Reproducing Guideline for
Benchmarking LLMs via Uncertainty Quantification

Our implementation under the MIT license is available at both the supplementary materials enclosed
and the GitHub repo https://github.com/smartyfh/LLM-Uncertainty-Bench,

1 Data preparation

In this work, we propose a new method that takes into account uncertainty quantification to benchmark
LLMs. Our benchmarking relies on existing publicly available datasets, including

* MMLU: MMLU was released by Hendrycks et al.| (2020) and is available at https:
//github.com/hendrycks/test.

* CosmosQA: CosmosQA was released by Huang et al.|(2019) and is available at https:
//github.com/wilburOne/cosmosqa.

* HellaSwag: HellaSwag was released by Zellers et al.| (2019) and is available at https:
//github.com/rowanz/hellaswag,

* HaluDial: HaluDial was built upon HaluEval, released by |Li et al.| (2023)) and is available
athttps://github.com/RUCAIBox/HaluEvall

¢ HaluSum: HaluSum was built upon HaluEval as well.
The licenses of these datasets are provided in the following table.

Table 1: Licenses of datasets.

MMLU CosmosQA HellaSwag HaluDial HaluSum
MIT License None MIT License MIT License MIT License

All these datasets are in the form of multiple-choice question answering and there is only one correct
option for each question. However, these raw datasets have different data formats and different number
of data points. They also have different number of answer choices for each question. To facilitate
comparisons among different tasks, we standardize these datasets in the json format and keep only
10,000 randomly sampled data points for each dataset. Moreover, we standardize the number of
options for each question to 6 and the last two options are always "I don’t know" and "None of the
above". Our implementation of this data preprocessing is provided in the data_preparation folder.
Considering that it is time-wasting to repeat this process, we have also provided the preprocessed
datasets, which are available in the data folder.

2 Prompting LLMs to obtain predicted probabilities for options

The next step is to prompt a particular LLM to obtain the predicted probabilities for all options of
each question. Specifically, instead of acquiring these probabilities from the LLM directly, we obtain
the logits corresponding to each option letter from the LM_Head layer. Then, we convert these logits
to probabilities by applying the softmax function. It is worth emphasizing that since we rely on the

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/smartyfh/LLM-Uncertainty-Bench
https://github.com/hendrycks/test
https://github.com/hendrycks/test
https://github.com/wilburOne/cosmosqa
https://github.com/wilburOne/cosmosqa
https://github.com/rowanz/hellaswag
https://github.com/rowanz/hellaswag
https://github.com/RUCAIBox/HaluEval

output logits to calculate predicted probabilities, we just need to perform the forward pass once and
there is no need to do any sampling. In other words, the obtained results are deterministic.

Considering that LLMs are sensitive to different prompts, we have proposed three prompting strate-
gies: base prompt, shared-instruction prompt, and task-specific instruction prompt. We take the
average results corresponding to these three prompting strategies to mitigate the influence of LLMs’
sensitivities to prompts. The detailed prompts can be found in the prompt . py file.

Our implementation of prompting LLMs can be found in the generate_logits.py file. In particular,
it can be run as follows:

python generate_logits.py \
--model={path to model directoryl} \
--data_path={path to data directory} \
--file={name of dataset} \
--prompt_method={base/shared/task} \
--output_dir={output directoryl} \
--few_shot={1 for few-shot and O for zero-shot}

In our experiments, we have adopted the few-shot setting (i.e. in-context learning) to help LLMs
achieve better performance.

The above implementation is only applicable to pre-trained LLMs. Given that the instruction-
finetuned (chat) version is more useful in practice, we also assess the uncertainty of instruction-
finetuned LLMs. For this purpose, we provide a chat version of the generate_logits.py file,
namely generate_logits_chat.py. file. This file can be run as follows:

python generate_logits_chat.py \
--model={path to model directoryl} \
--data_path={path to data directoryl} \
--file={name of dataset} \
--prompt_method={base/shared/task} \
--output_dir={output directory} \
--few_shot={1 for few-shot and 0 for zero-shot}

3 Applying conformal prediction for uncertainty quantification

The last step is to quantify uncertainty based on the predicted probabilities. We choose to employ
conformal prediction |/Angelopoulos et al.| (2023) as the uncertainty quantification method. Conformal
prediction is a distribution-free and model-agnostic approach to uncertainty quantification. It
can transform any heuristic notion of uncertainty from any model into a statistically rigorous
one. For multi-class classification tasks, conformal prediction outputs a prediction set of possible
labels (answers) that encompasses the correct label with a user-specified error rate «v and expresses
uncertainty as the set size. Intuitively, a larger set size indicates higher uncertainty and vice versa.

Our implementation can be found in the uncertainty_quantification_via_cp.py file. Specifi-
cally, it can be run as follows:

python uncertainty_quantification_via_cp.py \
--model={model name} \
--raw_data_dir={path to data directoryl} \
--logits_data_dir={path to the directory where option logits are stored} \
--data_names={list of datasets to be evaluated} \
--cal_ratio={how much data to be used as the calibration data, e.g., 0.5}\
--alpha={error rate, e.g., 0.1}

It is noted that there is an argument cal_ratio, which denotes the portion of data used as calibration
data. This is because conformal prediction splits the dataset into a calibration set and a test set. The
reported results are derived from the test set.

References

Angelopoulos, A. N., Bates, S., et al. (2023). Conformal prediction: A gentle introduction. Founda-
tions and Trends® in Machine Learning, 16(4):494-591.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., and Steinhardt, J. (2020).
Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300.

Huang, L., Le Bras, R., Bhagavatula, C., and Choi, Y. (2019). Cosmos qa: Machine reading
comprehension with contextual commonsense reasoning. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 2391-2401.

Li, J., Cheng, X., Zhao, W. X., Nie, J.-Y., and Wen, J.-R. (2023). Halueval: A large-scale hallucination
evaluation benchmark for large language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 6449-6464.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y. (2019). Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791-4800.

	Data preparation
	Prompting LLMs to obtain predicted probabilities for options
	Applying conformal prediction for uncertainty quantification

