionally, overfitting can become a significant
issue, closely related to privacy vulnerabilities.

Adapter. Adapter-based fine-tuning strategically integrates additional lightweight layers into an
existing model architecture [35, 36, 37], typically by injecting small modules (adapters) between
transformer layers. During fine-tuning, only these adapter layers are updated for domain-specific
data, while the core model parameters remain frozen, which greatly reduces computational overhead
compared to regular fine-tuning.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) [38] is based on the hypothesis that weight
changes during model adaptation exhibit a low “intrinsic rank”. To leverage this, LoRA proposes
integrating trainable low-rank decomposition matrices into each transformer layer to approximate
the weight updates, while only allowing modifications of these low-rank matrices and freezing the
pre-trained weights.

Prompt-based Tuning. Instead of changing the weights of the neural network, prompt-based tuning
[39] typically involves adding specific prompts to the input text to steer the model towards the desired
output. Existing studies commonly prepend tunable continuous task-specific vectors to the input
embeddings (potentially across multiple layers), typically known as “soft prompts”, and optimize
over these continuous prompts while keeping the other pre-trained parameters unchanged during the
fine-tuning process. Specifically, Prompt-tuning [40] prepends the input sequence with special tokens
to form a template and tune the embeddings of these tokens directly. P-tuning [41] adds continuous
prompt embeddings generated from pseudo prompts by a small encoder to the input embeddings
of the model and tunes the prompt encoder. Prefix tuning [42] injects a trainable prefix matrix into
the keys and values of the multihead attention at every layer of the model and updates the injected
trainable prefix matrices.
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Figure 1: An overview pipeline illustrating the workflow of PrivacyAuditor.

In-context Learning. By enabling LLMs to perform diverse tasks through contextual adaptation,
without altering their internal parameters, in-context learning [43] introduces a paradigm shift from
traditional fine-tuning. Instead of performing explicit parameter updates, the model utilizes task-
specific examples and instructions embedded within the input prompt to infer the task requirements.
The key insight lies in the model’s ability to treat these examples as implicit demonstrations, dynami-
cally aligning its behavior with the desired output. This emergent capability makes in-context learning
highly flexible, as it allows the model to generalize effectively from limited examples with minimal
computational overhead, avoiding the computational burden associated with fine-tuning [44].

4 Related Work

Privacy Threat for LLMs. While the rapid development of LLMs has greatly facilitated various
real-world applications, the widespread use of LLMs, especially in sensitive domains such as medical
and finance, has raised serious privacy concerns. It is notorious that large neural networks tend
to unintentionally memorize their training data (beyond learning the general patterns essential for
conducting the target tasks), which raises vulnerabilities to privacy attacks such as membership
inference [19, 7, 8, 9, 18, 21, 29, 45, 46, 47, 48, 49, 50, 51, 52], personal identifiable information
retrieval [13, 14, 53, 54], and training data extraction [11, 12, 15, 53].

Membership Inference in LLMs. Membership inference is a commonly studied privacy attack,
which is closely related to other topics such as training data extraction (by serving as an intermediate
step) [12], examining data contamination [21] (i.e., whether the testing data have been seen by the
target model), and theoretical privacy notions like differential privacy [20] (which by construction
should provide privacy guarantees in the context of training data membership). While recent studies
have investigated such attacks for data used for model pre-training [46, 21, 50, 51, 52, 55] and
fine-tuning [7, 8, 9, 10, 11], they are focusing on specific attack strategies, a limited set of fine-
tuning techniques (typically full fine-tuning or tuning the top layers) and particular model types (e.g.,
pre-trained encoders), which may not faithfully reflect the existing progress of such investigation.

To address this gap, our work considers a broad range of representative recent adaptation techniques
and attack methods. This includes literature that may not directly focus on membership inference
but is applicable to it. Our investigation aims to provide a more comprehensive understanding of
potential privacy threats related to membership leakage when using LLMs.

5 Experiments

5.1 Setup

Datasets. In contrast to previous studies, which have primarily focused on less sensitive datasets
such as News and Wikipedia, our study is dedicated to a detailed evaluation of private data leakage
risks in environments that handle highly sensitive and valuable private information. Specifically, we
conduct experiments on the following adaptation datasets D: Sujet-finance-instruct-177k (Suject
Finance) [56], Corporate Climate Policy Engagement (CorpClimate) [57], as well as Synthetic-Text-
to-SQL (SQL) [58]. Our selection process aimed to minimize potential overlap with the pre-training
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datasets and ensure a more accurate evaluation of membership. Specifically, all the chosen fine-tuning
datasets were released after the pre-trained models were developed, reducing the risk of shared
content. Additionally, the datasets underwent extensive pre-processing to further minimize the chance
of overlapping data points, even if they might originate from similar sources. We also included
synthetic data with a specific structure that is unlikely to derive from web-based sources, ensuring
further independence from the data used in pre-training.

Models. We consider the two predominant LLM architectures: decoder-only and encoder-decoder
LLMs and conduct experiments on foundation models including T5 [3], LLaMA [22], OPT [23],
BLOOM [24], and GPT-J [25], each configured with different numbers of model parameters. All the
open-source pre-trained LLMs are downloaded from Huggingface1. All experiments are conducted
on a computing cluster with 4 Nvidia A100 80G with 512G memory. More details are included in the
supplementary materials.

Evaluation Configuration. We evaluate the target LLMs’ test accuracy on the test portion of the
adaptation datasets as the utility metric. For evaluating privacy, following the common evaluation
standard for membership inference attacks, we composed an evaluation query set S comprising
an equal number of member and non-member samples (defaulting to 1000 each), while limiting
the sample size to 10 for in-context learning experiments due to memory constraints. The member
samples are uniformly sampled from the training dataset, while the non-member samples are randomly
selected from the test portion of the datasets, ensuring they were not used in training. Privacy leakage
is evaluated using standard metrics [46], including attack Area under the ROC Curve (AUC-ROC),
False Positive Rate at low True Positive Rate (FPR@0.1%TPR, and FPR@1%TPR).

Attack and Adaptation Techniques. We evaluate the following attack methods as outlined in
Section 2.2: Likelihood (Equation 1), Likelihood-ref (Equation 2), Zlib Entropy (Equation 3),
Neighborhood (Equation 4), Min-K (Equation 5), Min-K++ (Equation 6), Gradient-Norm (Equa-
tion 7) as outlined in Section 2.2. As introduced in Section 3, we evaluate the following representative
adaptation techniques: full fine-tuning (Full), only updating the attention heads of the top-2 layers
(Top2Head-tuning), adapter-based technique (Adapter-H [35]), Prefix-tuning [42], LoRA [38],
P-tuning [41], Prompt-tuning [40], and in-context learning [43]. Note that all the aforementioned
attack methods require black-box access to the target model, except for the Gradient-Norm method.
This exception may render the Gradient-Norm method inapplicable to typical in-context learning
scenarios where no parameter updates are performed. We use the default parameters from the original
implementations. More details can be found in the supplementary materials.

5.2 Benchmark Design

To systematically assess data leakage risks across various fine-tuning approaches in LLMs, we present
experiments designed to answer the following research questions.

RQ1: Is Private Data Used for Adapting LLMs Vulnerable to Leaks?

Motivation. Although LLMs demonstrate promising capabilities in generalizing across multiple
tasks, adapting them to specific domain applications remains essential due to non-negligible domain
shifts [59]. Since domain data is a crucial asset for data owners and typically contains sensitive
information, it is vital to assess the extent to which this data can be leaked from the product model.

Approach. We first adopt the arguably most competitive lightweight fine-tuning technique, namely
LoRA, to generate target downstream models across different datasets. Then, we visualize the
data distributions of the member and non-member likelihood scores and inspect whether systematic
differences exist that can be used as clues for detecting membership. Subsequently, we employ
various state-of-the-art MIAs to measure the extent of private domain information leakage.

RQ2: Do Different Adaptation Techniques Vary in Their Downstream Privacy Vulnerability?

Motivation. Different adaptation techniques involve distinct design patterns, introduce varying com-
putational costs, and achieve unequal target performance. While these aspects have been extensively
compared in existing literature on (parameter-efficient) fine-tuning techniques, the corresponding
privacy implications have not been thoroughly investigated. Therefore, we design experiments to
examine how various adaptation methods affect the effectiveness of privacy attacks.

1https://huggingface.co/models
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Figure 2: The likelihood score distribution of member and non-member data in Llama-7b fine-tuned
with LoRA on different datasets.
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Figure 3: Overview of the attack performance across different LLMs and datasets.

Approach. We provide a unified implementation of representative adaptation techniques with varying
amounts of trainable parameters. We then compare the performance of MIAs and model utility across
various datasets and evaluation metrics under fair comparison conditions.

RQ3: What Factors Potentially Affect Privacy Vulnerability in LLM Adaptation?

Motivation. Besides knowing “whether” different LLM adaptation techniques affect the privacy
vulnerability of the resulting product LLM, it is also crucial to understand “how” and “why”.
Investigating the potential factors that influence such vulnerability is essential, as understanding these
factors is beneficial for developing more robust and privacy-preserving LLM fine-tuning approaches,
and provides insights into preventing private domain data from leaking during the fine-tuning process.

Approach. Motivated by the existing understanding of privacy risks associated with large neural
networks, we conduct experiments spanning several critical factors: varying amounts of data for
adaptation, different numbers of training iterations, and various model sizes. Additionally, we perform
fine-tuning on domain datasets for both multiple tasks and single tasks, aiming to examine how task
diversity in the pre-training dataset affects privacy vulnerability.

5.3 RQ1: Is Private Data Used for Adapting LLMs Vulnerable to Leaks?

Distributional Differences Between Member and Non-Member Data. Figure 2 visualizes the
distribution of likelihood scores for member and non-member data using the target Llama7b model
fine-tuned with LoRA. Even though these likelihood scores (Equation 1) represent the most basic
metric an attack would consider, the results reveal subtle but noticeable distinctions in the distributions.
This indicates the potential for an adversary to exploit LLM outputs to determine whether a sample
was used in fine-tuning and highlights the vulnerability of membership leakage of domain data through
deployed product LLMs. However, the limited prominence of these differences also underscores the
need for more refined attack strategies to effectively uncover membership information.

Strong MIAs Effectively Detect Data Used for LLM Adaptation. Given the distinct distribution
patterns between member and non-member data, we conducted experiments on existing representative
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(b) Misclassified Nonmember Data

Figure 4: The comparison of samples between member data and misclassified non-member data
from Llama7b fine-tuned over the SQL dataset using LoRA. We apply reference-based MIA [12] to
conduct the membership inference attack.

(a) T5-Large

Adaptation Method Attack Method Accuracy (after)Likelihood Likelihood-ref Zlib Entropy Neighborhood Min-K Min-K++ Gradient-Norm
Prompt-tuning 0.567 0.609 0.572 0.582 0.544 0.549 0.621 0.631
Prefix-tuning 0.589 0.626 0.621 0.606 0.585 0.592 0.644 0.637
Adapter-H 0.574 0.691 0.597 0.611 0.552 0.556 0.696 0.639
P-tuning 0.591 0.694 0.614 0.619 0.579 0.583 0.707 0.623
LoRA 0.592 0.724 0.647 0.624 0.567 0.588 0.717 0.644
Top2-head 0.623 0.726 0.658 0.631 0.584 0.593 0.733 0.637
Full 0.817 0.853 0.831 0.811 0.822 0.825 0.858 0.643
In-Context 0.881 0.881 0.881 0.881 0.881 0.881 0.881 0.458
From scratch 0.887 0.943 0.914 0.909 0.892 0.921 0.958 0.604

(b) Llama-7B

Adaptation Method Attack Method Accuracy (after)Likelihood Likelihood-ref Zlib Entropy Neighborhood Min-K Min-K++ Gradient-Norm
Prompt-tuning 0.562 0.629 0.591 0.619 0.554 0.579 0.635 0.664
P-tuning 0.587 0.636 0.628 0.633 0.583 0.595 0.644 0.676
Prefix-tuning 0.574 0.648 0.633 0.635 0.577 0.601 0.642 0.671
Adapter-H 0.556 0.675 0.607 0.628 0.566 0.579 0.659 0.669
LoRA 0.575 0.735 0.634 0.654 0.608 0.622 0.728 0.674
Top2-head 0.677 0.788 0.714 0.694 0.647 0.696 0.793 0.669
Full 0.832 0.882 0.847 0.803 0.787 0.827 0.879 0.677
In-Context 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.534
From scratch 0.913 0.943 0.914 0.899 0.892 0.921 0.958 0.278

Table 1: Comparison of different adaptation techniques in terms of attack vulnerability (measured
by AUC-ROC) and downstream utility (evaluated by model accuracy after adaptation) on the T5-
Large/Llama-7B model and CorpClimate dataset. The adaptation methods are sorted by ascending
order in terms of the amounts of trainable parameters. The shaded area indicates the reference results
from training the model from scratch. For reference, the baseline test accuracy before adaptation is
0.334 (pre-trained) or 0.187 (from scratch) for the T5-Large model, and 0.493 (pre-trained) or 0.234
(from scratch) for the Llama-7B model.

MIAs (outlined in Section 2.2) to determine whether these differences can be exploited to infer the
membership of a given sample. As summarized in Figure 3, the results demonstrate that LLM
adaptation techniques may lead to the leakage of training data under existing attacks, with Likelihood-
ref (Equation 2) being the most effective method overall and performing reasonably well across
different types of model architectures. These results represent a meaningful lower bound on the worst-
case privacy risk, highlighting the privacy vulnerabilities introduced during LLM fine-tuning and
underscoring significant data protection demands during LLM fine-tuning. The complete quantitative
results are presented in the supplementary materials.

Product LLMs for Structural Data Demonstrate Greater Robustness Against MIAs. As shown
in Figure 3, inferring membership on the SQL dataset is more difficult than on the others. This may
be due to the structural similarity of data samples within the same distribution, i.e., smaller in-domain
diversity. To validate this, we further analyze the data samples misclassified by the attacker (shown
in Figure 4) and observe that these data are structurally identical and semantically highly similar.
This may indicate a current weakness in attack methods that rely on detecting individual patterns or
fingerprints (which are largely based on semantics and structure) memorized by the target model.

5.4 RQ2. The Impact of Adaptation Techniques on Downstream Privacy Vulnerability.

More Trainable Parameters Lead to Higher Data Membership Leakage Risk. Figures 5 & 6
offer an overall performance comparison of different adaptation techniques on the adapted OPT-6b
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Figure 5: Impact of different adaptation techniques for attack performance measured by AUC-ROC.
TP refers to the percentage of trainable parameters compared to the full-size model parameters.
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Figure 6: Impact of different adaptation techniques for model utility measured by accuracy. TP refers
to the percentage of trainable parameters compared to the full-size model parameters.

model for the CorpClimate dataset. The portion of trainable parameters (TP) relative to the overall
model size is listed in brackets beside each adaptation technique, with techniques ordered in the
legend by decreasing trainable parameters. The results show that the more parameters applied
during adaptation, the higher the risks of downstream membership leakage. This aligns with the
intuition that models with more trainable parameters tend to have a higher degree of freedom in
downstream adaptation, potentially allocating more modeling capacity to over-memorizing their
training data. While in-context learning approaches do not involve parameter updates and thus
avoid the same overfitting risks, they are not free of privacy concerns. As shown by the non-trivial
attack performance in Table 1, training data embedded within the language model through in-context
adaptation can potentially be extracted through careful analysis of model outputs. This suggests that
even parameter-free techniques require careful monitoring of the risk of privacy leakage.

Different Adaptation Techniques May Cause Systematic Vulnerability Differences Due to
Their Associated Attack Surfaces. As illustrated in Table 1, different adaptation methods exhibit
varying degrees of vulnerability to attack methods (measured by AUC-ROC) and post-adaptation
utility (evaluated by accuracy). Specifically, adaptation techniques can introduce varying attack
surfaces influenced by factors beyond the size of trainable parameters, such as the degree of model
modification, the layers involved, and practical usage scenarios. For instance, methods like prompt-
tuning and P-tuning primarily adjust input representations, potentially reducing the attack surface
but offering moderate performance gains. In contrast, approaches like LoRA or full fine-tuning
modify deeper layers, which may enhance flexibility but also increase the chances of embedding
sensitive information within parameters. In-context learning, which relies on input data at runtime
without parameter updates, is typically employed in black-box settings, where attackers have limited
access to model internals, making white-box attack assumptions less applicable. These differences
emphasize the importance of aligning adaptation techniques with both performance needs and privacy
considerations.
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5.5 RQ3. Factors Affecting Privacy Vulnerability.

Size of Domain Data Applied for Training. Figure 5 demonstrates the empirical assessment of
privacy leakage risks with varying amounts of available data for LLM adaptation. Utilizing more data
tends to shift the LLM’s modeling capability towards generalization rather than specialization, leaving
less room for it to overfit to individual patterns, thus making the attack less effective. Moreover, using
more data samples aligns with the utility objectives of product LLMs, as shown in Figure 6, which
suggests the necessity of always obtaining more data for training.

Number of Fine-tuning Iterations. As can be observed from Figure 5, increasing the number of
iterations generally enhances the effectiveness of attacks on the target models. This aligns with
the interpretation that a higher degree of adaptation to the domain data, while steering the LLMs
towards the target domain, inevitably causes the model to learn patterns overly tailored to individuals
rather than the essential ones required for the task. While the privacy objective suggests applying a
lesser degree of adaptation to the domain data, the utility objectives of product LLMs require a high
degree of fitting to the target domain data. This misalignment of objectives necessitates more detailed
adjustments during the deployment phase.

Target Model Size. From Figure 5, we observe that larger LLMs tend to exhibit increased downstream
privacy vulnerability after adaptation. This may be attributed to their greater model capacity, which,
while enabling the learning of more complex patterns and solving difficult tasks, can also compromise
individual privacy, as the enhanced capacity allows these models to learn personal information that
can lead to privacy issues. This dilemma between learnability (and thus utility) and privacy also
requires more dedicated efforts for adjustments during the deployment phase.

6 Discussion & Limitations

While our results offer valuable insights into privacy-aware LLM development, several areas remain
open for further exploration to deepen this research. One important direction is studying the impact
of privacy-preserving training mechanisms, such as differentially private adaptation, which, while
offering theoretical guarantees, may introduce utility trade-offs, particularly for complex tasks like
domain-specific reasoning. Understanding how such strategies influence both membership inference
risks and model utility, along with their trade-offs, is crucial for guiding practitioners. Another
promising avenue is the co-design of privacy-preserving techniques with efficient adaptation methods,
as developing these independently can result in suboptimal outcomes. An integrated approach may
better balance privacy and utility, and identifying inherently robust adaptation techniques could
reduce the need for costly post-hoc defenses. Additionally, auditing tools that search for or generate
vulnerable samples could provide more precise estimates of privacy leakage and support ongoing
monitoring of deployed models to maintain an appropriate privacy-utility balance.

Finally, it is essential to acknowledge the limitations of this work. While the evaluation focuses
on domains intended to reflect real-world scenarios, it may not capture the full range of potential
attack settings. Attackers with specialized knowledge or additional assumptions could uncover
vulnerabilities beyond those examined. Moreover, the privacy risks identified are bound by the
framework used, with results varying across datasets, model architectures, and operational contexts.
Future work could expand this benchmark by incorporating new adaptation techniques, datasets, and
attack strategies, progressively advancing the understanding of privacy risks across diverse settings.

7 Conclusions

In this work, we present a benchmark to assess the potential privacy leakage risks during adaptation
techniques in LLMs. We examine the training data membership leakage risk in mainstream large
language models based on encoder-decoder and decoder-only structures. Our comprehensive analysis
illustrates the facets of privacy leakage risks during LLM adaptation, and we further propose a unified
platform to measure these potential privacy risks. Our findings highlight the importance of developing
privacy-preserving adaptation techniques with practical relevance.
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Supplementary materials
These supplementary materials provide detailed information on the experimental setup (see
§A) and present additional results (see §B). The source code implementation can be accessed via the
following link: https://github.com/sunshine-collab/PrivAuditor.

A Experiment Setup

A.1 Dataset

Sujet Finance Dataset [56]2. The Sujet Finance dataset is a comprehensive collection of financial
data crafted specifically for fine-tuning LLMs for specialized financial tasks. It aggregates data from
18 distinct HuggingFace datasets, comprising 177,597 entries across seven key financial LLM tasks:
sentiment analysis (44,209 entries), direct question answering (38,801 entries), question answering
with context (40,475 entries), conversational question answering (15,613 entries), yes/no questions
(20,547 entries), topic classification (16,990 entries), and entity-level sentiment analysis (962 entries).
The data record is structured with columns such as inputs, answers, system prompts, user prompts,
dataset names, task types, index levels, and conversation IDs. The dataset undergoes de-duplication
and preprocessing to eliminate non-ASCII and other irregular characters, making it a clean and usable
dataset for effective LLM fine-tuning. We fine-tune the LLMs on all tasks contained in the dataset
and evaluate the model utility on classification tasks (including “Sentiment Analysis”, “Yes/No
Questions”, “Topic Classification”, and “NER Sentiment Analysis”) that allow easy quantification
using accuracy. The query sample x corresponds to the complete input to the model, which comprises
an “instruction” combined with an “input”. See Table 2 for examples.

Table 2: Examples of Sujet Finance Dataset Records. Each query sample consists of an “instruction”
concatenated with an “input”, while the “answer” represents the ground-truth label of the dataset.
The “output” is a demonstration of the LLM’s response to the query sample.

2https://huggingface.co/datasets/sujet-ai/Sujet-Finance-Instruct-177k
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Corporate Climate Policy Engagement [57]3. The dataset is designed to estimate corporate climate
policy engagement by analyzing various PDF-formatted documents derived from LobbyMap. It
includes 11,159 documents annotated for corporate stances on climate policies. Each document’s
text is extracted and organized into triplets (P , Q, S), where Q represents high-level climate policy
issues, S denotes the stance on a five-level scale from “strongly supporting” to “opposing”, and P
indicates the evidence page indices supporting the query and stance. The dataset is provided in JSON
format with fields such as document ID, sentences (including sentence ID and page numbers for
task input), evidences (containing P , Q, and S), and meta (offering additional metadata about the
evidence items). Preprocessing involved robust text extraction using tools like docTR, Tesseract, and
PyMuPDF, OCR for necessary alignment, de-duplication, and data cleaning to ensure quality. See
Table 3 for examples of the dataset.

Table 3: Examples of Corporate Climate Policy Engagement Records. Each query sample consists of
an “instruction” concatenated with an “input”, while the “correct_answer” represents the ground-truth
label of the dataset. The “output” is a demonstration of the LLM’s response to the query sample.

Syntatic-Text-to-SQL [58]4. This dataset, generated by Gretel Navigator, is designed to train
models for translating natural language into SQL queries. It includes around 105,851 entries, totaling

3https://climate-nlp.github.io/
4https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
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approximately 23 million tokens, of which 12 million are SQL-specific. It spans 100 distinct domains
or verticals and encompasses a comprehensive suite of SQL tasks, including data definition, retrieval,
manipulation, analytics, and reporting. Each features attributes such as SQL complexity, task type,
and domain descriptions. The dataset is structured in JSON format with fields for document IDs,
tokenized text, and SQL queries. Preprocessing involves text extraction, OCR for alignment, and data
cleaning. The default training dataset size is set to be 60,000. See Table 4 for examples of the dataset.

Table 4: Examples of Syntatic-Text-to-SQL Records. Each query sample consists of an “instruction”
concatenated with an “input” (which is always an empty string for this dataset), while the “answer”
represents the ground-truth label of the dataset. The “output” is a demonstration of the LLM’s
response to the query sample.

A.2 Model Details

We consider the following representative LLMs in our empirical evaluation across different architec-
tures, parameter counts, and design philosophies: T5-Large [3], LLaMA-7B [22], OPT-6.7B [23],
BLOOM-7B [24], and GPT-J-6B [25]. T5-Large employs an encoder-decoder transformer model,
processing input text through an encoder and generating output text via a decoder, making it particu-
larly suitable for text-to-text tasks. In contrast, LLaMA-7B, OPT-6.7B, BLOOM-7B, and GPT-J-6B
utilize decoder-only architectures optimized for autoregressive text generation. These models have
parameter counts ranging from 770 million (T5-Large) to over 7 billion (BLOOM-7B), covering a
standard and reasonable range for empirical investigation in scientific research. The design philoso-
phies also vary significantly: T5-Large focuses on converting all tasks into a text-to-text format, while
BLOOM-7B emphasizes multilingual capabilities, supporting 59 languages and 12 programming lan-
guages. LLaMA-7B and GPT-J-6B prioritize openness and efficiency, aiming to enhance accessibility
and performance in NLP, while OPT-6.7B targets transparency and competitive performance.

The hyper-parameters during fine-tuning are listed in Table 5.

5https://huggingface.co/google-t5/t5-large
6https://huggingface.co/yahma/llama-7b-hf
7https://huggingface.co/facebook/opt-6.7b
8https://huggingface.co/bigscience/bloom-7b1
9https://huggingface.co/EleutherAI/gpt-j-6b
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T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B
Parameters 770M 6.7B 6.7B 7.1B 6.1B
Learning Rate 1e-3 3e-4 1e-3 3e-4 2e-3
Batch Size 128 32 32 32 32
Micro Batch Size 32 8 8 8 8
Maximum Length 512 256 256 256 256
Model Source 5 6 7 8 9

Table 5: Hyper-parameters of LLMs during fine-tuning.

A.3 LLM Adaptation

By default, each LLM is fine-tuned for 5 epochs. For LoRA, we set the rank to 8 and the alpha value
to 16, and tune the attention vectors q, k, and v. For Top2Head-tuning, only the first 2 top layers
are tuned. In Adapter-H, we add an intermediate projection layer with size 256 and apply “tanh”
as the nonlinear activation function. For Prefix-tuning, the number of virtual tokens is set to 30.
In P-tuning, the encoder size is set to 128, with 20 virtual tokens. For Prompt-tuning, the initial
prompt is chosen to be “Complete the following task: ”.

A.4 Attack Implementation

For the Likelihood-ref attack, following the original implementation [12], we use the original
pre-trained model (which was not adapted using the domain data) as the reference model. For the
Neighborhood attack, we set the size of the neighbor candidates to 25 and the word mask rate to
0.3. Additionally, aligned with the original paper [29], we use a third-party BERT model10 from
Huggingface to generate the neighbors of a given query sample. For Min-K and Min-K++, we set K
to 0.2, and both the window size and stride with respect to N-gram to 1.

Evaluating the attack AUC-ROC involves measuring the entire area under the ROC curve, which
corresponds to varying thresholds τ of the membership score. In contrast, measuring the attack
FPR@0.1% TPR or FPR@1% TPR involves selecting the threshold τ to match a specific true positive
rate (0.1% or 1%) on the query set and then evaluating the corresponding false positive rates.

B Additional Results

We present the overall quantitative results of evaluating different attack methods across various metrics
and LLMs fine-tuned with LoRA on different datasets in Tables 6-8. These results supplement the
findings illustrated in Figure 3 of the main paper.

We present in Tables 9-11 the quantitative results of the utility (measured by model accuracy) and
attack performance (evaluated with AUC-ROC) when comparing different adaptation methods across
different data sizes (Table 9), fine-tuning epochs (Table 10), and model sizes (Table 11) on the
CorpClimate dataset. We use by default the OPT-6.7B model as the target LLM. These results are
supplementary to Figures 5 & 6 in the main paper.

10https://huggingface.co/google-bert/bert-base-multilingual-cased

19

https://huggingface.co/google-bert/bert-base-multilingual-cased


Attack Method Metric Model
T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood
AUC-ROC 0.54 0.52 0.52 0.51 0.54
FPR(%)@0.1%TPR 0.71 0.00 0.00 0.20 0.17
FPR(%)@1%TPR 2.33 1.63 0.00 0.89 1.06

Likelihood-ref
AUC-ROC 0.62 0.62 0.60 0.57 0.59
FPR(%)@0.1%TPR 5.83 5.62 5.47 4.92 4.68
FPR(%)@1%TPR 12.08 11.73 9.86 8.77 9.03

Zlib Entropy
AUC-ROC 0.53 0.54 0.52 0.54 0.51
FPR(%)@0.1%TPR 0.31 0.00 0.00 0.29 0.00
FPR(%)@1%TPR 1.03 2.22 1.00 1.88 0.74

Neighborhood
AUC-ROC 0.52 0.53 0.53 0.52 0.52
FPR(%)@0.1%TPR 0.00 0.00 0.02 0.00 0.01
FPR(%)@1%TPR 0.00 0.00 1.05 0.22 0.69

Min-K
AUC-ROC 0.52 0.52 0.52 0.53 0.52
FPR(%)@0.1%TPR 0.00 0.38 0.00 0.00 0.00
FPR(%)@1%TPR 0.00 1.17 0.00 0.24 0.00

Min-K++
AUC-ROC 0.53 0.52 0.52 0.54 0.52
FPR(%)@0.1%TPR 0.00 0.38 0.00 0.00 0.00
FPR(%)@1%TPR 0.00 1.17 0.00 0.24 0.00

Gradient-Norm
AUC-ROC 0.63 0.60 0.58 0.54 0.55
FPR(%)@0.1%TPR 3.49 3.31 4.57 3.13 3.22
FPR(%)@1%TPR 8.87 9.93 11.28 8.49 7.98

Table 6: Overall attack effectiveness across different LLMs fine-tuned with LoRA (SQL).

Attack Method Metric Model
T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood
AUC-ROC 0.63 0.61 0.61 0.58 0.56
FPR(%)@0.1%TPR 1.89 2.32 2.17 0.70 1.28
FPR(%)@1%TPR 10.08 11.12 13.67 5.92 6.01

Likelihood-ref
AUC-ROC 0.70 0.71 0.73 0.71 0.70
FPR(%)@0.1%TPR 5.85 6.43 5.87 3.08 3.25
FPR(%)@1%TPR 16.62 21.11 15.44 13.31 12.99

Zlib Entropy
AUC-ROC 0.62 0.62 0.63 0.66 0.63
FPR(%)@0.1%TPR 1.85 4.56 3.17 2.98 4.14
FPR(%)@1%TPR 7.73 14.64 10.05 8.85 12.21

Neighborhood
AUC-ROC 0.67 0.64 0.62 0.63 0.65
FPR(%)@0.1%TPR 1.81 2.33 2.18 1.59 5.54
FPR(%)@1%TPR 5.42 9.96 8.87 10.07 11.12

Min-K
AUC-ROC 0.50 0.58 0.56 0.58 0.53
FPR(%)@0.1%TPR 0.00 1.64 0.81 0.68 0.00
FPR(%)@1%TPR 0.00 7.90 1.82 2.79 0.00

Min-K++
AUC-ROC 0.51 0.58 0.56 0.57 0.54
FPR(%)@0.1%TPR 0.00 2.04 1.01 0.73 0.00
FPR(%)@1%TPR 0.00 6.54 3.99 4.24 0.00

Gradient-Norm
AUC-ROC 0.73 0.71 0.72 0.71 0.71
FPR(%)@0.1%TPR 5.73 6.22 5.86 5.99 4.83
FPR(%)@1%TPR 14.98 18.69 17.41 18.16 15.52

Table 7: Overall attack effectiveness across different LLMs fine-tuned with LoRA (Sujet Finance).
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Attack Method Metric Model
T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood-based
AUC-ROC 0.59 0.58 0.57 0.58 0.61
FPR(%)@0.1%TPR 1.19 1.41 1.08 1.08 2.87
FPR(%)@1%TPR 9.08 5.69 4.99 5.19 8.83

Zlib Entropy-based
AUC-ROC 0.65 0.63 0.62 0.56 0.63
FPR(%)@0.1%TPR 2.59 3.18 2.02 0.63 1.16
FPR(%)@1%TPR 10.07 9.89 8.88 3.94 9.46

Neighborhood
AUC-ROC 0.62 0.65 0.61 0.63 0.65
FPR(%)@0.1%TPR 1.64 3.13 1.11 1.26 2.89
FPR(%)@1%TPR 6.07 7.25 6.01 6.35 7.77

Min-K-based
AUC-ROC 0.57 0.61 0.59 0.63 0.62
FPR(%)@0.1%TPR 1.02 2.08 2.21 2.53 3.03
FPR(%)@1%TPR 2.13 5.19 6.21 7.77 8.12

Min-K++-based
AUC-ROC 0.59 0.62 0.65 0.65 0.66
FPR(%)@0.1%TPR 2.15 2.61 2.97 3.33 3.59
FPR(%)@1%TPR 3.34 5.92 6.48 8.09 8.15

Refernce-based
AUC-ROC 0.72 0.74 0.75 0.72 0.70
FPR(%)@0.1%TPR 6.79 7.82 7.19 6.48 6.14
FPR(%)@1%TPR 15.03 19.88 18.75 16.87 15.33

Gradient-Norm-based
AUC-ROC 0.72 0.73 0.71 0.72 0.72
FPR(%)@0.1%TPR 6.79 6.94 6.48 6.82 7.05
FPR(%)@1%TPR 14.09 17.18 18.44 15.02 16.63

Table 8: Overall attack effectiveness across different LLMs fine-tuned with LoRA (CorpClimate).

Metric Data Size Adaptation Technique
Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

25%(2790) 0.424 0.549 0.523 0.526 0.519 0.531 0.479
50%(5580) 0.521 0.558 0.541 0.579 0.542 0.563 0.562
75%(8370) 0.653 0.657 0.652 0.654 0.647 0.655 0.652
full(11159) 0.674 0.669 0.668 0.671 0.665 0.671 0.666

Attack AUC

25%(2790) 0.794 0.769 0.761 0.76 0.758 0.749 0.745
50%(5580) 0.759 0.759 0.755 0.752 0.749 0.748 0.741
75%(8370) 0.757 0.755 0.753 0.749 0.746 0.742 0.731
full(11159) 0.751 0.751 0.749 0.747 0.737 0.737 0.729

Table 9: Comparison of various adaptation techniques across different fine-tuning dataset sizes
(CorpClimate) on the OPT-6.7B model. The attack AUC-ROC is evaluated using the Likelihood-ref
approach. The shaded column indicates the varying dataset sizes (ranging from 25% to the full
dataset) used for adapting the model, with the absolute number of samples presented in brackets.

Metric Epoch Adaptation Technique
Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

1 0.404 0.436 0.444 0.595 0.503 0.447 0.442
2 0.508 0.528 0.525 0.653 0.588 0.556 0.547
3 0.597 0.577 0.597 0.664 0.642 0.596 0.617
4 0.668 0.622 0.656 0.669 0.657 0.651 0.661
5 0.673 0.669 0.673 0.671 0.664 0.669 0.669

Attack AUC

1 0.679 0.651 0.649 0.644 0.641 0.638 0.633
2 0.709 0.698 0.688 0.685 0.673 0.67 0.655
3 0.748 0.744 0.739 0.724 0.711 0.707 0.696
4 0.753 0.751 0.746 0.739 0.737 0.737 0.735
5 0.755 0.753 0.752 0.747 0.745 0.742 0.741

Table 10: Comparison of different adaptation techniques across various fine-tuning epochs (CorpCli-
mate) on the OPT-6.7B model. The attack AUC-ROC is evaluated using the Likelihood-ref approach.
The shaded column indicates the varying fine-tuning epochs (ranging from 1 to the default value of
5) used for adapting the model.
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Metric Model (Size) Adaptation Technique
Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

OPT-125M 0.669 0.663 0.651 0.661 0.645 0.652 0.641
OPT-350M 0.673 0.671 0.653 0.661 0.656 0.661 0.643
OPT-1.3B 0.673 0.675 0.662 0.663 0.666 0.665 0.649
OPT-2.7B 0.678 0.681 0.665 0.667 0.667 0.671 0.653
OPT-6.7B 0.685 0.681 0.669 0.671 0.673 0.675 0.672

Attack AUC-ROC

OPT-125M 0.699 0.693 0.689 0.683 0.681 0.677 0.668
OPT-350M 0.714 0.704 0.691 0.688 0.685 0.681 0.668
OPT-1.3B 0.721 0.713 0.709 0.694 0.689 0.688 0.679
OPT-2.7B 0.727 0.719 0.717 0.711 0.702 0.694 0.688
OPT-6.7B 0.767 0.751 0.749 0.747 0.741 0.738 0.735

Table 11: Comparison of different adaptation techniques across various model sizes (CorpClimate).
The attack AUC-ROC is evaluated using the Likelihood-ref approach. The shaded column indicates
the varying target model size (ranging from 125M to the default value of 6.7B).
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