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Abstract

Open-vocabulary object perception has become an important topic in artificial
intelligence, which aims to identify objects with novel classes that have not been
seen during training. Under this setting, open-vocabulary object detection (OVD)
in a single image has been studied in many literature. However, open-vocabulary
object tracking (OVT) from a video has been studied less, and one reason is the
shortage of benchmarks. In this work, we have built a new large-scale benchmark
for open-vocabulary multi-object tracking namely OVT-B. OVT-B contains 1,048
categories of objects and 1,973 videos with 637,608 bounding box annotations,
which is much larger than the sole open-vocabulary tracking dataset, i.e., OV-
TAO-val dataset (200+ categories, 900+ videos). The proposed OVT-B can be
used as a new benchmark to pave the way for OVT research. We also develop a
simple yet effective baseline method for OVT. It integrates the motion features for
object tracking, which is an important feature for MOT but is ignored in previous
OVT methods. Experimental results have verified the usefulness of the proposed
benchmark and the effectiveness of our method. We have released the benchmark
to the public at https://github.com/Coo1Sea/OVT-B-Dataset.

1 Introduction

Multi-object tracking (MOT) has achieved significant progress in tracking specific categories such
as humans and vehicles [1, 2]. However, the classical MOT task mainly focuses on tracking targets
of people and vehicles, which makes the methods encounter difficulties when extended to a broader
range of target categories, limiting their practical application value. Recent studies in the open
vocabulary detection (OVD) domain, such as [3], [4], have demonstrated the capability to detect
objects of categories unseen during training directly. As we all know, detection is the fundamental
task of MOT. So the burgeoning OVD can greatly bring generalization ability to MOT models.

OVTrack [5] is the first study attempting to combine open vocabulary with multi-object tracking.
This work develops a simple baseline method namely OVTrack by combining a state-of-the-art open
vocabulary detector and an appearance matching-based track head. As the basic study, based on a
large generic MOT dataset TAO, it builds a new dataset containing OV-TAO-val and OV-TAO-test for
performance evaluation, with a comprehensive tracking metric TETA[6] as the evaluation criterion.

Open-vocabulary multi-object tracking (OVMOT), as a new yet practical task, is very promising
with great research potential. However, the largest challenge for the further study of this topic is the
lack of a comprehensive benchmark. We all know that accurately evaluating the performance of new
OVMOT methods requires a benchmark dataset containing a large number of videos and categories.
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However, previous research utilized modified OV-TAO-val and OV-TAO-test as insufficient evaluation
datasets. As stated in [7] – ‘A more dynamic, challenging video dataset is needed to fully explore the
potential of vision language models for open vocabulary learning.’

First, in terms of the object categories, although the basic dataset TAO has a large number of 833
categories, OV-TAO-val includes 330 object categories, composed of 295 base classes and only 35
novel classes. This is because, following the base/novel category setting in the LVIS [8] dataset, the
authors in [5] use the overlapped base/novel categories between LVIS and TAO to build OV-TAO-val.
This number of categories does not meet the large vocabulary evaluation needs in open vocabulary
research. Especially the amount of new classes especially hardly reflects the model’s true open
vocabulary tracking capability. The category setup and data distribution of the OV-TAO-test dataset is
almost identical to the OV-TAO-val dataset, failing to serve as a practicable benchmark. Second, the
annotation rate of the original TAO is sparse. Specifically, the frame rate of the videos in TAO is 30
fps, but the annotation is only 1 fps. Also, in each video, the objects are not very dense with up to 10
annotated targets per frame. Therefore, in this work, we build OVT-B, a large-scale Open-Vocabulary
multi-object Tracking Benchmark containing 1,973 videos and 637,608 annotated objects from 1,048
categories, as shown in Figure 1, surpassing the diversity of all current MOT datasets. Besides the
diverse categories and large scale, the target presence and annotation density also exceed those of
existing OV-TAO-val and OV-TAO-test datasets. OVT-B also includes some attributes especially for
the MOT task, e.g., the scenarios of out-of-view, fast motion, mutual occlusion, and objects with
various sizes, shapes, etc.

We also develop a simple baseline method for open-vocabulary tracking. Specifically, the existing
method OVTrack [5] solely relies on appearance features for object association, neglecting motion
information, which is also a strong cue in the classical MOT task. This way, in this work, we propose
OVTrack+, a simple method that combines appearance and motion information for association,
enhancing performance by integrating the motion cues.

We summarize the main contributions of this work. We construct OVT-B, the first benchmark
specifically designed for the open-vocabulary multi-object tracking (OVMOT) task, which is a
massive and richly categorized dataset, with dense objects and full annotations. OVT-B can better
provide a new platform for the research and evaluation of OVMOT. We also develop a new baseline
method OVTrack+, which exploits the potentialities of motion features for OVMOT. We also conduct
extensive experiments on OVT-B and report the comparison results of a series of approaches of
OVMOT. Through the above effort, we provide a benchmark study for promoting the development of
OVMOT.

2 Related Work

Multiple Object Tracking. Multi-object tracking (MOT) aims to detect, classify, and associate
multiple object targets within video sequences. The classical MOT paradigm, Tracking by Detection,
initially employs detectors to identify objects in frames, followed by trackers to associate these
objects. Predominantly, this framework focuses on target association using two distinct types of cues.
A notable example of using location and motion cues is SORT [1], which leverages Kalman filtering
[9] to forecast trajectories and the Hungarian algorithm [10] for matching detection results with
these trajectories. On the other hand, some works utilize appearance cues (re-identification, ReID
methods) for target association, such as POI [11] and DeepSORT [2]. Recent researches suggest
that combining both cues can achieve better performance, as demonstrated by Deep OC-SORT [12],
BoT-SORT [13], and StrongSORT [14]. An alternative mainstream paradigm is Joint Detection
and Tracking, which primarily explores the synergy between detection and tracking tasks. JDE
[15] and FairMOT [16] are exemplary works that integrate detection with appearance embeddings
extraction in one stage. Another way incorporates object displacement prediction into the detector,
as illustrated by D&T [17], Tracktor [18], and CenterTrack [19]. Some approaches introduce the
Transformer [20] architecture into MOT, aiming to model the tracking task through learning deep
representations, such as MOTR [21] and TrackFormer [22]. However, these end-end methods often
fall short of two-stage methods in terms of accuracy. Furthermore, several studies adopt offline
methods, treating target association as a global optimization challenge across the entire sequence and
employing graph-based models or graph neural networks [23, 24].
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Open-Vocabulary Object Detection. To address the challenge of detecting novel category objects,
researchers have proposed three approaches: Open-Set/Open World/Out-Of-Distribution (OOD)
Learning, Zero-Shot Learning, and Open Vocabulary Learning. In Open-Set/Open World/OOD
Learning, models need to recognize objects of novel classes and classify them as unknown. In
zero-shot learning, models need to classify the novel categories with additional knowledge. In open
vocabulary learning, which has become increasingly mainstream, models are allowed to classify
novel categories using low-cost knowledge sources. The foundational assumption of open vocabulary
learning is access to large-scale image captions available in network data. Based on this, OVR-
CNN [25] first introduced the concept of open vocabulary object detection (OVOD), utilizing image
captions to gain additional knowledge. Then, the contrastive learning model CLIP [26], leveraging
the abundance of image-text pairs on the web, became a secondary source of knowledge for OVOD.
Given the extensive knowledge of Visual Language Models (VLMs) like CLIP, employing a VLM to
train a detector head is an intuitive approach. VilD [3] pioneered the use of the Knowledge Distillation
method to build an OVOD model. Inspired by the DETR [27] series, OV-DETR [28] was introduced,
innovating the original matching mechanism. The idea of aligning region and text also influenced
subsequent works such as BARON [4] and VLDet [29]. Moreover, two knowledge sources have been
further explored, i.e., pseudo labeling, with VL-PLM [30] and RegionCLIP [31] as exemplary works,
and prompting engineering, as demonstrated by DetPro [32] and PromptDet [33]. Recently, the trend
has shifted towards more innovative pre-training methods, e.g., CFM-ViT [34] and CoDet [35].

Open-World and Open-Vocabulary MOT. In traditional MOT benchmarks such as KITTI [36],
MOTChallenge [37, 38], and DanceTrack [39], the categories are typically restricted to humans
or vehicles. Many MOT algorithms achieve higher accuracy by leveraging the prior knowledge
associated with these categories. As a result, the majority of MOT models cannot track objects
across more general categories. However, there remains significant interest in tracking objects beyond
humans and vehicles, such as wildlife (e.g., bats [40] and bees [41]). In response to this need, BLP [42]
introduced the concept of Generic Multiple Object Tracking (GMOT), which expands the task from
tracking multiple objects within some categories to some generic categories. Subsequently, GMOT-
40 [43] established a new benchmark for this task, defining ten generic categories within its dataset.
Besides, TAO [44]presents a broader variety of categories than previous datasets, creating a long-tail
distribution that encourages the development of models capable of tracking more categories. With
the popularity of Open-Set/Open World/OOD Learning, Open World Tracking [45] was introduced,
evaluating the task of tracking unknown categories using OWTA as the evaluation metric. Following
this development, SimOWT [46] achieved state-of-the-art performance in open-world tracking
using a self-training paradigm. However, the capability for accurate classification should not be
underestimated in tracking models. Therefore, OVTrack [5] presented the first framework for open
vocabulary multiple object tracking, employing diffusion models to generate object pairs for training
the model in association capabilities. Furthermore, VOVTrack [47] proposes to train the network
using the (raw) videos rather than the image pairs in [5] in a self-supervised manner. To promote the
development of this new and important topic, in this work, we complement the OVMOT evaluation
benchmark and present a simple baseline.

Table 1: Statistics of MOT datasets and OVMOT datasets. We provide the number of classes (#Cls.),
videos (#Vid.), tracks (#Track), boxes (#Box), frames (#Frm.) in these datasets, and the image
resolution (Res./p), duration (Dur./second), and average number of objects per frame (#Obj.) and the
annotation frame rate (Ann./fps).

Datasets #Cls. #Vid. #Track #Box #Frm. Res. Dur. #Obj. Ann.
MOT17 1 42 3993 901K 33K 480-1080 17-85 1-63 30
MOT20 1 8 3833 2102K 13K 880-1080 17-133 1-94 30
KITTI 5 50 2600 80K 15K 512 20-90 0-30 10
DanceTrack 1 100 990 877K 105K 720-1080 20-108 1-22 20
UAVDT 3 100 2700 841K 80K 540-1080 3-99 1-122 6
TAO 833 2907 17287 333K 2674K 480-2160 1-279 1-10 1
GMOT-40 10 40 2026 256K 9K 480-1080 3-24.2 10-128 24-30
OV-TAO-val 330 988 5473 113K 36K 480-2160 15-63 1-11 1
OV-TAO-test 357 1419 7946 166K 52K 480-2160 10-59 1-11 1
OVT-B (Ours) 1048 1973 13686 673K 88K 360-1440 1-220 2-86 5-30

As shown in Table 1, we summary the data statistics of the classical MOT datasets, i.e., MOT17 [37],
MOT20 [38], KITTI [36], DanceTrack [39] and UAVDT [48], and two new generic MOT datasets, i.e.,
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TAO [44], GMOT-40 [43] and the existing open-vocabulary MOT dataset, i.e., OV-TAO-validation [5],
OV-TAO-test [5]. We can see that, the proposed OVT-B includes the most object classes. Also, the
data scale of OVT-B is quite large compared to existing datasets. Note that, although TAO is larger
containing more videos and tracks, its annotation frame rate is only 1 fps. So the annotated frames
(which can be used for evaluation) in TAO are much fewer than in our dataset.

3 OVT Benchmark

To better evaluate the open-vocabulary tracking task, we establish a new large-scale dataset named
OVT-B (Open-Vocabulary Tracking Benchmark). In this section, we present the video collection and
annotation of OVT-B, as well as provide statistical information about this dataset and the comparisons
with other datasets.

3.1 Data Collection

Similar to the TAO dataset, we sourced video data from existing datasets to construct the OVT-B.
The selection criteria for video data were as follows:
• Each video must contain multiple objects;
• The dataset should represent a variety of categories;
• Most objects must be in motion, providing trajectory information;
• The data must be original and not derived from other datasets.

Based on these criteria, we selected seven datasets previously utilized for different tasks, including
multi-object tracking (MOT), video instance segmentation (VIS), and video object detection (VOD),
to create OVT-B. These datasets are AnimalTrack [49], GMOT-40 [43], LV-VIS [50], OVIS [51],
UVO [52], YouTube-VIS [53], and ImageNet-VID [54]. Based on these datasets, we excluded the
sequences featuring only background categories, non-specific categories, and unknown categories,
retaining only those containing at least two objects. To more closely mirror various real-world
scenarios and present more challenging scenes, we preserved the original resolution, duration, and
annotation frame rate of the videos. It is important to note that the OVMOT task employs pre-trained
OVOD models, typically without training specifically on the OVMOT dataset. This underscores
the critical need for a robust evaluation benchmark. Consequently, the proposed OVT-B does not
partition the training/testing dataset and serves exclusively as a comprehensive testing set.

3.2 Dataset Annotation

Creating unified annotations for sequences from different datasets presents several challenges, surpass-
ing the complexity of annotating homogeneous sequences. ❶ Annotation format difference: Firstly,
annotation formats and file storage conventions vary significantly across tasks. For instance, MOT
datasets generally adhere to the MOTChallenge [37, 38] format, VIS datasets to the MS COCO [55]
format, and VOD datasets to the ImageNet-VID [54] format. Additionally, even within the same
task category, annotation formats may differ, necessitating bespoke processing for each dataset.
❷ Category definition differences: Secondly, category definitions across datasets are not uniform.
Common issues include single objects corresponding to vocabularies of different granularities (e.g.,
‘livestock’ vs. ‘pig’), objects associated with multiple vocabularies that have the same semantic mean-
ing (e.g., ‘couch’ and ‘sofa’), and vocabularies that encompass multiple meanings, thus corresponding
to different objects (e.g., ‘bow’ as an ornament vs. ‘bow’ as a weapon). ❸ Occlusion annotation
manner: Thirdly, the representation of completely occluded objects varies between datasets. For
example, MOT datasets typically predict the motion position of an occluded object, whereas VIS
datasets might label the position as null.

➀ To address the above challenge of annotation format differences, we initially stripped unnecessary
information from the original dataset annotations specific to MOT and converted these annotations
into a uniform format. Specifically, we adapted the annotations to match the TAO protocol [44],
standardizing file formats and simplifying redundant data.

➁ For the category definition difference, we meticulously reviewed all categories in the original seven
datasets, merged synonyms, applied semantic constraints to polysemous terms, and eliminated some
generic categories, ultimately preserving 1,048 distinct categories.
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➂ To handle the annotation of occluded objects, following the TAO protocol, we uniformly set
the positions of completely occluded objects as null. This way, in our dataset, objects with partial
occlusion are reserved, and the objects completely occluded are not annotated, but if they reappear,
they retain their original track ID.

We clarified that each above step of the annotation process was rigorously managed, involving
professional manual annotation, double-checking, and correction to ensure accuracy and consistency.
For a such large-scale dataset with abundant categories, the data cleaning and annotation is quite
labor intensive.

3.3 Dataset Statistics and Comparison

Next, we show the dataset statistics of OVB-B from multiple dimensions in detail. Since OV-MOT-val
and OV-MOT-test [5] have the same distribution and similar attributes, we compared one of them to
OVT-B, to show the advantages of the proposed OVT-B, including diverse categories, large scale,
dense annotations, and numerous targets.

Figure 1: Comparison of OV-TAO-val and OVT-B.

• Diverse Categories: The OVT-
B dataset contains 1,048 categories,
which are divided into 534 base
categories and 514 new categories
that are distinct from the base
ones. The base categories are de-
rived from the frequent and com-
mon categories in the LVIS dataset.
Compared to existing MOT datasets
such as MOT17 [37] (1 category),
KITTI [36] (5 categories), and
UAVDT-MOT [48] (3 categories),
OVT-B has a significantly larger num-
ber of categories, even exceeding the
basic dataset of OV-TAO-val [5], i.e.,
TAO [44] (833 categories). In the do-

main of open vocabulary multi-object tracking (OVMOT), TAO-val only utilizes the categories
overlapping with LVIS [8], consisting of 295 base categories and 35 novel categories. However, in
open vocabulary scenarios, new categories do not undergo pre-training, hence we believe there is no
need to confine novel categories to the predefined novel categories of LVIS [8].

Figure 2: Word cloud of OVT-B categories.

This way, in OVT-B, we set the base classes fol-
lowing the setting in LVIS, but the novel classes
are out of the scope of that in LVIS. Note that,
we still guarantee that the novel classes in OVT-
B have no overlap with the base classes in LVIS,
i.e., the novel classes are unseen before. As
shown in Figure 1, the categories in OV-TAO-
val is only about 28% of that in OVT-B. Besides
abundance, the category set in our dataset en-
sures a more balanced ratio between base and
new categories, more accurately evaluating the
model’s ability to recognize new categories. We
show the word cloud of the categories in OVT-B
in Figure 2.

• Large Scale: OVT-B features a larger number of annotated frames, trajectories, bounding boxes,
and video counts, making it a dataset of a significantly larger scale, see Figure 1. This meets the
current needs for evaluating rapidly increasing model sizes and capabilities.

• Dense Targets: As shown in Figure 3(a), the range of video length in OVT-B is much larger
than that in OV-TAO-val. As shown in Figure 3(b), the maximal resolution in OVT-B is lower than
OV-TAO-val. We further calculate the mean, median, and mode of the image resolution in them. The
average resolution of OVT-B (724 p) is slightly lower than that of OV-TAO-val (788 p). But both the
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(a) Length (b) Resolution (c) Object number (d) Annotation fps

Figure 3: Comparison of OV-TAO-val with OVT-B in scope.

median and mode of the resolution in OVT-B are the same as those of OV-TAO-val. In terms of the
image resolution, OVT-B is comparable with OV-TAO-val. As in Figure 3(c), unlike the OV-TAO-val
dataset, which limits up to 10 targets per frame, OVT-B does not impose such a limit, thus boasting a
higher number of video targets. In OVT-B, the maximum number of targets per frame can reach 86.
A higher number of targets per frame implies increased scene congestion and complexity, allowing
for an evaluation of models’ performance in complex environments.

Figure 4: Screenshots of annotations of OV-TAO-val and OVT-B.

• Complete Annotations: As
shown in Figure 4, unlike OV-
TAO-val, which focuses on an-
notating prominent targets, our
dataset includes a certain num-
ber of occlusion and dense cases,
providing a more diverse set of
evaluation scenarios. Besides, as
shown in Figure 3(d), OVT-B pos-
sesses a higher annotation frame
rate, with the lowest being 5 and the highest reaching 30. This enables models to fully utilize the
information in every video frame for tracking and recognition. By contrast, the annotation frame
rate of OV-TAO-val is 1, leaving many frames unannotated. It does not meet the need to sufficiently
evaluate the performance of models.

3.4 Dataset Attributes

Next, we further describe the detailed attributes of the OVT-B. First, the videos in our dataset are
various with many challenges in terms of the tracking task, i.e., the object with out-of-view, fast
motion, shape change, or different degrees of occlusion.

Figure 5: Ratio of videos with attributes.

Specifically, following previous works for object track-
ing [38], the above attributes are defined as following
four aspects:

- Occluded track – The target is obscured or lost
during part of the trajectory.

- Fast motion – The target moves more than
1/25 of the image width between two frames.

- Out of view – Part of the target is outside the
image boundary.

- Shape change – A change of aspect ratio of the
target greater than 1/5 between two frames.

As shown in Figure 5, OVT-B presents significant chal-
lenges for multi-object tracking (MOT) tasks. It re-
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quires methods to possess the ability to handle occlusion, perform accurate motion prediction for
fast-moving objects, and correctly classify and associate targets when they are partially missing or
undergoing shape changes.

We also investigate the attributes of the objects in OVT-B. Specifically, we analyze the size and shape
of the objects and the length of the tracks, as below.

• Object size:
- Large objects – Occupy more than 1/2 of the image area.
- Medium objects – Occupy less than 1/2 but more than 1/10 of the image area.
- Small objects – Occupy less than 1/10 of the image area.
• Object shape:
- Complex shapes – Have aspect ratios greater than 5 or less than 1/5.
- Intermediate shapes – Have aspect ratios less than 5 but greater than 2, or greater than 1/5 but less
than 1/2.
- Normal shapes – Have aspect ratios less than 2 but greater than 1/2.
• Track length:
- Long tracks – The trajectory length exceeds 4/5 of the video length.
- Medium tracks – The trajectory length is less than 4/5 of the video length but more than 1/5.
- Short tracks – The trajectory length is less than 1/5 of the video length.

(a) Object size (b) Object shape (c) Track length

Figure 6: Proportion of different object sizes, object shapes, and track lengths in OVT-B.

As shown in Figure 6, we can first see that, similar to most MOT datasets, the small objects take
up the major proportion in our dataset. OVT-B also includes about 20% medium/large-size objects,
which is more plentiful than previous MOT datasets. e.g., MOT 20. Similarly. To the object shape,
the normal shapes naturally take up the majority of targets. Our dataset also contains about a quarter
of objects with abnormal shapes, which can increase the richness of data. Finally, we can see that
most of the trajectories in OVT-B are long, with a portion being medium or short. This can better
evaluate the performance of the tracking tasks. These data attributes and distribution reflect the
diversity of targets and trajectories in OVT-B, as well as a comprehensive range of tracking scenarios.

3.5 Metrics

We use the tracking-every-thing accuracy (TETA) [6] as the evaluation metric, which is calculated
from three independent scores. First, localization accuracy (LocA) is calculated based on the
matching of annotation boxes and predicted boxes, LocA = |TPL|

|TPL|+|FPL|+|FNL| , followed by the
calculation of classification accuracy (ClsA) based on TPL with good localization results, ClsA =

|TPC|
|TPC|+|FPC|+|FNC| , Subsequently, association accuracy (AssA) is calculated based on TPL with

good localization results, AssA = 1
|TPL |

∑
b∈TPL

|TPA(b)|
|TPA(b)|+|FPA(b)|+|FNA(b)| , Ultimately, TETA

is obtained by taking the arithmetic mean of the three accuracies, TETA = LocA+ClsA+AssA
3 . In

OVMOT, following the evaluation method of OVOD, TETA is calculated separately for base and
novel classes.
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4 OVTrack+: A New Baseline

OVTrack [5], as the first and alone public tracker for OVMOT, uses only the appearance feature for
the association. In this section, we introduced a simple yet effective baseline incorporating a motion
model into open-vocabulary multi-object tracking, using motion information and appearance features
as cues for association.

Integrating motion model for OVTrack. In addressing the challenge of open-vocabulary multi-
object tracking, we believe that the integration of a target motion model is advantageous for association
tasks due to its category-agnostic nature. While the proliferation of categories introduces specific
motion patterns that may challenge the assumptions inherent to the classical motion model, e.g., the
Kalman filter, this model nonetheless offers valuable supervisory data that aids in the association
process for most categories. Experimental evidence, however, indicates that reliance solely on the
motion model for object tracking is suboptimal. Drawing on these insights, we developed a method
namely OVTrack+ that eliminates the decision threshold and integrates appearance features with
motion information.

Before distance computation, the IoU distance between every pair of detected objects r ∈ R is
calculated. Objects with an IoU score greater than the threshold are considered that occlusion and
the one with the lower confidence is removed. For each track τ ∈ T , we first use a Kalman filter
to predict the motion position, resulting in pτ , and then calculate the IoU distance between pτ and
the remaining detected objects pr. Next, we compute the appearance distance between the stored
appearance embeddings qτ in the track and the detected object’s embeddings qr. The appearance
distance Dapp is calculated using a weighted combination of the bi-softmax score Sbi[56] and the
cosine score Scos

Sbi(τ, r) =
1

2

[
exp (qr · qτ )∑

r′∈R exp (qr′ · qτ )
+

exp (qr · qτ )∑
τ ′∈T exp (qr · qτ ′)

]
, (1)

Scos(τ, r) =
τ

∥τ∥2
· ( r

∥r∥2
)
⊤
, Dapp =

(
1

2
(1 + Scos ) + Sbi

)
. (2)

The final distance matrix D is obtained by weighting the IoU distance DIoU and the appearance
distance Dapp

D = Dapp · (1− w) + w ·DIoU. (3)
Finally, the Hungarian algorithm is applied to the distance matrix for optimal matching. Matches
with distances below the threshold are considered successful, while those above the threshold are
assigned new IDs. Note that no detected objects are discarded in the open vocabulary tracker due to
the generally low and unreliable classification confidence. For the tracks successfully matched, the
appearance embeddings ek−1 are updated by the Exponential Moving Average (EMA) mechanism

eki = αek−1
i + (1− α)fk

i . (4)

Implementation details. In our approach, we utilize a two-stage detector that is identical to our
baseline method OVTrack [5], employing ResNet50 [57] coupled with a Feature Pyramid Network
(FPN) [58], the detection head from ViLD [3] and the tracking head from OVTrack. During inference,
the training weights from OVTrack are used along with text embeddings generated by Detpro [32].
We maintain the same operational settings, setting the match distance threshold at 0.5, and the IoU
threshold for track initialization at 0.3. To enhance tracking performance, our newly integrated
motion model incorporates a memory frame count of 30 frames, a momentum parameter α in Eq. (4)
for update embeddings of 0.2, and a motion distance weight w in Eq. (3) of 0.03.

5 Experiments

5.1 Comparison with State-of-The-Art Methods

• ByteTrack[59]: It is a renowned motion-based model that relies solely on high-performance
detectors and motion information, achieving high running speed and state-of-the-art performance. It
utilizes low-score detection boxes by initially matching high-confidence detections, followed by an

8



association with the low-confidence detections.
• OC-SORT[60]: It is derived from ByteTrack[59], also a motion-based model, and achieves new
state-of-the-art performance after ByteTrack. It enhances tracking robustness in non-linear motion
scenarios and mitigates the impact of object occlusion or disappearance by relying heavily on
detections.
• StrongSORT[14]: It is a hybrid model combining motion and appearance features, by equipping
DeepSORT[2] with advanced components. It introduces a simple yet effective baseline and attains
state-of-the-art performance when proposed.
• OVTrack[5]: It is derived from QDTrack[56], which is a pure appearance-based model, and also a
SOTA model known for its simplicity and effectiveness, without bells and whistles.

Table 2: Open-vocabulary MOT comparison results on OVT-B.

All Base Novel
Method TETA LocA AssA ClsA TETA LocA AssA ClsA TETA LocA AssA ClsA
ByteTrack [59] 20.1 36.1 12.4 11.9 20.6 35.6 12.7 13.4 19.6 36.6 12.0 10.3
OC-SORT [60] 16.0 31.2 4.3 12.3 16.5 31.0 4.4 14.3 15.4 31.4 4.3 10.3
StrongSORT [14] 24.8 31.6 30.7 12.2 25.7 31.4 31.6 14.2 23.9 31.8 29.7 10.3
OVTrack [5] 46.1 60.8 66.1 11.5 46.8 60.5 66.7 13.4 45.5 61.1 65.5 9.6
OVTrack+ 47.0 62.0 67.7 11.3 47.6 61.6 68.2 13.2 46.4 62.5 67.3 9.4

Table 3: Open-vocabulary MOT comparison results on OV-TAO-val.

All Base Novel
Method TETA LocA AssA ClsA TETA LocA AssA ClsA TETA LocA AssA ClsA
ByteTrack [59] 20.1 36.9 6.0 17.6 20.9 37.0 5.9 19.7 14.7 36.0 6.1 1.8
OC-SORT [60] 24.3 52.1 6.0 14.8 25.1 52.7 6.1 16.5 18.5 48.1 5.4 2.1
StrongSORT [14] 23.4 41.6 13.5 15.2 24.4 42.3 13.7 17.0 16.6 36.4 11.6 1.7
OVTrack [5] 36.1 53.8 37.3 17.3 37.1 54.2 37.8 19.4 28.8 51.2 33.7 1.5
OVTrack+ 38.4 57.5 40.8 16.9 39.2 57.5 41.0 18.9 32.5 57.0 38.7 1.8

We present the MOT evaluation results of open vocabulary multi-object tracking on the OV-TAO-
val and OVT-B, see Table 2 and Table 3. Compared to the OVTrack, OVTrack+ achieves higher
performance on TETA, LocA, and AssA. In terms of ClsA, OVTrack+ experiences a slight decline in
performance, indicating that the inclusion of the motion model does not contribute to an improvement
in classification performance.

5.2 In-depth Experimental Analysis

In OVT-B, all methods exhibit significantly higher AssA compared to OV-TAO-val. This indicates
that the high annotation frame rate of OVT-B, by providing more densely evaluated frames, allows
for a more comprehensive and detailed assessment, thereby reducing cumulative error scores. Con-
sequently, it reflects the actual accuracy of the model in target association tasks. Moreover, the
performance of various methods is more consistent in OVT-B, suggesting that the scenes and object
characteristics in OVT-B are more uniform. This uniformity reduces the variability in algorithm
performance under different conditions, facilitating more accurate evaluation and comparison of
different methods. Additionally, in OV-TAO-val, OVTrack+ significantly improved performance by
incorporating a motion model in association, demonstrating the potential of motion feature-based
methods in this dataset. On the other hand, in OVT-B, methods utilizing appearance features con-
sistently achieve higher AssA than those relying solely on motion features. This indicates that
objects in OVT-B have more distinctive appearance characteristics. Therefore, OVT-B can effectively
complement OV-TAO-val by providing a more comprehensive evaluation.

5.3 Discussion

New challenges and lessons. In this discussion, we delineate the distinctions between open-
vocabulary multi-object tracking (OVMOT) and traditional MOT, and what we learned from practice.
The introduction of a lot of categories and the low performance of OVD models significantly diminish
the reliability of category confidence, due to the closely similar and low confidence scores across
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categories. It impairs the effectiveness of using classification confidence as a metric during the
association phase – a common practice in traditional MOT methods. Notably, training solely on the
categories from the training set still introduces a bias between the appearance quality of base and
novel classes, which does not manifest when employing only motion models for association.

Moreover, the use of category information as a cue to supervise open vocabulary association has
proven impractical. The impracticality arises from two primary factors: the insufficient reliability of
category information provided by detection models, and the minimal distinctions between categories,
coupled with the less pronounced than intra-category variances. Consequently, these observations
highlight the imperative need to further develop and refine the association mechanisms tailored for
the OVMOT context, where conventional strategies falter due to the unique complexities introduced
by open vocabulary settings.

Current situation and future outlook. Based on the results of the current state of the object tracking
methods on the proposed dataset, we have some thoughts in the following.

In terms of the problem, as shown in Table 2, we can clearly see that the object classification results,
especially for the novel class, are very low. This demonstrates that this is a very challenging problem
having lots of room for improvement. So, how to improve the novel-class object classification ability
of the open-set object tracking method, is a difficult problem worthy of further research. Also, we
find that the current methods for open-set object tracking can not handle the performance balance
among different sub-tasks. We think that the three sub-tasks, i.e., localization, classification, and
tracking could be complementary to each other. For example, on the one hand, the correct tracking
results can help the classification task, i.e., the predicted object category should be consistent along a
trajectory. On the other hand, the object classification results can also help the tracking, where the
object category can be used as a cue for temporal object association during tracking.

In terms of the methods, in classical multi-object tracking, the method can be divided into two
categories, i.e., tracking-by-detection methods, and joint embedding of tracking and detection based
methods. Classical MOT does not require classification during detection. In the open-vocabulary
setting, the detection task is more challenging requiring open-class recognition ability. This way,
from our point of view, the tracking-by-detection methods would be the mainstream framework in the
near future. This is because the joint feature embedding for three different tasks is very challenging.
As discussed in the above (second point), we think that using the results from different tasks to
complement each other may be a better solution at present. We also hope to see the first effective
joint embedding based method for OVMOT.

Besides, in terms of the evaluation metric, the existing overall metric TETA directly calculates
the average of the localization, classification, and tracking accuracies. Considering the difficulty
imbalance among different sub-tasks, a new metric for more reasonable evaluation may be required.

Finally, a more recent work [61] aims to handle the object classification task in OVTrack as the
recognition problem and proposes a new task namely open-corpus tracking (OCTrack), which may
be a further step of OVTrack.

6 Conclusion

In this work, we have built a new large-scale benchmark – OVT-B for the emerging open-vocabulary
multi-object tracking (OVMOT). The proposed OVT-B is much larger than the only existing open-
vocabulary tracking dataset OV-TAO-val dataset, regardless of video amount or category amount.
The proposed OVT-B is very promising to serve as a new benchmark for the study of OVMOT. We
develop a simple yet effective baseline for OVMOT that integrates the motion features for object
tracking. Experimental results have verified the usefulness of the proposed OVT-B. We have also
delineated the distinctions between OVMOT and traditional MOT and provided some experiences
and lessons to tackle the new challenges of OVMOT, as well as some outlook in the future. Through
the above effort, we aim to pave the way for further research on this topic.
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