
FERERO: A Flexible Framework for
Preference-Guided Multi-Objective Learning

Lisha Chen1, AFM Saif1, Yanning Shen2, Tianyi Chen1

1Rensselaer Polytechnic Institute, 2University of California, Irvine

Abstract

Finding specific preference-guided Pareto solutions that represent different trade-
offs among multiple objectives is critical yet challenging in multi-objective prob-
lems. Existing methods are restrictive in preference definitions and/or their theoret-
ical guarantees. In this work, we introduce a Flexible framEwork for pREfeRence-
guided multi-Objective learning (FERERO) by casting it as a constrained vector
optimization problem. Specifically, two types of preferences are incorporated into
this formulation – the relative preference defined by the partial ordering induced
by a polyhedral cone, and the absolute preference defined by constraints that are
linear functions of the objectives. To solve this problem, convergent algorithms
are developed with both single-loop and stochastic variants. Notably, this is the
first single-loop primal algorithm for constrained optimization to our knowledge.
The proposed algorithms adaptively adjust to both constraint and objective values,
eliminating the need to solve different subproblems at different stages of con-
straint satisfaction. Experiments on multiple benchmarks demonstrate the proposed
method is very competitive in finding preference-guided optimal solutions. Code is
available at https://github.com/lisha-chen/FERERO/.

1 Introduction

Many machine learning tasks inherently involve multiple objectives, which can be different perfor-
mance metrics such as accuracy, fairness, and privacy; or, the same metrics defined on different
data [52, 42]. To tackle such multi-objective problems, it is common to learn a shared model that
simultaneously performs well on all the objectives. Compared to learning one model for each objec-
tive, learning a shared model has the benefit of reducing both the model size and the inference time.
This can be achieved through multi-objective optimization [52, 59, 35], which is to learn a model that
minimizes the vector-valued objective. In practical applications, it is of interest to learn solutions
with controlled trade-offs or preferences. To further illustrate, we give two examples below.

In fairness-aware machine learning, a trade-off exists between the fairness ffair(θ) and accuracy
facc(θ) [42, 37], see also Figure 1a. With θ denoting the model parameter, and C denoting the partial
order cone, to find the optimal models that consider different trade-offs, one can solve the following
problem with different thresholds ϵ [9]

maximizeC (facc(θ), ffair(θ))
⊤ s.t. ffair(θ) ≥ ϵ. (1.1)

Another example is in drug or molecule design, where the goal is to design drugs or molecules with
multiple desired properties f1(θ), f2(θ), . . . , fM (θ). Aiming to align the values of the properties F (θ)
with a predefined preference vector v as in Figure 1b, one can solve the following problem [40, 1, 61]

maximizeC F (θ) :=
(
f1(θ), . . . , fM (θ)

)⊤
s.t. BF (θ) = Bv, Bv = 0 (1.2)

where B ∈ R(M−1)×M is full row rank.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/lisha-chen/FERERO/

Table 1: Comparison to existing methods. “Flexibility” represents preference modeling, such as
by using weights, preference vectors (rays), or constraints. “Exactness” represents the ability to
align with a preference vector exactly. “Deter.”, “Stoch.” represent deterministic and stochastic,
respectively. “✗” means not provided in the corresponding work, and “-” means not relevant.

Method Preference Controlled
ascent

Single
loop

Convergence
Flexibility Exactness Deter. Stoch.

Linear Scalarization weight - ✗ ✓ T−1 T− 1
2

(Smooth) Tchebycheff [32] weight - ✗ ✓ non-asymptotic ✗
PMTL [33] inequalities (absolute) ✗ ✗ ✗ asymptotic ✗
EPO [41] r−1 ray (ratio, absolute) ✓ ✓ ✗ asymptotic ✗

(X)WC-MGDA [44] shifted ray (absolute) ✓ ✗ ✗ ✗ ✗

FERERO (ours) relative & absolute ✓ ✓ ✓ T−1 T− 1
2

(a) (b)

Figure 1: Illustration of preferences in different ex-
amples. The solid red curves represent the Pareto
front, dashed lines represent preference constraints.

Then a natural question arises:

Can we develop
a principled framework to capture flexible
preferences and admit provably convergent
deterministic and stochastic algorithms?

Our answer to this question is affirmative. Rec-
ognizing that all the aforementioned applica-
tions can be addressed within a unified frame-
work, we formulate preference-guided multi-objective learning (PMOL) as a constrained vector
optimization problem. Specifically, given a model θ ∈ Rq, and the objectives fm : Rq → R, m =
1, . . . ,M , we define the constrained vector optimization problem as

min
θ∈Rq

F (θ) :=
(
f1(θ), . . . , fM (θ)

)⊤
, s.t. G(θ) ≤ 0, H(θ) = 0 (PMOL)

where G(θ) and H(θ) are the vector-valued preference constraints such as the examples in (1.1)
and (1.2). Here “≤” and “=” are element-wise relations on the vectors, with each row representing
one constraint. In these examples, the preferences are directly defined in the objective space, as
intersections of half-spaces defined by the hyperplanes; see Figure 1. Thus, G(·) and H(·) in (PMOL)
can be expressed as linear functions of F (θ), given by

G(θ) = BgF (θ) + bg, H(θ) = BhF (θ) + bh (1.3)

where Bg ∈ RMg×M , Bh ∈ RMh×M , and bg ∈ RMg , bh ∈ RMh . Different Bg, Bh, bg, bh corre-
spond to different preferences, and thus different trade-offs among the objectives.

A comparison of our methods to existing methods is summarized in Table 1. Specifically, our
contributions are listed as follows:

C1) We cast the PMOL problem as a constrained vector optimization problem, and develop the
FERERO framework to capture flexible preferences.

C2) Under the FERERO framework, we develop a meta primal algorithm with a unified subpro-
gram adaptive to both objectives and constraints to meet flexible preferences, eliminating
the need for multiple subprograms under different active constraints.

C3) Under the FERERO framework, we develop a practical single-loop algorithm with non-
asymptotic convergence guarantees. To our best knowledge, this is the first single-loop
primal algorithm in constrained vector optimization with convergence guarantees.

C4) We apply the proposed algorithms to various synthetic and real-world image and speech
datasets to demonstrate its ability to find flexible preference-guided optimal models.

In our theoretical analysis, we address the following technical challenges.
T1) The commonly used constraint qualification assumptions do not generally hold for the

PMOL problem. We overcome this challenge by leveraging the specific structure that the
constraints are linear functions of F to prove the calmness condition holds for PMOL. See
more details in Lemma 2.

T2) The convergence of the single-loop algorithm is slower with the commonly-used merit
functions. We provide a sharper analysis by introducing a different merit/Lyapunov function
and exploiting the algorithm properties under additional assumptions. See Theorem 3.

2

T3) The convergence analysis often relies on assumptions on bounded functions or bounded
constraints. We remove such assumptions by applying similar techniques in [7] with proper
choice of Lyapunov functions, and exploiting algorithm properties. See Theorems 2 and 3.

2 Problem Setup and A Meta Algorithm

To characterize the optimality conditions of PMOL, we introduce the generalized notion of dominance
and the related concept of optimality. We then present a meta-algorithm to solve PMOL.

2.1 Problem setup and preliminaries

(a) (b)

Figure 2: Illustration of CA-dominance. The solid
red curves are the Pareto fronts, green dots are the
reference points, gray shaded regions are the set of
objectives dominating the reference points, under
different CA in (a) and (b).

We first introduce optimality definitions for
PMOL that go beyond the standard definitions
of Pareto optimality [15, 11, 36]. Given two
vectors v and w, we use v < w and v ≤ w to
denote vi < wi for all i, and vi ≤ wi for all i,
respectively. We use v ⪇ w to denote v ≤ w
and v ̸= w, and define >,≥, ⪈ analogously.
Definition 1 (CA-dominance [12, 27]). Given
v, w ∈ RM , A ∈ RM×M , and CA := {y ∈
RM | Ay ≥ 0} ≠ ∅, we say v strictly domi-
nates w based on CA if and only if A(v − w) < 0.
The generalized dominance defines a partial order on RM , i.e., the relation between two vectors.
Illustrations of different partial orders are given in Figure 2. Figure 2a shows the dominance relation
under the widely used non-negative orthant cone with CA = RM

+ , corresponding to Pareto optimality.
However, as illustrated by the figure, given the initial green reference point, a descent method such as
MGDA [15] cannot find points on the Pareto front but outside of the gray shaded region. This poses a
critical challenge for applications where specific preference-guided solutions on the Pareto front are
needed. Nevertheless, this issue can be addressed by substituting RM

+ with a more general definition
of CA as displayed in Figure 2b. Under this partial order, a general descent method is able to reach
any points on the Pareto front starting from the green reference point.

Based on the partial order, one can then find the minimum or optimal elements in the vector-valued
objective space, whose formal definition is provided below.
Definition 2 (CA-optimal). A point θ ∈ Rq is CA-optimal if there is no θ′ ̸= θ such that, AF (θ′) ⪇
AF (θ). A point θ is weakly CA-optimal if there is no θ′ ̸= θ such that, AF (θ′) < AF (θ).

Note that, CA is a polyhedral cone, or the intersection of half-spaces defined by the rows of the
inequality Ay ≥ 0. When A = IM , an M ×M identity matrix, CA = RM

+ := {y ∈ RM | ym ≥
0 ∀m ∈ [M]}, then Definition 1 reduces to the commonly used notion of dominance associated with
Pareto optimality. The cone CA can be interpreted as a relative preference that defines the objectives’
improvement directions, which generalizes the relative preference defined by RM

+ . In contrast, the
preference defined by constraints in (1.3) can be interpreted as an absolute preference that defines
the feasible or preferred set of objective function values. In practice, CA can be chosen based on
the requirements of specific applications. For example, when the controlled ascent of objectives is
needed [41], we can choose CA such that the controlled ascent direction belongs to −CA. We defer
the detailed implementation to Section 3.2. The CA-optimal set, denoted as PA, contains all the
CA-optimal models. When A = IM , PA is the Pareto optimal set P . The Pareto front is the set of
function values evaluated at Pareto optimal models, i.e., F = {F (θ) | θ ∈ P}.
We make the following standard assumptions throughout the paper [15, 25, 7].
Assumption 1. 1. (Non-negative objectives) AF (θ) ≥ 0, and 1⊤AF (θ) ≥ cAF > 0 for all θ ∈ Rq .
2. (Differentiable objectives) F is twice continuously differentiable.
3. (Ordering cone with non-empty interior) CA has a non-empty interior.

2.2 Find the preference-guided direction
In this section, we proceed to discuss an adaptive method to solve (PMOL). At iteration t, the
algorithm finds an update direction dt and performs the iterative update θt+1 = θt + αtdt with a
step size αt. Ideally, the update direction dt is chosen to improve the objective F (θ) and to satisfy

3

the preference constraints. It is desirable that when the constraints are not satisfied, dt decreases
the violation of constraints and improves the objectives in the general partial ordering sense; when
the constraints are satisfied, dt improves the objectives and ensures the constraints are satisfied. To
achieve this, we find a direction d∗(θ) that solves following subprogram

ψ(θ) := min
(d,c)∈Rq×R

c+
1

2
∥d∥2 s.t. A∇F (θ)⊤d ≤ c

1⊤AF (θ)
AF (θ) (2.1)

∇G(θ)⊤d+ cgG(θ) ≤ 0, ∇H(θ)⊤d+ chH(θ) = 0

where ∥ · ∥ denotes the ℓ2-norm, cg and ch are pre-defined positive constants. Larger cg and ch
put more emphasis on constraint satisfaction than objective improvement. We call this subprogram
adaptive since it deals with constraints in an adaptive way, which does not require the initial model
to be feasible, nor θt to be feasible at each iteration. But rather, it finds an update direction that
decreases the constraint violation. Because of this, it neither requires solving different subprograms
at different stages nor requires different treatment of the active set of inequalities as in existing
works [33, 41, 44].

Algorithm 1 A meta FERERO algorithm

1: Initialize t = 0, θ0, step size {αt}; define A.
2: while ψ(θt) ̸= 0 do
3: Compute gradient ∇F (θt);
4: Compute λt by (approximately) solving (2.3);
5: Compute the update direction
6: dt = −∇F (θt)A⊤

agλt;
7: Update θt by θt+1 = θt + αtdt;
8: Set t = t+ 1;
9: end while

We then show in Lemma 1 that the desired
properties can be satisfied.

Lemma 1. For the subprogram (2.1), the
following holds:
If θ is a local optimal solution with
AF (θ) > 0, then d∗(θ) = 0, ψ(θ) = 0.
Otherwise, if θ is not a local optimal solu-
tion, then d∗(θ) ̸= 0, ψ(θ) < 0, and when
θ is feasible,

2ψ(θ) ≤ −∥d∗(θ)∥2 < 0. (2.2)

Let θ be a weak CA-optimal solution, with
(AF (θ))m = 0 for some m ∈ [M]. If there exists feasible and non-strictly improving directions at θ
with A∇F (θ)⊤d ⪇ 0, then d∗(θ) ̸= 0, ψ(θ) < 0. Otherwise, d∗(θ) = 0, ψ(θ) = 0.

By Lemma 1, ∥d∗(θ)∥ = 0 is a stationary condition for PMOL. Recall the feasibility condition
requires [G(θ)]+ = 0 and |H(θ)|ab = 0, where [·]+ and | · |ab are entry-wise ReLU and absolute
functions, respectively. And the complementary slackness condition requires λ∗g

⊤[−G(θ)]+ = 0.
Thus ∥d∗(θ)∥2 + λ∗g

⊤[−G(θ)]+ + ∥[G(θ)]+∥1 + ∥H(θ)∥1 achieves zero if and only if the model
θ satisfies the first-order KKT condition. Besides the properties in Lemma 1, it has an additional
scale-invariant property that is deferred to Lemma 6 due to space limit.

By the Lagrangian of (2.1), the optimal update direction can be expressed in a simple form as a
weighted combination of the gradients, i.e. d∗(θ) = −∇F (θ)A⊤

agλ
∗, with Aag := [A;Bg;Bh], and

λ∗ ∈ argmin
λ∈Ωλ(θ)

φ(λ; θ) :=
1

2
∥∇F (θ)A⊤

agλ∥2 − cgλ
⊤
g G(θ)− chλ

⊤
hH(θ) (2.3)

where λ = [λf ;λg;λh], Ωλ(θ) is the domain of the Lagrangian multipliers, given by 1

Ωλ(θ) := Ωλf
(θ)× RMg

+ × RMh , with Ωλf
(θ) := {λ ∈ RM

+ | λ⊤AF (θ) = 1⊤
MAF (θ)}. (2.4)

Our goal is to design an algorithm that converges to a KKT solution based on (2.1). However, the KKT
condition is not necessary unless certain constraint qualifications (CQs) hold. Prior works [20, 33]
assume certain CQs hold, e.g., the Linear Independence Constraint Qualification (LICQ). However,
the LICQ assumption (c.f., [20, Section 3.1, (A2)]) does not generally hold at a local optimal solution
for problem (PMOL), c.f., Example 1 in Appendix D.3.2. Though some commonly used CQs do not
hold generally, in our case, leveraging the specific structure that the constraints are linear functions of
F , we can justify the calmness CQ in Definition 10 tailored for our problem in Lemma 2, thus the
KKT condition is a necessary optimality condition. The proof is deferred to Appendix D.3.2.

1Note that, our formulation and analysis cover the constrained MOO problem with a simplified subprogram,
where Ωλf = ∆M , which is detailed in Remark 4 in Appendix D.1.

4

Lemma 2. Let θ̄ ∈ Rq be a global solution to (PMOL). Define Σ(p, q) := {y ∈ RM | Bgy + bg ≤
p,Bhy + bh = q}. If Σ(p, q) is a line, the PMOL calmness condition in Definition 10 is satisfied
for (PMOL) at θ̄ if A ∈ RM×M is full rank, H(θ), G(θ) defined by (1.3) satisfy [B⊤

h , B
⊤
g] ̸= 0, and

Bh, Bg are full row rank. Consequently, the KKT condition is a necessary optimality condition.

Lemma 2 provides a sufficient condition for the KKT condition to be a necessary optimality condition
without relying on unjustified assumptions. The requirement that the constraint set is a line in the
objective space is common for applications such as alignment to a preference vector.

We then discuss a generic preference-guided multi-objective algorithm based on the subprogram.

2.3 A meta algorithm for preference-guided multi-objective learning
Given the model θt at iteration t, one can then solve (2.3) to obtain λt. The direction dt =
−∇F (θt)A⊤

agλt is used to update the model θt by θt+1 = θt + αtdt iteratively until convergence.
The full procedure of this meta algorithm is summarized in Algorithm 1, where Step 4 is a generic
step and can be customized in Section 3.
To establish the non-asymptotic convergence rate, we use the following standard smoothness assump-
tion that has been commonly used in prior works for multi-objective learning [7, 36].
Assumption 2 (Smooth objectives). For all m ∈ [M], ∇fm(θ) is ℓf,1-Lipschitz continuous.

We then state the convergence result for Algorithm 1 in Theorem 1.

Theorem 1 (Convergence of the generic FERERO algorithm). Suppose Assumptions 1, 2 hold.
Let {θt} be the sequences produced by Algorithm 1, with dt being an ϵ-optimal solution to the
subprogram (2.1). If ∥λ∗(θt)∥1 ≤ cλ, αt ≤ min{ 1

cλℓf,1∥A⊤
ag∥∞,1

, c−1
g , c−1

h }, and αt = Θ(1), then

1

T

T−1∑
t=0

∥∇F (θt)A
⊤
agλ

∗(θt)∥2︸ ︷︷ ︸
stationarity

+λ∗
g(θt)

⊤
[−G(θt)]+︸ ︷︷ ︸

complementary slackness

+ ∥[G(θt)]+∥1 + ∥H(θt)∥1︸ ︷︷ ︸
feasibility

= O
(
T−1 + ϵ

)
. (2.5)

Theorem 1 guarantees the non-asymptotic convergence for the generic FERERO algorithm. In
Algorithm 1, λt can be solved through projected gradient descent or Frank Wolfe algorithm iteratively
within an inner loop. In practice, we usually do not need to solve the subprogram exactly. Next, we
discuss the efficient single-loop approximate algorithm based on Algorithm 1.

3 Efficient Single-loop Algorithms
Algorithm 2 FERERO-SA

1: Initialize t = 0, θ0, λ0, step sizes {αt, γt};
define A, number of iterations T .

2: for t = 0, . . . , T − 1 do
3: Compute gradient ∇F (θt);
4: Compute direction dt = −∇F (θt)A⊤

agλt;
5: Update θt by θt+1 = θt + αtdt;
6: Update λt by (3.1);
7: end for

In this section, we first discuss algorithm devel-
opment with the approximate single-loop update
and practical choice of preferences. We focus
on (PMOL) with equality constraints only, i.e.,
Mg = 0. Building upon this, we then discuss
the stochastic variants of the algorithms that can
be applied to large-scale learning problems.

3.1 Single-loop approximate algorithm

In practice, if one only requires the converging solutions generated by the algorithm to be feasible,
but not all the iterates, then further approximations can be made to the subprogram (2.3). At iteration
t, to obtain an approximate direction dt, we adopt the following update

λt+1 = ΠΩλ

(
λt − γt∇λφ(λt; θt)

)
. (3.1)

The single-loop algorithm with the approximate solution is summarized in Algorithm 2. We name it
FERERO with Single-loop Approximate update (FERERO-SA) algorithm.

We make the following additional assumption of Lipschitz objectives to prove the convergence of
Algorithm 2, which is standard in optimization literature.

Assumption 3 (Lipschitz objectives). For all m ∈ [M], fm(θ) is ℓf -Lipschitz continuous.

5

To prove the convergence of Algorithm 2, we can use the same merit function with ℓ1-norm of
H(θt), which leads to a slow convergence rate of O

(
T− 1

6

)
. See Theorem 2 below and its proof in

Appendix F.2, where the proof follows similar ideas of the proofs of Theorem 3 and Theorem 5 in [7].

Theorem 2 (Convergence of the FERERO-SA algorithm). Suppose Assumptions 1, 2, 3 hold, and
Mg = 0. Let {θt}, {λt} be the sequences produced by Algorithm 2 with A = I and Ωλf

(θ) = ∆M

(c.f. Remark 4). Assume λt, λ∗(θt), and λ∗ρ(θt) := argminλ∈Ωλ
φ(λ; θt) +

ρ
2∥λ∥

2 are bounded.
With properly chosen step sizes α = Θ(T− 5

6), γ = Θ(T− 1
6), and hyperparameters, it holds that

1

T

T−1∑
t=0

∥∇F (θt)A⊤
agλt∥2 + ∥H(θt)∥1 = O

(
T− 1

6

)
. (3.2)

To obtain a sharper convergence rate, we consider a different merit function with ℓ2-norm of the
constraint H(θt), and under additional assumptions listed below.

Definition 3 (Proximal PL inequality). Define Dφ,γ(λ; θ) := − 2
γ minλ′∈Ωλ

{
⟨∇λφ(λ; θ), λ

′ − λ⟩+
1
2γ ∥λ

′ − λ∥2
}
. We say φ(λ; θ) satisfies the µφ-proximal PL inequality on the point (λ, θ), if there

exists some constant µφ > 0 such that Dφ,γ(λ; θ) ≥ µφ

(
φ(λ; θ)− φ(λ∗(θ); θ)

)
.

Assumption 4. For θ ∈ {θt}, λ ∈ {λt} on the trajectory of Algorithm 2, the following hold:
1. φ(·; θ) is µφ-proximal PL in Definition 3;
2. For all m ∈ [M], ∇2fm(θ) is ℓf,2-Lipschitz continuous.

Assumption 4-1 essentially requires some regularity conditions of φ(·; θ) on the trajectory of Algo-
rithm 2. Leveraging the fact that φ(·; θ) is convex, it has been discussed in e.g., [28, Appendix B] that
if the smallest non-zero singular value of the Hessian is bounded away from zero, then Assumption 4-1
holds. This could be satisfied when the gradients ∇F (θt)A⊤

ag have lower-bounded non-zero singular
values on the trajectory. A more detailed analysis of the sufficient conditions for Assumption 4-1 to
hold is left for furture work.

We then provide a sharper convergence analysis in Theorem 3. The detailed proof and choices of step
sizes and hyperparameters are deferred to Appendix F.3.

Theorem 3 (Sharper convergence of the FERERO-SA algorithm). Suppose Assumptions 1, 2, 3, 4
hold, and Mg = 0. Let {θt}, {λt} be the sequences produced by Algorithm 2 with A = I and
Ωλf

(θ) = ∆M (c.f. Remark 4). With properly chosen step sizes αt = Θ(1), γt = Θ(1), and
hyperparameters, it holds that

1

T

T−1∑
t=0

∥∇F (θt)A
⊤
agλt∥2 + ∥H(θt)∥2 = O

(
T−1

)
. (3.3)

Theorem 3 states that {θt} produced by Algorithm 2 converges to a KKT solution of the PMOL
problem in the general nonconvex case. Moreover, both ∥dt∥2 and ∥H(θt)∥2 converge to zero at a
rate of O(T−1), implying the convergence of both the objective values and the preference constraints.
Note that, the convergence in terms of ∥H(θt)∥2 at a rate of O(T−1) is weaker compared to the one
with ∥H(θt)∥1 at the same rate for Algorithm 1. This is reasonable since Algorithm 2 only uses a
one-step approximate update of λt instead of exactly solving the subprogram.

The stochastic variant. We employ a stochastic variant of Algorithm 2 based on the double sampling
techniques developed in the recent work [7]. The update is given by

θt+1 =θt +∇Fξt,1(θt)A
⊤
agλt (3.4a)

λt+1 =ΠΩλ

(
λt − γt∇̃λφ(λt; θt)

)
(3.4b)

∇̃λφ(λt; θt) =Aag∇Fξt,2(θt)
⊤∇Fξt,1(θt)A

⊤
agλt − [0⊤, chHξt,1(θt)

⊤]⊤ (3.4c)

where ∇̃ is the unbiased stochastic estimate of the gradient, and ξt,1 and ξt,2 are two independent
stochastic samples obtained at iteration t.

6

The full description of the stochastic algorithm and its convergence guarantee are deferred to Ap-
pendix G. We provide a converegnce rate guarantee that matches the rate of SGD under additional
assumptions on the bounded variance of the stochastic gradients.

3.2 Choice of relative preferences

As briefly discussed in Section 2.1, the ordering cone and the corresponding matrixA can be specified
according to practical needs. We first discuss how to obtain matrix A for the relative preference given
the set of improvement directions. Then we discuss how to choose the relative preference to allow
controlled ascent update, which is useful for touring the Pareto front [41].

Ordering cone generation. In practice, to obtain the polyhedral cone that defines the partial
order, one can usually first define the extreme rays of the polyhedral cone. We then show how to
convert the extreme ray description of the cone to the half-space description given by matrix A, i.e.,
CA = {y ∈ RM | Ay ≥ 0}, by showing how to compute A from the extreme rays.

Let Y = [y1 · · · yM] ∈ RM×M be a matrix that contains all the extreme rays of CA as its column
vectors, then CA = {Y λ | λ ≥ 0}. Let a⊤m ∈ R1×M denote the row vectors of A for all m ∈ [M].
Then all am can be found by a that solves the following linear feasibility program

find
a̸=0,λ≥0

s.t. Y λ = c, c⊤a = 0, Y ⊤a ≥ 0. (3.5)

Choice of CA for controlled ascent. If CA is not pre-specified, and the decision maker wants
to choose CA to allow controlled ascent, it can be achieved with the following procedure. Let
F0 = F (θ0) be the objective of the initial iterate of the algorithm, and Ftg be the target function
value along the controlled ascent direction. To ensure Ftg − F0 ∈ −CA for controlled ascent, we
include (F0 − Ftg)/∥F0 − Ftg∥ in the set of extreme rays, then take the extreme rays of the convex
hull of the new set to form the columns of Y . Finally, we obtain CA by solving (3.5).

4 Related Works
To put our work in context, we review the most relevant literature in (preference-guided) multi-
objective optimization, constrained optimization, with a focus on gradient-based approaches.

Multi-objective optimization (MOO). A straightforward approach of MOO is to use scalarization to
transform MOO into a single-objective optimization problem [43]. Another popular approach focuses
on finding update directions which avoid conflicts with the gradients of the objectives [52, 59, 35].
A foundational algorithm in this domain is the Multiple Gradient Descent Algorithm (MGDA)
[15, 17, 11, 36], which dynamically weights gradients to find a steepest common descent direction
for all objectives. Later on, variants of MGDA are developed, which are discussed in detail in
Appendix B.1 and [7]. However, solutions based on MGDA usually cannot capture pre-defined user
preferences that represent various trade-offs on the Pareto front. This motivates the development of
preference-guided multi-objective optimization methods.

Preferences can be modeled through weights or thresholds assigned to different objectives [43]. For
example, scalarization-based methods use the ℓp-norm of the weighted vector-valued objective to
convert the vector-valued objective into a scalar-valued objective, e.g., Linear scalarization (LS),
Tchebycheff scalarization; see e.g., [32]. Then the problem can be solved by single-objective
optimization on the scalar objective. The ϵ-constraint methods enforce threshold constraints on
different objectives, then solve the problem by constrained optimization; see e.g., [9]. More recently,
preferences have been modeled by preference vectors defined in the objective space. Then the
problem can be formulated as finding Pareto optimal solutions satisfying the constraints defined by
the preference vectors [33], or optimizing the distance to the preference vectors [41, 44]. The key
difference between FERERO and these works is that FERERO can capture more flexible preferences
based on a general partial order, and general inequality/equality constraints. Moreover, we provide
convergence rate guarantees for the proposed algorithms. A detailed comparison is summarized in
Table 1 in Section 1 and Table 5 in Appendix B.2.

Constrained optimization. Constrained optimization methods include primal methods, penalty and
barrier methods, and primal-dual methods [4, 39]. Our proposed method is related to the primal
method that finds an update direction to ensure the models are feasible and improving along the
optimization trajectory. To address the limitation that it usually requires a stage-one procedure to

7

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

(a) LS

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

(b) MGDA

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

(c) PMTL

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

(d) EPO

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

(e) FERERO

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

(f) FERERO

Figure 3: Converging solutions (blue dots) and optimization trajectories (blue lines) on the objective
space of different methods on synthetic objectives given in (5.1). Dashed arrows represent pre-
specified preference vectors. The green dots represent initial objective values.

0.0 0.2 0.4 0.6 0.8 1.0 1.251

0.0

0.2

0.4

0.6

0.8

1.0

5 2

Initial values

PMTL output

(a) PMTL

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

1.2 5 2

EPO Search
output

(b) EPO

0.0 0.2 0.4 0.6 0.8 1.0 1.2 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

Ours output

(c) FERERO

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

Initial values

PMTL output

(d) PMTL

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

EPO Search
output

(e) EPO

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

Ours output

(f) FERERO

Figure 4: Outputs (colored markers) and optimization trajectories (colored lines) of different methods
when initial objectives are near the Pareto front. Different colors represent different preferences.

ensure the initialization is feasible, we use an adaptive approach to ensure the constraint violation is
decreasing and converging to zero. This idea can also be found in sequential quadratic programming
(SQP). SQP has been widely applied to solve constrained single-objective optimization [21, 6]. Later
on, it has also been applied to constrained MOO [16]. Compared to SQP, we use an identity matrix to
approximate the Hessian of each objective, and we propose an adaptive variant that automatically
adjust the descent amount of objectives. Furthermore, existing SQP algorithms typically require an
inner loop to solve the optimal Lagrangian multiplier, resulting in double-loop algorithms. In contrast,
we develop a single-loop algorithm which can be more efficient.

Vector optimization. Vector optimization [12, 27] generalizes multi-objective optimization by
substituting the commonly used component-wise partial order with a more general partial order, such
as a general convex-cone induced partial order used in this paper. In the unconstrained setting, the
MGDA method is extended to a steepest cone descent method in the vector optimization setting
in [25]. In the constrained setting, the first-order optimality conditions are studied in [23, 57].
Algorithms based on projected gradient [24, 18, 19] or conditional gradient [8] are developed to solve
vector optimization with parameters in a constraint set, to name a few. Besides gradient-based vector
optimization, another line of works focus on black-box vector optimization with discrete design
space; see e.g. [3, 2]. To our best knowledge, we are the first to design gradient-based single-loop
(stochastic) primal algorithms for constrained vector optimization with convergence rate guarantees.
5 Experiments
In this section, we conduct experiments to verify our theory and show the applicability of the
algorithms to preference-guided multi-task learning, and multi-objective finetuning of large multi-
lingual speech recognition models. We use Linear scalarization (LS), MGDA [52], PMTL [33],
EPO [41], XWC-MGDA [44] as baselines for comparison.

Metrics. Objective loss and accuracy. We report the objective losses and accuracies in classification.
Relative loss profile. We use the element-wise product of the preference vector and the objective
values as a measure of the relative loss profile. Hypervolume. Let F ′ ∈ RM denote a reference point,
and S denote a set of objective function values of the obtained models. Hypervolume measures the
size of the dominated space of S relative to F ′, which can be computed by H(S) = Λ({q ∈ RM |
∃F ∈ S : F ≤ q ≤ F ′}), where Λ(·) denotes the Lebesgue measure. For a fair comparison, we use
the Nadir point, i.e., the worst performance on single-task baselines, as the reference point F ′.

Additional details. The implementation and additional experiments can be found in Appendix H.
5.1 Synthetic data
Following [33, 41, 44], the first objective we consider is

F (θ) =
(
1− e

−∥θ− 1√
q
1∥22 , 1− e

−∥θ+ 1√
q
1∥22). (5.1)

The objective has a nonconvex Pareto front (PF). See the results of different methods in Figure 3.
With uniformly generated weights from a simplex, LS only finds extreme points on the PF with one
objective minimized. MGDA can only find points close to the center of the PF. PMTL can find points

8

0.82 0.84 0.86 0.88 0.90 0.92

0.80

0.85

0.90

(a) Multi-MNIST accuracy

0.65 0.70 0.75 0.80 0.85

0.65

0.70

0.75

0.80

0.85

(b) Multi-Fashion accuracy

0.75 0.80 0.85 0.90 0.95

0.76

0.78

0.80

0.82

0.84

0.86

LS

EPO

PMTL

XWC-MGDA

Ours

(c) Multi-F+M accuracy

0.3 0.4 0.5 0.6 0.7

0.3

0.4

0.5

0.6

0.7

(d) Multi-MNIST loss

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(e) Multi-Fashion loss

0.2 0.3 0.4 0.5 0.6 0.7

0.2

0.3

0.4

0.5

0.6

0.7

(f) Multi-F+M loss

Figure 5: Training losses and accuracies of various methods with different preferences across three
image datasets. The horizontal and vertical axes represent results for objective 1 and objective 2,
respectively. Different colored dashed arrows indicate various preference vectors. Different markers
denote the solutions obtained by different methods, with marker colors matching the preferences.

in the subregions but not aligned well with the exact preference vectors. Similar to EPO, in Figure 3e,
our method finds points that align well with the exact preferences; and in Figure 3f, our method can
handle different definitions of preferences.

We conduct another experiment in a more difficult setting where the initial objectives are close to
the PF. In Figures 4a-4c, we consider a relatively easier case where the initial model is not too
close to the Pareto optimal. For our method, by solving (3.5), a1 = [1√

5
; 2√

5
], a2 = [2√

5
; 1√

5
]. The

corresponding matrix A is given by A = [a1, a2]
⊤. In this setting, all methods converge to the PF,

and our method takes the least number of iterations (PMTL takes 100, EPO Search takes 60, and our
method takes only 10 iterations). PMTL does not align exactly with the preference vectors, while
EPO and our method do. In Figures 4d-4f, PMTL and our method take 200 iterations, EPO Search
takes 80 iterations. Results show that for the green and yellow preferences, PMTL moves further
away from the PF in the first stage, and does not perform any update in the second stage. It converges
to the PF only in 2 out of 4 cases. In contrast, with controlled ascent updates, EPO and our method
can converge to the PF and trace the PF until the objectives align exactly with the preferences.

5.2 Real data

Multi-patch image classification. Following [33, 41, 44], we consider three datasets for image
classification, including Multi-MNIST, Multi-Fashion, and Multi-Fashion+MNIST. The two tasks or
objectives in all three datasets are to classify the top-left and the bottom-right images, respectively. For
a fair comparison, we use LeNet as the backbone neural network. The training losses and accuracies
of different methods given different preference vectors are plotted in Figure 5. Experiments for our
method are repeated 5 times. Hypervolumes with means and standard deviations are reported in
Table 2. The results for other methods in Table 2 are referenced from [44].

Table 2: Hypervolumes of different methods (×10−2)
Datasets LS PMTL [33] EPO [41] XWC-MGDA [44] FERERO

Multi-MNIST loss 1.68 1.41 1.35 1.42 1.97±0.21

Multi-Fashion loss 6.75 5.90 6.02 6.77 7.76±0.18

Multi-F+M loss 3.63 3.03 3.76 3.89 3.82±0.21

Multi-MNIST accuracy 0.19 0.15 0.15 0.16 0.24±0.04

Multi-Fashion accuracy 0.99 0.87 0.87 0.99 1.17±0.07

Multi-F+M accuracy 0.48 0.40 0.50 0.52 0.53±0.04

9

0.20 0.25 0.30 0.35 0.40 0.45

0.25

0.30

0.35

0.40

0.45

(a) Multi-MNIST loss

0.40 0.45 0.50 0.55 0.60 0.65 0.70

0.40

0.45

0.50

0.55

0.60

0.65

0.70

(b) Multi-Fashion loss

0.2 0.3 0.4 0.5

0.40

0.45

0.50

0.55

0.60

(c) Multi-F+M loss

Figure 6: Losses and preferences of FERERO when the initial objective is close to the Pareto front.

One limitation of EPO is that the preference is defined as a ray from the origin in the objective space,
whose corresponding objectives can be unattainable, e.g., the yellow preferences in Figure 5. As a
result, the losses of all methods are far away from the preference vectors. In this case, a more flexible
choice of preferences is helpful to ensure preference satisfaction. To demonstrate this, we conduct
experiments with more flexible preferences; see the results in Figure 6, where the obtained solutions
align better with the preference lines compared to those in Figure 5. Moreover, it can perform
controlled ascent updates during optimization, which cannot be achieved by PMTL or XWC-MGDA.

Table 3: WERs (%) on Librispeech and AISHELL v1.

Method English Chinese Average

Komatsu et al. [29] 7.11 - -
w/o CPC [51] 11.8 10.2 11.0
Init. (M2ASR) [51] 7.3 6.2 6.7
LS-FT 6.8 5.9 6.4
FERERO-FT 5.4 4.9 5.1

Multi-lingual speech recognition. We
further apply the proposed method to the
multi-objective finetuning of pre-trained
multi-lingual speech models. We use
the Librispeech (100 hours) [47], and
AISHELL v1 [5] datasets for multi-lingual
speech recognition. A conformer with 8
blocks is used as the model architecture.
The total number of parameters is around
64.5M with 58.4M encoder layer parameters and the rest being the classification layer parameters.
We consider the objectives associated with the speech recognition Connectionist Temporal Classifi-
cation (CTC) losses in Chinese and English, denoted as f cht and f ent , respectively. We also use the
self-supervised Contrastive Predictive Coding (CPC) loss fp for representation learning; that is

min
θ

F (θ) :=
(
fp(θ), f

ch
t (θ), fen

t (θ)
)⊤

s.t. fp(θ) ≤ ϵ1, f
ch
t (θ)− fen

t (θ) = ϵ2 (5.2)

where the first constraint ensures to learn a good representation with ϵ1 = 1.2, and the second con-
straint avoids one language loss dominates the other with ϵ2 = 0.5; see more details in Appendix H.1.

Results on the word error rate (WER) are reported in Table 3. The baselines include the state-of-the-art
result from Komatsu et al. [29] without an additional large language model, our own implementation
of training using only the sum of supervised CTC losses (w/o CPC), the initial pre-trained M2ASR
model [51] (init.), linear scalarization of all three objectives for finetuning a pre-trained model with
the CPC loss (LS-FT). Results show that considering CPC loss besides the supervised CTC loss
improves the average WER by 4.2%, and this can be further improved by 0.3% by finetuning with
linear scalarization. However, the LS-FT model has a much better performance in Chinese compared
to English. With our proposed approach, the performance gap between different languages is reduced,
and the average WER is further improved by 1.3%.

6 Conclusions

In this work, we frame preference-guided multi-objective learning as a constrained vector opti-
mization problem. Specifically, we introduce constraints and partial order to capture the absolute
and relative preferences. Under this framework, we develop algorithms to solve the constrained
vector optimization problem. Our proposed algorithms use a unified formulation without solving
different subprograms at different stages. And they enjoy the benefit of allowing controlled ascent
and escaping weak optimal solutions. Theoretical guarantees on the non-asymptotic convergence of
the deterministic algorithms and their stochastic variants are provided. Experiments on benchmark
datasets demonstrate the broad applicability of the proposed algorithms.

10

Broader Impacts and Limitations

This paper casts the preference-guided multi-objective learning as a constrained vector optimization
problem and proposes an algorithm with single-loop and stochastic variants to solve the problem,
which have non-asymptotic convergence guarantees. The proposed method is applied to image
classification and speech recognition. The positive impact is that it is a principled method with
efficient implementations that has broad applications across various domains. There is no negative
social impact.

The proposed algorithm is able to model flexible preferences but at a cost of higher per-iteration
complexity compared to scalarization methods. The theoretical guarantees make standard assump-
tions that the objectives are lower bounded, Lipschitz continuous and smooth. These are common
assumptions in the optimization literature, and can be satisfied for neural networks with smooth
activation functions.

Acknowledgements

The work of L. Chen, AFM Saif, and T. Chen was supported by the National Science Foundation
(NSF) projects 2401297, 2412486, the RPI-IBM Artificial Intelligence Research Collaboration
(AIRC), the Cisco Research Award, and the IEEE Signal Processing Society scholarship. The work
of Y. Shen was supported by NSF ECCS-2412484. We also thank Quan Xiao, Prof. Luis Nunes
Vicente, Prof. Rongjie Lai for inspiring and helpful discussions, and the anonymous reviewers for
their constructive feedback to improve our paper.

References
[1] Jaqueline S Angelo, Isabella A Guedes, Helio JC Barbosa, and Laurent E Dardenne. Multi-and

many-objective optimization: present and future in de novo drug design. Frontiers in Chemistry,
11, 2023.

[2] Cagin Ararat and Cem Tekin. Vector optimization with stochastic bandit feedback. In Proc.
International Conference on Artificial Intelligence and Statistics, pages 2165–2190, Valencia,
Spain, 2023.

[3] Peter Auer, Chao-Kai Chiang, Ronald Ortner, and Madalina Drugan. Pareto front identification
from stochastic bandit feedback. In Proc. International Conference on Artificial Intelligence
and Statistics, pages 939–947, Cadiz, Spain, 2016.

[4] Dimitri Bertsekas. Constrained Optimization and Lagrange Multiplier Methods (Optimization
and Neural Computation Series). Athena Scientific, 1996.

[5] Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng. Aishell-1: An open-source mandarin
speech corpus and a speech recognition baseline. In Conference of the oriental chapter of
the international coordinating committee on speech databases and speech I/O systems and
assessment, pages 1–5, 2017.

[6] Richard H Byrd, Frank E Curtis, and Jorge Nocedal. An inexact sqp method for equality
constrained optimization. SIAM Journal on Optimization, 19(1):351–369, 2008.

[7] Lisha Chen, Heshan Fernando, Yiming Ying, and Tianyi Chen. Three-way trade-off in multi-
objective learning: Optimization, generalization and conflict-avoidance. Journal of Machine
Learning Research, 2024.

[8] Wang Chen, Xinmin Yang, and Yong Zhao. Conditional gradient method for vector optimization.
Computational Optimization and Applications, 85(3):857–896, July 2023.

[9] Frank E Curtis, Suyun Liu, and Daniel P Robinson. Fair machine learning through constrained
stochastic optimization and an epsilon-constraint method. Optimization Letters, pages 1–17,
2023.

[10] Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth, and linear conver-
gence of proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.

11

[11] Jean-Antoine Désidéri. Multiple-gradient Descent Algorithm (MGDA) for Multi-objective
Optimization. Comptes Rendus Mathematique, 350(5-6), 2012.

[12] Matthias Ehrgott. Multicriteria optimization. Springer, Berlin; New York, 2nd ed edition, 2005.

[13] Heshan Fernando, Lisha Chen, Songtao Lu, Pin-Yu Chen, Miao Liu, Subhajit Chaudhury,
Keerthiram Murugesan, Gaowen Liu, Meng Wang, and Tianyi Chen. Variance reduction can
improve trade-off in multi-objective learning. In Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages 6975–6979, 2024.

[14] Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi
Chen. Mitigating gradient bias in multi-objective learning: A provably convergent stochastic
approach. In Proc. International Conference on Learning Representations, Kigali, Rwanda,
May 2023.

[15] Jörg Fliege and Benar Fux Svaiter. Steepest descent methods for multicriteria optimization.
Mathematical methods of operations research, 51:479–494, 2000.

[16] Jörg Fliege and A. Ismael F. Vaz. A method for constrained multiobjective optimization based
on sqp techniques. SIAM Journal on Optimization, 26(4):2091–2119, 2016.

[17] Jörg Fliege, A Ismael F Vaz, and Luís Nunes Vicente. Complexity of Gradient Descent for
Multi-objective Optimization. Optimization Methods and Software, 34(5):949–959, 2019.

[18] Ellen H. Fukuda and L. M. Graña Drummond. On the convergence of the projected gradient
method for vector optimization. Optimization, 60(8-9):1009–1021, 2011.

[19] Ellen H. Fukuda and L. M. Graña Drummond. Inexact projected gradient method for vector
optimization. Computational Optimization and Applications, 54:473–493, 2013.

[20] Bennet Gebken, Sebastian Peitz, and Michael Dellnitz. A descent method for equality and
inequality constrained multiobjective optimization problems. In Numerical and Evolutionary
Optimization, pages 29–61. Springer, 2019.

[21] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm for large-scale
constrained optimization. SIAM review, 47(1):99–131, 2005.

[22] Chengyue Gong, Xingchao Liu, and Qiang Liu. Automatic and harmless regularization with
constrained and lexicographic optimization: A dynamic barrier approach. In Proc. Advances in
Neural Information Processing Systems, volume 34, pages 29630–29642, virtual, 2021.

[23] L. M. Graña Drummond, A. N. Iusem, and B. F. Svaiter. On first order optimality conditions for
vector optimization. Acta Mathematicae Applicatae Sinica, English Series, 19(3), September
2003.

[24] L. M. Graña Drummond and A.N. Iusem. A projected gradient method for vector optimization
problems. Computational Optimization and Applications, 28:5–29, April 2004.

[25] L. M. Graña Drummond and B.F. Svaiter. A steepest descent method for vector optimization.
Journal of Computational and Applied Mathematics, 175(2):395–414, March 2005.

[26] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han,
Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al. Conformer: Convolution-augmented
transformer for speech recognition. arXiv preprint arXiv:2005.08100, 2020.

[27] Johannes Jahn. Vector Optimization: Theory, Applications, and Extensions. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[28] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-lojasiewicz condition. arXiv preprint arXiv:1608.04636,
2016.

[29] Tatsuya Komatsu, Yusuke Fujita, Jaesong Lee, Lukas Lee, Shinji Watanabe, and Yusuke Kida.
Better intermediates improve CTC inference. arXiv preprint arXiv:2204.00176, 2022.

12

[30] Panagiotis Kyriakis, Jyotirmoy Deshmukh, and Paul Bogdan. Pareto policy adaptation. In Proc.
International Conference on Learning Representations, virtual, 2021.

[31] Xi Lin, Zhiyuan Yang, Xiaoyuan Zhang, and Qingfu Zhang. Pareto set learning for expensive
multi-objective optimization. In Proc. Advances in Neural Information Processing Systems,
volume 35, New Orleans, LA, December 2022.

[32] Xi Lin, Xiaoyuan Zhang, Zhiyuan Yang, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Smooth
tchebycheff scalarization for multi-objective optimization. arXiv preprint arXiv:2402.19078,
2024.

[33] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang, and Sam Kwong. Pareto multi-task
learning. In Proc. Advances in Neural Information Processing Systems, Vancouver, Canada,
December 2019.

[34] Bo Liu, Yihao Feng, Peter Stone, and Qiang Liu. Famo: Fast adaptive multitask optimization.
In Proc. Advances in Neural Information Processing Systems, volume 36, New Orleans, LA,
2023.

[35] Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-Averse Gradient
Descent for Multi-task Learning. In Proc. Advances in Neural Information Processing Systems,
virtual, December 2021.

[36] Suyun Liu and Luis Nunes Vicente. The Stochastic Multi-gradient Algorithm for Multi-objective
Optimization and its Application to Supervised Machine Learning. Annals of Operations
Research, pages 1–30, 2021.

[37] Suyun Liu and Luis Nunes Vicente. Accuracy and fairness trade-offs in machine learning:
A stochastic multi-objective approach. Computational Management Science, 19(3):513–537,
2022.

[38] Xingchao Liu, Xin Tong, and Qiang Liu. Profiling Pareto Front With Multi-Objective Stein
Variational Gradient Descent. In Proc. Advances in Neural Information Processing Systems,
virtual, December 2021.

[39] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming, volume 116 of
International Series in Operations Research & Management Science. Springer US, New York,
NY, 2008.

[40] Sohvi Luukkonen, Helle W. van den Maagdenberg, Michael T.M. Emmerich, and Gerard J.P.
van Westen. Artificial intelligence in multi-objective drug design. Current Opinion in Structural
Biology, 79:102537, 2023.

[41] Debabrata Mahapatra and Vaibhav Rajan. Multi-task learning with user preferences: Gradient
descent with controlled ascent in pareto optimization. In Proc. International Conference on
Machine Learning, virtual, 2020.

[42] Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax pareto fairness: A multi
objective perspective. In Proc. International Conference on Machine Learning, pages 6755–
6764, virtual, 2020.

[43] Kaisa Miettinen. Nonlinear Multiobjective Optimization, volume 12. Springer US, Boston, MA,
1998.

[44] Michinari Momma, Chaosheng Dong, and Jia Liu. A multi-objective/multi-task learning
framework induced by pareto stationarity. In Proc. International Conference on Machine
Learning, Baltimore, MD, 2022.

[45] Aviv Navon, Aviv Shamsian, Ethan Fetaya, and Gal Chechik. Learning the pareto front with
hypernetworks. In Proc. International Conference on Learning Representations, virtual, April
2020.

[46] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

13

[47] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an ASR
corpus based on public domain audio books. In Proc. International Conference on Acoustics,
Speech and Signal Processing, pages 5206–5210, 2015.

[48] Javier Peña, Juan C. Vera, and Luis F. Zuluaga. New characterizations of hoffman constants for
systems of linear constraints. Mathematical Programming, 187(1):79–109, 2021.

[49] Hoang Phan, Ngoc Tran, Trung Le, Toan Tran, Nhat Ho, and Dinh Phung. Stochastic multiple
target sampling gradient descent. In Proc. Advances in Neural Information Processing Systems,
New Orleans, LA, December 2022.

[50] Sashank J Reddi, Suvrit Sra, Barnabás Póczós, and Alex Smola. Proximal stochastic methods
for nonsmooth nonconvex finite-sum optimization. In Proc. Advances in Neural Information
Processing Systems, volume 29, 2016.

[51] A F M Saif, Lisha Chen, Xiaodong Cui, Songtao Lu, Brian Kingsbury, and Tianyi Chen.
M2ASR: Multilingual multi-task automatic speech recognition via multi-objective optimization.
In Interspeech 2024, pages 1240–1244, 2024.

[52] Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In Proc.
Advances in Neural Information Processing Systems, Montreal, Canada, December 2018.

[53] Han Shen, Quan Xiao, and Tianyi Chen. On penalty-based bilevel gradient descent method.
arXiv preprint arXiv:2302.05185, 2023.

[54] Hiroki Tanabe, Ellen H. Fukuda, and Nobuo Yamashita. Proximal gradient methods for multi-
objective optimization and their applications. Computational Optimization and Applications,
72(2):339–361, 2019.

[55] Peiyao Xiao, Hao Ban, and Kaiyi Ji. Direction-oriented multi-objective learning: Simple and
provable stochastic algorithms. In Proc. Advances in Neural Information Processing Systems,
New Orleans, LA, 2023.

[56] Yijun Yang, Jing Jiang, Tianyi Zhou, Jie Ma, and Yuhui Shi. Pareto policy pool for model-based
offline reinforcement learning. In Proc. International Conference on Learning Representations,
virtual, 2021.

[57] Jane J Ye and Qiji J Zhu. Multiobjective optimization problem with variational inequality
constraints. Mathematical Programming, 96(1):139–160, 2003.

[58] Yiming Ying and Ding-Xuan Zhou. Unregularized online learning algorithms with general loss
functions. Applied and Computational Harmonic Analysis, 42(2):224–244, 2017.

[59] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Proc. Advances in Neural Information Processing
Systems, virtual, December 2020.

[60] Shiji Zhou, Wenpeng Zhang, Jiyan Jiang, Wenliang Zhong, Jinjie Gu, and Wenwu Zhu. On the
convergence of stochastic multi-objective gradient manipulation and beyond. In Proc. Advances
in Neural Information Processing Systems, volume 35, pages 38103–38115, New Orleans, LA,
December 2022.

[61] Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with gflownets. In Proc. Advances in Neural Information
Processing Systems, volume 36, New Orleans, LA, 2023.

14

Appendix for “ FERERO: A Flexible Framework for
Preference-Guided Multi-Objective Learning "

Table of Contents
A Notations 15

B Related Works and Comparison 15
B.1 Extended related works . 16
B.2 A detailed comparison with existing works . 17

C Preliminaries 18
C.1 General cone-induced partial ordering . 18
C.2 Necessary and sufficient conditions for C-optimality 18

D Proof of Auxiliary Lemmas 19
D.1 Lagrangian of the subprogram . 19
D.2 First-order necessary optimality conditions . 19
D.3 Properties of PMOL . 20

E Proof of Theorem 1: convergence of Algorithm 1 25
E.1 Auxiliary lemmas . 25
E.2 Proof of Theorem 1 . 27

F Proof of Theorems 2 and 3: convergence of Algorithm 2 30
F.1 Auxiliary lemmas . 30
F.2 Analysis with the same merit function: proof of Theorem 2 31
F.3 Sharper analysis with a different merit function: proof of Theorem 3 34

G Stochastic Algorithms 40
G.1 Algorithm summary . 40
G.2 Proof of Theorem 4: convergence of Algorithm 3 40

H Implementation Details and Additional Experiment Results 44
H.1 Implementation details . 44
H.2 Additional experiment results . 45

A Notations

A summary of notations used in this work is listed in Table 4 for ease of reference.

Recall that given vectors v, w, we use v < w and v ≤ w to denote vi < wi for all i, and vi ≤ wi

for all i, respectively. We use v ⪇ w to denote v ≤ w and v ̸= w, and define >,≥, ⪈ analogously.
In the proof, we use ∥ · ∥ to denote the ℓ2-norm, and ∥ · ∥1 to denote the ℓ1-norm. We use | · |ab to
denote the operator that takes element-wise absolute value of a matrix. We use 1 and 0 to denote the
all-one and all-zero vectors, respectively. Their dimensions are specified only when they are not clear
in the context. We use [v, w] to represent column concatenation of matrices or vectors, and use [v;w]
to represent row concatenation of matrices or vectors.

B Related Works and Comparison

In this section, we provide a detailed review and comparison of additional related works in multi-
task/objective learning, vector optimization, and Pareto front approximation.

15

Table 4: Notations and their descriptions.
Notations Descriptions

θ ∈ Rq Model parameter, or decision variable
ξ Stochastic samples during training

fξ,m(θ), fm(θ)
A scalar-valued objective function evaluated on data point ξ,
with fξ,m : Rq → R, or on dataset D, fm, with fm := 1

|D|
∑

ξ∈D fξ,m(θ)

∇fm(θ) Gradient of fm(θ), with ∇fm : Rq → Rq

Fξ(θ), F (θ)
A vector-valued objective function evaluated on data point ξ,
with Fξ : Rq → RM , or on dataset D, with F := 1

|D|
∑

ξ∈D Fξ(θ)

∇F (θ) Gradient of F (θ), with ∇F : Rq → Rq×M

α Step size to update model parameter θ
γ Step size to update multiplier λ

B.1 Extended related works

In this section, we provide an extended discussion of the works that are closely related to ours.

Variants and analysis of MGDA. MGDA [15, 11] finds non-conflicting or the steepest common
descent direction at each iteration, which we term as conflict-avoidant (CA) direction. Our work is
related to MGDA in the unconstrained setting since when CA = RM

+ , Mg =Mh = 0, i.e., there are
no constraints, and Ωλf

(θ) = ∆M for the subprogram, our Algorithm 1 reduces to MGDA. Non-
asymptotic convergence analysis for the deterministic MGDA was first provided in [17]. Convergence
of the proximal algorithm was discussed in [54]. Later on, stochastic variants of MGDA were
developed with convergence analysis [36, 60, 14, 7, 55, 13]. A critical challenge in developing
convergent stochastic MGDA is that the CA directions can be biased even if they are calculated
from unbiased stochastic gradients of the objectives. This issue can be mitigated using variance
reduction techniques on the stochastic gradients. For example, one can use increased batch size [36],
or momentum-based methods [60, 14, 13]. Alternatively, one can also use double (independent)
sampling [7, 55]. Among these MGDA variants, [60, 14, 13, 7] also use single-loop updates, where,
instead of exactly solving the weight to combine the objective gradients, the weight is approximately
updated only once at each iteration. One benefit of such gradient-based single-loop update is that
the approximation approach proposed in [34, Section 3.2] can be applied to largely improve the
per-iteration complexity by eliminating the need to compute multiple gradients.

Convergence rate to Pareto stationarity of the above MGDA variants is discussed in existing literature.
Specifically, the analysis in [36] focuses on the convex case, while the rest [60, 14, 7, 55, 13] focus
on the nonconvex case. However, with merely convergence to the Pareto stationarity, the theoretical
benefit of MGDA variants over linear scalarization is unclear. To address this, convergence of the
stochastic approximate CA direction to the deterministic optimal CA direction besides convergence
to the Pareto stationarity is first analyzed in [14], and later improved in [7] with relaxed assumptions
and/or faster convergence rate. Some of the improved analysis techniques in [7] has been applied
in [13] to further improve the convergence rate with a momentum-based algorithm, and in [55] with a
double-loop algorithm. Moreover, it is discussed in [7] that the analysis technique is widely applicable
to other algorithms, such as the SMG algorithm [36] in the nonconvex case for both convergence
to Pareto stationarity and to the CA direction. In our proof of Theorem 2, the convergence of the
single-loop algorithm, we use similar techniques as in [7], which are detailed in Appendix F.2.

Pareto front approximation. Pareto front approximation aims to find multiple different solutions
whose objective values approximate the Pareto front. Scalarization-based methods can be used to
approximate the Pareto front by enumerating different weights of the objectives. However, they
cannot find solutions on the nonconvex part of the Pareto front [43]. Decomposition-based methods
partition the objective space into different subsets with constraints that represent different trade-off
preferences, and solve the resulting constrained multi-objective optimization problems with gradient-
based or evolutionary algorithms [33, 22]. Probabilistic inference methods update a set of models
following a distribution that converges to Pareto stationary [38, 49]. The expected update direction
of the models typically follows the steepest common descent direction for all objectives. Pareto set
learning methods use a neural network to learn a mapping from user preferences to corresponding

16

models. The learned neural network is able to generate different models with different input user
preferences [45, 56, 30, 31]. Although we do not focus on Pareto front approximation in this work,
our algorithm can be applied to generate different models based on different diverse preferences to
approximate the Pareto front, as in [33].

B.2 A detailed comparison with existing works

Preferences as linear constraints of objectives. Different constraints S partition the objectives
into sub-regions, as shown in Figure 1. Many preferences can be modeled by linear equality or
inequality constraints [33, 41, 44]. For example, below we list different choices of C for different
methods in Figure 1.

(a) Bg = [0, I2:M]⊤ ∈ RM×M , b = −[0, ϵ2, . . . , ϵM]⊤;

(b) Bh ∈ R(M−1)×M , b = 0;

In Figure 1a, the preferences are based on the function values of f1 controlled by different thresholds,
corresponding to the inequality constraints defined by (a). In Figure 1b, the constraints are that the
objectives F (θ) should lie on one of the preference vectors v, therefore should satisfy the equality
constraint BhF (θ) = 0.

Detailed comparison with the most relevant works. Below we provide a fine-grained comparison
with some existing works in Table 5, as an extension of Table 1.

In terms of preference modeling, the scalarization-based methods such as Linear Scalarization and
Smooth Tchebycheff scalarization use weight of different objectives to model preferences. They
are not flexible enough to capture preferences illustrated in Figure 1. PMTL uses a constrained
multi-objective optimization formulation, with preferences modeled by inequalities. EPO models the
preference by an r−1 ray, same as the example given in Figure 1b. (X)WC-MGDA uses a shifted
ray not necessarily from the origin to model the preferences. In all of these works, they only model
the absolute preferences that define the preferred objective values. In contrast, we also consider the
relative preference that define the relative improvement directions of objectives.

In addition to the comparison in Table 1, our framework enjoys additional benefits including the ability
to escape weak optimal solutions and to maintain scale-invariance. These abilities are attributed to
the subprogram that is adaptive to the objective values, as detailed in Lemma 6.

Table 5: Comparison to existing PMOL methods, extension of Table 1.

Method Handle
nonconvex PF

General
partial order

Single subprogram
w/o computing active index

Scale
invariance

Escape weak
optimal

Provable
CQ

Linear Scalarization ✗ ✗ ✓ ✗ ✗ -
(Smooth) Tchebycheff [32] ✓ ✗ ✓ ✗ ✗ -

PMTL [33] ✓ ✗ ✗ ✗ ✗ assume LICQ
EPO [41] ✓ ✗ ✗ ✗ ✓ ✗

(X)WC-MGDA [44] ✓ ✗ ✗ ✗ ✓ ✗
FERERO (ours) ✓ ✓ ✓ ✓ ✓ prove calmness

Below, we further summarize the reasons behind the benefits of our proposed method. We use “→”
to indicate the reasons on the left and the corresponding benefits on the right.

Flexible
preference

relative preference
(by general

partial order)
→ allow controlled ascent

absolute preference
(by constraints) →

handle nonconvex Pareto Front
equality constraints → align exactly to preference vector
constraints are linear functions of objectives → provable CQ

Adaptive
subprogram

adaptive to objectives →

{
scale invariance
ability to escape weak optimality

adaptive to constraints → single subprogram w/o
computing active indices → non-asymptotic convergence

17

C Preliminaries

In this section we introduce preliminaries on the general cone-induced partial ordering and the
corresponding optimality conditions for completeness since we use these concepts in our proofs.
Then we discuss the relation between the Pareto optimality and the optimality induced by a general
polyhedral cone.

C.1 General cone-induced partial ordering

In this section, we introduce basic definitions, lemmas, propositions, and theorems in vector opti-
mization, including the cone-induced partial ordering, the minimum and weakly minimum associated
with the partial ordering in real linear space, and necessary conditions for minimum. These concepts
are defined in [27]. We restate them following our notations for completeness. We denote Z as a real
linear space, C, S as subsets in Z, and w, x, y, z as points or elements in Z, 0Z as the zero vector in
the space Z.
Definition 4 (Cone). Let C be a nonempty subset of a real linear space Z.
The set C is called a cone, if y ∈ C, λ ≥ 0 =⇒ λy ∈ C.

Lemma 3 (Convex cone). A cone C in a real linear space is convex if and only if C + C ⊂ C.

Definition 5 (Partially ordered linear space). A real linear space equipped with a partial ordering is
a partially ordered linear space.

Proposition 1. (a) If ≤ is a partial ordering on Z, then the set C := {z ∈ Z | 0Z ≤ z} is a convex
cone. If, in addition, ≤ is antisymmetric, then C is pointed.

(b) If C is a convex cone in Z, then the binary relation ≤C := {(x, y) ∈ Z × Z | y − x ∈ C} is a
partial ordering on Z. If, in addition, C is pointed, then ≤C is antisymmetric.

Definition 6 (Ordering cone). A convex cone characterizing a partial ordering in a real linear space
is an ordering cone.

Definition 7 (Cone-induced partial ordering). Let C be a closed pointed convex cone of RM , with
nonempty interior. The partial order in RM induced by C,≤C is defined by

u ≤C v, if v − u ∈ C. (C.1)

The relation induced by int(C) in RM , <C is defined by

u <C v, if v − u ∈ int(C). (C.2)

Definition 8 (C-minimum and C-weakly minimum). Let S be a nonempty subset of a partially
ordered linear space with an ordering cone C, then
(a) an element z ∈ S is called a C-minimum of the set S, if ({z} − C) ∩ S ⊂ {z} + C, in other
words, there exists no other z′ ∈ S with z′ ≤C z and z′ ̸= z;
(b) an element z ∈ S is called a C-weakly minimum of the set S, if ({z} − int(C)) ∩ S = ∅, where
int(C) ̸= ∅ is the algebraic interior of C, in other words, there exists no other z′ ∈ S with z′ <C z
and z′ ̸= z.

Definition 9 (C-stationary). A point θ ∈ Rq is C-stationary if there is no first-order common descent
direction d ∈ Rq that ∇F (θ)⊤d ∈ −int(C), i.e., range(∇F (θ)⊤) ∩ (−int(C)) = ∅.

C.2 Necessary and sufficient conditions for C-optimality

Note that, when C = RM
+ := {z ∈ RM | zm ≥ 0 for all m ∈ [M]}, C-minimum and C-weakly

minimum in Definition 8 are Pareto minimum and weakly Pareto minimum, respectively. Recall
that F : Rq → RM is a continuously differentiable function. The problem we consider is to find
the unconstrained C-minimizers of F , denoted as minC F (θ) with θ ∈ Rq. We then proceed to
introduce the relation between C-stationarity and Pareto stationarity in this section.
Proposition 2. Let C be a closed convex pointed cone.
1) Suppose C ⊆ RM

+ . If θ is Pareto stationary, θ is C-stationary. In other words, C-stationarity is a
necessary condition for Pareto stationarity.
2) Suppose RM

+ ⊆ C. if θ is C-stationary, θ is Pareto stationary. In other words, C-stationarity is a
sufficient condition for Pareto stationarity.

18

Proof of Proposition 2. 1) By definition, if θ is Pareto stationary, then range(∇F (θ)⊤) ∩
(−int(RM

+)) = ∅. Since C ⊆ RM
+ , then −int(C) ⊆ −int(RM

+), and we have

range(∇F (θ)⊤) ∩ (−int(C)) ⊆ range(∇F (θ)⊤) ∩ (−int(RM
+)) = ∅. (C.3)

Therefore, θ is C-stationary.

Following similar arguments, 2) can also be proved.

D Proof of Auxiliary Lemmas

In this section, we provide proof of the main theoretical results in this paper.

D.1 Lagrangian of the subprogram

Proof of subprogram reformulation. Define the Lagrangian function

L(c, d, λf , λg, λh) :=c+
1

2
∥d∥2 + λ⊤f

(
A∇F (θ)⊤d− c(1⊤AF (θ))−1AF (θ)

)
+ λ⊤g

(
Bg∇F (θ)⊤d+ cgG(θ)

)
+ λ⊤h

(
Bh∇F (θ)⊤d+ chH(θ)

)
(D.1)

where λf ∈ RM
+ , λg ∈ RMg

+ , λh ∈ RMh . By the first-order optimality condition w.r.t. d and c, we
can obtain that

d∗ +∇F (θ)(A⊤λ∗f +B⊤
g λ

∗
g +B⊤

h λ
∗
h) = 0; (D.2)

1⊤AF (θ)− λ∗f
⊤AF (θ) = 0. (D.3)

Combining the last equation with λf ∈ RM
+ , we obtain λ∗f ∈ Ωλf

(θ). Plugging the above results into
the Lagrangian function gives

[λ∗f ;λ
∗
g;λ

∗
h] ∈ argmin

[λf ;λg ;λh]∈Ωλ(θ)

1

2
∥∇F (θ)(A⊤λf +B⊤

g λg +B⊤
h λh)∥2

− cgλ
⊤
g G(θ)− chλ

⊤
hH(θ) (D.4)

which leads to the dual form in (2.3). Since (2.1) is a constrained convex optimization problem where
the Slater’s condition holds, therefore, the duality gap is zero.

Remark 4. Note that we can also have a simplified subprogram with A = I , and without adaptation
to the objective values, as defined below

ψ(θ) := min
(d,c)∈Rq×R

c+
1

2
∥d∥2 s.t. ∇F (θ)⊤d ≤ c1 (D.5)

∇G(θ)⊤d+ cgG(θ) ≤ 0, ∇H(θ)⊤d+ chH(θ) = 0.

This formulation corresponds to the SQP method applied to the constrained MOO problem [16].
Then the corresponding Lagrangian function becomes

L(c, d, λf , λg, λh) :=c+
1

2
∥d∥2 + λ⊤f

(
∇F (θ)⊤d− c1

)
+ λ⊤g

(
Bg∇F (θ)⊤d+ cgG(θ)

)
+ λ⊤h

(
Bh∇F (θ)⊤d+ chH(θ)

)
. (D.6)

By the first-order optimality condition w.r.t. c, (D.3) can be replaced by

1− λ∗f
⊤1 = 0. (D.7)

And the rest results remain the same, i.e., (D.2) and (D.4) still hold, while Ωλf
= ∆M .

D.2 First-order necessary optimality conditions

We then discuss the first-order necessary optimality conditions for problem (PMOL). We begin the
discussion with the geometric notions of improving and feasible directions.

19

Improving directions. The improvement directions are defined as generalized common descent
directions so that the iterates strictly improve or dominate the previous iterates based on CA, i.e.,
F (θt) − F (θt+1) ∈ int(CA). Denote dt ∈ Rq as an update direction at iteration t, and αt > 0
as the step size at the t-th iteration. The general update equation given update direction dt is
θt+1 = θt + αtdt. Based on first-order Taylor expansion, the amount of improvement at iteration t
can be approximately expressed as F (θt)− F (θt+1) ≈ −αt∇F (θt)⊤dt ∈ int(CA). We term such
directions the general CA-improving directions. The cone of CA-improving directions at x is

DCA
= {d ∈ Rq | ∇F (θ)⊤d ∈ −int(CA)}. (D.8)

When A = IM , they are common descent directions.

Feasible directions. Similar to the concept in constrained single objective optimization, the feasible
directions are those that ensure F (θt + αtdt) ∈ S. We rewrite problem (PMOL) with explicit
CA-induced partial ordering as

min CA
F (θ) s.t. G(θ) ≤ 0, H(θ) = 0. PMOL

where G : Rq → RMg , H : Rq → RMh are linear functions of F , and are differentiable. Let
I = {i | Gi(θ) = 0} be the index set of the active inequality constraints in G(θ), and GI(θ) =
[· · · , Gi(θ), · · ·]⊤ for i ∈ I . A subset of the feasible directions described by the gradients of the
equality and active inequality constraints at θ is given by

Dg = {d ∈ Rq | ∇GI(θ)
⊤d < 0}, DH = {d ∈ Rq | ∇H(θ)⊤d = 0}. (D.9)

A necessary optimality condition is that there exists no feasible and improving directions at θ, i.e.,
DCA

∩Dg ∩Dh = ∅. An algebraic description of the necessary optimality conditions for (PMOL)
is summarized below.
Proposition 3 (First-order necessary optimality conditions for (PMOL)). Let CA := {y ∈ RM |
Ay ≥ 0} that satisfies int(CA) ̸= ∅. If θ̄ solves (PMOL) locally, then there exists λf ∈ RM

+ ,
λg ∈ RMg

+ , [λf ;λg] ̸= 0, and λh ∈ RMh that

∇F (θ̄)A⊤λf +∇G(θ̄)λg +∇H(θ̄)λh = 0, and λ⊤g [−G(θ̄)]+ = 0 (D.10)

Proof of Proposition 3. The geometric description DCA
∩ Dg ∩ Dh = ∅ is equivalent to that the

linear system below w.r.t. d is inconsistent[
A∇F (θ̄)⊤
∇GI(θ̄)

⊤

]
d < 0 and ∇H(θ̄)⊤d = 0. (D.11)

By the Motzkin’s transposition theorem, system (D.11) being inconsistent is equivalent to that the
following linear system w.r.t. p, λh has a solution with p ⪈ 0[

∇F (θ̄)A⊤ ∇GI(θ̄)
]
p+∇H(θ̄)λh = 0. (D.12)

Letting p = [λf ;λg,I], where λg,I = [· · · ;λg,i; · · ·], i ∈ I , and λg,i′ = 0, for all i′ /∈ I completes
the proof.

Remark 5. Notice that, Proposition 3 provides a Fritz John (FJ)-type first-order necessary optimality
condition, which has been discussed in prior works such as [57, Theorem 1.2] with additional
variational inequality constraints, and [23, Section 3, (2)-(5)] with inequality constraints only. We
provide the derivation for our problem here for completeness. In the FJ-type necessary optimality
condition, the multiplier λf associated with the objective F (θ) can be zero if |I| ≥ 1, which is
undesirable. We need additional constraint qualifications to ensure the condition in (D.10) with
λf ̸= 0, i.e., the KKT condition, is also a necessary optimality condition. This is equivalent to µ0 = 1,
and without considering the variational inequality constraints in [57, Theorem 1.2]. The constraint
qualification is discussed in detail in Appendix D.3.2.

D.3 Properties of PMOL

In this section, we discuss the properties of PMOL and their proofs. These include the properties of
the subprogram in Lemma 1, and the calmness CQ of PMOL in Lemma 2.

20

D.3.1 Proof of Lemma 1: properties of the subprogram

Lemma 6 (Additional properties of the subprogram). For the subprogram (2.3), the following
properties hold:
1. The solution d∗(θ) is unique.
2. If θ is a local weak optimal solution with AF (θ) > 0, then d∗(θ) = 0, ψ(θ) = 0. Otherwise, if θ
is not a local weak optimal solution, then d∗(θ) ̸= 0, ψ(θ) < 0, and when θ is feasible,

2ψ(θ) ≤ −∥d∗(θ)∥2 < 0. (D.13)

3. (Ability to escape weak optimal solutions). Let θ be a weak optimal solution, with (AF (θ))m =
0 for some m ∈ [M]. If there exists feasible and non-strictly improving directions at θ with
A∇F (θ)⊤d ⪇ 0, then d∗(θ) ̸= 0, ψ(θ) < 0. Otherwise, if there exists no feasible and non-strictly
improving directions at θ with A∇F (θ)⊤d ⪇ 0, then d∗(θ) = 0, ψ(θ) = 0.
4. (Scale invariance) Suppose there are only equality constraints, i.e., Mg = 0, and Mh =M − 1,
Bh is full row rank and is selected such that Bh(F (θ1)− F (θ2)) = 0 with F (θ1), F (θ2) being two
different reference points in the objective space. For all θ ∈ Rq that are feasible, i.e., H(θ) = 0,
when A = I , the normalized solution d∗(θ)/∥d∗(θ)∥ does not change when the objective F (θ) is
scaled by an arbitrary positive diagonal matrix.

Proof of Lemma 6. For Property-1, the uniqueness of d∗(θ) follows from the strict convexity of the
objective function w.r.t. the direction d.

For Property-2, in the first case if θ is a local optimal solution, by definition, there exists no feasible
and improving directions d such that A∇F (θ)⊤d < 0. Let Ωd(θ) be the set of d ∈ Rq that satisfy
the constraints in (2.1), i.e.,

Ωd(θ) := {d ∈ Rq | Bg∇F (θ)⊤d+ cgG(θ) ≤ 0, Bh∇F (θ)⊤d+ chH(θ) = 0}. (D.14)

Then, since AF (θ) > 0, for all d ∈ Ωd(θ),

max
m∈[M]

(A∇F (θ)⊤d)m ≥ 0 (D.15)

and max
m∈[M]

(A∇F (θ)⊤d)m/(AF (θ))m ≥ 0. (D.16)

And since AF (θ) > 0, it holds that

ψ(θ) := min
(d,c)∈Ωd(θ)×R

c+
1

2
∥d∥2

= min
d∈Ωd(θ)

max
m∈[M]

(A∇F (θ)⊤d)m(1⊤AF (θ))/(AF (θ))m +
1

2
∥d∥2 ≥ 0 (D.17)

with ψ(θ) = 0 attainable by taking d = 0 ∈ Ωd(θ). The first case of Property-2 is proved.

In the second case, if θ is not a local weak optimal solution, then there exists d ∈ Ωd(θ) such that
A∇F (θ)⊤d < 0. Taking σ = −maxm∈[M](A∇F (θ)⊤d)m(1⊤AF (θ))/

(
(AF (θ))m∥d∥2

)
, and

dσ = σd, then

ψ(θ) := min
(d,c)∈Ωd(θ)×R

c+
1

2
∥d∥2

= min
d∈Ωd(θ)

max
m∈[M]

(A∇F (θ)⊤d)m(1⊤AF (θ))/(AF (θ))m +
1

2
∥d∥2

= max
m∈[M]

(A∇F (θ)⊤d∗(θ))m(1⊤AF (θ))/(AF (θ))m +
1

2
∥d∗(θ)∥2

< max
m∈[M]

(A∇F (θ)⊤dσ)m(1⊤AF (θ))/(AF (θ))m +
1

2
∥dσ∥2

=σ max
m∈[M]

(A∇F (θ)⊤d)m(1⊤AF (θ))/(AF (θ))m +
1

2
σ2∥d∥2 = −1

2
σ2∥d∥2 < 0. (D.18)

Thus d∗(θ) ̸= 0. Recall that

d∗(θ) = −∇F (θ)
(
A⊤λ∗f +B⊤

g λ
∗
g +B⊤

h λ
∗
h

)
(D.19)

21

where by the feasibility and optimality conditions,

λ∗h
⊤(Bh∇F (θ)⊤d∗(θ) + chH(θ)

)
=0, (D.20a)

λ∗g
⊤(Bg∇F (θ)⊤d∗(θ) + cgG(θ)

)
=0, (D.20b)

λ∗f
⊤(A∇F (θ)⊤d∗(θ)− c∗(1⊤

MAF (θ))
−1AF (θ)

)
=0. (D.20c)

Combining the above with (D.19), we have

∥d∗(θ)∥2 =− d∗(θ)
⊤∇F (θ)

(
A⊤λ∗f +B⊤

g λ
∗
g +B⊤

h λ
∗
h

)
=− d∗(θ)

⊤∇F (θ)A⊤λ∗f + chλ
∗
h
⊤H(θ) + cgλ

∗
g
⊤G(θ)

≤− c∗(θ)(1⊤AF (θ))−1λ∗f
⊤AF (θ) = −c∗(θ) (D.21)

where the last inequality uses the fact that θ is feasible, and G(θ) ≤ 0, H(θ) = 0.

Then it holds that

2ψ(θ) = 2c∗(θ) + ∥d∗(θ)∥2 ≤ −∥d∗(θ)∥2 < 0. (D.22)

Therefore, Property-2 holds.

For Property-3, let I ⊆ [M] be the set such that (AF (θ))m = 0 for all m ∈ I , then (2.1) is
equivalent to

ψ(θ) = min
(d,c)∈Rq×R

c+
1

2
∥d∥2 SP1w

s.t. (A∇F (θ)⊤d)m − c(1⊤AF (θ))−1(AF (θ))m ≤ 0, for all m ∈ [M] \ I
(A∇F (θ)⊤d)m ≤ 0, for all m ∈ I

Bg∇F (θ)⊤d+ cgG(θ) ≤ 0

Bh∇F (θ)⊤d+ chH(θ) = 0

In the first case, if there exists feasible and non-strictly improving directions at θ with A∇F (θ)⊤d ⪇
0, then such d ̸= 0, d ∈ Ωd. Following similar arguments as (D.18) by taking σ =
−maxm∈[M]\I(A∇F (θ)⊤d)m(1⊤AF (θ))/

(
(AF (θ))m∥d∥2

)
, and dσ = σd, then

ψ(θ) := min
(d,c)∈Ωd(θ)×R

c+
1

2
∥d∥2

= min
d∈Ωd(θ)

max
m∈[M]\I

(A∇F (θ)⊤d)m(1⊤AF (θ))/(AF (θ))m +
1

2
∥d∥2

< max
m∈[M]\I

(A∇F (θ)⊤dσ)m(1⊤AF (θ))/(AF (θ))m +
1

2
∥dσ∥2

=σ max
m∈[M]\I

(A∇F (θ)⊤d)m(1⊤AF (θ))/(AF (θ))m +
1

2
σ2∥d∥2 = −1

2
σ2∥d∥2 < 0. (D.23)

And the corresponding d∗(θ) ̸= 0.

In the second case, if there exists no feasible and non-strictly improving directions at θ, then for all
d ∈ Ωd(θ),

max
m∈[M]\I

(A∇F (θ)⊤d)m ≥ 0 (D.24)

and max
m∈[M]\I

(A∇F (θ)⊤d)m/(AF (θ))m ≥ 0. (D.25)

And since (AF (θ))m > 0 for all m ∈ [M] \ I , it holds that

ψ(θ) := min
(d,c)∈Ωd(θ)×R

c+
1

2
∥d∥2

= min
d∈Ωd(θ)

max
m∈[M]\I

(A∇F (θ)⊤d)m(1⊤AF (θ))/(AF (θ))m +
1

2
∥d∥2 ≥ 0 (D.26)

22

with ψ(θ) = 0 if and only if d = 0 ∈ Ωd(θ).

Combining the above arguments, Property-3 is proved.

For Property-4, let d∗(θ) be the solution to the original problem (2.1) without inequality constraints.
Using the fact that H(θ) = 0, and letting λ = A⊤λf +B⊤

h λh = λf +B⊤
h λh, then the original dual

problem can be written as

d∗(θ) = −∇F (θ)λ∗

s.t. λ∗ ∈ argmin
λ∈Ωλ̃(θ)

φ(λ; θ) :=
1

2
∥∇F (θ)λ∥2 (D.27)

where Ωλ̃(θ) =
(
Ωλf

(θ)
)
+B⊤

h

(
RMh

)
, and Ωλf

(θ) = {λf ∈ RM
+ | λf⊤F (θ) = 1⊤F (θ)}.

Suppose the objective is scaled by a positive diagonal matrix Λ ∈ RM×M , then the scaled subprogram
has a dual given by

d∗(θ) = −∇F (θ)Λλ∗

s.t. λ∗ ∈ argmin
λ∈Ωλ̃(θ;Λ)

φ(λ; θ) :=
1

2
∥∇F (θ)Λλ∥2 (D.28)

where Ωλ̃(θ; Λ) =
(
Ωλf

(θ; Λ)
)
+ B′

h
⊤(RMh

)
, and Ωλf

(θ; Λ) = {λf ∈ RM
+ | λf⊤ΛF (θ) =

1⊤ΛF (θ)}. Letting λ′ = Λλ, then

d∗(θ) = −∇F (θ)λ′∗

s.t. λ′∗ ∈ argmin
λ′∈Ωλ̃′ (θ;Λ)

φ(λ; θ) :=
1

2
∥∇F (θ)λ′∥2 (D.29)

where Ωλ̃′(θ; Λ) = Λ
(
Ωλf

(θ; Λ)
)
+ ΛB′⊤

h

(
RMh

)
. The set Λ

(
Ωλf

(θ; Λ)
)

can be written as

Λ
(
Ωλf

(θ; Λ)
)
={Λλf | λf ∈ RM

+ , λf
⊤ΛF (θ) = 1⊤ΛF (θ)}

={λ′f ∈ RM
+ | F (θ)⊤λf ′ = 1⊤ΛF (θ)}. (D.30)

Notice that,

F (θ)⊤λf
′ = 1⊤ΛF (θ) = 1⊤F (θ)cs (D.31)

where cs = 1⊤ΛF (θ)/(1⊤F (θ)). Therefore, Λ
(
Ωλf

(θ; Λ)
)
= cs

(
Ωλf

(θ)
)
.

Also note that, Bh ∈ R(M−1)×M is full row rank, and is selected based on F (θ), which satisfies

Bh(F (θ1)− F (θ2)) = 0 (D.32)

where F (θ1), F (θ2) are two reference points which fully defines the kernel of Bh. Similarly, when
F (θ) is scaled by Λ, the corresponding B′

h satisfies

B′
hΛ(F (θ1)− F (θ2)) = 0. (D.33)

This further implies

ΛB′
h
⊤
(RMh) = range(ΛB′

h
⊤
) = ker(B′

hΛ)
⊥ = ker(Bh)

⊥ = Bh(RMh) = csBh(RMh). (D.34)

Combining with Λ
(
Ωλf

(θ; Λ)
)
= cs

(
Ωλf

(θ)
)
, it holds that

Ωλ̃′(θ; Λ) = csΩλ̃(θ). (D.35)

Therefore, the solution of λ̃ and λ′ is only subject to a scaling factor, which does not change the
direction of d∗(θ). This proves Property-4, the scale invariance.

Remark 7. Note that, Property 3, the ability to escape weak optimal solutions, and Property 4,
the scale invariance, come from the subprogram design that is adaptive to the objectives. For the
simplified subprogram that is not adaptive to the objectives, these two properties no longer hold, but
Properties 1 and 2 still hold.

23

D.3.2 Proof of Lemma 2: calmness of PMOL

Example 1. Let F : Rq → R2. Consider the problem below as a special case of (PMOL), given by

minR2
+
F (θ) s.t. f2(θ) = min f2(θ). (D.36)

For θ̄ = argminθ∈Rq f2(θ), we have ∇f2(θ̄) = 0, and θ̄ satisfies (D.10) with λ = [0, 1]⊤ ̸= 0 and
λh = 1. However, ∇H(θ̄) = ∇f2(θ̄) = 0 violates the LICQ, the Slater’s CQ, and the MFCQ.

Below we restate the definition of the Calmness condition for PMOL [57], which generalizes the
calmness condition in single-objective optimization.
Definition 10 (Calmness condition for PMOL [57, Restatement of Definition 4.5]). Let θ̄ be a local
solution to (PMOL). We say the PMOL problem satisfies the calmness condition at θ̄ provided that
there exists ϵ > 0 and a Lipschitz function ϕ : RMg+Mh → RM satisfying ϕ(0, 0) = 0 such that
there exists no (θ, p, q) ∈ [(θ̄, 0, 0) + ϵB]/{(θ̄, 0, 0)} satisfying

G(θ) + p ≤ 0, (D.37a)
H(θ) + q = 0, (D.37b)

F (θ)− F (θ̄) + ϕ(p, q) ∈ −int(CA). (D.37c)

Our proof relies on the following relative form of Hoffman error bound, which bounds the distance
of a point to a nonempty solution set defined by constraints by a measure of the constraint violation
of the point.
Lemma 8 (Relative form of Hoffman error bound [48, Proposition 5]). Given Bh ∈ RkH×M , bh ∈
RkH , Bg ∈ RkG×M , bg ∈ RkG , define Σ(p, q) := {y ∈ RM | Bgy + bg ≤ p,Bhy + bh = q}, and
dom Σ := {(p, q) | Σ(p, q) ̸= ∅}. Let ΩR ⊆ RM be a reference polyhedron (e.g., one defined by
the intersection of half-spaces). Then for all u ∈ ΩR, and (p, q) ∈ dom Σ, there exists a relative
Hoffman constant chof depending only on Bg, Bh,ΩR such that

dist(u,Σ(p, q) ∩ ΩR) ≤ chof(Bg, Bh | ΩR)

∥∥∥∥[(Bgu+ bg − p)+
Bhu+ bh − q

]∥∥∥∥ (D.38)

where (Bgu + bg − p)+ := max{0, Bgu + bg − p} which replaces each negative component of
Bgu+ bg − p by zero, and dist(u,Ω) := infu′∈Ω ∥u− u′∥.

Proof of Lemma 2. We first construct ϕ(p, q) = chof∥[p⊤, q⊤]⊤∥A−11M , where chof is the Hoffman
constant upper bound in Lemma 8. Then ϕ(0, 0) = 0, and ϕ(p, q) is Lipschitz because

∥ϕ(p, q)− ϕ(p′, q′)∥ ≤chofM∥A−1∥
∣∣∣∣∥∥∥∥[pq

]∥∥∥∥−
∥∥∥∥[p′q′

]∥∥∥∥∣∣∣∣
≤chofM∥A−1∥

∥∥∥∥[p− p′

q − q′

]∥∥∥∥ . (D.39)

Next we prove the PMOL calmness condition holds by contradiction. Suppose for every ϵ > 0, there
exists (θ̂, p, q) ∈ [(θ̄, 0, 0) + ϵB]/{(θ̄, 0, 0)} satisfying (D.37).

Define ΩF1
:= {F (θ) ∈ Σ(0, 0) | θ ∈ Rq} ≠ ∅, there exists θ̃ ∈ Rq such that F (θ̃) ∈ ΩF1

and
∥F (θ̃)∥ <∞. We then consider the following two cases:
Case 1: F (θ̂) ∈ Σ(0, 0). In this case, (θ̂, p, q) = (θ̂, 0, 0) ̸= (θ̄, 0, 0), thus θ̂ ̸= θ̄. Take θ̃ = θ̂ ̸= θ̄.
Case 2: F (θ̂) /∈ Σ(0, 0). Take θ̃ such that F (θ̃) ∈ ΩF1

, then F (θ̃) ̸= F (θ̂).

In both cases, let ΩR be the convex hull of {F (θ̂), F (θ̃)}, i.e., ΩR = conv({F (θ̃), F (θ̂)}). Then
ΩR is a line segment (or reduces to a point in case 1), thus a polyhedron. Since Σ(0, 0) is a line,
F (θ̃) ∈ Σ(0, 0) ∩ ΩR, thus Σ(0, 0) ∩ ΩR = ΩR = {F (θ̃)} in case 1, and Σ(0, 0) ∩ ΩR = {F (θ̃)}
in case 2. Therefore, in both cases,

∥F (θ̃)− F (θ̂)∥ = dist(F (θ̂),Σ(0, 0) ∩ ΩR) (D.40)

where dist(F,Ω) := infF ′∈Ω ∥F − F ′∥.

24

We also have

dist(F (θ̂),Σ(0, 0) ∩ ΩR)
(a)

≤ chof(ΩR)

∥∥∥∥[(BgF (θ̂) + bg)+
BhF (θ̂) + bh

]∥∥∥∥
(b)

≤chof
∥∥∥∥[(−p)+−q

]∥∥∥∥ ≤ chof

∥∥∥∥[pq
]∥∥∥∥ (D.41)

where (a) follows from Lemma 8; (b) follows from (D.37) that 0 ≤ (BgF (θ̂) + bg)+ ≤ (−p)+,
BhF (θ̂) + bh = −q, and that chof(ΩR) ≤ chof for different bounded ΩR. Multiplying ∥A∥1M on
both sides of the above inequality yields

∥A∥dist(F (θ̂),Σ(0, 0) ∩ ΩR)1M ≤ Aϕ(p, q). (D.42)

It can then be derived that

AF (θ̃)−AF (θ̂) ≤∥AF (θ̃)−AF (θ̂)∥1M ≤ ∥A∥∥F (θ̃)− F (θ̂)∥1M

≤∥A∥dist(F (θ̂),Σ(0, 0) ∩ ΩR)1M ≤ Aϕ(p, q). (D.43)

By rearranging the above inequality and applying (D.37c), we have that

AF (θ̃) ≤ AF (θ̂) +Aϕ(p, q) < AF (θ̄) (D.44)

which contradicts to that θ̄ is a global solution to (PMOL).

Therefore, the PMOL calmness condition in Definition 10 is satisfied.

E Proof of Theorem 1: convergence of Algorithm 1

Recall that, we let λ = [λf ;λg;λh] ∈ RM+Mg+Mh , Aag = [A;Bg;Bh] ∈ R(M+Mg+Mh)×M , and
use the following concise notation

d∗(θ) = −∇F (θ)A⊤
agλ

∗(θ)

s.t. λ∗(θ) ∈ argmin
λ∈Ωλ(θ)

φ(λ; θ) :=
1

2
∥∇F (θ)A⊤

agλ∥2 − cgλ
⊤
g G(θ)− chλ

⊤
hH(θ) (E.1)

where Ωλ(θ) = Ωλf
(θ)× RMg

+ × RMh , and Ωλf
(θ) = {λf ∈ RM

+ | λf⊤AF (θ) = 1⊤AF (θ)}.

In the following discussion in this section, we first present the supporting lemmas and their proofs,
then provide the proof of Theorem 1.

E.1 Auxiliary lemmas

Lemma 9 is a result from the smoothness of F (θ), and thus the smoothness of G(θ) and H(θ), whose
smoothness constants depend on Bg and Bh, respectively.

Lemma 9. Suppose Assumptions 1, 2 hold. Then for all θ, θ′ ∈ Rq , and all λf ∈ RM , we have

λ⊤f AF (θt+1)− λ⊤f AF (θt) ≤αtλ
⊤
f A∇F (θt)⊤dt +

ℓf,1∥A⊤λf∥1
2

α2
t ∥dt∥2 (E.2)

G(θt+1)−G(θt) ≤αt∇G(θt)⊤dt +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥21 (E.3)

H(θt+1)−H(θt) ≤αt∇H(θt)
⊤dt +

ℓf,1
2
α2
t ∥B⊤

h ∥∞,1∥dt∥21. (E.4)

Proof. By Assumption 2, it holds that λ⊤f AF (θ) is ∥A⊤λf∥1ℓf,1-smooth. By the definition of
smoothness, we have

λ⊤f AF (θt+1) ≤ λ⊤f AF (θt) + αtλ
⊤
f A∇F (θt)⊤dt +

ℓf,1∥A⊤λf∥1
2

α2
t ∥dt∥2. (E.5)

25

Let Bg,m and Bh,m be the m-th row of Bg and Bh, respectively, then by the ℓf,1-smoothness of
F (θ), Bg,mF (θ) is ℓf,1∥Bg,m∥1-smooth for all m ∈ [Mg]. Also because ∥Bg,m∥1 ≤ ∥B⊤

g ∥∞,1

where ∥B⊤
g ∥∞,1 = maxm∈Mg

∥∥Bg,m∥1∥, gm(θ) is ℓf,1∥B⊤
g ∥∞,1-smooth for all m ∈ [Mg]. By

the definition of smoothness, it holds that

G(θt+1)−G(θt) ≤αt∇G(θt)⊤dt +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥21. (E.6)

Following similar arguments as the above for G(θ), (E.4) can be proved.

Lemma 10. For the subprogram (2.3) or equivalently (E.1), it holds that for any λ ∈ Ωλ(θ),

⟨∇F (θ)A⊤
agλ,∇F (θ)A⊤

agλ
∗(θ)⟩ − [0⊤, cgG(θ)

⊤, chH(θ)⊤](λ− λ∗(θ)) ≥ ∥∇F (θ)A⊤
agλ

∗(θ)∥2.
(E.7)

Proof of Lemma 10. Since φ(λ; θ) is a convex function w.r.t. λ, by the first order optimality condition,
it holds that for all λ ∈ Ωλ(θ)

⟨∇λφ(λ
∗(θ); θ), λ− λ∗(θ)⟩ ≥ 0 (E.8)

which can be further written as

λ⊤Aag∇F (θ)⊤∇F (θ)A⊤
agλ

∗(θ)− [0⊤, cgG(θ)
⊤, chH(θ)⊤](λ− λ∗(θ)) ≥ ∥∇F (θ)A⊤

agλ
∗(θ)∥2.

(E.9)

This completes the proof.

We next prove Lemma 11, which can be viewed as a descent lemma for [G(θ)]+ and |H(θ)|ab based
on the smoothness of G(θ) and H(θ), as well as proper hyperparameter choices. This is crucial for
proving the convergence result in Theorem 1. One key technical challenge in proving the lemma is
that even thoughG(θ) andH(θ) are smooth, [G(θ)]+ and |H(θ)|ab are not. We address this challenge
by exploiting the fact that ∇G(θt)⊤d∗(θt) ≤ −cgG(θt) and ∇H(θt)

⊤d∗(θt) = −cgH(θt), as well
as choosing αt properly depending on cg and ch.
Lemma 11. Let ϵ ≥ 0 be a constant. Define [y]+ := max{y, 0} which replaces each negative
component of y by zero, and |y|ab replaces each component of y by its absolute value. Let {θt}
be the sequence produced by Algorithm 1 with the update θt+1 = θt + αtdt, where dt satisfies the
constraints of the subprogram (2.1) up to an error of ϵ, i.e.,

[∇G(θt)⊤dt + cgG(θt)]+ ≤ ϵ1, (E.10)

|∇H(θt)
⊤dt + chH(θt)|ab ≤ ϵ1. (E.11)

If αt ≤ min{c−1
g , c−1

h }, then it holds that

[G(θt+1)]+ − [G(θt)]+ ≤− αtcg[G(θt)]+ +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥21+ ϵ1 (E.12)

|H(θt+1)|ab − |H(θt)|ab ≤− αtch|H(θt)|ab +
ℓf,1
2
α2
t ∥B⊤

h ∥∞,1∥dt∥21+ ϵ1. (E.13)

Proof. By the smoothness ofG(θ) in Lemma 9 and ∇G(θ)⊤d+cgG(θ) ≤ [∇G(θ)⊤d+cgG(θ)]+ ≤
ϵ1, it holds that

G(θt+1)−G(θt) ≤αt∇G(θt)⊤dt +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥21+ ϵ1

≤− αtcgG(θt) +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥21+ ϵ1. (E.14)

For all m ∈ [Mg], since G(θt) ≤ [G(θt)]+, it holds that

gm(θt+1)− [gm(θt)]+ ≤gm(θt)− [gm(θt)]+ − αtcggm(θt) +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥2 + ϵ (E.15)

≤− [−gm(θt)]+ − αtcggm(θt) +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥2 + ϵ. (E.16)

26

It can be further derived that

−[−gm(θt)]+ − αtcggm(θt) =

{
−αtcggm(θt), gm(θt) ≥ 0

(1− αtcg)gm(θt), gm(θt) < 0

≤− αtcg[gm(θt)]+ (E.17)

where the last inequality holds since 1− αtcg ≥ 0. Plugging this inequality back into (E.16), yields
that when gm(θt+1) ≥ 0,

[gm(θt+1)]+ − [gm(θt)]+ ≤ −αtcg[gm(θt)]+ +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥2 + ϵ. (E.18)

When gm(θt+1) < 0, we have

[gm(θt+1)]+ − [gm(θt)]+ ≤− [gm(θt)]+ ≤ −αtcg[gm(θt)]+

≤− αtcg[gm(θt)]+ +
ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥2 + ϵ. (E.19)

Combining (E.18) and (E.19) proves (E.12).

By the smoothness of H(θ) and |∇H(θ)⊤d+ chH(θ)|ab ≤ ϵ1, we have

|H(θt+1)|ab ≤|H(θt)− αtchH(θt)|ab +
ℓf,1
2
α2
t ∥B⊤

h ∥∞,1∥dt∥21+ ϵ1

=(1− αtch)|H(θt)|ab +
ℓf,1
2
α2
t ∥B⊤

h ∥∞,1∥dt∥21+ ϵ1 (E.20)

where the last equality holds because 1− αtch ≥ 0, which proves (E.13).

E.2 Proof of Theorem 1

In this section, we prove Theorem 1. Similar to the proof techniques used in [7], we use λ⊤f AF (θt)
with a fixed λf ∈ Ωλf

(θ) as a part of the Lyapunov function, instead of using the dynamically
changing λf,t. This eliminates the need to assume the objective values are bounded above in our
theorem.

Proof of Theorem 1. To consider both objective function minimization and constraint satisfaction, we
define a Lyapunov function below with a constant vector λ = (λf , λg, λh) ∈ Ωλ(θ), where λf = 1,
λg ∈ RMg

+ , λh ∈ RMh , and λg > λ∗g(θt), λh > λ∗h(θt) for all t ∈ [T].

Vt := λ⊤f AF (θt)︸ ︷︷ ︸
Vf,t

+λ⊤g [G(θt)]+︸ ︷︷ ︸
Vg,t

+λ⊤h |H(θt)|ab︸ ︷︷ ︸
Vh,t

. (E.21)

Note that Vt ≥ 0 for all t since AF (θ) ≥ 0, λf ≥ 0.

For notation simplicity, we let d∗t = d∗(θt). From Assumption 2, the smoothness of the objectives,
and Lemma 9, based on the update θt+1 = θt + αtdt, it holds that

Vf,t+1 − Vf,t

(a)

≤ αtλ
⊤
f A∇F (θt)⊤dt +

ℓf,1
2
α2
t ∥A⊤∥∞,1∥dt∥2λ⊤f 1

(b)

≤αtλ
⊤
f A∇F (θt)⊤d∗t +

ℓf,1
2
α2
t ∥A⊤∥∞,1∥d∗t ∥2λ⊤f 1+ ϵ1

(c)

≤ − αt∥d∗t ∥2 + αt

(
cgλ

∗
g(θt)

⊤G(θt) + chλ
∗
h(θt)

⊤H(θt)
)
+
ℓf,1
2
α2
t ∥A⊤1∥1∥d∗t ∥2 + ϵ1 (E.22)

where (a) follows Lemma 9; (b) follows from that dt is an ϵ-optimal solution to the subprogram; (c)
follows from Lemma 10 with λ = [λf ; 0; 0] ∈ Ωλ(θ) therein.

From Lemma 11, for αt ≤ min{c−1
g , c−1

h }, it holds that

Vg,t+1 − Vg,t ≤− αtcgλ
⊤
g [G(θt)]+ +

ℓf,1
2
α2
t ∥B⊤

g ∥∞,1∥dt∥2λ⊤g 1+ ϵλ⊤g 1 (E.23)

27

Vh,t+1 − Vh,t ≤− αtchλ
⊤
h |H(θt)|ab +

ℓf,1
2
α2
t ∥B⊤

h ∥∞,1∥dt∥2λ⊤h 1+ ϵλ⊤h 1. (E.24)

Combining the above inequalities for Vf,t,Vg,t,Vh,t, we have

Vt+1 − Vt ≤− αt∥d∗t ∥2 + αt

(
cgλ

∗
g(θt)

⊤G(θt) + chλ
∗
h(θt)

⊤H(θt)
)

+
ℓf,1
2
α2
t ∥A⊤

agλ∥1∥d∗t ∥2 − αtcgλ
⊤
g [G(θt)]+ − αtchλ

⊤
h |H(θt)|ab + ϵλ⊤1

≤− αt∥d∗t ∥2 − αtcg(λg − λ∗g(θt))
⊤[G(θt)]+ − αtcgλ

∗
g(θt)

⊤
[−G(θt)]+

− αtch(λh − λ∗h(θt))
⊤|H(θt)|ab +

ℓf,1
2
α2
t ∥A⊤

agλ∥1∥d∗t ∥2 + ϵλ⊤1 (E.25)

where the last inequality holds because λ∗g(θt)
⊤G(θt) = λ∗g(θt)

⊤[G(θt)]+ − λ∗g(θt)
⊤[−G(θt)]+.

Taking telescoping sum of the above inequality from t = 0, . . . , T − 1 and rearranging, we have

T−1∑
t=0

αt

(
1− 1

2
∥A⊤

agλ∥1ℓf,1αt

)
∥d∗t ∥2 + αtcg(λg − λ∗g(θt))

⊤[G(θt)]+ + αtcgλ
∗
g(θt)

⊤
[−G(θt)]+

+ αtch(λh − λ∗h(θt))
⊤|H(θt)|ab ≤ V0 − VT + Tϵλ⊤1 ≤ V0 + Tϵ∥λ∥1. (E.26)

Recall that αt ≤ 1/(ℓf,1∥A⊤
agλ∥1). Plugging this into the above inequality yields

T−1∑
t=0

1

2
αt∥d∗t ∥2 + αtcg(λg − λ∗g(θt))

⊤[G(θt)]+ + αtcgλ
∗
g(θt)

⊤
[−G(θt)]+

+ αtch(λh − λ∗h(θt))
⊤|H(θt)|ab ≤ V0 + Tϵ∥λ∥1. (E.27)

Taking αt = Θ(1), then

1

T

T−1∑
t=0

1

2
∥d∗(θt)∥2 + cg(λg − λ∗g(θt))

⊤[G(θt)]+ + cgλ
∗
g(θt)

⊤
[−G(θt)]+

+ ch(λh − λ∗h(θt))
⊤|H(θt)|ab = O

(1

T
+ ϵ

)
. (E.28)

The proof is complete.

Next we show that the subprogram converges with a projected gradient descent (PGD) algorithm on
λ with K iterations.
Lemma 12 (Convergence of the subprogram with projected gradient descent). At the t-th iteration,
given θt, let {λt,k}k be the sequence generated by the projected gradient descent algorithm to solve
the subprogram minλ∈Ωλ(θt) φ(λ; θt), then

φ(λt,K ; θt)− min
λ∈Ωλ(θt)

φ(λ; θt) ≤
∥λt,0 − λ∗(θt)∥2

2γK
. (E.29)

Proof. The result follows from the convergence result of projected gradient descent for convex
objective functions. Note that at each iteration t, given θt, Ωλ(θt) is fixed.

Lemma 13. Suppose Assumption 3 holds. Due to the ℓφλ,1-smoothness and the convexity of the
subprogram, it holds for all λ ∈ Ωλ(θ) that

∥∇λφ(λ; θ)−∇λφ(λ
∗(θ); θ)∥2 ≤ 2ℓφλ,1

(
φ(λ; θ)− φ(λ∗(θ); θ)

)
. (E.30)

Proof. Since the objectives fm(θ) are Lipschitz continuous for all m ∈ [M], the subprogram
objective φ(λ; θ) is ℓφλ,1-smooth w.r.t. λ. By Proposition 1 (b) in [58], it holds that

1

2ℓφλ,1
∥∇λφ(λ; θ)−∇λφ(λ

∗(θ); θ)∥2 + ⟨∇λφ(λ
∗(θ); θ), λ− λ∗(θ)⟩ ≤ φ(λ; θ)− φ(λ∗(θ); θ).

(E.31)

28

By the convexity of φ(λ; θ) w.r.t. λ, for all λ ∈ Ωλ(θ),

⟨∇λφ(λ
∗(θ); θ), λ− λ∗(θ)⟩ ≥ 0. (E.32)

Combining the above two inequalities proves the result.

Corollary 14 (Convergence of Algorithm 1 with K-iteration PGD for the subprogram). Suppose
Assumptions 1, 2 hold. Let {θt} be the sequence produced by Algorithm 1 with the update θt+1 =
θt + αtdt, where dt is the ϵ-optimal solution to the subprogram (2.1) obtained by K-iteration PGD
for the subprogram on λ. Define λ := (λf , λg, λh) ∈ Ωλ(θ) with λg ≥ λ∗g(θ) + 1, λh ≥ λ∗h(θ) + 1

for all θ ∈ Rq . If the step size αt ≤ 1/(ℓf,1∥A⊤
agλ∥1) and αt = Θ(1), then

T−1∑
t=0

1

2
∥d∗t ∥2 + cg(λg − λ∗g(θt))

⊤[G(θt)]+ + cgλ
∗
g(θt)

⊤
[−G(θt)]+

+ ch(λh − λ∗h(θt))
⊤|H(θt)|ab = O

(
1
)
. (E.33)

Proof. For t = 0, . . . , T − 1, we take K = T 2, applying Lemma 12, we have

φ(λt,K ; θt)− min
λ∈Ωλ(θt)

φ(λ; θt) ≤
∥λt,0 − λ∗(θt)∥2

2γT 2
. (E.34)

From Lemma 13, the above inequality implies

∥∇φ(λt; θt)−∇φ(λ∗(θt); θt)∥2 ≤ 2ℓφλ,1

(
φ(λt; θt)− φ(λ∗(θt); θt)

)
≤ ℓφλ,1∥λt−1 − λ∗(θt)∥2

γT 2
.

(E.35)

Plugging in the gradient ∇φ(λt; θt), we have

∥A∇F (θt)⊤(dt − d∗t)∥2 + ∥∇G(θt)⊤(dt − d∗t)∥2 + ∥∇G(θt)⊤(dt − d∗t)∥2

≤ℓφλ,1∥λt−1 − λ∗(θt)∥2

γT 2
≤ 4ℓφλ,1c

2
λ

γT 2
. (E.36)

Let ϵ = 4ℓφλ,1c
2
λ

γT 2 , from Theorem 1, it holds that

Vt+1 − Vt ≤ −αt∥d∗t ∥2 + αtcg
(
λ∗g(θt)− λg

)⊤
[G(θt)]+ + αtcgλ

∗
g(θt)

⊤
[−G(θt)]+

+ αtch
(
λ∗h(θt)− λh

)⊤|H(θt)|ab + ϵ
1
2 +

1

2
γαt∥∇λφ(λt; θt)∥2 +

ℓf,1
2
α2
t ∥A⊤

agλ∥1∥d∗t ∥2.
(E.37)

Taking telescoping sum of the above inequality from t = 0, . . . , T − 1, rearranging, and letting
αt ≤ 1/(∥λ∥1ℓf,1∥A⊤

ag∥∞,1), we have

T−1∑
t=T

1

2
αt∥d∗t ∥2 + αtcg(λg − λ∗g(θt))

⊤[G(θt)]+ + αtcgλ
∗
g(θt)

⊤
[−G(θt)]+

+ αtch(λh − λ∗h(θt))
⊤|H(θt)|ab ≤ VT + Tϵ

1
2 . (E.38)

Letting αt = Θ(1), γ = Θ(1) yields

T−1∑
t=T

1

2
∥d∗t ∥2 + cg(λg − λ∗g(θt))

⊤[G(θt)]+ + cgλ
∗
g(θt)

⊤
[−G(θt)]+

+ ch(λh − λ∗h(θt))
⊤|H(θt)|ab = O

(
1
)
. (E.39)

The proof is complete.

29

F Proof of Theorems 2 and 3: convergence of Algorithm 2

In this section, we prove the convergence of Algorithm 2 with single-loop updates. We focus on
the problem with equality constraints only, i.e., Mg = 0. Furthermore, we consider the simplified
subprogram without adaptivity to the objectives, thus Ωλf

(θ) = ∆M .

We provide two theoretical results in Theorems 2 and 3, respectively. Specifically, Theorem 2 uses
the same merit function as Theorem 1, but provides a slower convergence rate. Theorem 3 uses a
different merit function, and provides a faster convergence rate than Theorem 1 under additional
assumptions.

F.1 Auxiliary lemmas

Lemma 15 (Smoothness of φ w.r.t. λ). Suppose Assumptions 1 and 3 hold. φ(λ; θ) is ℓφλ,1-smooth
w.r.t. λ, with ℓφλ,1 =M∥Aag∥2ℓ2f .

Proof. The Hessian of φ(λ; θ) w.r.t. λ can be computed by

∇2
λφ(λ; θ) = Aag∇F (θ)⊤∇F (θ)A⊤

ag.

By Assumption 3, the Lipschitz continuity of F , it holds that

∥∇2
λφ(λ; θ)∥ ≤ ∥Aag∇F (θ)⊤∇F (θ)A⊤

ag∥ ≤ ∥∇F (θ)A⊤
ag∥2 ≤M∥Aag∥2ℓ2f .

The result is proved.

Lemma 16 (∥∇λf
φ(λt; θt)∥ is bounded by ∥dt∥). Suppose Assumptions 1 and 3 hold. For {θt}

produced by Algorithm 2, we have

∥∇λf
φ(λt; θt)∥ ≤ ∥A⊤∥∞,1ℓf∥dt∥. (F.1)

Proof. The gradient of φ(λt; θt) w.r.t. λf can be computed by

∇λf
φ(λt; θt) = A∇F (θt)⊤∇F (θt)A⊤

agλt = −A∇F (θt)⊤dt. (F.2)
By Assumption 3, it holds that

∥∇λf
φ(λt; θt)∥ ≤ ∥A⊤∥∞,1ℓf∥dt∥. (F.3)

The proof is complete.

Lemma 17. Let λt = [λf,t;λh,t]. Consider the sequence {λt}Tt=1 generated by the update (3.1).
Then for all λ ∈ Ωλ(θt) with λ = (λf , λh), it holds that

2γt⟨λf,t − λf ,∇λf
φ(λt; θt)⟩ ≤ ∥λf,t − λf∥2 − ∥λf,t+1 − λf∥2 + γ2t ∥∇λf

φ(λt; θt)∥2;
2γt⟨λh,t − λh,∇λh

φ(λt; θt)⟩ = ∥λh,t − λh∥2 − ∥λh,t+1 − λh∥2 + γ2t ∥∇λh
φ(λt; θt)∥2. (F.4)

Proof. By the update of λf,t, and the non-expansiveness of projection, for all λf ∈ ∆M , we have

∥λf,t+1 − λf∥2 ≤ ∥λf,t − γt∇λf
φ(λt; θt)− λf∥2

=∥λf,t − λf∥2 − 2γt⟨λf,t − λf ,∇λf
φ(λt; θt)⟩+ γ2t ∥∇λf

φ(λt; θt)∥2. (F.5)
Rearranging the above inequality proves the first inequality.

By the update of λh,t, for all constant λh ∈ RMh , we have

∥λh,t+1 − λh∥2 = ∥(λh,t − γt∇λh
φ(λt; θt))− λh∥2

=∥λh,t − λh∥2 + γ2t ∥∇λh
φ(λt; θt)∥2 − 2γt⟨λh,t − λh,∇λh

φ(λt; θt)⟩. (F.6)
Rearranging the above inequality proves the second inequality.

Corollary 18. Let λt = [λf,t;λh,t]. Consider the sequence {λt}Tt=1 generated by the update (3.1).
Then for all λ ∈ Ωλ with λ = (λf , λh), it holds that

2γt
(
φ(λt; θt)− φ(λ; θt)

)
≤ ∥λt − λ∥2 − ∥λt+1 − λ∥2 + γ2t ∥∇λφ(λt; θt)∥2. (F.7)

Proof of Corollary 18. The result follows from combining the two inequalities in Lemma 17, and
applying the convexity property of φ w.r.t. λ.

30

F.2 Analysis with the same merit function: proof of Theorem 2

In this section, we provide analysis with the same merit function as Theorem 1. The proof follows
similar ideas of the proofs of Theorem 3 (for convergence of the subprogram with the approximate
single-loop update) and Theorem 5 (for convergence of the main program) in [7]. We follow the
proofs in [7], as they provide, to the best of our knowledge, the fastest convergence rate guarantees
for single-loop MOO algorithms under minimal assumptions.

Similar to [7], we first define the following auxiliary functions to assist our analysis. Note that the
functions are only used for analysis but not for the algorithm update.

φρ(λ; θ) := φ(λ; θ) +
ρ

2
∥λ∥2, λ∗ρ(θ) := argmin

λ∈Ωλ

φρ(λ; θ). (F.8)

We then present the following Lemmas that are useful for the proof of convergence of Algorithm 2.

Lemma 19. Suppose Assumption 3 holds, and λ∗(θ) and λ∗ρ(θ) are bounded for θ ∈ {θt}T−1
t=0

produced by Algorithm 2, i.e., ∥λ∗(θ)∥ ≤ cλ, ∥λ∗ρ(θ)∥ ≤ cλ. Then on the trajectory of Algorithm 2,
with θ ∈ {θt}T−1

t=0 , we have

φ(λ∗ρ(θ); θ)− φ(λ∗(θ); θ) ≤ ρ

2
cλ. (F.9)

Proof of Lemma 19. The proof follows the proof of [7, Lemma 13].

Corollary 20. Suppose Assumption 3 holds, and λ∗(θ) and λ∗ρ(θ) are bounded for θ ∈ {θt}T−1
t=0

produced by Algorithm 2, i.e., ∥λ∗(θ)∥ ≤ cλ, ∥λ∗ρ(θ)∥ ≤ cλ. Then on the trajectory of Algorithm 2,
with θ ∈ {θt}T−1

t=0 , we have

∥∇λh
φ(λ; θ)∥2 ≤ 2ℓφλ,1

(
φ(λ; θ)− φ(λ∗ρ(θ); θ)

)
+ ℓφλ,1ρcλ. (F.10)

Proof of Corollary 20. By applying Lemma 13, and that ∇λh
φ(λ∗(θ); θ) = 0, we have

∥∇λh
φ(λ; θ)∥2 =∥∇λh

φ(λ; θ)−∇λh
φ(λ∗(θ); θ)∥2 ≤ ∥∇λφ(λ; θ)−∇λφ(λ

∗(θ); θ)∥2

Lemma 13
≤ 2ℓφλ,1

(
φ(λ; θ)− min

λ∈Ωλ(θ)
φ(λ; θ)

)
. (F.11)

Applying Lemma 19, we can further derive

φ(λ; θ)− min
λ∈Ωλ(θ)

φ(λ; θ) =φ(λ; θ)− φ(λ∗(θ); θ) + φ(λ∗ρ(θ); θ)− φ(λ∗ρ(θ); θ)

Lemma 19
≤ φ(λ; θ)− φ(λ∗ρ(θ); θ) +

ρ

2
cλ. (F.12)

Combining (F.11) and (F.12) yields the result.

Lemma 21 (Continuity of λ∗ρ(θ)). For λ∗ρ(θ) defined in (F.8), and Ωλ(θ) = Ωλ, the following holds

∥λ∗ρ(θ)− λ∗ρ(θ
′)∥ ≤ρ−1∥∇2

λφ(λ
∗
ρ(θ); θ)−∇2

λφ(λ
∗
ρ(θ

′); θ′)∥
≤2ρ−1ℓf,1ℓf∥A⊤

ag∥2∞,1∥θ − θ′∥. (F.13)

Proof of Lemma 21. The proof follows the proof of [7, Lemma 12].

Lemma 22. Suppose Assumptions 1, 2, 3 hold. Let {θt}, {λt} be the sequences produced by
Algorithm 2 with step sizes αt = α > 0, γt = γ > 0. Assume ∥λ∗(θt)∥, ∥λ∗ρ(θt)∥, ∥λt∥ ≤ cλ. Then
for any ρ > 0, it holds that

1

T

T−1∑
t=0

φ(λt; θt)− φ(λ∗ρ(θt); θt) ≤
2c2

λ

γT
(1 + 2ρ−1αTℓf,1ℓ

2
f∥A⊤

ag∥3∞,1) +
γ

2T

T−1∑
t=0

∥∇λφ(λt; θt)∥2.

(F.14)

31

Proof of Lemma 22. The proof follows the proof techniques of [7, Lemma 15].

First, applying Corollary 18 and γt = γ yields

2γ
(
φ(λt; θt)− φ(λ∗ρ(θt); θt)

)
≤ ∥λt − λ∗ρ(θt)∥2 − ∥λt+1 − λ∗ρ(θt)∥2 + γ2∥∇λφ(λt; θt)∥2.

(F.15)

Taking telescoping sum of the above inequality and rearranging, we have

1

T

T−1∑
t=0

φ(λt; θt)− φ(λ∗ρ(θt); θt) ≤
1

2γT

(T−1∑
t=0

∥λt − λ∗ρ(θt)∥2 − ∥λt+1 − λ∗ρ(θt)∥2︸ ︷︷ ︸
J1

)

+
γ

2T

T−1∑
t=0

∥∇λφ(λt; θt)∥2 (F.16)

where J1 can be further bounded by

J1 ≤∥λ0 − λ∗
ρ(θ0)∥2 − ∥λT − λ∗

ρ(θT−1)∥2 +
T−2∑
t=0

∥2λt+1 − λ∗
ρ(θt+1)− λ∗

ρ(θt)∥∥λ∗
ρ(θt+1)− λ∗

ρ(θt)∥

≤4c2λ + 4cλ

T−2∑
t=0

∥λ∗
ρ(θt+1)− λ∗

ρ(θt)∥ ≤ 4c2λ + 8cλ

T−2∑
t=0

ρ−1αtℓf,1ℓf∥A⊤
ag∥2∞,1∥dt∥

where the last inequality follows from Lemma 21 and the update of θt.

Finally, taking αt = α, plugging the above bound for J1 back into (F.16), and bounding ∥dt∥ by
Assumption 3 and that ∥λt∥ ≤ cλ prove the result.

Proof of Theorem 2. We consider the following Lyapunov function with a constant vector λ =
[λf ;λh] ∈ Ωλ, where λf ∈ ∆M , λh ∈ RMh .

Vt := λ⊤f AF (θt)︸ ︷︷ ︸
Vf,t

+
α0

2γ0
∥λf,t − λf∥2︸ ︷︷ ︸

Vλf ,t

+
α0

2γ0
∥λh,t − λh∥2︸ ︷︷ ︸

Vλh,t︸ ︷︷ ︸
Vλ,t

+λ⊤hH(θt)︸ ︷︷ ︸
Vh,1,t

+ cVh
∥H(θt)∥1︸ ︷︷ ︸
Vh,3,t︸ ︷︷ ︸

Vh,t

. (F.17)

Recall that λt = [λf,t;λh,t], and the algorithm takes the update θt+1 = θt + αtdt with dt =
∇F (θt)A⊤

agλt. From Assumption 2, the smoothness of the objectives, and Lemma 9, the function
λ⊤f AF (θ) is smooth, thus

Vf,t+1 − Vf,t ≤⟨∇F (θt)A⊤λf , θt+1 − θt⟩+
ℓf,1
2

∥A⊤λf∥1∥θt+1 − θt∥2

=αt⟨∇F (θt)A⊤λf , dt⟩+
ℓf,1
2
α2
t ∥A⊤λf∥1∥dt∥2. (F.18)

By Lemma 17, taking γt > 0 and rearranging, we have

⟨∇F (θt)A⊤λf , dt⟩ ≤
1

2γt

(
∥λf,t − λf∥2 − ∥λf,t+1 − λf∥2

)
+

1

2
γt∥∇λf

φ(λt; θt)∥2 − ⟨λf,t,∇λf
φ(λt; θt)⟩. (F.19)

Combining (F.18) and (F.19), and choosing αt

γt
= α0

γ0
for all t ∈ [T], we have

Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t

≤ℓf,1
2
α2
t ∥A⊤λf∥1∥dt∥2 +

1

2
αtγt∥∇λf

φ(λt; θt)∥2 − αt⟨λf,t,∇λf
φ(λt; θt)⟩. (F.20)

By the smoothness of λ⊤hH(θ), and ∇λh
φ(λt; θt) = −∇H(θt)

⊤dt − chH(θt), it holds that

Vh,1,t+1 − Vh,1,t ≤αtλ
⊤
h∇H(θt)

⊤dt +
ℓf,1
2
α2
t ∥B⊤

h λh∥1∥dt∥2

32

=− αtchλ
⊤
hH(θt) +

ℓf,1
2
α2
t ∥B⊤

h λh∥1∥dt∥2

− αt⟨λh,∇λh
φ(λt; θt)⟩. (F.21)

Bounding the last term in the above inequality by Lemma 17, and taking γt > 0, we have

Vh,1,t+1 − Vh,1,t ≤− αtchλ
⊤
hH(θt) +

ℓf,1
2
α2
t ∥B⊤

h λh∥1∥dt∥2 +
1

2
αtγt∥∇λh

φ(λt; θt)∥2

− αt⟨λh,t,∇λh
φ(λt; θt)⟩+

αt

2γt

(
∥λh,t − λh∥2 − ∥λh,t+1 − λh∥2

)
. (F.22)

Adding up (F.20) and (F.22) yields

Vf,t+1 − Vf,t + Vλ,t+1 − Vλ,t + Vh,1,t+1 − Vh,1,t

≤− αt⟨λt,∇λφ(λt; θt)⟩+
1

2
γtαt∥∇λφ(λt; θt)∥2 − αtchλ

⊤
hH(θt) +

ℓf,1
2
α2
t ∥A⊤

agλ∥1∥dt∥2

≤− αt∥dt∥2 + αtch(λh,t − λh)
⊤H(θt) +

1

2
γtαt∥∇λφ(λt; θt)∥2 +

ℓf,1
2
α2
t ∥A⊤

agλ∥1∥dt∥2

(F.23)

where the last inequality uses the fact that ⟨λt,∇λφ(λt; θt)⟩ = ∥dt∥2 − chλ
⊤
h,tH(θt).

Using the fact that ∇λh
φ(λt; θt) = −∇H(θt)

⊤dt − chH(θt), and with similar arguments as (E.20)
in Lemma 11, we can further derive that

|H(θt+1)|ab ≤|H(θt)− αtchH(θt)− αt∇λh
φ(λt; θt)|ab +

ℓf,1
2
α2
t ∥B⊤

h ∥∞,1∥dt∥21

≤(1− αtch)|H(θt)|ab +
ℓf,1
2
α2
t ∥B⊤

h ∥∞,1∥dt∥21+ αt|∇λh
φ(λt; θt)|ab. (F.24)

Therefore,

Vh,2,t+1 − Vh,3,t ≤ −αtchcVh
∥H(θt)∥1 +

ℓf,1
2
cVh

Mhα
2
t ∥B⊤

h ∥∞,1∥dt∥2 + αtcVh
∥∇λh

φ(λt; θt)∥1.
(F.25)

Combining (F.23) and (F.25), and by choosing step sizes αt, γt, parameter cVh
such that

ℓf,1
2
cVh

Mhα
2
t ∥B⊤

h ∥∞,1 +
ℓf,1
2
α2
t ∥A⊤

agλ∥1 ≤ 1

2
, (F.26)

we have

Vt+1 − Vt ≤− 1

2
αt∥dt∥2 − αtch(cVh − ∥λh − λh,t∥1)∥H(θt)∥1 +

1

2
γtαtℓ

2
φ + αtcVh∥∇λhφ(λt; θt)∥1.

(F.27)

Taking telescoping sum of the above inequality over t = 0, . . . , T − 1, and applying that
∥∇λh

φ(λt; θt)∥1 ≤
√
Mh∥∇λh

φ(λt; θt)∥, we have

T−1∑
t=0

Vt+1 − Vt ≤
T−1∑
t=0

−1

2
αt∥dt∥2 − αtch(cVh

− ∥λh − λh,t∥1)∥H(θt)∥1 +
1

2
γtαtℓ

2
φ

+ αtcVh

√
Mh∥∇λh

φ(λt; θt)∥ (F.28)

where
∑T−1

t=0 ∥∇λh
φ(λt; θt)∥ can be further bounded by applying Lemma 22 and Corollary 20 along

with Jensen’s inequality as follows(1

T

T−1∑
t=0

∥∇λh
φ(λt; θt)∥

)2

≤ 1

T

T−1∑
t=0

∥∇λh
φ(λt; θt)∥2

Corollary 20
≤ 1

T

T−1∑
t=0

2ℓφλ,1

(
φ(λt; θt)− φ(λ∗ρ(θt); θt)

)
+ ℓφλ,1ρcλ

33

Lemma 22
≤ 4ℓφλ,1c

2
λ

1

γT
(1 + 2ρ−1αTℓf,1ℓ

2
f∥A⊤

ag∥3∞,1) +
γ

2T

T−1∑
t=0

∥∇λφ(λt; θt)∥2 + ρℓφλ,1cλ

(F.29)

where ∥∇λφ(λt; θt)∥2 = ∥∇λh
φ(λt; θt)∥2 + ∥∇λf

φ(λt; θt)∥2 ≲ ∥∇λh
φ(λt; θt)∥2 + ∥dt∥2. Plug-

ging the above inequality back into (F.28), choosing ρ = Θ
(
(αγ)

1
2

)
, and rearranging yield

1

T

T−1∑
t=0

∥dt∥2 + ∥H(θt)∥1 = O
(1

αT
+

1

(γT)
1
2

+ (
α

γ
)

1
4 + γ

)
. (F.30)

Choosing α = Θ(T− 5
6), γ = Θ(T− 1

6) proves the result.

F.3 Sharper analysis with a different merit function: proof of Theorem 3

In this section, we provide an analysis of convergence of Algorithm 2 with a different merit function
and faster convergence rate. We first present the auxiliary lemmas and then prove Theorem 3.
Lemma 23. Suppose Assumptions 1 and 3 hold. For {θt}, {λt} produced by Algorithm 2 with
Mg = 0 and Ωλf

(θt) = ∆M , and for all t = 0, . . . , T , ∥dt∥ can be bounded by

∥dt∥ ≤ ℓf,1∥A⊤
ag∥1(1 + ∥λh,t∥1), (F.31)

and ∥∇λφ(λt; θt)∥ can be bounded by

∥∇λφ(λt; θt)∥2 ≤ 2∥Aag∥2Mℓ2f∥dt∥2 + 2c2h∥H(θt)∥2. (F.32)

Proof. Since dt = ∇F (θt)A⊤
agλt, we have

∥dt∥ = ∥∇F (θt)A⊤
agλt∥ ≤ ℓf,1∥A⊤

ag∥1∥λt∥1 ≤ ℓf,1∥A⊤
ag∥1(1 + ∥λh,t∥1) (F.33)

which proves (F.31).

Furthermore, invoking that ∇λφ(λt; θt) = Aag∇F (θt)⊤dt − chH(θt), we have

∥∇λφ(λt; θt)∥2 = ∥Aag∇F (θt)⊤dt − chH(θt)∥2

≤2∥Aag∇F (θt)⊤dt∥2 + 2∥chH(θt)∥2 ≤ 2∥Aag∥2Mℓ2f∥dt∥2 + 2c2h∥H(θt)∥2 (F.34)

which proves (F.32).

Lemma 24. Suppose Assumptions 1, 2, and 3 hold, and Mg = 0. For {θt}, {λt} produced by
Algorithm 2, further assume {λh,t} are bounded on the trajectory, i.e., ∥λh,t∥1 ≤ cλh

. For all
t = 0, . . . , T , choose αt such that αt ≤ cα,h

ℓf,1∥A⊤
ag∥1(1+cλh

)
, and αt∥H(θt)∥ ≤ cα,h for any 0 <

cα,h <∞, then it holds that

∥H(θt+1)∥2 − ∥H(θt)∥2 ≤ αt2H(θt)
⊤∇H(θt)

⊤dt +
1

2
α2
t ℓH2,1,t∥dt∥2

with ℓH2,1,t = 2M∥Bh∥2ℓ2f + 2(α−1
t + ℓH)cα,h

√
Mℓf,1∥Bh∥, and ℓH = ∥Bh∥

√
Mℓf . (F.35)

Proof. By choosing αt ≤ cα,h

ℓf,1∥A⊤
ag∥1(1+∥λh,t∥1)

, and invoking (F.31) in Lemma 23, we have

αt∥dt∥ ≤ cα,h. (F.36)

By the mean-value theorem, for all t = 0, . . . , T , there exists θ̃t such that

∥H(θt+1)∥2 − ∥H(θt)∥2 ≤ αt2H(θt)
⊤∇H(θt)

⊤dt +
1

2
α2
t ∥∇2(H(θ̃t)

⊤H(θ̃t))∥∥dt∥2. (F.37)

The term ∥∇2(H(θ̃t)
⊤H(θ̃t))∥ can be upper bounded by

∥∇2(H(θ̃t)
⊤H(θ̃t))∥ ≤2∥∇H(θ̃t)∇H(θ̃t)

⊤∥+ 2∥∇2H(θ̃t)∥∥H(θ̃t)∥

34

≤2M∥Bh∥2ℓ2f + 2∥H(θ̃t)∥
√
Mℓf,1∥Bh∥. (F.38)

Since H(θ̃t) is ℓH -Lipschitz continuous with ℓH = ∥Bh∥
√
Mℓf , and θ̃t lies on the line segment of

θt and θt+1 with ∥θt+1 − θt∥ = αt∥dt∥, therefore,

∥H(θ̃t)∥ ≤ ∥H(θt)∥+ αtℓH∥dt∥ ≤ ∥H(θt)∥+ ℓHcα,h. (F.39)

Plugging the above inequality into (F.37) yields

∥H(θt+1)∥2 − ∥H(θt)∥2 ≤ αt2H(θt)
⊤∇H(θt)

⊤dt +
1

2
α2
t ∥∇2H(θ̃t)

⊤H(θ̃t)∥∥dt∥2

≤αt2H(θt)
⊤∇H(θt)

⊤dt +
1

2
α2
t

(
2M∥Bh∥2ℓ2f + 2(α−1

t + ℓH)cα,h
√
Mℓf,1∥Bh∥

)
∥dt∥2.

(F.40)

The proof is complete.

Lemma 25 (Smoothness of φ w.r.t. θ). Under Assumptions 2, 3, 4-2, φ(λ; θ) is ℓφθ,1-smooth w.r.t.
θ for all λ, θ on the trajectory of Algorithm 2. with ℓφθ,1 =M(ℓ2f,1 + ℓf,2ℓf)(∥A∥+ ∥Bh∥cλh

)2 +

chcλh
∥Bh∥ℓf,1.

Proof of Lemma 25. By the definition of φ, its gradient w.r.t θ can be computed by

∇θφ(λ; θ) =
(
∇F (θ)A⊤

agλ
)⊤∇2F (θ)

(
A⊤

agλ
)
− chλ

⊤
h∇H(θ). (F.41)

For brevity, let v = A⊤
agλ. Then for any θ, θ′ ∈ {θt} on the trajectory of Algorithm 2, ∥∇θφ(λ; θ)−

∇θφ(λ; θ
′)∥ can be further bounded by

∥∇θφ(λ; θ)−∇θφ(λ; θ
′)∥ ≤ ∥∇F (θ)−∇F (θ′)∥∥v∥∥∇2F (θ)v∥

+ ∥∇F (θ′)v∥∥∇2F (θ)−∇2F (θ′)∥∥v∥+ ch∥λh∥∥∇H(θ)−∇H(θ′)∥
≤
(
Mℓ2f,1∥v∥2 +Mℓf ℓf,2∥v∥2 + ch∥λh∥∥Bh∥ℓf,1

)
∥θ − θ′∥ (F.42)

where the last inequality follows from Assumptions 2 and 3. Using the fact that λf ∈ ∆M , and
∥λh,t∥ ≤ cλh

on the trajectory of Algorithm 2, for all λ ∈ {λt} on the trajectory of Algorithm 2,
∥v∥ = ∥A⊤

agλ∥ can be further bounded by

∥A⊤
agλ∥ ≤ ∥A⊤λf∥+ ∥B⊤

h λh∥ ≤ ∥A∥+ ∥Bh∥cλh
. (F.43)

Plugging the above inequality back into (F.42) completes the proof.

Lemma 26 ([53, Lemma 4]). Let Ω ⊆ RM be a closed convex set, and let ΠΩ denote Euclidean
projection to Ω. Given any λ ∈ Ω, d ∈ RM and γ > 0, it holds that

ΠΩ(λ− γd) = argmin
λ′∈Ω

⟨d, λ′⟩+ 1

2γ
∥λ− λ′∥2. (F.44)

Lemma 27 (Proximal PL inequality implies proximal error bound and quadratic growth). Suppose
Assumptions 1, 3, and 4-1 hold. Then for λ, θ on the trajectory of Algorithm 2, φ(λ; θ) + g(λ), with
g(λ) being an indicator function defined on the set Ωλ, satisfies the 1

µ̄φ
-proximal error bound (EB)

and the 1
µ′
φ

-quadratic growth (QG) w.r.t. λ for some µ̄φ, µ
′
φ > 0 depending on µφ, as defined below

1

µ̄φ
dist(λ, Sφ(θ)) ≤

1

γ
∥λ−ΠΩλ

(λ− γ∇λφ(λ; θ))∥ (proximal EB) (F.45)

1

µ′
φ

dist2(λ, Sφ(θ)) ≤ φ(λ; θ)− φ(λ∗(θ); θ) (QG) (F.46)

where Sφ(θ) := {λ ∈ Ωλ | φ(λ; θ) = φ(λ∗(θ); θ)}.

Proof of Lemma 27. By Lemma 15, φ(λ; θ) is smooth w.r.t. λ. Furthermore, by [28, Appendix G],
and combined with Assumption 4-1, the proximal PL inequality, it implies that φ(λ; θ) + g(λ)
satisfies the proximal error bound. From [10, Corollary 3.6], the proximal error bound further implies
the quadratic growth, which proves the result.

35

Lemma 28 (Lipschitz continuity of λ∗(θ), [53, Lemma 5]). Suppose Assumption 3 holds. If given
λ ∈ Ωλ, and θ′ ∈ Rq, φ(λ; θ′) satisfies the 1

µ̄φ
-proximal error bound w.r.t. λ. Then given θ ∈ Rq,

for any λ∗(θ) ∈ argminλ∈Ωλ
φ(λ; θ), there exists λ∗(θ′) ∈ argminλ∈Ωλ

φ(λ; θ′) such that

∥λ∗(θ)− λ∗(θ′)∥ ≤ ℓλ∗∥θ − θ′∥

with ℓλ∗ = ℓφλ,1µ̄φ, and ℓφλ,1 defined in Lemma 15.

Lemma 29 (Danskin-type Lemma for proximal PL functions [53, Proposition 6]). Suppose Assump-
tions 1, 2, 3, 4 hold, then φ(λ∗(θ); θ) is differentiable with the gradient computed by

∇φ(λ∗(θ); θ) = ∇θφ(λ; θ), ∀λ ∈ argmin
λ∈Ωλ

φ(λ; θ). (F.47)

Moreover, φ(λ∗(θ); θ) is ℓφ∗,1-smooth with ℓφ∗,1 := ℓφ,1(1 + ℓλ∗).

Below, Lemma 30 establishes the approximate descent or contraction of the subprogram after taking
one-step update on λt. This is crucial for a sharper analysis of convergence of Algorithm 2.

Lemma 30 (Error of subprogram). Suppose Assumptions 1, 2, 3, 4 hold,Mg = 0, and Ωλf
(θ) = ∆M .

Let {θt}, {λt} be the sequences produced by Algorithm 2 with step size γt ≤ ℓ−1
φλ,1

. Then for any
cφ,d > 0, the following hold

φ(λt+1; θt)− φ(λ∗(θt); θt) ≤ (1− γtµφ)
(
φ(λt; θt)− φ(λ∗(θt); θt)

)
(F.48a)

φ(λt+1; θt+1)− φ(λ∗(θt+1); θt+1) ≤
(
1 + αtcφ,dℓ

2
φθ,1

µ′
φ

)(
φ(λt+1; θt)− φ(λ∗(θt); θt)

)
+
(αt

2cφ,d
+
ℓφθ,1 + ℓφ∗,1

2
α2
t

)
∥dt∥2. (F.48b)

Proof of Lemma 30. We first prove (F.48a). Recall the definition of Dφ,γ(λ; θ) in Definition 3. By
the ℓφλ,1-smoothness of φ w.r.t. λ and the update on λt, and that γt ≤ ℓ−1

φλ,1
, we have

φ(λt+1; θt) ≤ φ(λt; θt) + ⟨∇λφ(λt; θt), λt+1 − λt⟩+
1

2γt
∥λt+1 − λt∥2

≤φ(λt; θt)−
γt
2
Dφ,γt(λt; θt) by Lemma 26 and Definition 3

≤φ(λt; θt)− γtµφ

(
φ(λt; θt)− φ(λ∗(θt); θt)

)
by Assumption 4-1 and Definition 3 (F.49)

where the last inequality follows from the proximal PL inequality. Subtracting both sides of the above
inequality by φ(λ∗(θt); θt) proves (F.48a).

Next we prove (F.48b). We decompose the error on the left hand side of (F.48b) by

φ(λt+1; θt+1)− φ(λ∗(θt+1); θt+1)

=φ(λt+1; θt+1)− φ(λ∗(θt+1); θt+1)− (φ(λt+1; θt)− φ(λ∗(θt); θt))︸ ︷︷ ︸
J1

+φ(λt+1; θt)− φ(λ∗(θt); θt)

(F.50)

where we use the (ℓφθ,1+ ℓφ∗,1)-smoothness of φ(λ; θ)−φ(λ∗(θ); θ) w.r.t. θ to further bound J1 by

J1 ≤ ⟨∇θφ(λt+1; θt)−∇φ(λ∗(θt); θt), θt+1 − θt⟩+
ℓφθ,1 + ℓφ∗,1

2
∥θt+1 − θt∥2

≤ −αt⟨∇θφ(λt+1; θt)−∇φ(λ∗(θt); θt), dt⟩+
ℓφθ,1 + ℓφ∗,1

2
α2
t ∥dt∥2

≤ αt∥∇θφ(λt+1; θt)−∇φ(λ∗(θt); θt)∥∥dt∥+
ℓφθ,1 + ℓφ∗,1

2
α2
t ∥dt∥2. (F.51)

Then we can further derive that

J1
(a)

≤ αtcφ,d

2
∥∇θφ(λt+1; θt)−∇φ(λ∗(θt); θt)∥2 +

αt

2cφ,d
∥dt∥2 +

ℓφθ,1 + ℓφ∗,1

2
α2
t ∥dt∥2

36

(b)

≤ αtcφ,dℓ
2
φθ,1

µ′
φ

(
φ(λt+1; θt)− φ(λ∗(θt); θt)

)
+

αt

2cφ,d
∥dt∥2 +

ℓφθ,1 + ℓφ∗,1

2
α2
t ∥dt∥2

(F.52)

where (a) is from Cauchy-Swartz inequality, and (b) holds because

∥∇θφ(λt+1; θt)−∇φ(λ∗(θt); θt)∥2

≤ℓ2φθ,1

(
dist(λt+1, λ

∗(θt))
)2

by Lemma 29 and ℓφθ,1-Lipschitz continuity of ∇θφ(λ; θ)

≤ℓ2φθ,1
µ′
φ

(
φ(λt+1; θt)− φ(λ∗(θt); θt)

)
(F.53)

where the last inequality follows from Lemma 27, the 1
µ′
φ

-quadratic growth of φ(·; θ).

Finally, plugging (F.52) back into (F.50) completes the proof of (F.48b).

Corollary 31. Suppose Assumptions 1, 2, 3, 4 hold, and Mg = 0. Let {θt}, {λt} be the sequences
produced by Algorithm 2 with step size γt ≤ ℓ−1

φλ,1
. Then for any cφ,d > 0, it holds that(

φ(λt+1; θt+1)− φ(λ∗(θt+1); θt+1)
)
−
(
φ(λt; θt)− φ(λ∗(θt); θt)

)
≤

((
1 + αtcφ,dℓ

2
φθ,1µ

′
φ

)
(1− γtµφ)− 1

)(
φ(λt; θt)− φ(λ∗(θt); θt)

)
+
(αt

2cφ,d
+

ℓφθ,1 + ℓφ∗,1

2
α2
t

)
∥dt∥2.

(F.54)

Proof of Corollary 31. The proof directly follows by plugging (F.48a) into (F.48b).

Lemma 32. If by choosing αt = min
{ cα,h

∥H(θt)∥ , cα
}

with 0 < cα,h, cα <∞, and from the algorithm
update and properties we can derive αt∥H(θt)∥2 = O(1) is bounded, then ∥H(θt)∥ is bounded.

Proof of Lemma 32. We prove by contradiction. Suppose ∥H(θt)∥ = ω(1) is not bounded, then

αt = min
{ cα,h
∥H(θt)∥

, cα

}
=

cα,h
∥H(θt)∥

. (F.55)

Furthermore,

αt∥H(θt)∥2 = cα,h∥H(θt)∥ = O(1) (F.56)

which implies ∥H(θt)∥ = O(1) and contradicts with ∥H(θt)∥ = ω(1). Therefore, we have proved
∥H(θt)∥ is bounded.

Remark 33. Lemma 32 uses the algorithm properties to prove that ∥H(θt)∥ is bounded, instead
of directly assuming ∥H(θt)∥ is bounded. This will be used in the proof of Theorem 3 to show that
∥H(θt)∥ is bounded on the trajectory of Algorithm 2.

Next we proceed to prove Theorem 3, the sharper convergence of Algorithm 2.

Proof of Theorem 3. We consider the following Lyapunov function with a constant vector λf ∈ ∆M .

Vt := λ⊤f AF (θt)︸ ︷︷ ︸
Vf,t

+
α0

2γ0
∥λf,t − λf∥2︸ ︷︷ ︸

Vλf ,t

+λ⊤h,tH(θt)︸ ︷︷ ︸
Vh,0,t

+
1

2
∥H(θt)∥2︸ ︷︷ ︸
Vh,3,t︸ ︷︷ ︸

Vh,t

+φ(λt; θt)− φ(λ∗(θt); θt)︸ ︷︷ ︸
Vφ,t

.

(F.57)

Following the same arguments from (F.18)-(F.20), and by choosing αt

γt
= α0

γ0
= 1

cγ,α
for all t ∈ [T],

we have

Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t

≤ℓf,1
2
α2
t ∥A⊤λf∥1∥dt∥2 +

1

2
αtγt∥∇λf

φ(λt; θt)∥2 − αt⟨λf,t,∇λf
φ(λt; θt)⟩. (F.58)

37

Similarly, we can derive that

Vh,0,t+1 − Vh,0,t ≤− αtchλ
⊤
h,tH(θt) +

ℓf,1
2
α2
t ∥B⊤

h λh,t∥1∥dt∥2 − αt⟨λh,t,∇λh
φ(λt; θt)⟩

+ (λh,t+1 − λh,t)
⊤H(θt). (F.59)

Combining (F.58) and (F.59) yields

Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t + Vh,0,t+1 − Vh,0,t ≤ −αt∥dt∥2

+
1

2
γtαt∥∇λfφ(λt; θt)∥2 +

ℓf,1
2

α2
t (∥A⊤λf∥1 + ∥B⊤

h λh,t∥1)∥dt∥2 − γt∇λhφ(λt; θt)
⊤H(θt).

(F.60)

Next we proceed to bound Vh,3,t+1 − Vh,3,t. By Lemma 24, it holds that

Vh,3,t+1 − Vh,3,t ≤ αtH(θt)
⊤∇H(θt)

⊤dt +
1

4
α2
t ℓH2,1,t∥dt∥2 (F.61)

where ℓH2,1,t = 2Mℓ2f + 2(α−1
t cα,h + ℓHcd)

√
Mℓf,1. Because ∇λh

φ(λt; θt) = −∇H(θt)
⊤dt −

chH(θt), the term H(θt)
⊤∇H(θt)

⊤dt can be further written as

H(θt)
⊤∇H(θt)

⊤dt =−H(θt)
⊤(∇λh

φ(λt; θt) + chH(θt)
)

=− ch∥H(θt)∥2 −H(θt)
⊤∇λh

φ(λt; θt). (F.62)

Plugging (F.62) into (F.61) yields

1

2
∥H(θt+1)∥2 −

1

2
∥H(θt)∥2 ≤ −αtch∥H(θt)∥2 − αtH(θt)

⊤∇λh
φ(λt; θt) +

1

4
α2
t ℓH2,1,t∥dt∥2.

(F.63)

Letting ℓFH,1 = ℓf,1(∥A⊤∥1 + ∥B⊤
h ∥1cλh

), and adding up (F.60) and (F.63), we have

Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t + Vh,t+1 − Vh,t ≤ −αt∥dt∥2 − αtch∥H(θt)∥2

− (αt + γt)∇λhφ(λt; θt)
⊤H(θt) +

1

2
γtαt∥∇λfφ(λt; θt)∥2 +

1

4
α2
t (2ℓFH,1 + ℓH2,1,t)∥dt∥

2 (F.64)

where ∥∇λf
φ(λt; θt)∥2 ≤ ∥∇λφ(λt; θt)∥2 is further bounded by Lemma 23, (F.32) as

∥∇λφ(λt; θt)∥2 ≤ 2∥Aag∥2Mℓ2f∥dt∥2 + 2c2h∥H(θt)∥2. (F.65)

Plugging (F.65) back into (F.64) yields

Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t + Vh,t+1 − Vh,t ≤ −αt∥dt∥2 − αtch∥H(θt)∥2

− (αt + γt)∇λh
φ(λt; θt)

⊤H(θt) +
1

4
α2
t (2ℓFH,1 + ℓH2,1,t)∥dt∥2︸ ︷︷ ︸

J1

+ γtαt∥Aag∥2Mℓ2f∥dt∥2︸ ︷︷ ︸
J2

+ γtαtc
2
h∥H(θt)∥2︸ ︷︷ ︸
J3

(F.66)

where by choosing the step sizes αt ≤ 1
2ℓFH,1+ℓH2,1,t

, γt ≤ min
{

1
4∥Aag∥2Mℓ2f

, 1
2ch

}
, it holds that

J1 ≤ 1

4
αt∥dt∥2, J2 ≤ 1

4
αt∥dt∥2, J3 ≤ 1

2
αtch∥H(θt)∥2. (F.67)

Plugging (F.67) into (F.66), and rearranging, we have

Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t + Vh,t+1 − Vh,t

≤− 1

2
αt∥dt∥2 −

1

2
αtch∥H(θt)∥2 − (αt + γt)∇λh

φ(λt; θt)
⊤H(θt)

≤− 1

2
αt∥dt∥2 −

1

4
αtch∥H(θt)∥2 +

(1 + cγ,α)
2

ch
αt∥∇λh

φ(λt; θt)∥2 (F.68)

where the last inequality follows from Cauchy-Schwarz inequality and that γt = cγ,ααt.

38

By applying Corollary 31 with γt ≤ ℓ−1
φλ,1

, αt ≤ 1
(ℓφθ,1+ℓφ∗,1)cφ,d

and cγ,α ≥
2cφ,dℓ

2
φθ,1µ

′
φ

µφ
, we

further have that

Vφ,t+1 − Vφ,t ≤ −1

2
µφγt

(
φ(λt; θt)− φ(λ∗(θt); θt)

)
+

αt

cφ,d
∥dt∥2. (F.69)

Then note that from (F.11) we have ∥∇λh
φ(λt; θt)∥2 ≤ 2ℓφλ,1

(
φ(λt; θt)− φ(λ∗(θt); θt)

)
. Adding

up (F.69) and (F.68) with properly chosen hyperparameters ch ≥ (1 + cγ,α)
2, cγ,α ≥ 4ℓφλ,1

µφ
, and

cφ,d = 4 yields

Vt+1 − Vt ≤ −1

4
αt∥dt∥2 −

1

4
αtch∥H(θt)∥2.

Taking telescoping sum of the above inequality over t = 0, . . . , T − 1 yields
T−1∑
t=0

αt

(
∥dt∥2 + ch∥H(θt)∥2

)
≤ 4(V0 − VT)

≤4Vf,0 + 4
(
λ⊤h,0H(θ0)− λ⊤h,TH(θT)

)
+ 2∥H(θ0)∥2 + 4Vφ,0 ≤ 2c0 + 8cλh

cH (F.70)

where the second last inequality follows from Vf,t ≥ 0, choosing λf = λf,0, and Vφ,t ≥ 0, the
last inequality follows from choosing θ0, λ0 such that λ⊤f AF (θ0), H(θ0), φ(λ0; θ0)− φ(λ∗(θ0); θ0)

are bounded, thus 2Vf,0 + ∥H(θ0)∥2 + 2Vφ,0 ≤ c0 < ∞, λh,t are bounded on the trajectory, and
∥H(θ0)∥1, ∥H(θT)∥1 ≤ cH , thus 4

(
λ⊤h,0H(θ0)− λ⊤h,TH(θT)

)
≤ 8cλh

cH .

We then summarize the best possible choices for αt, γt. Recall that we require αt ≤ 1
2ℓFH,1+ℓH2,1,t

.

Rearranging this inequality with ℓH2,1,t = 2M∥Bh∥2ℓ2f + 2(α−1
t + ℓH)cα,h

√
Mℓf,1∥Bh∥, and

choosing cα,h = 1
4
√
Mℓf,1∥Bh∥

yield

αt(2ℓFH,1 + ℓH2,1,t) =2αtℓFH,1 + 2αtM∥Bh∥2ℓ2f +
1

2
(1 + αtℓH) ≤ 1. (F.71)

Then we can choose the following to ensure the above inequality holds

αt ≤
1

4
(
ℓFH,1 +M∥Bh∥2ℓ2f

)
+ ℓH

. (F.72)

To summarize, we can choose the following hyperparameters and step sizes

cγ,α ≥ max
{8ℓ2φθ,1µ

′
φ

µφ
,
4ℓφλ,1

µφ

}
, ch = (1 + cγ,α)

2, cα,h =
1

4
√
Mℓf,1∥Bh∥

(F.73a)

γt = cγ,ααt, and αt = min
{ cα,h

max{∥H(θt)∥, ℓf,1∥A⊤
ag∥1(1 + cλh)}

,
1

4(ℓφθ,1 + ℓφ∗,1)
,

1

cγ,αℓφλ,1
,

1

4cγ,α∥Aag∥2Mℓ2f
,

1

2cγ,αch
,

1

4
(
ℓFH,1 +M∥Bh∥2ℓ2f

)
+ ℓH

}
,

(F.73b)

where ℓFH,1 = ℓf,1(∥A⊤∥1 + ∥B⊤
h ∥1cλh

), and ℓH = ∥Bh∥
√
Mℓf . Then it holds that

T−1∑
t=0

αt

(
∥dt∥2 + ch∥H(θt)∥2

)
= O(1). (F.74)

Therefore, αtch∥H(θt)∥2 are bounded for all t = 0, . . . , T . Combining with Lemma 32, we have
∥H(θt)∥ are bounded for all t = 0, . . . , T , thus we can choose αt = Ω(1), i.e., αt is lower bounded
by a constant.

Collecting the results above, we have proved that we can choose αt = Θ(1), γt = Θ(1) such that

1

T

T−1∑
t=0

(
∥dt∥2 + ∥H(θt)∥2

)
= O

(1

T

)
. (F.75)

The proof is complete.

39

G Stochastic Algorithms

In this section, we discuss the single-loop stochastic algorithm and its convergence guarantees. Note
that, the extension of the analysis of the double-loop algorithm, i.e., Algorithm 1 and the extension of
the single-loop algorithm analysis in Theorem 2 to their stochastic variants with double sampling as
used in [7], are rather straightforward, thus we ommit the discussion in this paper, and only focus on
the single-loop stochastic algorithm with equality constraints only, i.e., Mg = 0, and with a sharper
analysis as an extension of Theorem 3.

Let ξ and ξ′ be i.i.d. random variables. The stochastic constrained vector optimization problem is
defined as

min
θ∈Rq

F (θ) := E[Fξ(θ)], s.t. H(θ) := E[Hξ′(θ)] = 0, with Hξ′(θ) = BhFξ′(θ) + bh. (G.1)

G.1 Algorithm summary

The stochastic algorithm is summarized in Algorithm 3. Note that, instead of computing
∇Fξt,1(θt),∇Fξt,2(θt), which requires 2M gradient computation at each iteration, we compute
∇Fξt,1(θt),∇

(
Fξt,2(θt)A

⊤
agλt

)
, which requires M + 1 gradient computation per iteration. This

saves nearly half of the per-iteration complexity compared to the most relevant existing stochastic
algorithm for multi-objective optimization [7]. Furthermore, with the gradient-based single-loop
update for λt, the approximation approach proposed in [34, Section 3.2] can be further applied to
largely reduce the per-iteration complexity, which we leave for future work.

Algorithm 3 Stochastic FERERO-SA

1: Initialize t = 0, θ0, λ0, step sizes αt, γt;
2: for t = 0, . . . , T − 1 do
3: Compute the stochastic gradients ∇Fξt,2(θt),∇Fξt,1(θt)A

⊤
agλt;

4: Compute the stochastic estimate of the constraint Hξt,1(θt);
5: Compute an update direction dt = ∇Fξt,1(θt)A

⊤
agλt;

6: Choose the step size αt by a predefined schedule;
7: Update θt by θt+1 = θt + αtdt;
8: Update λt by (3.4);
9: end for

G.2 Proof of Theorem 4: convergence of Algorithm 3

We first introduce the supporting lemmas, and then present the main proofs. Denote Ft as the
σ-algebra generated by ∇Fξ0(θ0),∇Fξ1(θ1), . . . ,∇Fξt(θt), where ξt = {ξt,1, ξt,2}. For brevity, we
let Et[·] := E[· | Ft−1]. Also recall that ∇̃ is the unbiased stochastic estimate of the gradient.

We make the following additional assumptions for proof of convergence.

Assumption 5. For {θt, λt}T−1
t=0 on the trajectory of Algorithm 3, it holds that

1. The variance of ∇Fξt(θt) is bounded by σ2.
2. The variance of ∇̃λφ(λt; θt) is bounded by γtσ2.
3. The function ∥H(θt)∥ is bounded by cH .

Note that the bounded variance assumption is common in optimization literature. However, for
sharp analysis here, we additionally require ∇̃λφ(λt; θt) has reduced variance in the order of O(γt),
which can be achieved using a large batch size. Note that, even without assuming reduced variance,
i.e., Assumption 5-2, the stochastic algorithm still converges, which can be proved by extending
Theorem 2 to the stochastic case using the same techniques in [7] for MoDo, a double-sampling-based
single-loop stochastic variant of MGDA. However, the convergence rate will be slower than O(T− 1

2).
Here we use this additional assumption to achieve a faster convergence rate.

The following Lemma 34 extends Lemma 17 to the stochastic case.

40

Lemma 34. Let λt = [λf,t;λh,t]. Consider the stochastic sequence {λt}Tt=0 produced by Algorithm 3.
Then for all λ = [λf ;λh] ∈ Ωλ, it holds that

2γtEt[⟨λf,t − λf ,∇λf
φ(λt; θt)⟩] ≤ Et[∥λf,t − λf∥2 − ∥λf,t+1 − λf∥2 + γ2t ∥∇̃λf

φ(λt; θt)∥2];
2γtEt[⟨λh,t − λh,∇λh

φ(λt; θt)⟩] ≤ Et[∥λh,t − λh∥2 − ∥λh,t+1 − λh∥2 + γ2t ∥∇̃λh
φ(λt; θt)∥2].

(G.2)

Proof. By the update of λ, it holds that

∥λf,t+1 − λf∥2 ≤ ∥λf,t − γt∇̃λf
φ(λt; θt)− λf∥2

=∥λf,t − λf∥2 − 2γt⟨λf,t − λf , ∇̃λf
φ(λt; θt)⟩+ γ2t ∥∇̃λf

φ(λt; θt)∥2. (G.3)

Taking expectation over the stochastic samples and rearranging the above inequality, we have

2γtEt[⟨λf,t − λf ,∇λf
φ(λt; θt)⟩] = 2γtEt[⟨λf,t − λf ,∇λf

φ(λt; θt)⟩]
≤Et[∥λf,t − λf∥2 − ∥λf,t+1 − λf∥2 + γ2t ∥∇̃λf

φ(λt; θt)∥2]. (G.4)

Following similar arguments, it holds that

2γtEt[⟨λh,t − λh,∇λh
φ(λt; θt)⟩]

≤Et[∥λh,t − λh∥2 − ∥λh,t+1 − λh∥2 + γ2t ∥∇̃λh
φ(λt; θt)∥2]. (G.5)

The proof is complete.

Lemma 35 (Restatement of [50, Lemma 2]). Let φ̄(x) = φ(x) + h(x), where φ : Rq → R is L-
smooth, and h : Rq → R is nonsmooth but convex and relatively simple. Define y = proxγh(x−γd′)
for some d′ ∈ Rq . Then for y, the following inequality holds for all z ∈ Rq:

φ̄(y) ≤ φ̄(z)+⟨y − z,∇φ(x)− d′⟩

+ (
L

2
− 1

2γ
)∥y − x∥2 + (

L

2
+

1

2γ
)∥z − x∥2 − 1

2γ
∥y − z∥2. (G.6)

The following Lemma 36 extends Lemma 30 to the stochastic case.
Lemma 36 (Error of subprogram in the stochastic setting). Suppose Assumptions 1, 2, 3, 4, 5 hold,
and Mg = 0. Let {θt}, {λt} be the sequences produced by Algorithm 3 with step size γt ≤ ℓ−1

φλ,1
.

Then for any cφ,d > 0, the following hold

E[φ(λt+1; θt)− φ(λ∗(θt); θt)] ≤ (1− γtµφ)E
[
φ(λt; θt)− φ(λ∗(θt); θt)

]
+ γ2t σ

2 (G.7a)

E[φ(λt+1; θt+1)− φ(λ∗(θt+1); θt+1)] ≤
(
1 + αtcφ,dℓ

2
φθ,1

µ′
φ

)
E
[
φ(λt+1; θt)− φ(λ∗(θt); θt)

]
+
(αt

2cφ,d
+
ℓφθ,1 + ℓφ∗,1

2
α2
t

)
E[∥∇F (θt)A⊤

agλt∥2] +
ℓφθ,1 + ℓφ∗,1

2
α2
tσ

2.

(G.7b)

Proof of Lemma 36. The proof follows most of that of Lemma 30. We highlight the difference.

First we define λ′t+1 = ΠΩλ
(λt −∇λφ(λt; θt)) as an auxiliary variable. By the ℓφλ,1-smoothness

of φ(·; θ), we have

E[φ(λ′t+1; θt)] ≤ E[φ(λt; θt) + (
ℓφλ,1

2
− 1

γt
)∥λ′t+1 − λt∥2]. (G.8)

Applying Lemma 35 with y = λt+1, z = λ′t+1, x = λt, and that λt, λt+1, λ
′
t+1 ∈ Ωλ yields

E[φ(λt+1; θt)] ≤ E
[
φ(λ′

t+1; θt) + ⟨λt+1 − λ′
t+1,∇λφ(λt; θt)− ∇̃λφ(λt; θt)⟩

+ (
ℓφλ,1

2
− 1

2γt
)∥λt+1 − λt∥2 + (

ℓφλ,1

2
+

1

2γt
)∥λ′

t+1 − λt∥2 −
1

2γt
∥λt+1 − λ′

t+1∥2
]
.

(G.9)

41

Furthermore, following similar arguments as (F.49), by Assumption 4-1, and taking total expectation,
we have

E[φ(λ′t+1; θt)]≤E
[
φ(λt; θt)− γtµφ

(
φ(λt; θt)− φ(λ∗(θt); θt)

)]
. (G.10)

Adding up 2
3× (G.8), 1× (G.9), and 1

3× (G.10) yields

E[φ(λt+1; θt)] ≤E
[
φ(λt; θt) + (

5ℓφλ,1

6
− 1

6γt
)∥λ′t+1 − λt∥2 + (

ℓφλ,1

2
− 1

2γt
)∥λt+1 − λt∥2

− µφγt
3

(
φ(λt; θt)− φ(λ∗(θt); θt)

)
− 1

2γt
∥λt+1 − λ′t+1∥2

+ ⟨λt+1 − λ′t+1,∇λφ(λt; θt)− ∇̃λφ(λt; θt)⟩
]
. (G.11)

Choosing γt ≥ 1
ℓφλ,1

≥ 1
5ℓφλ,1

and applying Cauchy-Schwarz and Young’s inequality, we have

E[φ(λt+1; θt)] ≤E
[
φ(λt; θt)−

µφγt
3

(
φ(λt; θt)− φ(λ∗(θt); θt)

)
+
γt
2
∥∇λφ(λt; θt)− ∇̃λφ(λt; θt)∥2

]
. (G.12)

The first inequality is proved. We then prove the second inequality. Note that (F.50) still holds here.
Following similar arguments in (F.51), E[J1] in (F.50) can be further bounded by

E[J1] ≤ E
[
− αt⟨∇θφ(λt+1; θt)−∇φ(λ∗(θt); θt), dt⟩+

ℓφθ,1 + ℓφ∗,1

2
α2
t ∥dt∥2

]
≤ E

[
− αt⟨∇θφ(λt+1; θt)−∇φ(λ∗(θt); θt),∇F (θt)A⊤

agλt⟩+
ℓφθ,1 + ℓφ∗,1

2
α2
t ∥dt∥2

]
≤ E

[
αt∥∇θφ(λt+1; θt)−∇φ(λ∗(θt); θt)∥∥∇F (θt)A⊤

agλt∥+
ℓφθ,1 + ℓφ∗,1

2
α2
t ∥dt∥2

]
.

(G.13)

Then following similar arguments in (F.52) and (F.53), we have

E[J1]≤E
[
αtcφ,dℓ

2
φθ,1

µ′
φ

(
φ(λt+1; θt)− φ(λ∗(θt); θt)

)
+

αt

2cφ,d
∥∇F (θt)A⊤

agλt∥2 +
ℓφθ,1 + ℓφ∗,1

2
α2
t ∥dt∥2

]
. (G.14)

Plugging (G.14) back into (F.50) with total expectation completes the proof of the second inequality.

Next we proceed to state and prove Theorem 4, which generalizes Theorem 3 to its stochastic variants,
with a matching convergence rate to the unconstrained stochastic MOO algorithms and stochastic
gradient descent. This allows us to apply the algorithm to large-scale machine learning problems,
which we detail in Section 5. Its proof also extends that of Theorem 3. We ommit the similar
derivations and only highlight the difference.

Theorem 4 (Convergence of the single-loop stochastic FERERO algorithm). Suppose Assump-
tions 1, 2, 3, 4, 5 hold, and Mg = 0. Let {θt}, {λt} be the sequences produced by Algorithm 3 with
A = I and Ωλf

(θ) = ∆M (c.f. Remark 4). With properly chosen step sizes αt = α = Θ(T− 1
2),

γt = γ = Θ(T− 1
2), it holds that

1

T

T−1∑
t=0

E
[
∥∇F (θt)A

⊤
agλt∥2 + ∥H(θt)∥2

]
= O

(
T− 1

2

)
. (G.15)

Proof of Theorem 4. Reuse the Lyapunov functions defined in (F.57). Let λt = [λf,t;λh,t]. The
algorithm takes the update θt+1 = θt + αtdt with dt = ∇Fξt,1(θt)A

⊤
agλt. From Lemma 9, the

function λ⊤f AF (θ) is ℓf,1∥A⊤∥1-smooth. Then following similar arguments from (F.18)-(F.20),

42

choosing αt

γt
= α0

γ0
= 1

cγ,α
for all t ∈ [T], and taking total expectation, we have the stochastic version

of (F.58) below
E[Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t]

≤ℓf,1∥A
⊤∥1

2
α2
tE[∥dt∥2] +

1

2
αtγtE[∥∇̃λf

φ(λt; θt)∥2]− αtE[⟨λf,t,∇λf
φ(λt; θt)⟩]. (G.16)

The stochastic version of (F.59) is

E[Vh,0,t+1 − Vh,0,t] ≤− αtchE[λ⊤h,tH(θt)] +
ℓf,1
2
α2
t ∥B⊤

h ∥1cλh
E[∥dt∥2]

− αtE[⟨λh,t,∇λh
φ(λt; θt)⟩]− γtE[∇̃λh

φ(λt; θt)
⊤H(θt)]. (G.17)

By Lemma 24, and that ∇λh
φ(λt; θt) = −∇H(θt)

⊤∇F (θt)A⊤
agλt−chH(θt), the stochastic version

of (F.63) is

E[Vh,3,t+1 − Vh,3,t] ≤ αtE[H(θt)
⊤∇H(θt)

⊤∇Fξt,1(θt)A
⊤
agλt] +

1

4
α2
tE[ℓH2,1,t∥dt∥2]

≤− αtchE[∥H(θt)∥2]− αtE[H(θt)
⊤∇λh

φ(λt; θt)] +
1

4
α2
tE[ℓH2,1,t∥dt∥2] (G.18)

where ℓH2,1,t = ℓH2,1 = 2M∥Bh∥2ℓ2f + 2(cH + ℓHcα,h)
√
Mℓf,1∥Bh∥ by Assumption 5-3, and

ℓH = ∥Bh∥
√
Mℓf . Let ℓFH,1 = ℓf,1(∥A⊤∥1 + ∥B⊤

h ∥1cλh
). Adding up (G.16), (G.17), and (G.18)

yields that
E[Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t + Vh,t+1 − Vh,t]

≤1

4
α2
t (2ℓFH,1 + ℓH2,1)E[∥dt∥2]− αtE[⟨λt,∇λφ(λt; θt)⟩]− αtchE[λ⊤h,tH(θt)]

− αtchE[∥H(θt)∥2]− (αt + γt)E[H(θt)
⊤∇λh

φ(λt; θt)] +
1

2
αtγtE[∥∇̃λf

φ(λt; θt)∥2].
(G.19)

Further rearranging the above inequality, applying (F.65), invoking that γt = cγ,ααt, and choosing

αt ≤ min
{

1
2ℓFH,1+ℓH2,1

, 1
4∥Aag∥2Mℓ2f cγ,α

, 1
2chcγ,α

}
, we have

E[Vf,t+1 − Vf,t + Vλf ,t+1 − Vλf ,t + Vh,t+1 − Vh,t]

≤− 1

2
αtE[∥∇F (θt)A⊤

agλt∥2]−
1

4
αtchE[∥H(θt)∥2] +

(1 + cγ,α)
2

ch
αtE[∥∇λh

φ(λt; θt)∥2]

+ α3
t c

2
γ,ασ

2 +
1

4
(2ℓFH,1 + ℓH2,1)α

2
tσ

2. (G.20)

By applying Lemma 36, and choosing αt ≤ min
{

1
ℓφλ,1cγ,α

, 1
(ℓφθ,1+ℓφ∗,1)cφ,d

,
µφ

cφ,dℓ2φθ,1

}
and cγ,α ≥

2cφ,dℓ
2
φθ,1µ

′
φ

µφ
, the stochastic version of (F.69) is

E[Vφ,t+1 − Vφ,t] ≤− 1

2
µφγtE

[
φ(λt; θt)− φ(λ∗(θt); θt)

]
+

αt

cφ,d
E[∥∇F (θt)A⊤

agλt∥2] + (1 + 2c2γ,α)α
2
tσ

2. (G.21)

Adding up (G.20) and (G.21) with properly chosen hyperparameters ch ≥ (1+cγ,α)
2, cγ,α ≥ 4ℓφλ,1

µφ
,

and cφ,d = 4, we have

E[Vt+1 − Vt] ≤− 1

4
αtE[∥∇F (θt)A⊤

agλt∥2]−
1

4
αtchE[∥H(θt)∥2]

+
(
1 + 2c2γ,α + αtc

2
γ,α +

1

4
(2ℓFH,1 + ℓH2,1)

)
α2
tσ

2. (G.22)

With the same hyperparameters and step sizes summarized in (F.73), one can choose α = Θ(T− 1
2),

γ = Θ(T− 1
2) to obtain

1

T

T−1∑
t=0

E
[
∥∇F (θt)A⊤

agλt∥2 + ∥H(θt)∥2
]
= O

(
T− 1

2

)
. (G.23)

The proof is complete.

43

H Implementation Details and Additional Experiment Results

In this section, we report the additional implementation details omitted from the main text in
Appendix H.1 and the additional experimental results in Appendix H.2.

H.1 Implementation details

Computation. All experiments were conducted on a server with an Intel i9-7920X CPU, two
NVIDIA A5000 GPUs and two NVIDIA A4500 GPUs.

For all the experiments reported in the main text except for the multi-lingual speech recognition
experiment, we exactly follow the settings from [41]. The implementations of the baselines including
LS, PMTL, and EPO are from the official code of the EPO paper in https://github.com/dbmptr/
EPOSearch with their default hyperparameters. The results of XWC-MGDA are directly referenced
from the paper due to lack of official implementation.

Synthetic data. For the results in both Figure 3 and Figure 4, the model parameter θ has dimension
q = 20, the number of objectives is M = 2. The angles between the preference vectors and the
horizontal axis are generated between [1

20π,
9
20π] with equal angular distance. This experiment does

not involve stochastic optimization. For our method, we solve the subprogram using PGD with a step
size 0.1 up to an error of 10−5 or with a maximum of 250 iterations. In the experiments, we set the
parameter ch = 1 for the subprogram if not otherwise specified.

In Figure 3, for all preferences and all methods, the initial model parameter θ0 is randomly generated
from a Gaussian distribution N (0, 1) for each dimension. In Table 6, we provide a summary of the
hyperparameters for the baselines and our methods for the experiments in Figure 3.

Table 6: Summary of hyper-parameters for the synthetic data experiments in Figure 3.
Hyperparameters LS MGDA PMTL EPO Ours Figure 3e Ours Figure 3f

step size αt 0.1 0.2 0.2 0.1 0.05 0.05
max iterations 150 150 150 100 100 100

In Figures 4a-4c, the initial model parameters are randomly generated from a uniform distribution
between [−0.3, 0.3] for each dimension. In Figures 4d-4f, the initial model parameters are randomly
generated from a uniform distribution between [−0.5,−0.15] or [0.15, 0.5] for each dimension.
Table 7 summarizes the hyperparameters for the experiments in Figure 4.

Table 7: Summary of hyper-parameters for the synthetic data experiments in Figure 4.
Hyperparameters Figures 4a-4c Figures 4d-4f

PMTL EPO Ours PMTL EPO Ours

step size αt 0.25 0.10 0.60 0.50 0.20 0.60
max iterations 100 60 10 200 120 200

ch - - 1 - - 0.01

Multi-patch image classification. For a fair comparison, we follow the same data splitting and
processing procedures as [41] using their official code. In each of the three datasets, there are 120k
samples for training and 20k samples for testing. There are two tasks on each dataset: 1) classifying
the top-left image, and 2) classifying the bottom-right image.

For all methods, we use the SGD optimizer with batch size 256. Note that, for our stochastic method,
we use batch size 128 for each batch in the double sampling. Thus the total number of samples
taken at each iteration is also 256. The hyperparameters are summarized in Table 8. The results of
XWC-MGDA are directly referenced from the paper.

We use the Pymoo 0.6.1 library to compute the hypervolume. The Nadir points, i.e., the worst
performance on single task baselines, used for the hypervolume computation are given in Table 9. For
a fair comparison, the Nadir points we use are the same with [44] inferred from Figure 4 in the paper.

44

https://github.com/dbmptr/EPOSearch
https://github.com/dbmptr/EPOSearch

Table 8: Summary of hyper-parameter choices for multi-patch image classification experiments.
Hyperparameters Multi-MNIST Multi-Fashion Multi-Fashion+MNIST

LS PMTL EPO Ours LS PMTL EPO Ours LS PMTL EPO Ours

step size αt 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3 1E-3
step size γt - - - 1E-4 - - - 1E-4 - - - 1E-4

epochs 100 100 100 100 100 100 100 100 100 100 100 100
ch - - - 0.5 - - - 0.5 - - - 0.5

Table 9: Nadir points for the hypervolume computation
Dataset and metrics Nadir points, metrics on objective [1, . . . ,M]

Multi-MNIST loss [0.500, 0.450]
Multi-Fashion loss [0.840, 0.800]
Multi-F+M loss [0.625, 0.575]
Multi-MNIST accuracy [0.830, 0.848]
Multi-Fashion accuracy [0.840, 0.800]
Multi-F+M accuracy [0.790, 0.785]

Multi-lingual speech recognition. We use two datasets, Librispeech and AISHELL v1. Librispeech
is an English speech dataset that consists of 960 hours of labeled audio data. For our experiments, we
use the "train-clean-100" subset of the Librispeech dataset for supervised training, which contains
100 hours of clean training data. Additionally, we use the full 960 hours of data for self-supervised
training. AISHELL v1 is a 178-hour Mandarin speech corpus designed for various speech and speaker
processing tasks. We use the full AISHELL v1 dataset for both self-supervised and supervised training.
We combine these two datasets for our multi-lingual speech recognition experiments.

We use the conformer [26] model with 8 conformer blocks as the encoder. Each block contains 512
hidden units and 8 attention heads. Each attention head has dimension 64. The convolutional kernel
size is 31. Two classification heads are used. They contain two linear layers, one with 1000 output
size for English, and another with 5000 output size for Chinese.

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

(a) Without scale

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.4

0.8

1.2

1.6

2.0 5 2

(b) With scale

Figure 7: Scale invariance verification.

The loss functions we use include the Contrastive
Predictive Coding (CPC) loss, and the Connection-
ist Temporal Classification (CTC) loss. The CPC
loss [46] is a self-supervised loss to learn robust
representations from unlabeled speech data. The
CPC loss is designed to maximize the probability
of a future sample given a contextual representation
generated from the current speech sequence. The
CTC loss is defined as the negative log-likelihood of
the model parameter given the input sequence and the label sequence.

For all methods including the baselines, we use the step sizes αt,1 = 5× 10−4 for training backbone
conformer parameters and αt,2 = 5× 10−5 for training classification head parameters. The step size
γt = 0.1 and the parameter ch = 0.5.

H.2 Additional experiment results

Synthetic data. We conduct several additional experiments on the synthetic objectives to further
verify our theory. First, we conduct all the experiments on the synthetic objectives reported in the
main text, using the single-loop approximate algorithm described in Algorithm 2. The results are
plotted in Figure 8. The hyperparameters are the same unless otherwise specified.

From Figure 8a, we can see that Algorithm 2 with a one-step approximate update of λt also leads
to convergence and preference alignment. However, different from the results obtained by exactly
solving for λ∗(θt) at each iteration, the models on the optimization trajectories do not align exactly
with the preference. Similar observations can be found in Figure 8b. In Figure 8c, which is a difficult
case due to the initialization, A = IM does not work since it does not incorporate more general
relative preference to allow controlled ascent update. This is addressed in Figure 8d, where a general
A (the same as in prior experiments) is used. Compared with exactly solving for λ∗(θt) at each

45

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

(a) Standard

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

1.2 5 2

Ours output

(b) Easy init.

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

Ours output

(c) Hard init. A = IM

0.0 0.2 0.4 0.6 0.8 1.0 51

0.0

0.2

0.4

0.6

0.8

1.0

5 2

Ours output

(d) Hard init. general A

Figure 8: Synthetic experiment results with Algorithm 2.

iteration, the approximate algorithm takes more iterations to converge, but has smaller per-iteration
complexity, and smaller total time complexity.

Table 10: Summary of hyper-parameters for the synthetic data experiments in Figure 8.
Hyperparameters Figure 8a Figure 8b Figure 8c Figure 8d

step size αt 0.10 0.06 0.15 0.15
max iterations 100 100 250 250

ch 6 6 0.1 0.1

We conduct another experiment to verify that the scale invariance can be preserved. We use the same
objective as above, but scale the second one by 2. We use a fixed initialization θ0 = 0.3·[1q/2;−1q/2]
for this experiment. The other hyperparameters are the same as the default. We use both F (θ0) and
F (0) as the reference points and choose Bh such that Bh(F (θ0)− F (0)) = 0. Results in Figure 7
show that for different scales, the trajectory and the converging solution are the same.

Table 11: Summary of average run time in seconds (s) or minutes (m) and number of iterations or
epochs of different methods on different datasets. We use Algorithm 1 for the synthetic experiments,
and Algorithm 3 for the other two experiments.

Datasets Metrics LS PMTL EPO FERERO

Synthetic, Figures 3(a-c) Iterations 100 100 60 10
Per-iteration run time 3.50E-4s 7.67E-4s 4.93E-3s 7.50E-4s

Total run time 0.035s 0.0767s 0.296s 0.0075s
Synthetic, Figures 3(d-f) Iterations 100 200 80 200

Per-iteration run time 3.10E-4s 7.65E-4s 4.93E-3s 7.30E-4s
Total run time 0.031s 0.153s 0.394s 0.146s

Multi-MNIST/Fashion/F+M Epochs 100 100 100 100
Per-epoch run time 3.54s 11.88s 9.66s 7.02s

Total run time 5.9m 19.8m 16.1m 11.7m

46

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1, introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See the Broader impacts and limitations section.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See Assumptions 1, 2, 3, 4 for the assumptions, and the Appendix D, and G
for the proof.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 5 and Appendix H.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is available at https://github.com/lisha-chen/FERERO/.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and Appendix H.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 5. We use the standard deviations as the error bars for all experi-
ments except the speech recognition experiments since the speech recognition experiments
take much longer time to run.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5 and Appendix H.

47

https://github.com/lisha-chen/FERERO/

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We preserve anonymity.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the end of the main paper in the Broader impacts and limitations section.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See Section 5 and Appendix H.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects

48

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Problem Setup and A Meta Algorithm
	Problem setup and preliminaries
	Find the preference-guided direction
	A meta algorithm for preference-guided multi-objective learning

	Efficient Single-loop Algorithms
	Single-loop approximate algorithm
	Choice of relative preferences

	Related Works
	Experiments
	Synthetic data
	Real data

	Conclusions
	
	
	Notations
	Related Works and Comparison
	Extended related works
	A detailed comparison with existing works

	Preliminaries
	General cone-induced partial ordering
	Necessary and sufficient conditions for C-optimality

	Proof of Auxiliary Lemmas
	Lagrangian of the subprogram
	First-order necessary optimality conditions
	Properties of PMOL
	Proof of Lemma 1: properties of the subprogram
	Proof of Lemma 2: calmness of PMOL

	Proof of Theorem 1: convergence of Algorithm 1
	Auxiliary lemmas
	Proof of Theorem 1

	Proof of Theorems 2 and 3: convergence of Algorithm 2
	Auxiliary lemmas
	Analysis with the same merit function: proof of Theorem 2
	Sharper analysis with a different merit function: proof of Theorem 3

	Stochastic Algorithms
	Algorithm summary
	Proof of Theorem 4: convergence of Algorithm 3

	Implementation Details and Additional Experiment Results
	Implementation details
	Additional experiment results

