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A Experimental details and additional results for section 4.1

A.1 Network architecture and training details

Table S1: Parameters and settings used in the experiment.

Name Setting

Dimensions [784, 100, 10]
Activation function ReLU
Number of random noise inputs 5× 105

Batch size 64
Learning rate 0.0001
Optimizer Adam

In Section 4.1, we utilized a two-layer feedforward neural network for classification, comprising 100
neurons in the hidden layer and employing the rectified linear unit (ReLU) as the activation function.
Detailed hyperparameters related to the network architecture and training are presented in Table
S1. The forward weights were initialized using He initialization [1], which is standard for networks
utilizing ReLU activations. Specifically, the weights were sampled from a Gaussian distribution with
a mean of zero and a standard deviation of:

σ =

√
2

nin

, where nin represents the number of input units for each layer. The biases were initialized to zero. For
feedback alignment [2], the backward weights were randomly initialized from the same distribution
as the forward weights. In contrast to backpropagation, these backward weights remained fixed
throughout the entire training process and were not updated. This approach allowed us to circumvent
weight transport while still facilitating alignment during random noise pretraining and data training.

Figure S1: Samples of random noise utilized in the pretraining process. Each pixel value is randomly
drawn from a zero-centered Gaussian distribution with a standard deviation of 1. The corresponding
label is also randomly assigned from a discrete uniform distribution ranging from 0 to 9.

During the random noise pretraining phase, we sampled random input-output pairs at each iteration.
Each sampled pair was used only once throughout the training process. Figure S1 presents an
example of a random noise input sampled from a Gaussian distribution. This method of random noise
pretraining was applied consistently across all subsequent experiments described in the main text.

It is important to note that random noise pretraining does not depend on specific conditions for the
random input. To further investigate the robustness of this method, we tested weight alignment under
various input conditions (Figure 1f). Specifically, we varied the standard deviation of the Gaussian
distribution from 0 to 2, with a step size of 0.1. Additionally, we conducted similar tests using
uniform distributions. The reported results include the mean and standard deviation of the alignment
angle, calculated over ten independent trials.
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B Experimental details and additional results for section 4.2

B.1 Network architecture and training details

Table S2: Parameters and settings used in the experiment.

Name Setting

Number of training data 5× 103

Number of test data 5× 103

Epochs 100
Batch size 64
Learning rate 0.0001
Optimizer Adam

Figure S2: Samples from the MNIST dataset [3] used in the subsequent data training process. The
dataset comprises images of handwritten digits across ten classes.

In Section 4.2, we examined the effect of random noise pretraining on subsequent data training. The
network architecture and hyperparameters were consistent with those used in Section 4.1. Detailed
hyperparameters related to the training process can be found in Table S2. We utilized a subset of the
MNIST dataset (Figure S2), consisting of 5000 images for training and an additional 5000 images for
testing. The data training was conducted over a total of 100 epochs, ensuring that the total number of
inputs encountered during the data training process matched those in the random noise pretraining
phase.

Although random noise pretraining does not conform to the conventional definition of an epoch —
since it does not involve repeated training on the same inputs — we employed the term "epoch"
to facilitate comparison between random noise training and data training along the same axis.
Specifically, we divided random noise pretraining into 5000 iterations, analogous to the number of
iterations in data training. Thus, one epoch utilized the same number of inputs (along with equivalent
training time and computational cost) in both random noise pretraining and data training.
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B.2 Training results

Figure S3: Loss and accuracy outcomes of the network under various training conditions. (a) Training
loss. (b) Training accuracy. (c) Test loss. (d) Test accuracy. The blue and orange lines represent the
network trained with feedback alignment, with and without random noise training, respectively. The
gray lines denote the network trained using backpropagation.

In addition to the test accuracy during training presented in Figure 2b, Figure S3 displays the loss
and accuracy for both the training and test sets. The results indicate that the network pretrained
with random noise outperforms the network trained solely on data and achieves a learning efficiency
comparable to that of backpropagation [4].
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B.3 Additional results with deeper network

Table S3: Parameters and settings used in the experiment.

Name Setting

Dimensions [784, 100, 100, 10]
Activation function ReLU
Number of random noise inputs 5× 105

Number of training data 5× 103

Number of test data 5× 103

Epochs 100
Batch size 64
Learning rate 0.0001
Optimizer Adam

Figure S4: Training with random noise and data in a deeper network. (a) Three-layer network trained
sequentially with random noise and data. (b) Test accuracy of the network under various training
conditions. (c) Alignment angle of the weights (W1) and synaptic feedback (B1) in the second layer
of the network. (d) Alignment angle of the weights (B2) and synaptic feedback (W2) in the third
layer of the network.

We also investigated whether weight alignment improves in deeper networks. Specifically, we
employed a three-layer feedforward neural network with a hidden layer size of 100 and examined the
effect of random noise pretraining (Figure S4a). Detailed hyperparameters related to the network
architecture and training can be found in Table S3. The results indicate that random noise pretraining
remains beneficial, achieving faster learning and higher accuracy during subsequent data training
(Figure S4b). Additionally, the network pretrained with random noise exhibited enhanced weight
alignment, comparable to networks trained solely on data, in both the earlier layer (Figure S4c) and
the deeper layer (Figure S4d).
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B.4 Additional results with CIFAR-10

Table S4: Parameters and settings used in the experiment.

Name Setting

Dimensions [3072, 100, 10]
Activation function ReLU
Number of random noise inputs 5× 105

Number of training data 5× 103

Number of test data 5× 103

Epochs 100
Batch size 64
Learning rate 0.0001
Optimizer Adam

Figure S5: Effect of random noise training on subsequent CIFAR-10 [5] data training. (a) Design
of the CIFAR-10 classification task. (b) Test accuracy during the training process, where the inset
demonstrates the convergence speed of each training method, calculated by the AUC of the test
accuracy. (c) Alignment angle between weights (W1) and synaptic feedback (B1) across random
training and data training.

Figure S6: Weight update dynamic of random noise training and data training with CIFAR-10. (a)
Trajectory of weights (W1) toward synaptic feedback (B1) in latent space obtained by PCA for
random and data training. (b) Distance between the weights (W1) and the synaptic feedback (B1).
(c) Order dependence of the trajectory of the weights (W1). (d) Distance between the weights (W1)
and the synaptic feedback (B1) for different orders of random and data trainings.

To extend the results demonstrating the benefits of random noise pretraining on subsequent MNIST
training, we conducted a similar experiment using the CIFAR-10 dataset, which contains more
naturalistic images across ten different classes of objects and animals (Figure S5, Figure S6). Detailed
hyperparameters related to the network architecture and training can be found in Table S4. These
results emphasize that the benefits and characteristics of random noise pretraining, as observed in the
main results, are not confined to a simple dataset like MNIST but are applicable to other datasets as
well.
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B.5 Validation of model performance across various image datasets and network depths

Table S5: Performance of each model with depth variation (2 – 5 layers) for five different datasets
(MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100 and STL-10). Each performance value (%) is
presented as the mean ± standard deviation from three trials.

Method 2-layer 3-layer 4-layer 5-layer
M

N
IS

T BP 97.82± 0.03 97.86± 0.04 97.80± 0.16 97.71± 0.18

FA w/o 97.26± 0.07 96.95± 0.12 96.80± 0.20 95.58± 0.15
w/ 97.76± 0.07 97.56± 0.09 97.29± 0.24 97.03± 0.04

∆ACC ▲0.49± 0.06 ▲0.61± 0.11 ▲0.48± 0.28 ▲1.45± 0.19

F-
M

N
IS

T BP 88.87± 0.03 88.76± 0.09 88.55± 0.00 88.50± 0.13

FA w/o 87.47± 0.25 87.38± 0.20 86.25± 0.76 83.80± 2.22
w/ 88.26± 0.07 88.40± 0.02 87.87± 0.13 87.70± 0.21

∆ACC ▲0.79± 0.31 ▲1.02± 0.19 ▲1.62± 0.86 ▲3.90± 2.35

C
IF

A
R

-1
0 BP 54.01± 0.20 53.75± 0.22 53.16± 0.20 52.32± 0.03

FA w/o 50.54± 0.22 47.34± 0.83 45.98± 0.33 39.07± 2.85
w/ 53.58± 0.12 52.38± 0.05 51.54± 0.28 50.46± 0.81

∆ACC ▲3.04± 0.20 ▲5.04± 0.82 ▲5.55± 0.09 ▲11.39± 2.48

C
IF

A
R

-1
00 BP 24.55± 0.10 24.71± 0.04 24.54± 0.08 24.29± 0.13

FA w/o 20.17± 0.30 17.17± 0.54 14.56± 0.13 8.22± 1.36
w/ 24.45± 0.10 22.76± 0.42 18.69± 0.65 13.33± 1.54

∆ACC ▲4.28± 0.38 ▲5.58± 0.18 ▲4.14± 0.52 ▲5.11± 1.31

ST
L

-1
0 BP 42.72± 0.20 43.00± 0.28 42.87± 0.08 42.56± 0.22

FA w/o 36.21± 0.91 35.04± 0.92 36.74± 0.24 31.50± 5.10
w/ 41.01± 0.16 41.52± 0.15 41.38± 0.14 39.04± 0.59

∆ACC ▲4.81± 0.86 ▲6.49± 1.03 ▲4.64± 0.35 ▲7.54± 5.37

We benchmarked the final accuracy of networks trained using baseline feedback alignment (FA, w/o
random pretraining), feedback alignment with random noise pretraining (FA, w/ random pretraining:
our model), and backpropagation (BP) (Table S5). Specifically, we evaluated these models at depths
ranging from 2 to 5 layers (Figure S7). Furthermore, we compared these models across several
complex and large datasets, including MNIST [3], Fashion-MNIST [6], CIFAR-10 [5], CIFAR-100
[5], and STL-10 [7] (Figure S8). To ensure full convergence during training, we extended the training
duration until convergence was confirmed, with validation accuracy showing no further increase
(patience: 10 epochs).

We observed that incorporating random noise training at various network depths and across diverse
datasets consistently resulted in higher final accuracy, often comparable to that achieved with
backpropagation. As the network depth increased, the disparity in final accuracy between models
with and without random noise training widened (Figure S7). Importantly, the beneficial impact of
random noise training on final accuracy became significantly more pronounced as task complexity
increased (Figure S8). For instance, while random noise training improved accuracy by 0.49% in
MNIST, it increased by 0.79% in Fashion-MNIST, 3.04% in CIFAR-10, 4.28% in CIFAR-100, and
4.81% in STL-10. This gap widened further as the network depth increased.
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Figure S7: Model performance across different network depths. (a-d) Validation accuracy measured
at each epoch during data training. Each colored line represents a network trained using either
feedback alignment or backpropagation. Experiments were conducted with various depths of MLP:
(a) two-layer, (b) three-layer, (c) four-layer, and (d) five-layer.

Figure S8: Model performance across different image datasets. (a-d) Validation accuracy is measured
at each epoch. (a) MNIST, (b) Fashion-MNIST, (c) CIFAR-100, (d) STL-10.

Indeed, previous studies on biologically plausible backpropagation without weight transport often
focus on simple network structures and easy datasets. This limitation results in lower learning
capacity and presents challenges in scaling up due to biological constraints that preclude weight
transport. Through our additional experiments, we have demonstrated that random noise pretraining
consistently outperforms baseline feedback alignment, even in deeper networks. However, we also
observed that the performance gap with backpropagation widens as the number of layers increases.
This challenge partly arises from the difficulty of achieving precise weight alignment in the early
layers using feedback alignment without weight transport. While our approach significantly enhances
the learning efficiency of feedback alignment algorithms, the issue of the performance gap in deep
networks compared to backpropagation remains unresolved.
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B.6 Validation of model performance across various training hyperparameters

Figure S9: Performance consistency across different hyperparameter settings and initializations. (a-c)
Accuracy of networks trained with varying hyperparameters: (a) batch size, (b) learning rate, and (c)
initialization.

Our results are based on hyperparameters typically selected for effective learning in both feedback
alignment and backpropagation. We conducted and compared baseline feedback alignment (FA, w/o
random pretraining), feedback alignment with random noise pretraining (FA, w/ random pretraining),
and backpropagation (BP) under carefully controlled conditions. We controlled hyperparameters
such as batch size, learning rate, and initial forward weights to isolate differences attributable to the
learning algorithms. In each trial, we initialized a single network randomly and duplicated it into three,
starting with identical weights. These networks were then trained with the same hyperparameters but
using different learning methods.

Additionally, we confirmed that our results were not specific to the choice of hyperparameters
— our findings generalized to other conditions. Further experiments using the CIFAR-10 dataset
demonstrated that varying hyperparameters (batch size, learning rate) and initialization within a
reasonable range consistently reproduced similar results (Figure S9).
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B.7 Model validation with initialization matching forward and backward weights

Figure S10: Model validation: Initial alignment of weights (Wl) and synaptic feedback (Bl)
ensures learning efficiency comparable to backpropagation. (a) Alignment angle between forward
and backward weights using various training methods (purple: Wl initialized with BT

l ) and its
corresponding validation accuracy (b).

Our results indicate that pretraining with random noise effectively pre-aligns the forward weights
with the backward weights, enhancing learning efficiency during subsequent data training. To support
our claims, we conducted additional experiments using the CIFAR-10 dataset, which further validated
our model. Specifically, we initialized the forward weights Wl to match the transpose of backward
synaptic feedback Bl and proceeded with training (Figure S10. This approach yielded gradients and
alignment similar to those observed in backpropagation during training. Consequently, we confirmed
that this setup demonstrates learning efficiency comparable to that of backpropagation.

During the learning process, particularly in the initial stages, weight alignment may slightly degrade
but largely remains intact. This baseline example illustrates that achieving initially aligned forward
and backward weights allows for learning that is comparable to backpropagation, even without the
enforced synchronization of backward weights during training. This serves as a specific instance
highlighting the validity of random noise training in aligning forward and backward weights in a
biologically plausible manner prior to data-driven learning.
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B.8 Computational benefits of random noise training considering total training epochs

Figure S11: Comparison of training time until convergence including pretraining. (a) Learning curves
of a four-layer MLP pretrained for 10 epochs and subsequently trained on CIFAR-10. (b-c) Repeated
experiments with different pretraining durations. (b) Accuracy. (c) Training epochs until convergence.

We confirmed that random noise pretraining accelerates convergence and can reduce computational
resources, even when considering the total training duration (pretraining + data training) (Figure S11).
By varying the duration of noise training, we demonstrated that, despite the additional time required
for noise training, the total training time remained significantly shorter than that of training with data
alone in most conditions. We conducted subsequent data training on networks pretrained with random
noise for 2, 5, 10, 20, and 50 epochs, measuring the epochs required for training to converge (when
validation accuracy no longer increased, with patience of 10 epochs). We maintained consistency
in the number of samples used per epoch during both random noise training and subsequent data
training, ensuring direct comparability of epoch times.

We found that longer periods of random noise training resulted in shorter subsequent data training
times to achieve convergence. As reported previously, when comparing data training alone, the
learning time was consistently much shorter in networks pretrained with noise. Notably, even when
the time for noise training was included, the overall training duration for the noise-training algorithm
remained substantially shorter than that for training with data alone in most conditions. Based on
this analysis, we estimated an optimal duration for random noise pretraining that ensures the most
efficient use of resources (Figure S11b, c, Optimal). We also found that at this optimal duration, the
improvement in accuracy remained significant. These additional experimental results demonstrate
that, when considering the resources expended in random noise training, it represents a more efficient
approach (reduced training time and overall computation) compared to training with data alone.
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C Experimental details and additional results for section 4.3

C.1 Network architecture and training details

Table S6: Parameters and settings used in the experiment.

Name Setting

Dimensions [784, 100, 100, 10]
Activation function ReLU
Number of random noise inputs 5× 105

Batch size 64
Learning rate 0.0001
Optimizer Adam

In Section 4.3, we utilized a three-layer feedforward neural network for classification, comprising
100 neurons in the hidden layer and employing the ReLU as the activation function. Detailed
hyperparameters of the network architecture and training can be found in Table S6.

C.2 Random noise training reduces the effective dimensionality of weights

Figure S12: Effective dimensionality of weights in various layers. (a) Architecture of the network
used in the experiment, in which the weights of the three layers are analyzed. (b-d) Singular value
spectrum of weights in each layer of the untrained and randomly trained networks. (e-g) Effective
dimensionality of weights in each layer during random noise training.

We demonstrated that training with random noise effectively reduces the dimensionality of the
weights, resulting in the learning of simpler solutions with lower rank. In Figure 4, we only illustrated
the decrease in dimensionality in the first layer. Figure S12 shows that the same trend is also observed
in the remaining layers.
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C.3 Enhanced generalization with various training sizes

Table S7: Parameters and settings used in the experiment.

Name Setting

Dimensions [784, 100, 100, 10]
Activation function ReLU
Number of training data [100, 200, 400, 800, 1600]
Number of test data 1× 103

Epochs 500
Batch size 64
Learning rate 0.0001
Optimizer Adam

Figure S13: Training process and generalization error for different training set sizes. (a) Training
loss. (b) Test loss. (c) Comparison of training loss versus test loss. Each column represents a network
trained with a different training set size, with orange lines indicating networks trained solely on data
and blue lines representing randomly pretrained networks.
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Figure S14: Training and test accuracy for different training set sizes. (a) Training accuracy. (b) Test
accuracy. Each column represents a network trained with a different training set size, with orange
lines indicating networks trained solely on data and blue lines representing randomly pretrained
networks.

We systematically analyzed the effect of random noise pretraining on generalization across various
training sizes. Specifically, we trained three-layer neural networks with different training data
sizes, including 100, 200, 400, 800, and 1600 samples. Detailed hyperparameters of the network
architecture and training can be found in Table S7. Across the different training sizes, we measured
the generalization error (Figure S13) and accuracy (Figure S14). We observed that the generalization
error was significantly reduced in networks pretrained with random noise, regardless of the training
size. The summarized results are displayed in Figure 4f.
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C.4 Enhanced generalization with various network depths

Table S8: Parameters and settings used in the experiment.

Name Setting

Input, hidden layer, output dimensions 784, 100, 10
Number of hidden layers [3, 4, 5, 6, 7]
Activation function ReLU
Number of training data 1600
Number of test data 1× 103

Epochs 500
Batch size 64
Learning rate 0.0001
Optimizer Adam

Figure S15: Training process and generalization error for different network depths. (a) Training loss.
(b) Test loss. (c) Comparison of training loss versus test loss. Each column represents a network
trained with a different training set size, with orange lines indicating networks trained solely on data
and blue lines representing randomly pretrained networks.
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Figure S16: Training and test accuracy with different network depths. (a) Training accuracy. (b) Test
accuracy. Each column represents a network trained with a different training set size, with orange
lines indicating networks trained solely on data and blue lines representing randomly pretrained
networks.

Next, we analyzed the effect of random noise pretraining on generalization across various network
depths. In this experiment, we fixed the training data size and varied the number of hidden layers.
We tested three-, four-, five-, six-, and seven-layer neural networks with a hidden layer size of 100.
Detailed hyperparameters of the network architecture and training can be found in Table S8. Across
the different network depths, we measured the generalization error (Figure S15) and accuracy (Figure
S16). We observed that the generalization error was significantly reduced in networks pretrained with
random noise, regardless of the network depth. Additionally, we assessed the effective rank of the
learned features in this experiment and confirmed that random noise pretraining significantly reduces
the dimensionality of the solution (Figure 4g, h). This may provide an explanatory scenario for how
random noise pretraining enhances generalization across different network depths.
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C.5 Generalization test for out-of-distribution

Figure S17: Datasets used in the out-of-distribution generalization test with the transformed dataset.
(a) MNIST dataset used in the training in-distribution case. (b-d) Transformed MNIST dataset utilized
in the generalization test for the out-of-distribution case. (b) Translated MNIST dataset, where each
image is randomly translated in the range of [−5%, 5%] of the input image size on the x- and y-axis.
(c) Scaled MNIST dataset, where each image is randomly scaled in the range of [0.8, 1.2]. (d) Rotated
MNIST dataset, where each image is randomly rotated in the range of [−25, 25] degrees.

Figure S18: Dataset used in the out-of-distribution generalization test with the benchmark dataset. (a)
MNIST dataset [3] used to train the networks in the out-of-distribution case. (b) USPS dataset [8]
resized from (16× 16) to (28× 28), utilized in the generalization test for the out-of-distribution case.

We investigated whether networks trained with random noise can generalize to out-of-distribution data.
To assess the model’s performance on transformed MNIST, we created a custom dataset by applying
translations, scaling, and rotations. Example data used in the experiment can be seen in Figure S17.
The results are presented in Figure 5b. Additionally, we evaluated the model’s performance on a
benchmark out-of-distribution generalization dataset, USPS (Figure S18). The corresponding results
are shown in Figure 5c.
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D Experimental details and additional results for section 4.4

D.1 Network architecture and training details

Table S9: Parameters and settings used in random noise pretraining.

Name Setting

Dimensions [784, 100, 100, 10]
Activation function ReLU
Number of random noise inputs 5× 105

Batch size 64
Learning rate 0.0001
Optimizer Adam

In Section 4.4, we employed a three-layer feedforward neural network for classification, compris-
ing 100 neurons in the hidden layer and utilizing the ReLU as the activation function. Detailed
hyperparameters of the network architecture and random noise training can be found in Table S9.

Table S10: Parameters and settings used in meta-loss measurement.

Name Setting

K 10
Inner steps 10
Inner learning rate 0.001
Inner optimizer Adam
Task distribution (Dataset) MNIST, F-MNIST, K-MNIST

During training with random noise, we measured the meta-loss, which evaluates the network’s
ability to quickly adapt to various tasks. To compute the meta-loss, we utilized the definition from
model-agnostic meta-learning (MAML) [9], a widely used meta-learning algorithm. We constructed
a task distribution consisting of three datasets: MNIST, Fashion-MNIST, and Kuzushiji-MNIST. We
sampled batches of tasks from these datasets and trained the copied networks on the sampled tasks
for a few gradient steps. Subsequently, we summed the loss from the adapted networks and used
this sum as the meta-loss. Detailed hyperparameters for the meta-loss measurement can be found in
Table S10. Unlike conventional meta-learning approaches such as MAML — where the meta-loss is
employed to optimize the network’s initial parameters for rapid adaptation — we simply measured
the meta-loss during random noise training without using it to update the network.

Table S11: Parameters and settings used in task adaptation.

Name Setting

Number of training data 5× 103

Number of test data 5× 103

Epochs 100
Batch size 64
Learning rate 0.0001
Optimizer Adam
Task distribution (Dataset) MNIST, F-MNIST, K-MNIST

Next, we compared untrained networks with networks pretrained using random noise in terms of
their adaptation to each task. We copied the networks and adapted them to three tasks: MNIST,
Fashion-MNIST, and Kuzushiji-MNIST. Detailed hyperparameters used in task adaptation can be
found in Table S11.
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D.2 Measurement of meta-loss

Figure S19: Tasks used to measure the meta-loss. (a) Task 1: MNIST [3] classification task. (b) Task
2: Fashion-MNIST [6] classification task. (c) Task 3: Kuzushiji-MNIST [10] classification task.

Figure S20: Diagram of meta-learning. Each colored arrow indicates the gradient update direction
corresponding to a specific task. The gray arrow represents the overall learning direction of the
meta-learning process. Each colored point denotes adaptation to a specific task from the meta-learned
network.

We considered three tasks: MNIST classification, Fashion-MNIST classification, and Kuzushiji-
MNIST classification (Figure S19) to measure the meta-loss and assess the fast adaptation of networks
pretrained with random noise. The diagram of the meta-learning process (Figure S20) illustrates that
optimizing the network to minimize the meta-loss enables quicker adaptation to task distributions.
Notably, our results (Figure 6a) demonstrate that random noise pretraining efficiently reduces the
meta-loss without the need for exposure to task-specific data. Additionally, the trajectory of weights
in latent space during adaptation to various tasks (Figure 6b) follows a pattern similar to that depicted
in the diagram. This highlights the role of random noise pretraining as a form of meta-learning that
facilitates rapid adaptation.
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E Our contributions

Our goal is to enhance current strategies in deep learning by drawing insights from brain func-
tion. There exists a significant accuracy gap between backpropagation and biologically plausible
learning strategies that do not involve weight transport. While backpropagation is effective, it is
computationally intensive, requiring dynamic memory access for weight transport (i.e., accessing
forward weights in memory to compute backward updates). Pretraining with random noise and
aligning forward-backward weights achieves similar outcomes without relying on weight transport.
Our interest is not solely in attaining performance comparable to backpropagation, but rather in
achieving this without weight transport. Feedback alignment (and random noise pretraining) does not
require weight transport and relies exclusively on local information. In the context of energy-efficient
neuromorphic chip engineering, feedback alignment is sometimes employed for learning, albeit
with some performance trade-offs. Our results demonstrate that such sacrifices are minimal in our
model. Overall, our findings provide insights into how to reach levels of learning efficiency similar to
backpropagation while circumventing the need for weight transport.

F Experimental details

Data availability. The datasets used in this study are publicly available: http://yann.lecun.
com/exdb/mnist/ (MNIST [3]), https://github.com/zalandoresearch/fashion-mnist
(Fashion-MNIST [6]), https://github.com/rois-codh/kmnist (Kuzushiji-MNIST [10]),
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#
usps (USPS [8]), https://www.cs.toronto.edu/~kriz/cifar.html (CIFAR-10 and
CIFAR-100 [5]), https://cs.stanford.edu/~acoates/stl10/ (STL-10 [7]).

Software used. Python 3.11 (Python software foundation) with PyTorch 2.1 and NumPy 1.26.0 was
used to perform the simulation and the analysis. SciPy 1.11.4 was used to perform the statistical test
and analysis. The code used in this work is available at https://github.com/cogilab/Random.

Computing resources. All simulations were performed on a computer with an Intel Core i7-11700K
CPU and an NVIDIA GeForce GTX 1080 GPU. The simulation code was parallelized using PyTorch’s
built-in parallelization to utilize the GPU resources efficiently.
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