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Abstract

The recent large-scale text-to-image generative models have attained unprece-
dented performance, while people established adaptor modules like LoRA and
DreamBooth to extend this performance to even more unseen concept tokens.
However, we empirically find that this workflow often fails to accurately depict
the out-of-distribution concepts. This failure is highly related to the low quality
of training data. To resolve this, we present a framework called Controllable
Adaptor Towards Out-of-Distribution Concepts (CATOD). Our framework follows
the active learning paradigm which includes high-quality data accumulation and
adaptor training, enabling a finer-grained enhancement of generative results. The
aesthetics score and concept-matching score are two major factors that impact the
quality of synthetic results. One key component of CATOD is the weighted scoring
system that automatically balances between these two scores and we also offer
comprehensive theoretical analysis for this point. Then, it determines how to select
data and schedule the adaptor training based on this scoring system. The extensive
results show that CATOD significantly outperforms the prior approaches with an
11.10 boost on the CLIP score and a 33.08% decrease on the CMMD metric.

1 Introduction

The generative modeling for text-to-image has attained unprecedented performance most recently [37,
45, 41, 49]. Notably, by training over billions of text-image data pairs [52, 51], the family of diffusion
models has allowed high-fidelity image synthesis directed by the prompt provided in production.
Despite their massive successes, these models still fail to generate images with decent quality and
matching semantics, when encountering prompts that contain unseen or out-of-distribution concept
tokens [60, 12, 21]. Simply put, the reason causing this failure is due to that the training set is not
unbounded with limited variations. On the side of production, this limitation could significantly
impact the practicality of this technique in real-world applications.

To deal with such concepts, recent works have resorted to adaptors such as Textual Inversion [18],
DreamBooth [47, 58, 48], and LoRA [25, 66, 76], which tunes only a small part of the text-to-image
model or insert extra modules. These adaptors largely reduce the training costs, and more importantly,
preserve the visual aesthetic information originally learned by the underlying model.
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Figure 1: Comparison of images generated before/after training adaptors over concepts with different
CMMD scores. One observation is that concepts with higher CMMD scores are notably more challenging for
the underlying model to generate (the second row). Additionally, we also notice that a higher CMMD value
leads to a more notable loss of visual details when training adaptors (the third row).

However, in this paper, we have found that recent works still struggle to accurately depict the visual
details of out-of-distribution concepts (with a CMMD score above 3.5), as illustrated in Figure 1.
Adapters like LoRA are able to accurately represent the shape and color of OOD concepts compared
to the generative results before adaptor training, but they fall short when it comes to finer details such
as texture, contours, and patterns. This issue arises from the fact that current studies predominantly
focus on variations of in-distribution (ID) concepts (e.g., humans, dogs, and cats) while ignoring the
out-of-distribution (OOD) ones. This failure motivates us to think about what makes the problem of
distorted visual details happen when training adaptors.

In Figure 2, we observed that how an adaptor depicts OOD concepts can be significantly influenced
by the quality of the training data. If the model is trained on samples containing disruptive objects,
the resulting generative outputs are likely to reflect these disruptive elements. When the training data
contains images with vague or very small instances of the OOD concept, the generative results may
appear low-quality. In contrast, the high-quality data for adapting OOD concepts usually contains
a single and clear object corresponding to the given concept, which is highly distinguishable from
the background and other types of objects and helps produce accurate results with high-fidelity.
However, manually picking such high-quality data requires much human labor and expertise, which
may crucially limit the versatility of text-to-image models. Therefore, an effective paradigm to locate
high-quality samples of OOD concepts is important for the practical shipping of this field.

To this end, we developed a framework called Controllable Adaptor Towards Out-of-Distribution
Concepts (referred to as CATOD) which aims to identify high-quality samples to guide the adaptor
training. This framework follows the Active Learning (AL) paradigm [54, 44], involving iteratively
accumulating training data and updating the adaptor. The profound motivation of this approach is
to comprehensively model the interaction between training data and the underlying text-to-image
model. Specifically, CATOD includes two interconnected scores: the aesthetic score and the concept-
matching score, following the observation that object clarity and uniqueness largely impact generative
results, as illustrated in Figure 2. Based on this, we devised a weighted scoring system that adapts
itself according to the adaptor to select high-quality data while also properly balancing the two scores.
With the carefully selected high-quality data, we schedule the adaptor training based on the quality of
generative results evaluated through this scoring system.

In summary, our contributions are as follows: (i)-We have identified the challenge of adapting
text-to-image models to out-of-distribution (OOD) concepts, where recent studies often struggle to
accurately depict them; (ii)-We have introduced a framework called CATOD that iteratively updates
training data and the adaptor to generate OOD concepts precisely; (iii)-Our extensive experiments
verified that CATOD achieves significant performance gain with up to 11.10 on the CLIP score and
33.08% on the CMMD metric; (iv)-We have also offered theoretical insights into the key factors:
aesthetics and concept-matching, which contribute to the effectiveness of our method.
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Figure 2: Comparison of synthetic results on data with different quality. Generated images are significantly
influenced by the quality of training data. If the training data includes disruptive objects, the generative images
may include disruptive visual details (Left). When an object within the image is too small, the results may not
accurately represent the intended concepts (Middle). In contrast, if the image contains a high-fidelity object
without disruptive elements (Right), the model is more likely to generate the desired result accurately.

2 OOD Problem in Latent Diffusion Models

Revisiting Latent Diffusion Models (LDMs). Latent Diffusion Models (LDMs) [45] comprise two
components: a diffusion process operating the latent space and an auto-encoder which contains an
encoder E mapping an image into the latent space and a decoder D that reconstruct images from
latent codes. Furthermore, the diffusion process can be conditioned on the output of text embedding
models, enabling the auto-encoder to integrate the information derived from texts. Let x be the image,
the CLIP textual encoder cθ that maps the corresponding text y into the latent space, the LDM loss is:

LLDM (x, y) := Ez∼E(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, cθ(y)) ∥22

]
, (1)

where t denotes the time step, zt denotes the latent code noised at time step t, when ϵ, ϵθ represents
the noised samples and the denoising U-Net [46], respectively. Through this noising-denoising
procedure applied to the latent codes, LDM enables the underlying model to integrate information
derived from texts into the visual results, while also allowing more flexibility to produce images.

The OOD Concepts for LDMs. Intuitively, out-of-distribution (OOD) concepts refer to the category
of data whose distribution deviates significantly from what the model has learned. This degree
of drifting can be quantified by an MMD score [27], which evaluates the discrepancy between
ground-truth images and the generative results in the image latent space. Formally, for two probability
distributions P and Q, the MMD distance with respect to a positive definite kernel k is:

dist2MMD(P,Q) := Exp∼P,x′
p∼P [k(x, x′)]+Exq∼Q,x′

q∼Q

[
k(xq, x

′
q)
]
−2Exp∼P,xq∼Q [k(xp, xq)] ,

(2)
where xp, x

′
p independently follow the distribution P while xq, x

′
q independently follow the distribu-

tion Q, with k the Gaussian RBF kernel [17]. In our implementation, we sample two sets of vectors
from the distribution P and Q, then use CLIP embeddings [40] to calculate this score, which is also
named as CMMD [27]. We set a concept with a high CMMD score (above 3.5) as an OOD concept.

OOD Concepts are Hard to Adapt. Recent text-to-image LDMs [45, 39] have achieved unprece-
dented performance on a wide range of concept tokens. However, we have found that there still exist
many concepts that make LDMs fail after the adapter is fully trained. As we show in Figure 1, there
are several discoveries: (i)-The concepts with higher CMMD scores are much more challenging for
the underlying model to generate or adapt. The concepts with a CMMD score above 3.0 show explicit
wrong visual details. For Axolotl and Frilled Lizards with CMMD above 4.0, the LDMs even generate
the wrong species; (ii)-A higher CMMD score indicates a more severe loss of visual details when
training adaptors. The concepts with CMMD scores above 3.5 in Axolotls and Emperor Penguin
Chicks, show explicit distorted visual details, like color, texture, and delicate details. For Axolotl,
the generative results show a wrong number and wrong positions of amateurs. For Emperor Penguin
Chicks, the generative results show the wrong fur color of their heads and wings. To summarize, the
higher the CMMD score of a concept, the more difficult it is for LDMs to adapt.

The High-Quality Matters. We further observe that the generative results are quite sensitive to
training data when training adaptors meet OOD concepts. As shown in Figure 2, when the training
images contain disruptive elements, the visual features of these disruptive elements will be easily
introduced into the generative results. For example, when an adult emperor penguin appears in
training data, then the black fur on their back can easily appear when generating their chicks, despite
that their chicks have white fluffs as shown in the left part of Figure 2. If the object of the desired
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Figure 3: The overall pipeline of CATOD. In brief, CATOD alternatively performs data selection and scheduled
OOD concept adaption. In each training cycle, we first generate OOD concepts according to the current adaptor
and calculate the weights for the aesthetic score and concept-matching score. Then, we calculate the weighted
score for each sample within the data pool Dpool, select the top images accordingly, and add them to the training
pool. At last, CATOD fine-tunes the scoring system and training adaptors according to the updated data pool,
and proceed to the next cycle. The above three steps alternatively proceed until convergence.

concept appears to be too small within the image, then the generative results tend to be bad-looking,
since the necessary visual details are not fully identified. In the middle part of Figure 2, we can see
that distorted visual details like texture and shape in axolotl and emperor penguin chicks largely harm
the aesthetics of the generated image. To generate images correctly and good-looking, we require
enough amount of images with objects of high fidelity and do not contain disruptive elements, namely
High-Quality samples as shown in the right part of Figure 2. Therefore, we aim to devise an effective
data selection strategy for locating those high-quality images for these OOD concepts.

3 Method

3.1 Overall Architecture

We aim to adapt OOD concepts to LDMs correctly by an iterative data selection criterion that locates
high-quality data and training adaptors accordingly as shown in Figure 3. Consequently, our method
would alleviate issues introduced by disruptive elements, e.g., irrelevant objects, and blurry images,
while maintaining high fidelity of generative results. The core to CATOD is a scoring system,
which consists of an aesthetic scorer and a concept-matching scorer, aiming to resolve the problems
of incorrectly introduced visual details and distorted objects we have observed in Section 2. By
properly trading off between these two scores, CATOD locates the most valuable samples for adapting
underlying LDMs to OOD concepts and making the desired OOD concept depicted correctly.

3.2 The Scoring System

As described above, we need to estimate the potential impact of real-world samples over LDMs,
according to which we select the most high-quality samples for training. In Section 2, we have
observed two major factors that significantly impact generated image quality: object clarity and
disruptive elements. Diving into the loss term LLDM (x, y) in Eq. (1), we may also observe that the
training set XT should be optimized towards both the underlying model (including the embedded
adaptor) and the conditional text y, which indicates two important factors: object clarity and concept-
matching achieved by preserving aesthetic information originally learned by LDMs and accurate
image-text matching, respectively. Therefore, we attribute the quality of images to aesthetic and
concept-matching and design two decoupled scorers accordingly.

The Aesthetic Scorer. Aesthetic evaluation is a long-standing field, which comprehensively considers
whether the lighting, contrast, texture, and other photographic factors of an image are consistent with
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human aesthetics. The general aesthetic scorer can be simply described as p = Saes(x), where Saes

indicates the aesthetic scoring model, p denotes the predicted score, and x represents the input image.
Following the work of PA-IAA [33], we fine-tune the generic aesthetic model and make it adapt to
OOD concepts with personalized preference scores. In general, we assign a high score to the samples
within the training set XT , assign a low score to samples from irrelevant categories and samples
generated by underlying LDMs without an adaptor, and use them to fine-tune the aesthetic scorer.
More details of this personalization are given in the Appendix B.3.

The Concept-Matching Scorer. Intuitively, concept-matching describes whether the OOD concepts
get perfectly reflected in the generated results. A similar task is image retrieval, which is designed to
retrieve images containing objects describing the desired concepts. Since image retrieval also relies
on feature maps and some sort of matching score to retrieve images, we adopt matching score from
VLAD-related works [28, 64, 55] as follows:

Scon(x) =
1

|XT |

|XT |∑
k=1

ϕ (rx, rk) exp (∥rx − rk∥) , (3)

where ϕ(rx, rk) = 1 if rk is the closet representation for rx and is set to 0 otherwise. Simply put,
VLAD regards the extracted representations for XT as a codebook and maps each image to its nearest
code. Note that samples within XT mostly consist of clean and clear samples, this score is sufficient
to quantify whether the object if exists in the given image distinguishes itself from other photographic
components and matches the given concept.

3.3 Active Data Acquisition

Optimization with Active Learning (AL). Aiming to mitigate the problems caused by low-quality
training samples, we proactively integrate the training data XT into our objective as follows:

A∗,X∗
T = argminA,XT

Ex∼XT
LLDM (x,A, y). (4)

Since the optimal set is initially unknown, a one-step optimization can easily lead to convergence
to local optima. Therefore, we use an iterative paradigm to optimize adaptor A and training data
XT , respectively. In our implementation, we adopt the paradigm of AL [44, 54] to perform the
optimization of X(t)

T by data accumulation before training adaptors, with t denotes the time step:

B(t) = argmin
B⊂Dpool−X

(t−1)
T , |B|=b

E
x∼X

(t−1)
T ∪BLLDM (x,A, y), (5)

where b is the number of samples added to the training pool at each cycle. The main reason for
using AL is its preferred sample efficiency, with better controllable data bias management [15, 50].
Instead of repeatedly selecting data from the whole real-world data pool, AL provides a more efficient
procedure to optimize training data by using data selection to accumulate high-quality training data.
To this stage, the learning procedure of CATOD is relatively clear: the sample pool is progressively
accumulated -by Eq. (5) -and the optimization of the adaptor A is straightforward (Fig. 3).

Remember that AL involves iteratively updating the adaptor and the training data, it is important
to design a training schedule for adaptors and determine how to acquire high quality based on the
two scorers mentioned above. The primary objective of this design is to achieve a dynamic trade-off
between the two scores. The specific details of these designs are described below.

The Active Schedule for Training Adaptors. The training schedule has been found crucial for
successful adaption [47, 74, 65]. Since our training data continuously expands as the learning cycle
of AL proceeds, the training schedule will be even more important. To arrange this schedule, we
first calculate the aesthetics score γaes(A) = 1

|gA(XT )|
∑

xg∈gA(XT ) Saes(xg) and concept-matching
score γcon(A) = 1

|gA(XT )|
∑

xg∈gA(XT ) Scon(xg) of the adaptor A based on its generative results
gA(XT ), in which both the aesthetic score γaes(A) and γcon(A) range from 0 to 10. Then, we use a
trigonometric indicator that comprehensively measures its performance:

γ(A) = 10 sin
( π

20
γaes(A)

)
sin

( π

20
γcon(A)

)
. (6)

Notably, γ(A) peaks when the two scores get close or around the common value of 5.0 for most
samples. Meanwhile, it bottoms when the scoring exhibits a stronger signal of being biased (to either
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side). The properties emphasize that adapters balancing the two factors are of better quality. In
training CATOD, we use γ(A) as a signal to reduce the learning rate and stop training in time.

Trading-off the Two Scores in Data Acquisition. After getting the adaptor A, we continue to
select the most suitable samples for the next-cycle training. Notice that whether newly selected
images enhance the adaptor depends on both aesthetics and concept-matching, we ought to adjust our
preferences according to the adaptor. In more detail, when the adaptor has high aesthetics but does
not accurately depict the OOD concept, samples with high concept-matching scores better enhance
the adaptor; when the adaptor fails to exhibit photographic attributes consistent with humans, samples
with high aesthetics are preferred. To implement this preference, our acquisition score is:

S(x) =
(
1− sin

( π

20
γaes(A)

))
Saes(x) +

(
1− sin

( π

20
γcon(A)

))
Scon(x). (7)

This formulation offers some meritable advantages. On one hand, the balancing terms are not pre-
fixed or manually tuned, but dynamically dependent on the scores marginalized over the current
generations. Further, when the score of either side gets larger, the corresponding balancing coefficient,
in turn, decreases, thus attaining a proper trade-off. As a result, this mechanism encourages an
alternation of sample selection towards both scoring metrics by selecting Top-K samples to add to
the training data XT accordingly, which effectively guarantees the sample set diversity.

4 Theoretical Insights

This section presents our theoretical analyses of why aesthetic/concept-matching scores work in OOD
Adaption. Specifically, we derive the distance between real-world data distributions and synthetic
data distributions and then induce the important factors that affect this distance. We first introduce the
minimum mean square error (MMSE) [22, 11, 6] to measure the discrepancy between distributions:
Definition 4.1. The minimum mean square error (MMSE) of estimating an input random vector
X̂ ∈ Rn from an observation/output X ∈ Rk is defined as

MMSE(X̂|X) = inff∈M(Rn) E
[∥∥∥X̂− f(X)

∥∥∥2] , (8)

in whichM(Rn) denotes the space consisting of all measurable functions on Rn.

Notice that we are trying to produce the best generation results which are initially unknown, our
adaption task can be also regarded as estimating the optimal distribution with carefully selected data.
By denoting the ideal generative results and the ideal adaptor with random variables X̂G and A∗,
respectively, we conclude that the LDM loss LLDM is consistent with this MMSE term:
Theorem 4.2. Let LLDM be the LDM loss following Eq. 1, and the image space lies within Rn.
Then there always exists an ideal random vector X̂G ∈ Rn and an adaptor A∗ for LDM, such that

argmin
XT∈Rn

MMSE(X̂G|XT ) = argmin
XT∈Rn

Ex∼XT
[LLDM (x,A∗)] . (9)

Based on the preceding deduction, we have confirmed that the change in MMSE can also indicate the
change in LDMs. To dive deep into the MMSE term, we further decompose it as follows:
Theorem 4.3. (Pythagorean Theorem for MMSE [13].) Following Theorem 4.2, by setting f to the
generative model gA, the MMSE term in Eq. (8) can be decomposed into two terms as follows:

E
[∥∥∥X̂G − gA(XT )

∥∥∥] = E
[∥∥∥X̂G − gA∗(XT )

∥∥∥]+ E [∥gA∗(XT )− gA(XT )∥] , (10)

in which A∗ denotes a potential ideal adaptor containing information for text y. Notice that the
generative results XG relies on the training set XT , gA(XT ) can also be written as XG|XT .

Upon revisiting the two terms, we can gain a deeper understanding of the relationship between MMSE
and aesthetic/concept-matching score: (i)-The first term is focused on estimating the difference
between the generative distribution XG|XT and the ideal distribution of X̂G. This assessment helps
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Table 1: A Comparison over the performance of CATOD, in terms of the CLIP score and CMMD score with
100 images sampled at last. This table shows the average result of 5 sub-classes within each category. The
overall improvement of our proposed CATOD is provided by “Imp.”. Methods with the best performance are
bold-folded.

Comparison Methods CLIP Score (↑) CMMD [27] (↓)
insect lizard penguin seafish snake Avg. Imp. insect lizard penguin seafish snake Avg. Imp.

DreamBooth[47] + RAND 65.35 67.89 68.07 65.59 72.07 67.79 ⇑7.58 1.35 1.39 1.67 1.59 1.25 1.45 ⇓0.50
DreamBooth[47] + CLIP 70.56 72.19 72.09 71.17 74.59 72.12 ⇑3.25 1.04 1.24 1.05 1.38 1.16 1.17 ⇓0.22
DreamBooth[47] + CATOD 72.18 75.30 75.16 74.60 79.61 75.37 - 0.92 1.08 0.80 1.21 0.74 0.95 -

TI[18] + RAND 58.24 59.34 63.45 61.35 62.34 60.94 ⇑7.04 2.45 2.15 2.09 1.95 1.65 2.06 ⇓0.63
TI[18] + CLIP 61.65 67.24 66.95 62.27 64.23 64.47 ⇑3.51 2.11 1.86 1.44 1.87 1.37 1.73 ⇓0.30
TI[18] + CATOD 69.21 70.14 68.23 64.89 67.41 67.98 - 1.57 1.73 1.15 1.43 1.25 1.43 -

LoRA[25] + RAND 64.39 65.02 67.49 68.87 71.09 67.37 ⇑10.60 1.52 1.47 1.56 1.61 1.18 1.47 ⇓0.63
LoRA[25] + CLIP 70.27 74.13 72.08 73.19 75.64 73.06 ⇑4.91 1.29 1.33 1.04 1.35 0.89 1.18 ⇓0.34
LoRA[25] + CATOD 72.60 77.00 74.11 84.29 81.86 77.97 - 0.94 0.89 0.71 0.88 0.77 0.84 -

us understand how the introduced samples lose visual information within the underlying LDM,
thus we can connect this term to aesthetic preservation, i.e. aesthetic score; (ii)-The second term
illustrates the degree to which the training set XT distorts the OOD concept information within the
ideal adaptor. Hence, a concept-matching score accurately portrays how newly given samples impact
this term. At this stage, we have completed the theoretical support showing that both aesthetics and
concept-matching are major factors that influence the performance of adaptors.

5 Experiments

In this section, we present the main experimental results both qualitatively and quantitatively. To
evaluate our proposed CATOD, we combine it with several works for adaption, i.e. DreamBooth [47],
Textual Inversion [18], and LoRA [25]. More experimental results can be found in the Appendix.
The source code is attached in the Supplementary.

Datasets. We test our method on datasets with 25 OOD concepts that can hardly be generated through
prompt engineering on the text-to-image model. This dataset consists of 5 categories: insect, lizard,
penguin, seafish, and snake, and each category contains data from 5 OOD concepts. Each concept
has 1,000 examples in total with 100 samples left out for validation. The dataset is collected from
publicly available datasets including ImageNet, iNaturalist 2018 [67], IP102 [71].

Implementation Details. We conduct the active generation experiments on our proposed CATOD
and three representative adaptors, i.e. DreamBooth [47], Textual Inversion [18] (termed as TI in
the paper), and LoRA [25]. Since there are currently no available studies that focus on locating
“high-quality” samples for training, we apply random sampling (RAND), and CLIP-score-based
sampling (CLIP) for each baseline in our active learning setting. Each experiment starts with 20
randomly sampled instances, and we conducted 5 cycles of data accumulation in which we selected
20 “good” samples to add to the training pool. We train 20 epochs for all combinations of adaption
techniques and sampling strategies in each active learning cycle, with a batch size of 1. Furthermore,
we generate 100 images for each concept for evaluation. We use the commonly adopted Stable
Diffusion 2.0 pre-trained on LAION-5B [51] following Rombach’s work [45].

Evaluation Metrics. We evaluate the quality of our generated images with the widely used CLIP
score [20] and the recently proposed CMMD score [27], which quantify the model performance
in two aspects. Specifically, the CLIP score measures how generated images match the given text,
which is expected to be as high as possible. Meanwhile, the CMMD score evaluates the discrepancy
between generated images with the real ones, indicating better generative results with lower values.

5.1 Single-concept Generation Results

To evaluate the performance of CATOD on OOD concepts, we test it on all 25 target concepts one by
one separately and report the average performance of 5 concepts within each category in Table 1. We
show the superior results of our CATOD with respect to both qualitative and quantitative comparisons.

Qualitative Comparisons. We qualitatively compare CATOD with other sampling strategies accord-
ing to their generated images based on LoRA [25]. With random sampling (RAND), we observe
that the generative results only partially learned some photographic attributes like color and texture,
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Table 2: A Comparison over the performance of CATOD when training with images from multiple concepts, in
terms of the CLIP score and CMMD score with 100 images sampled at last. In each experiment, we sample
images from all the sub-classes within each category and check whether the fine-tuned model can generate all
5 concepts. The overall improvement of our proposed CATOD is provided by “Imp.”. Methods with the best
performance are bold-folded.

Comparison Methods CLIP Score (↑) CMMD [27] (↓)
insect lizard penguin seafish snake Avg. Imp. insect lizard penguin seafish snake Avg. Imp.

DreamBooth[47] + RAND 63.29 63.79 65.72 65.59 64.36 64.55 ⇑8.20 1.74 2.14 2.16 2.02 1.85 1.98 ⇓0.75
DreamBooth[47] + CLIP 67.57 70.35 71.10 69.34 70.38 69.75 ⇑3.00 1.53 1.76 1.80 1.79 1.59 1.69 ⇓0.46
DreamBooth[47] + CATOD 70.83 72.28 74.31 70.90 75.45 72.75 - 1.39 1.25 1.34 1.45 0.73 1.23 -

TI[18] + RAND 59.23 56.97 57.90 60.83 62.65 59.52 ⇑5.88 2.84 2.56 2.27 2.39 2.41 2.49 ⇓0.83
TI[18] + CLIP 61.74 60.72 63.79 62.71 65.71 62.93 ⇑2.47 2.26 2.08 1.94 1.97 2.23 2.10 ⇓0.44
TI[18] + CATOD 64.48 63.93 65.93 65.44 67.24 65.40 - 1.76 1.53 1.65 1.64 1.73 1.66 -

LoRA[25] + RAND 63.85 65.27 66.46 68.25 69.43 66.65 ⇑7.64 1.79 2.05 1.93 1.85 1.55 1.83 ⇓0.59
LoRA[25] + CLIP 69.25 70.84 71.39 71.91 72.78 71.23 ⇑3.06 1.40 1.69 1.74 1.59 1.28 1.54 ⇓0.30
LoRA[25] + CATOD 71.19 74.09 73.68 75.60 76.90 74.29 - 1.13 1.37 1.49 1.26 0.95 1.24 -
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Figure 4: A comparison of different sampling strategies with LoRA. Specifically, we compare three lines of
works: (1) RAND, in which the model is trained with 100 randomly selected samples; (2) with samples of the
highest CLIP scores (100 samples); (3) 100 samples with CATOD. The model trained with randomly sampled
data fails to capture the features of out-of-distribution (OOD) concepts, while the ones trained with top CLIP
scores contain necessary details but also include disruptive elements.

but failed to make the objects have the correct appearance and shape. CLIP-based sampling (CLIP)
somehow produces the corrected shape of the concept but still fails to capture the necessary details for
describing the object. In comparison, our proposed CATOD successfully matches all the photographic
attributes, while also guaranteeing the image aesthetics.

To further look at how CATOD learns the photographic attributes that precisely match the concept,
we show samples generated from different cycles in Fig. 7. We can see that some attributes like color,
and texture are already learned in cycle 1, but the shape of the object does not match the ground-truth
ones. From cycle 1 to 3, CATOD shows a clear shape modification, making the objects more like
the real ones. From cycles 3 to 5, an iterative refinement on more photographic details like light,
contrast, and other minor modifications (like the beak for penguins and antenna for axolotls) is shown
in generative results, making them hard to distinguish from the ground-truth ones even with a careful
look. At cycle 5 and later cycles, the image quality stabilizes and we can hardly see enhancement
apart from image diversity. To conclude, we can see an explicit attribute matching process from easy
ones to the finer ones within CATOD, showing the importance and effectiveness of iterative training.

Quantitative Comparisons. Table 1 reports CLIP scores [20] and CMMD scores [27] from each
strategy with models trained on 25 different OOD concepts and evaluated through the generative
results. Specifically, we evaluate the performance of CATOD on each concept and average the results
within each category in Table 1. We have the following conclusions: (1) the average performance
of our strategies outperforms all compared methods by a 0.56∼11.10 CLIP score, justifying the
effectiveness of locating aesthetic and clean samples over text-image matching. (2) CATOD also
brings a 0.12∼0.54 CMMD decrease on various frameworks and concepts, indicating better image
alignment with proper sampling guided by CATOD. To summarize, both image-matching and text-
matching scores exhibit better results compared to the baselines, suggesting that our proposed CATOD
significantly outperforms other strategies, which is consistent with the qualitative results in Fig. 4.
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Ground Truth
(Unseen Concept) Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Figure 5: Generative results as cycle proceeds. Samples are generated with CATOD on cycles from 1 to 7. To
better observe how generated images change as the cycle proceeds, we conduct another 2 cycles here. In each
cycle, we select and add 20 high-quality samples. Generative samples start to converge and contain the right
details within the original concept after cycle 4 or 5. We can also see that those generative results contain diverse
contents within the background based on the few images given.

Table 3: Results of Ablating Aesthetic, Concept-
Matching Scorer and Weighted Scoring on CATOD. We
show the average results conducted on the categories “pen-
guin” and “lizard” with LoRA.

Modules CLIP(↑) CMMD(↓)

Aesthetic Concept
Matching

Weighted
Scoring lizard penguin lizard penguin

✓ 73.19 72.85 1.14 1.28
✓ 68.45 70.16 1.10 1.32

✓ ✓ 75.35 73.24 0.94 0.93
✓ ✓ ✓ 77.00 74.11 0.89 0.71

Table 4: Results of CATOD with different
types of aesthetic scorers. We show the average
results conducted on the categories “penguin”
and “lizard” with LoRA.

Type of
Aesthetic Score

CLIP(↑) CMMD(↓)
lizard penguin lizard penguin

ReLIC [81] 71.35 72.39 1.29 1.59
TANet [23] 72.05 72.67 1.32 1.35
BAID [77] 73.08 72.79 1.18 1.37

Ours 73.19 72.85 1.14 1.28

5.2 Multi-concept adaption Results.

To further investigate whether CATOD could adapt multiple concepts simultaneously, we group the
25 concepts by category and train the adaptation model on each category. To be specific, we compare
our baselines using a generated set consisting of 500 images (100 images per concept) and exhibit
our results in Table 2. Following the setting of single-concept adaption, we conduct 10 cycles of
data accumulation and get 200 samples at last, since multi-concept adaption requires more data. We
still observe a notable performance gain with a 1.56∼5.07 CLIP score increase and a 0.12∼0.86
CMMD score decrease compared to baselines. These results verify that our CATOD still achieves
better performance on multi-concept adaption.

5.3 Ablation Studies

We verify the efficacy of all components in our proposed CATOD in Table 3 and 4, including the
aesthetical scoring module and the concept-matching mechanism within the weighted scoring system.

W/O Aesthetic Score. First, we validate the effectiveness of CATOD by removing the aesthetic scores.
A significant decrease in performance (up to 8.55) on the CLIP score can be observed in Table 3. We
attribute this decline to the fact that matching-based metrics prioritize image representations over the
given concept, leading to a deterioration in image-text matching.

The Type of Aesthetic Scores. To further investigate the impact of aesthetic scores, we have also
applied different types of aesthetics with CATOD in Table 4. We observed that recent state-of-the-
art aesthetic evaluations did not improve OOD adaption and even led to minor performance loss.
This could be attributed to the fact that these models were originally designed for general aesthetic
assessments, whereas our aesthetic scorer is highly personalized towards specific OOD concepts.

W/O Concept-Matching Score. After removing the concept-matching scorer, we observed that the
adaptor tends to perform better compared to just removing the aesthetic scorers. This might be due to
the aesthetic scorer being designed based on CLIP backbones, showing some consistency with the
CLIP score. However, it still demonstrates limitations based on the image-matching score CMMD.
While these aesthetic qualities partly describe the clarity and accuracy of the object, they do not
adequately focus on the image representation space.
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The Weighted Score. We have confirmed the effectiveness of balancing two scores by simply
adding them together to guide CATOD (Table 3, Line 5). We observed that this resulted in consistent
performance loss for both the CLIP score (up to 1.65) and the CMMD score (up to 0.22). This
suggests that both text-image matching and image-to-image matching are affected by the trade-off
between aesthetics and concept matching, further emphasizing the importance of these two scores.

6 Related work

Personalized Text-to-image Synthesis with Adaptors. The task of text-to-image generation
involves creating specific images based on text descriptions [3, 73, 79, 4], and has achieved impressive
performance with state-of-the-art diffusion models [41, 45, 39]. Therefore, adapting large-scale
text-to-image models to a specific concept while also preserving this amazing performance, i.e.
personalization [7], has become another recent research interest. But this is often difficult since
re-training a model with an expanded dataset for each new concept is prohibitively expensive while
fine-tuning the whole model [12, 32] or transformation modules [83, 20, 60] on few examples
typically leads to some rate of forgetting [30]. Therefore, adaptors such as Textual Inversion [18],
DreamBooth [47, 48, 5, 58], LoRA [25, 66, 86, 76], along with some other works [70, 19] derived
from them, have become more commonly adopted. Typically, they focus on a small but crucial part
of the model or extra networks inserted into underlying models, thus more computationally-efficient,
while also preserving the efficacy of the underlying models with lower computational costs. For
example, textual inversion (TI) [18] represents the newly-given concept with pseudo word [42]
and remapping it to another carefully trained embedding in the text-encoding space, guided by few
images. Despite their computational efficiency, these approaches are still facing difficulties dealing
with out-of-distribution concepts as we observe in Section 2.

Active Learning and Selection. Active Learning is a machine learning paradigm that involves
actively selecting the most suitable data for training models from external data sources [44, 63]. The
most crucial part of active learning is the strategy to locate the optimal data batch. Current studies can
be roughly categorized as follows: (a) Score-based methods that prefer the samples with the highest
information scores [36, 69, 10]; (b) Representation-based methods searching for the samples that are
the most representative of the underlying data distribution [53, 1, 62]. The Active Selection paradigm
within Active Learning serves as an efficient and powerful dataset curation tool (i.e. adaption), leading
to numerous studies adopting this paradigm from a wide range of subjects [68, 24, 8]. Meanwhile,
due to the effectiveness of Active Learning in selecting the most suitable training samples, recent
studies have utilized similar sampling strategies to address challenges associated with long-tailed
distributions [56, 57] and noisy data [72]. Given that Out-Of-Distribution (OOD) concepts in Latent
Diffusion Models (LDMs) often involve unseen or long-tailed concept tokens [79], this motivates us
to leverage Active Learning for selecting samples that are well-suited for training adaptors.

In this work, we focus on scored-based strategies in two-fold: aesthetics and concept-matching.
Image Aesthetics Assessment (IAA) aims at evaluating image aesthetics computationally and automat-
ically [9], while automatically assessing image aesthetics is useful for many applications [35, 29, 14].
To take a step further, personalized image aesthetics assessment (PIAA) [43, 85, 75] was proposed to
capture unique aesthetic preferences, consistent with our goal to adjust our paradigms accordingly
different concepts. At the same time, "Concept-matching" is adopted from the field of image retrieval,
in which we search for relevant images in an image gallery by analyzing the visual content (e.g.,
objects, colors, textures, shapes etc.), given a query image [61, 31]. To design a paradigm that
automatically meets the harsh requirements for adaptor training, we consider both two factors.

7 Conclusion

We propose CATOD, an enhanced, data-efficient, and practically useful version of the OOD concept
adaptation for AIGC. This method is encapsulated in an active-learned paradigm with carefully
designed acquisitional scoring mechanisms. CATOD significantly outperforms the prior approaches
in many (if not most) aspects including generation quality, concept matches, technological robustness,
data efficiency, etc. In the future, we hope to ship CATOD to the open-source community so as to
absorb more OOD concepts that were originally uncovered.
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A Theory

This section provides a complete derivation for the analysis given in Section 4. In brief, we first link
LLDM to a minimum mean square error (MMSE) term in Theorem A.2 (i.e. Theorem 3.2 within the
main context), then decompose the MMSE term to see how we minimize MMSE in different aspects
in Theorem A.3 (i.e. Theorem 3.3 within the main context) in the main context. For convenience, we
reclaim some of the formulations at the beginning of this section:
Definition A.1. The minimum mean square error (MMSE) of estimating an input random vector
X̂ ∈ Rn from an observation/output X ∈ Rk is defined as

MMSE(X̂|X) = inff∈M(Rn) E
[∥∥∥X̂− f(X)

∥∥∥2] , (11)

in whichM(Rn) denotes the space consisting of all measurable functions on Rn.

Based on Eq. (1), we can adapt the LDM to an arbitrary concept y with a corresponding image set X
that describes this concept. Typical adaptations are mostly based on fine-tuning all the parameters
θ, which is quite costly and requires a lot of data. However, recent studies have found that training
only a small part of the model [18, 47] or inserting extra networks [25, 26] could attain the same
performance, which largely alleviates the computational burden with far fewer samples need for
training. We call this part of parameters or networks as “adaptors” and denote them by A. Then, the
fine-tuning process of the adaptors, also named adaption, can be formulated as follows:

A∗ = argmin
A

Ex∼X,z∼E(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ,A (zt, t, cθ,A (y)) ∥22

]
(12)

Therefore, v be a conditioning vector corresponding to some given text y, the LDM loss is:

LLDM (x,A, y) := Ex∼X,z∼E(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ,A (zt, t, cθ,A (y)) ∥22

]
(13)

Following the definition of LDM loss, we continue to link LDM loss to the MMSE term in the
theorem as follows (in which we omit the parameter y since it is independent of other parameters):
Theorem A.2. Let LLDM be the LDM loss following Eq. (13), and the image space lies within Rn.
Then there always exists an ideal random vector X̂G ∈ Rn and a condition vector v∗ within the text
embedding space for LDM, such that

argmin
XT∈Rn

MMSE(X̂G|XT ) = argmin
XT∈Rn

Ex∼XT
[LLDM (x,A∗)] .

Proof. By denoting an ideal generative distribution with X̂G, which is produced by the generative
model with a minimized LDM loss, we continue our proof. Set fA(XT ) = Ex∼XT

[x,A], we can
see that fA is also a functional controlled by the adaptor A. Following the definition of MMSE and a
fixed XT , we set A∗ as:

A∗ = argmin
v

Ex∼XT
[LLDM (x,A)] . (14)

With this A∗, and the Universal Approximation Theorem [38] for all deep learning models, fA∗

becomes the functional needed to quantify the MMSE term following its definition. Therefore, with
proper XG, A

∗, we have

MMSE(X̂G|XT ) = Ex∼XT
[LLDM (x,A∗)] ,

thus completing the proof of this theorem.

Theorem A.3. (Pythagorean Theorem for MMSE [13].) Following Theorem A.2, by setting f to
the generative model gA∗ with an ideal adaptor A∗ containing sufficient OOD concept information,
rewrite gA(XT ) to XG|XT , and the minimum mean square error (MMSE) in Eq. (11) can be
decomposed into two terms:

E
[∥∥∥X̂G − E [XG|XT ]

∥∥∥] = E
[∥∥∥X̂G − gA∗(XT )

∥∥∥]+ E [∥gA∗(XT )− E [XG|XT ]∥] , (15)
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Proof. This equation can be further decomposed into two terms:

E
[(

X̂G − E [XG|XT ]
)
ϕ(XT )

]
= E

[
(X̂G −XG)ϕ(XT )

]
+ E [XG − E [XG|XT ]ϕ(XT )] .

Since X̂G −XG represents the variance for generative results and is orthogonal to XT , the first term
is 0, making it sufficient to consider only the second term. To prove that the second term is also 0, we
first prove the orthogonality property, i,e.

E
[(

X̂G − E [XG|XT ]
)
ϕ(XT )

]
= 0 (16)

for any function ϕ.

E [E [XG|XT ]ϕ(XT )]

=
∑
xt

E [XG|XT = xt]ϕ(xt)P (XT = xt)

=
∑
xg

[∑
xt

P (XG = xg,XT = xt)

P (XT = xt)

]
ϕ(xt)P (XT = xt)

=
∑
xg

∑
xt

xgϕ(xt)P (XG = xg,XT = xt)

= E [XGϕ(XT )]

Therefore, we have the orthogonal property in Eq. (16).

Now we continue our proof for the main theorem. First, we can decompose Eq. (15) as follows:

E
[∥∥∥X̂G − E [XG|XT ]

∥∥∥2]
= E

[
∥X̂G − gA∗(XT ) + gA∗(XT )− E [XG|XT ] ∥2

]
= E

[
∥X̂G − gA∗(XT )∥2

]
+ E [gA∗(XT )− E [XG|XT ] ∥]

+ 2E
(
X̂G − gA∗(XT )

)
(gA∗(XT )− E [XG|XT ])

Since the gap between pure generative result guided by the training set XT and an ideal text
embedding is purely influenced by the training set XT , gA∗(XT )−E [XG|XT ] can also be regarded
as a functional over XT , making the last term equal to 0 according to the orthogonal property in
Eq. (16). At this step, we obtain the result in Eq. (15).

B More Details About CATOD.

In this section, we provide more details about our proposed Controllable Adaptor Towards Out-of-
Distribution Concepts (CATOD).

B.1 An Overall Paradigm

Initially, we have a large data pool Dpool related to the concept given with different quality and begin
with an initial randomly-sampled training dataset X(0)

T . XT might contain distorted images or even
mismatch the given concept, which is common in publicly available datasets. Following the typical
paradigm of Active Learning, we train all the models we use on the training set XT . Then, we select a
batch of data B from the data pool Dpool according to the acquisition functions induced from models.
Finally, we move this selected batch of data B to XT , go back to the model training step to re-train
or adapt the models, and repeat this cycle until XT reaches its maximum capacity or the quality of
models cannot be further enhanced by adding new data. An overall Algorithm for a cycle of CATOD
is provided in Alg. 1.

18



Algorithm 1 An active selection cycle for CATOD.
Input: Text-to-image model gA(·) that can be integrated with adaptor A, real-world data pool Dpool,
training data pool XT , budget b, pretrained aesthetic scorer Saes(·), concept-matching scorer Scon(·),
adaptor A, learning rate group R.
Output: Updated training pool XT , updated adaptor A.

1: Fine-tune the aesthetic scorer Saes(·, θ) on XT following Sec.B.3;
2: Calculate the aesthetic score γaes(A) = 1

|gA(XT )|
∑

xg∈gA(XT ) Saes(xg) and concept-matching
score γcon(A) = 1

|gA(XT )|
∑

xg∈gA(XT ) Scon(xg) for A;
3: for x ∈ Dpool do
4: Calculate the integrated score S(x)(Eq.(7));
5: end for
6: B ←{Top-b samples within Dpool according to S};
7: s← γ(A) (Eq.(6));
8: r ← the largest value within R;
9: while r ̸= min(R) do

10: A′ ← A− r∇A

∑
x∈XT∪B LLDM (x,A);

11: Generate a small-scale XG with g(·) conditioned on A′;
12: Calculate score γ(A) for A via Eq.(6)) and XG;
13: if γ(A) > s then
14: A← A′;
15: s← γ(A);
16: else
17: r ← a smaller value than r within R
18: end if
19: end while
20: XT ← XT ∪ B

We use a weighted-scoring system as the acquisition module that evaluates the quality of images
and adaptors in our proposed CATOD framework. In traditional active learning or data selection,
the acquisition module is only conducted on samples. However, we observed that an increase in the
number of samples does not necessarily contribute to a performance boost like in a traditional active
learning setting (which we will verify in Appendix C). Therefore, we propose this weighted scoring
system to help schedule adaptor training, which helps locate the best version among them and select
samples according to their quality.

Our Controllable Adaptor Towards Out-of-Distribution Concepts framework can be divided into 4
steps: (1) Train the scoring system on the current training set XT . (2) Train the adaptor on the training
set XT and schedule the training accordingly to the scoring system; (3) Calculate the acquisition
score accordingly to the scoring system and the best adaptor for samples in dataset Dpool; (4) Select
top-K samples from Dpool and move them to train set XT .

B.2 An Implementation of MMD score.

To give out an quantifiable and unbiased estimation of Eq.(2), we sample two sets of vectors
X = {x1, x2, . . . , xm} from P and G = {g1, g2, . . . , gn} from Q, an estimation can be give by:

dist2MMD(X,G) :=
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj)+
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(gi, gj)−
2

mn

m∑
i=1

n∑
j=1

k(xi, gj).

(17)

B.3 Aesthetic Scorer

Following the description of the aesthetic scorer in Section 3.2, we explain how to personalize it here.
Since our primary goal is to make the model distinguish low-quality/high-quality examples for OOD
concepts, we design an automatic procedure to assign aesthetic scores to our training set XT at each
cycle, based on which we attain an aesthetic training set Xaes

T . In this work, the aesthetics training
comprises three parts: (1) The original training set XT ; (2) Generated set DTG without assistance
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Figure 6: An intuitive comparison for fixed/dynamic schedules. The active learning paradigm can be viewed
as guiding the iterative embedding updating through newly added samples. We can see that a fixed schedule
makes the learned embedding heavily biased, which in turn leads to performance fluctuation.

from any adaptors; (3) Randomly sampled set DSI from similar but irrelevant categories. Since we
focus on the concepts that the text-to-image model can hardly recognize and visualize, DTG contains
lots of plausible, disrupted, or even irrelevant samples, which we assign a zero score. This helps the
aesthetic model understand that originally generated samples are low-quality samples. In contrast,
DSI somehow describes some attributes for the concept but still does not match the concept, to which
we assign the average score of 5.0. We employ the normal regression loss formulated as follows:

Laes =
1

|XT |
∑

xt∈XT

∥pt, p̂t∥+
λ

|DTG|+ |DSI |
∑

x′
t∈DTG∪DSI

∥p′t − p̂′t∥, (18)

where p denotes score predicted by the original scorer, when p̂ denotes the score we assign, and λ is
set to 1.0 in our experiments. Following this paradigm, we train an aesthetic scorer for each category
of concepts, and the score personalized for each category from Dpool can be predicted accordingly.

After selecting top-K data according to this score based on adaptor quality, we assign a lowered
aesthetic score to them:

p̂x = 10.0− tcurrent

total
(10.0− px), (19)

where px denotes the score given by a generic aesthetic scorer, total represents the number of total
active learning cycles, when tcurrent indicates the current cycle. Note that the newly selected images
typically have lower quality than those from earlier cycles, we assign progressively lowered scores to
them as the learning cycle proceeds.

B.4 Adaptor Evaluation and Schedules

Following the content in the second part “The Active Schedule for Training Adaptors” in Sec. 3.3, we
describe our schedule in more detail. In training CATOD, we use this indicator as a signaling proxy
throughout the training process. As the number of training samples increases, the quality of selected
samples at later cycles might be lower, and a fixed schedule may introduce some unnecessary details
within these images (such as watermarks, borders, disturbing objects, etc.). However, these subsequent
samples with relatively lower quality do contain some good photographic attributes that can help the
embedding evolve. Actually, the potential problems can be alleviated by carefully-designed schedules.
An intuitive illustration for this schedule is given in Fig. 6.

We first train the adaptor for 5 epochs, and save an adaptor version Ai per 5 epochs, together with
its corresponding generated images, constituting a sub-cycle. When this sub-cycle is completed,
we filter out the adaptor with the highest quality based on the score γ(A) (Eq.(6)). If the selected
adaptor has the most training epochs across all versions, we keep the learning rate and conduct the
next sub-cycle, otherwise, we will reduce the learning rate. Note that if the adaptor quality of this
cycle is not as good as that of the previous cycle (because of the quality degradation caused by
introducing some unnecessary details), the initial learning rate will be reduced, which helps avoid
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Table 5: The statistics of the dataset we use. The test data size #Dval of all the concepts is fixed to
100 for a fair comparison, while the training data size #Dpool varies since different concepts since
the number of data samples across publicly available datasets is different.

Insect CMMD (↓) Lizard CMMD (↓) Penguin CMMD (↓) Seafish CMMD (↓) Snake CMMD(↓)
Antlion 3.95 Axolotl 4.24 Emperor Penguin Chick 4.14 Crampfish 4.19 Ahaetulla nasutar 4.36

Lycorma Delicatula 3.99 Frilled Lizard 3.42 Gentoo Penguin 3.94 Dragonfish 4.16 Aipysurus laevis 3.56
Parasitic Wasps 4.61 Mediterranean House Gecko 4.45 King Penguin Chick 3.68 Garfish 3.97 Indian Cobra 3.91

Xylotrechus 4.19 Oedura 4.6 Rockhopper Penguin 4.04 Tigerfish 4.17 Pelamis Platurus 3.94
Zopherinae 4.12 Opluridae 3.88 Royal Penguin 3.98 Tuna 4.05 Sidewinder 4.11

Thrips 2.05 Whiptail 0.88 Emperor Penguin 1.19 Goldfish 1.35 Thunder snake 1.46
Flea Beetle 1.28 Alligator Lizard 1.44 King Penguin 0.75 Hammerhead 1.36 Garter snake 2.35

Aphids 1.16 Gila Monster 1.64 Little penguin 1.46 Tench 1.25 Night Snake 1.06
Red Spider 1.85 Agama 2.69 Magellanic Penguin 1.60 Tiger Shark 0.90 Rock Python 1.76

Meadow Moth 1.47 Komodo Dragon 2.00 Adelie Penguin 0.77 Killer Whale 0.70 Hognose Snake 1.94

Table 6: The statistics of the dataset we use. The test data size #Dval of all the concepts is fixed to
100 for a fair comparison, while the training data size #Dpool varies since different concepts since
the number of data samples across publicly available datasets is different.

Category Concept #Dpool #Dval

Insect

Zopherinae 1357 100
Antlion 864 100
Lycorma Delicatula 5108 100
Parasitic Wasps 877 100
Xylotrechus 1043 100

Lizard

Axolotl 1200 100
Frilled Lizard 1008 100
Mediterranean House Gecko 889 100
Oedura 798 100
Opluridae 818 100

Penguin

Emperor Penguin Chick 987 100
Gentoo Penguin 3992 100
King Penguin Chick 1471 100
Rock Hopper Penguin 877 100
Royal Penguin 754 100

Sea Fish

Crampfish 1179 100
Dragonfish 835 100
Garfish 1200 100
Tigerfish 538 100
Tuna 1236 100

Snake

Ahaetulla Nasutar 893 100
Aipysurus Laevis 1015 100
Indian Cobra 1200 100
Pelamis Platurus 1091 100
Sidewinder 1200 100

introducing disturbing elements led by some samples with insufficient quality. The sub-cycles will be
continuously conducted until the minimum learning rate is reached or the adaptor quality no longer
increases. Our learning rates include 5× 10−4, 2.5× 10−4, 7.5× 10−5, 5× 10−5, 2.5× 10−5.

C Experiments

C.1 How to Automatically Locate OOD Concepts

Since the publicly available dataset, i.e., ImageNet, iNaturalist 2018 [67], IP102 [71], which we
adopt in our research contains 9,244 concepts with 14,883,455 images in total, it is infeasible to
manually test and decide what concept is the out-of-distribution concept one by one. Therefore,
our procedure for figuring out is two-fold: (1) automatically quantifying the distribution drift of the
given concept from what the text-to-image model (Stable Diffusion 2.0, a.k.a SD 2.0) learned with
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the CMMD metric (thanks to the recent work proposed by Google [27]); (2) Manually verifying
whether the text-to-image model could generate the right content, according to the rank given by the
CMMD metric above. Specifically, in the first step, we randomly sample 10 image data for each
concept within the datasets and then generate 10 images with the model with the text prompt “A
photo of S∗”, in which S∗ denotes the concept name. Then, we calculate the CMMD discrepancy
between these two data batches and record them. The CMMD scores of some concepts (including
both Out-of-Distribution concepts in the first 5 rows and In-Distribution in the last 5 rows) are listed
in Table 5.

Empirically, we observed that SD 2.0 is unable to synthesize the concepts with a CMMD metric
above 3.5. Therefore, we pick 25 OOD concepts accordingly divide them into 5 categories, and make
our dataset as follows:

• Insect: Zopherinae, Antlion, Lycorma Delicatula, Parasitic Wasps, Xylotrechus;

• Lizard: Axolotl, Frilled Lizard, Mediterranean House Gecko, Oedura, Opluridae;

• Penguin: Emperor Penguin Chick, Gentoo Penguin, King Penguin Chick, Rock Hopper
Penguin, Royal Penguin;

• Sea Fish: Crampfish, Dragonfish, Garfish, Tigerfish, Tuna;

• Snake: Ahaetulla Nasutar, Aipysurus Laevis, Indian Cobra, Pelamis Platurus, Sidewinder.

Actually, the dataset we collect is not class-balanced, so the number of samples we can collect varies
across different concepts. The statistics of each concept are shown in Table 6. For the concepts with
a Dpool less than 1,000 images, we also collect some of them from image host websites including
Dreamstime, Flicker, istockphoto, pinterest, and shutterstock. The dataset will be released as soon as
the code is released.

C.2 Experimental Settings

To verify the effectiveness and extensibility of our proposed CATOD framework, we conduct experi-
ments on 25 different OOD concepts that the large-scale text-to-image (i.e. Stable Diffusion 2.0 [45])
implement different versions of CATOD. This section explains some important implementation
details for the dataset, the aesthetic scorer, the concept-matching scorer we use, and how we design
the learning paradigm.

The Learning Rate Schedule. As shown in Algorithm 1, we have a learning rate group R, which
includes 5 learning rates: 5× 10−4, 2.5× 10−4, 7.5× 10−5, 5× 10−5, 2.5× 10−5. Following the
indicator γ(A) in Eq. (6), we calculate this value after every epoch. When this indicator falls below
the previous evaluation, we reduce the learning rate. If the learning rate cannot be lowered further,
we conclude that the model has converged and the training is complete. Note that we choose to train
20 epochs in all experiments as claimed in the main context, it is possible that the training is early
stopped before reaching epoch 20.

Aesthetic Scorers. To offer the basic knowledge for aesthetic evaluation, we use pre-trained generic
models, including ReLIC [81], TANet [23], SD-Chad Scorer, and VLAD [59]. Note that the scores
given by the generic aesthetic scoring model tend to lie in the majority score range (5 to 6) in our
dataset, we ought to personalize this model accordingly to our training set, which we refer to as
PIAA [84]. Since PIAA is a typical small sample problem, we adopt similar experimental settings
and evaluation criteria by referring to Few-Shot Learning [16] and a previous PIAA research work:
PA-IAA [33].

Concept-Matching Scorers. Since the first step of general image retrieval is feature extraction, we
use the CLIP ViT-L/14 encoder, which is a commonly used and reliable feature extractor [2, 82, 34].

C.3 About Compositional Results over Multiple-Concepts.

To further validate the effectiveness of CATOD, we also present compositional results based on the
LoRA adaptors we obtained, as illustrated in Figure 7. We compose different types of concepts,
including (i) background concepts such as brick wall and grassland for Emperor Penguin Chicks,
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Figure 7: Generative results with 2 concepts within one image. Experiments are conducted based on the
LoRA adaptor fully trained on concepts “Frilled Lizard” and “Emperor Penguin Chick”. We try to compose
these creatures with background elements, in-distribution concepts, and out-of-distribution concepts learned by
other adaptors. The final results show high quality with minimal disruptive details.

and desk and beach for Frilled Lizard; (ii) in-distribution and common concepts, like the dog; (iii)
in-distribution and similar concepts, like Adelie penguin for Emperor Penguin Chicks, and Alligator
Lizard for Frilled Lizard; (iii) out-of-distribution concepts from other adaptors, like King Penguin
Chicks for Emperor Penguin Chicks and Opluridae for Frilled Lizard. Our observations reveal that
the synthetic results on out-of-distribution concepts with CATOD can seamlessly integrate different
background elements, even if they were not present in real-world images (columns 1 to 2). For
other in-distribution concepts like dogs, LDMs tend to represent a specific species with similar color
and texture, while different concepts remain highly distinguishable within one image (columns 3 to
4). For out-of-distribution concepts, we also note that the creatures are depicted correctly, but may
exhibit some confused visual details that negatively impact the aesthetics of the image (column 5).

C.4 More Analysis.

(a) The number of
epochs with specified
different learning rates
within the schedule on
RAND.

(b) The number of
epochs with specified
different learning rates
within the schedule on
CATOD.

(c) Changes on different
scores as cycle proceeds
on RAND.

(d) Changes on different
scores as the cycle pro-
ceeds on CATOD.

Figure 8: A comparison on how the schedule and scores change on RAND(scheduled) and
CATOD as cycle proceeds on concept emperor penguin(chick). (a),(b) show how the #epochs
for each learning rate in the schedule change as the cycle proceeds, when (c),(d) show how
aesthetic/concept-matching/comprehensive score change on RAND (scheduled) and CATOD. The
scores for CATOD stop changing at cycle 12 since more added samples do not help boost adaptor
quality.

CATOD is more reliable on schedules. Figure 8(a),(b) show a comparison of how our schedules
adjust as the number of cycles increases on RAND(scheduled) and CATOD. Both of them show the
tendency that training epochs with larger learning rates decrease when those with small learning rates
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(a) R-precision(%) with different strategies as
training pool expands. The experiments are per-
formed over concept "emperor penguin(chick)"
and produced over RAND and CATOD. To further
show the impact of the number of samples, we also
compare their modified versions that do not use
dynamic schedules.

Shape 1 Shape 2 Shape 3

Ground
Truth

Generated
Images

(b) A comparison on real-images with CATOD-
generated ones in 3 different shapes of lycorma
delicatula. We can see that with a carefully de-
signed selection, the adaptor helps produce all the
shapes of the concept "lycorma delicatula".

Table 7: A Comparison over the performance of CATOD on different types of the initial training data pool, in
terms of the CLIP score and CMMD score with 100 images sampled at last. This table shows the average result
of 5 sub-classes within each category. The overall improvement of our proposed CATOD is provided by “Imp.”.
Methods with the best performance are bold-folded.

Comparison Methods CLIP Score (↑) CMMD [27] (↓)
insect lizard penguin seafish snake Avg. insect lizard penguin seafish snake Avg.

10 HQ initial samples 73.87 79.23 75.59 83.84 82.19 78.94 0.87 0.80 0.71 0.79 0.78 0.79
10 RAND initial samples 72.26 74.06 72.89 79.75 78.08 75.41 0.92 0.84 0.73 0.80 0.93 0.84
20 HQ initial samples 75.18 77.59 76.97 82.78 83.14 79.13 0.85 0.79 0.69 0.72 0.75 0.76
20 RAND initial samples 72.08 72.82 72.97 77.74 75.06 74.13 1.01 1.03 0.92 0.97 0.83 0.95
50 HQ initial samples 75.27 77.27 76.85 82.90 83.37 79.13 0.84 0.80 0.63 0.69 0.71 0.73
50 RAND initial sample 70.34 70.53 67.49 72.10 73.74 70.84 1.13 1.29 0.94 1.06 0.97 1.08

increase, meaning that the training schedule focuses more on fine-tuning at later cycles. Comparing
CATOD with RAND, we can see that the epochs with the maximal learning rate already diminish at
cycle 4 on CATOD while RAND still needs large learning rates, indicating that CATOD are better at
recognizing the given concept and tends to be more stable.

CATOD achieves a good score earlier than other methods. Figure 8(c),(d) shows a comparison
of how the aesthetic/concept-matching/comprehensive scores change as the cycle proceeds on RAND
and CATOD. We can see that CATOD already achieves a higher value on all scores and cannot
be further boosted with 120 training samples on cycle 12 when the performance for RAND still
fluctuates. This phenomenon illustrates that our active selection strategy makes our embedding be
trained on more high-quality data.

Furthermore, we also notice that aesthetic/concept-matching scores fluctuate at later cycles when
the comprehensive score is enhanced continuously, which exactly corresponds to our proposed dual
scoring system that balances the importance of these two factors when ensuring the quality of the
adaptor never declines.

The performance of CATOD on different initial training data pool. We also ablate CATOD
over the initial training set size/quality. In detail, we retest CATOD with different numbers of initial
samples (10,20,50) and different quality, i.e., high-quality (HQ) and random sampling (RAND), with
100 images sampled at last and 10 images selected per cycle. These experiments are tested with
adaptor LoRA. The results are shown in Table 7:
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Table 8: A Comparison over the performance of CATOD on different architectures, in terms of the CLIP score
and CMMD score with 100 images sampled at last. This table shows the average result of 5 sub-classes within
each category. The overall improvement of our proposed CATOD is provided by “Imp.”. Methods with the best
performance are bold-folded.

Comparison Methods CLIP Score (↑) CMMD [27] (↓)
insect lizard penguin seafish snake Avg. Imp. insect lizard penguin seafish snake Avg. Imp.

SD 1.5 + RAND 63.70 64.94 65.98 66.29 69.43 66.07 ⇑9.27 1.49 1.47 1.65 1.62 1.33 1.51 ⇓0.61
SD 1.5 + CLIP 68.78 70.38 70.89 74.20 73.89 71.63 ⇑3.71 1.19 1.45 1.28 1.45 1.21 1.32 ⇓0.42
SD 1.5 + CATOD 71.73 74.79 73.45 79.37 77.35 75.34 - 1.01 0.97 0.78 0.92 0.84 0.90 -

SDXL + RAND 72.39 73.04 71.75 74.81 70.47 72.49 ⇑8.05 1.39 1.45 1.49 1.58 1.01 1.38 ⇓0.50
SDXL + CLIP 79.32 78.24 74.98 82.16 79.75 78.89 ⇑1.65 1.16 1.27 1.09 0.93 1.07 1.10 ⇓0.22
SDXL + CATOD 80.37 79.58 77.56 85.20 79.97 80.54 - 0.95 0.87 0.96 0.89 0.75 0.88 -

Table 9: A Comparison over the diversity score of CATOD, in terms of the CLIP score and CMMD score with
100 images sampled at last. This table shows the average result of 5 sub-classes within each category. The
overall improvement of our proposed CATOD is provided by “Imp.”. Methods with the best performance are
bold-folded.

Comparison Methods LPIPS Score(↑)
insect lizard penguin seafish snake Avg. Imp.

DreamBooth + CLIP 0.254 0.156 0.149 0.305 0.265 0.226 ⇑0.052
DreamBooth + CATOD 0.362 0.198 0.197 0.349 0.286 0.278 -

TI + CLIP 0.198 0.257 0.174 0.108 0.208 0.189 ⇑0.033
TI + CATOD 0.267 0.278 0.152 0.278 0.133 0.222 -

LoRA + CLIP 0.178 0.184 0.155 0.203 0.094 0.163 ⇑0.054
LoRA + CATOD 0.245 0.203 0.217 0.244 0.178 0.217 -

From these results, we can draw the following conclusions:

• Initial batch size has a more significant impact on randomly initialized samples than on
high-quality samples. Specifically, the performance change with high-quality samples is
at most 1.40 in the CLIP score and 0.10 in the CMMD score concerning different initial
numbers of training data. In contrast, the performance change on low-quality is up to 7.65
in the CLIP score and 0.45 in the CMMD score.

• The quality of initial samples does have an impact on generative results since we can see
a consistent performance loss when changing HQ initial samples to randomly initialized
samples. With the initial size increase, this impact tends to be even more significant.

C.5 Further Extension: Concept with multiple shapes

Recall that Stable Diffusion 2.0 fails to generate emperor penguin chicks, which accounts for the
fact that adult emperor penguin chicks and their chicks have different appearances. We raise another
question: can we train an adaptor with a concept that has different shapes? Inspired by this, we
also test our proposed CATOD on the concept “lycorma delicatula”, which is a kind of pest with 3
different forms in its life-cycle, and surprisingly find that with 300 training samples, the best version
of adaptors successfully produces all these 3 shapes, as shown in Figure 9(b). These results further
validate the effectiveness of our framework, even in the presence of appearance ambiguity.

C.6 About Experimental Results on other Architectures

Our experiments in the main content are all conducted on Stable Diffusion 2.0 (SD 2.0). To
further validate the superiority of our proposed CATOD, we conduct additional experiments on
other architectures (based on LoRA), including Stable Diffusion 1.5 (SD 1.5) and Stable Diffusion
XL (SDXL). The results are shown in Table 9.

This table shows that our proposed CATOD is also compatible with different architectures with
notable performance gain compared to the baselines.
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Figure 9: A comparison of selected and generate samples on different combinations of methods and
concepts. We can observe that training samples with different angles selected by CATOD also lead to
diverse angle in their generative results.

C.7 About the diversity

CATOD maintains the diversity to produce OOD concepts with different angles or poses in generative
results. To validate the diversity of our generative results, we first provide a quantitative evaluation
with LPIPS [80, 78]. The results are shown in Table 9. In this table, we can see that CATOD gives
out a diversity improvement up to 0.17 in the LPIPS score compared to CLIP-based sampling, and
outperforms CLIP over most categories. From this, we conclude that CATOD also preserves diversity.
Since the training set contains samples with different angles in CATOD, it is also easy to produce
objects with different angles, and we show the examples on concepts “Axolotl” and “Emperor Penguin
Chick” in Figure 9. We can observe that training samples with different angles selected by CATOD
also lead to diverse angle in their generative results.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly summarized our contribution in the abstract and in the last
paragraph of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: We believe that the limitation should not be regarded as an integral part of this
paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We have provided theoretical proof of our theory in Sec.4 in Appendix. A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided our code within the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: This paper does not provide the dataset regarding the risk of anonymity, despite
that the dataset is just a collection of publicly available datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experiments do not have error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This is reported in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper has no risk regarding ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This has been briefly discussed in our conclusion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: MIT License has been added already.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have a readme document for our codes.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments were conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing experiments were conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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