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Abstract

Diffusion models have been widely utilized for image restoration. However, previ-
ous blind image restoration methods still need to assume the type of degradation
model while leaving the parameters to be optimized, limiting their real-world ap-
plications. Therefore, we aim to tame generative diffusion prior for universal blind
image restoration dubbed BIR-D, which utilizes an optimizable convolutional
kernel to simulate the degradation model and dynamically update the parameters
of t he kernel i n t he diffusion steps, enabling i t t o achieve blind i mage restora-
tion results even in various complex situations. Besides, based on mathematical
reasoning, we have provided an empirical formula for t he chosen of adaptive
guidance scale, eliminating the need for a grid search for the optimal parameter.
Experimentally, Our BIR-D has demonstrated superior practicality and versatility
than off-the-shelf unsupervised methods across various tasks both on real-world
and synthetic datasets, qualitatively and quantitatively. BIR-D i s able t o fulfill
multi-guidance blind image restoration. Moreover, BIR-D can also restore images
that undergo multiple and complicated degradations, demonstrating the practical
applications. The code is available at https://github.com/Tusiwei/BIR-D

1 I ntroduction

Figure 1: Blind Image Restoration Diffusion Model (BIR-D) can achieve high-quality restoration
for different t ypes of degraded i mages. BIR-D not only has t he capability t o r estore ( a) l inear
inverse problems when t he degradation function i s known. BIR-D can also achieve high-quality
image restoration in (b) blind issues with unknown degradation functions, as well as in (c) mixed
degradation and real degradation scenarios.
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Images inevitably suffer from a degradation in quality in the process of capturing, storing, and
compressing. Thus, the image restoration task intends to establish a mapping between the degraded
image and the original image, to recover a high-quality image from the degraded image. In an ideal
scenario, the ultimate goal is to undo and restore the degradation process of the image. However,
in reality, the complexity of the degradation mode often leads to the incapability to fully restore
the original high-quality image, which also makes traditional supervised approaches unsuitable for
all types of image restoration tasks. According to the degradation mode, image restoration tasks
can be divided into two types: non-blind and blind problems. Blind problems, such as low light
enhancement, motion blur reduction and HDR image restoration, refer to image restoration problems
where the degradation functions and parameters are totally unknown.

The blind image restoration problem has attracted increasing attention with the development of
generative models. The unsupervised blind image restoration methods represented by Generative
Adversarial Networks (GANs) [1; 2; 3; 4] have the capability to train networks on large datasets
of clean images and learn real-world knowledge. However, GANs are still difficult to avoid falling
into limitations such as poor diversity and difficulty in model training. In parallel, diffusion model
[5; 6; 7; 8; 9] have shown strong performance in terms of quality and diversity compared to GANs.
Pioneer works such as GDP [10], DDRM [11], and DDNM [12] attempt to solve such problems by
incorporating the degraded image y as guidance in the sampling process of diffusion models. By
modeling posterior distributions in an unsupervised sampling manner, these approaches showcase
the potential for practical guidance in blind image restoration, offering promising implications for
real-world applications. However, the degradation types in these models still need to be assumed,
limiting the practicality of natural image restoration where the complicated degradation models
always remain unknown.

To this end, we propose an effective and versatile Blind Image Restoration Diffusion Model (BIR-D).
It utilizes well-trained DDPM [13] as an effective prior and is guided by degraded images to form
a universal method for various image restoration and enhancement tasks. To uniformly model the
unknown degradation function of blind image restoration, an optimizable convolutional kernel is
dynamically optimized and utilized to simulate the degradation function at each denoising step.
Specifically, BIR-D updates the convolution kernel parameters based on the gradient of distance
loss between the generated image undergoing our optimizable convolutional kernel and the given
degraded image. At the same time, all existing image restoration methods [10; 11; 12] that use
diffusion models manually set the guidance scale as a hyperparameter to control the magnitude of
guided generation, which also remains unchanged throughout the sampling process. However, for
images from different tasks, the guidance scale required for each diffusion step is not entirely the
same. To deal with this issue, we have derived an empirical formula for the guidance scale, which
can calculate the optimal guidance scale for the next denoising step in real-time during the sampling
process. This improvement avoids the need to manually grid search the optimal value of the guidance
scale when solving different tasks and also enhances the quality of generated images. With the help
of a well-trained DDPM, the above designs enable BIR-D to tackle various blind image restoration
tasks. BIR-D can also achieve multi-degradation or multi-guidance image restoration. Furthermore,
it showcases satisfactory results in addressing restoration issues related to complex degradation types
encountered in real-world scenarios.

2 BIR-D: Universal Blind Image Restoration Diffusion Model

In this study, we aim to use a well-trained DDPM [13] to learn the prior distribution of images and
ultimately solve non-blind and blind problems in various image restoration tasks.

2.1 Optimizable convolutional kernel as a universal degradation function

For a natural image x, its corresponding degraded image y can be obtained by the degradation
function y = D(x). Most of the blind image restoration methods [10; 12] are used to solve the
situation where the degradation function D is known while leaving the parameters of D are unknown.
However, when dealing with real-world image restoration problems, the degradation function D is
not only an unknown quantity but also difficult to accurately represent mathematically. Therefore,
we propose an optimized convolutional kernel to simulate complex degradation functions. The
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Figure 2: Overview of BIR-D. Degraded image y was given during the sampling process. BIR-D
systematically incorporates guidance from degraded images in the reverse process of the diffusion
model and optimizes the degraded model at the same time. For degraded image y, pre-training is first
performed to provide a better initial state for BIR-D. BIR-D introduces a distance function in each
step of the reverse process of the diffusion model to describe the distance loss between the degraded
image y and the generated image x̃0 after the degradation function, so that the gradient could be used
to update and simulate a better degradation function. Based on the empirical formula, the adaptive
guidance scale can be calculated to provide optimal guidance during the sampling process.

parameters of the convolution kernel in the degradation function are dynamically optimized along
with the denoising steps.

Moreover, in the real-world scenario, considering that there are different noises in different subtle
areas of the image, using only one optimized convolutional kernel may not fully cover this situation.
Therefore, we propose to utilize a mask M to model and estimate these noises. Thus, the entire
degradation process can be represented as: y = K(x) + M, where K refers to the optimized
convolutional kernel used in the model and M is a mask with the same dimension as image x. K and
M have their own optimizable parameters, forming the degradation function
mathcalD. In this way, any degradation process can be simulated by this degradation function.

2.2 Empirical formula of guidance scale

In the reverse denoising process of DDPM, the generated images can be conditioned on degraded
image y [39]. Specifically, the distribution pθ(xt−1|xt) of reverse denoising is converted into

Algorithm 1: Unconditional diffusion model with the guidance of degraded image y, given a
diffusion model noise prediction function ϵθ(xt, t).
Input: Degraded image y, degradation function D composed of optimized convolutional kernels K with

parameters φ and maskM with parameters ϕ, learning rate l, distant measure L.
Output: Output image x0 conditioned on y.
Sample xT fromN (0, I)
for t from T to 1 do

x̃0 = xt√
ᾱt
−

√
1−ᾱtϵθ(xt,t)√

ᾱt

Lφ,ϕ,x̃0 = L(y,Dφ,ϕ(x̃0))

s = − (xt−µ)T g+C+log N

L(Dφ,ϕ(x̃0),y)

x̃0 ← x̃0 − s(1−ᾱt)√
ᾱt−1βt

∇x̃0Lφ,ϕ,x̃0

µ̃t =

√
ᾱt−1βt

1−ᾱt
x̃0 +

√
ᾱt(1−ᾱt−1)

1−ᾱt
xt

β̃t =
1−ᾱt−1

1−ᾱt
βt

Sample xt−1 fromN (µ̃t, β̃tI)
φ← φ− l∇φLφ,ϕ,x̃0

ϕ← ϕ− l∇ϕLφ,ϕ,x̃0

return x0

3



Figure 3: Comparison of image quality for blind face restoration results on LFW [14] and WIDER
dataset [15].

Task LFW dataset WIDER dataset

FID NIQE FID NIQE

PGDiff [16] 71.62 4.15 39.17 3.93
DiffBIR [17] 39.58 4.03 32.35 3.78

BIR-D 40.12 3.94 31.49 3.65

Table 1: Quantitative comparison of blind face restoration on LFW and WIDER datasets

a conditional distribution pθ(xt−1|xt, y). It is demonstrated [13] that the difference between it
and the original formula lies in the addition distribution of p(y|xt), which serves as a probability
representation for denoising xt into a high-quality image consistent with y. Previous work [10]
proposed a feasible calculation to approximate this indicator by using heuristic algorithms:

log p(y | xt) = − logN − sL(D(x̃0), y)), (1)

where N is the normalization factor, which is the distribution pθ(y|xt+1), and s is the scalar factor
used to control the importance of guidance, named guidance scale. L is the distance metric. The
value of the guidance scale plays a crucial role in the quality of the image generation result. A larger
value can lead to overall blurring of the image, while a smaller value can result in missing details
in the restoration. However, the guidance scale in existing works [10; 9; 12] can only be manually
set as a hyperparameter. But in specific experiments, the optimal value of the guidance scale varies
in different masks, degraded images, and diffusion steps. The original configuration necessitates
thorough testing for the initial setup. Additionally, employing the same guidance scale for every
denoising step is not an optimal choice.

Therefore, we propose an empirical formula for the guidance scale, which can dynamically calculate
and update the optimal values of guidance factors in real-time at each diffusion step of degraded
images in specific repair tasks. Specifically, we noticed that the distribution log pθ(y|xt) can be
applied to perform Taylor expansion around x = µ and take the first two terms. The detailed process
of proving can be found in Appendix D.

log pθ(y | xt) = (xt − µ)T g + C, (2)

where g = ∇xt
log pθ(y | xt) |xt=µ, C = log p(y | xt) |xt=µ. By combining the heuristic approx-

imation formula and Taylor expansion formula mentioned above, we can simplify the empirical
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Task 4×Super resolution Deblur 25% Inpainting Colorization

PSNR SSIM Consistency FID PSNR SSIM Consistency FID PSNR SSIM Consistency FID PSNR SSIM Consistency FID

RED[19] 24.18 0.71 27.57 98.30 21.30 0.58 63.20 69.55 - - - - - - - -
DGP[18] 21.65 0.56 158.74 152.85 26.00 0.54 475.10 136.53 27.59 0.82 414.60 60.65 18.42 0.71 305.59 94.59

SNIPS[20] 22.38 0.66 21.38 154.43 24.73 0.69 60.11 17.11 17.55 0.74 587.90 103.50 - - - -
DDRM[11] 26.53 0.78 19.39 40.75 35.64 0.98 50.24 4.78 34.28 0.95 4.08 24.09 22.12 0.91 37.33 47.05
DDNM[21] 25.36 0.81 7.52 39.14 24.66 0.71 41.70 4.64 32.16 0.96 5.42 17.63 21.95 0.89 36.41 38.79

GDP[10] 24.42 0.68 6.49 38.24 25.98 0.75 41.27 2.44 34.40 0.96 5.29 16.58 21.41 0.92 36.92 37.60

BIR-D 24.58 0.71 6.32 37.54 26.31 0.73 38.42 2.32 33.59 0.90 5.18 15.73 22.09 0.89 36.12 36.58

Table 2: Quantitative comparison of linear inverse problems on ImageNet 1k[18].

Figure 4: Comparison of colorization image on ImageNet 1k[18]. BIR-D can generate various
outputs on the same input image.

formula for the guidance scale:

s = − (xt − µ)T g + C + logN

L(D(x̃0), y)
. (3)

The guidance scale is related to the generated images x, degraded image y, and the degradation
function D. This value of this Adaptive Guidance Scale can be dynamically updated in each
diffusion step so that each step in the diffusion model can use the most appropriate guidance scale.

2.3 Sampling process of BIR-D

Through empirical formulas, we can obtain the conditional transition formula in the reverse process
of the diffusion model.

log pθ(xt|xt+1, y) = log (pθ(xt|xt+1)p(y|xt) +N1 (4)
≈ log p(z) +N2, (5)

where z conforms to the distribution N (z;µθ(xt, t) + Σg,Σ). The intermediate quantity g =
∇xt

log p(y|xt). The value of g can be obtained by calculating the gradient in heuristic algorithms in
eq. (1), which includes the parameter of guidance scale:

g = ∇xt log p(y|xt) = −s∇xtL(D(xt), y) (6)

The other terms N1, N2, and the variance of the reverse process Σ = Σθ(xt) in eq. (4) and eq. (5)
are constants, and the unconditional distribution pθ(xt−1|xt) is given by traditional diffusion models.

Therefore, the conditional transition distribution p(xt−1|xt, y) can be approximately estimated by
adding −(sΣ∇xt

L(D(xt), y)) to the mean of the traditional unconditional transition distribution.
Previous studies [10] have shown that the addition of Σ has a negative impact on the quality of
generated images. Therefore, in this experiment, we omitted the term Σ, and the complete sampling
process is shown in algorithm 1.

Detailly, in the diffusion step t of the sampling process, the noise of xt is first predicted from the
given pre-trained DDPM and eliminated to obtain an estimated value of x0. Subsequently, apply the
degradation function of step t to x0 and calculate its reconstruction loss with the degraded image
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Figure 5: Results of linear degradation tasks on 256 × 256 images from ImageNet 1k.

Figure 6: Comparison of image quality in low-light enhancement task on the LoL [22], VE-LOL [23]
and LoLi-Phone [24] datasets.

y. We utilize our adaptive guidance scale for sampling the next step latent xt−1. In this process, it
is necessary to calculate the gradient about x0 and the parameters of each convolution kernel in the
distance metric loss, which is used to update the convolution kernel parameters in real time for the
next sampling process.

Pre-process. The empirical formula for the guidance scale we construct is related to the degradation
function. Herein, when the model simulates the degradation function more reasonably, BIR-D can
obtain more appropriate guidance scale values accordingly. To this end, we introduce a first-stage
pre-training model from [17] to further enhance the model’s capability to correct initial deviations.
This enables the model to have a strong correction ability for significant deviations in the degradation
function during the initial diffusion step, ultimately generating ideal image restoration results.
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Task LOL VE-LOL-L

PSNR SSIM LOE FID PI PSNR SSIM LOE FID PI

ExCNet[25] 16.04 0.62 220.38 111.18 8.70 16.20 0.66 225.15 115.24 8.62
Zero-DCE[26] 14.91 0.70 245.54 81.11 8.84 17.84 0.73 194.10 85.72 8.12

Zero-DCE++[27] 14.86 0.62 302.06 86.22 7.08 16.12 0.45 313.50 86.96 7.92
RRDNet[28] 11.37 0.53 127.22 89.09 8.17 13.99 0.58 94.23 83.41 7.36

GDP[10] 13.93 0.63 110.39 75.16 6.47 13.04 0.55 79.08 78.74 6.47

BIR-D 14.52 0.56 105.42 68.98 4.87 13.87 0.51 78.18 74.54 5.73

Table 3: Quantitative comparison among various zero-shot learning methods of low-light
enhancement task on LOL [22] and VE-LOL-L [23] Bold font represents the best metric result.

Figure 7: Comparison of image quality for HDR image recovery results on NTIRE [29].

Multi-degradation Image Restoration. In the real world, the degradation process often involves
a combination of multiple different complex types. To improve the image restoration capability
of the model in complex situations and enhance its practicality, we propose to extend BIR-D into
multi-task scenarios. To our surprise, BIR-D can fulfill multi-degradation image restoration without
any modification (Figure 9) thanks to the mixture of degradation types can also be simulated as an
unknown degradation by an optimizable convolutional kernel.

3 Experiments

In this section, we systematically compare BIR-D with other blind image restoration methods in
real-world and synthetic datasets. We have attached some more specific details, such as the dataset,
implementation, evaluation, and other results in the Appendix.

Blind Image Restoration on Real-world Datasets. Firstly, we evaluate the blind image restoration
capability of BIR-D on two real-world datasets, namely LFW dataset [14] and WIDER dataset [15].
As shown in Figure 3, BIR-D successfully simulated and removed blur, and achieved more ideal facial
detail restoration. The quantitative results in Table 1 shows that BIR-D outperforms PGDiff [16] and
DiffBIR [17] in NIQE metric on both datasets and FID metric on WIDER, demonstrating better blind
image restoration performance.

Comparison on Common Linear Inverse Problems. We conducted experiments on linear inverse
problems on ImageNet 1k to compare BIR-D with off-the-shelf methods. For each experiment, we
calculated the average Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), Consistency,
and FID results, where PSNR, SSIM, and Consistency are used to quantify the faithfulness between
the generated image and the original image, while FID is used to measure the quality of the generated
image. To make fair comparisons, other methods are given known degradation functions as reported
in the original paper while BIR-D utilizes universal degradation functions for different tasks. Table 2
shows that BIR-D outperforms other methods in terms of Consistency and FID in almost all tasks.
As shown in Figure 5, the images generated by BIR-D demonstrate a high level of image quality
and details. Moreover, Figure 4 also demonstrates that BIR-D can generate various results in image
restoration tasks.

Low Light Enhancement. We further evaluated the effectiveness of BIR-D in low-light image
enhancement. Following the previous works [10], we utilized three datasets, LOL [22], VE-LOL-L
[23], and LoLi-Phone [24], to test the restoration ability of BIR-D. As shown in Table 3, our BIR-D
outperforms all the zero-shot methods in both FID and Lightness Order Error (LOE) [40], and
demonstrates significant improvement in Perceptual Index (PI) [41]. A lower PI value reflects better
perceptual quality, while a lower LOE reflects a better natural preservation ability of the generated
image, making images to have a more natural sensory experience. As shown in Figure 6 and the
Appendix, BIR-D exhibits reasonable and well-exposed results.
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Figure 8: Comparison of image quality for motion blur reduction results on GoPro [30] and HIDE
dataset [31].

Motion Blur Reduction GoPro HIDE HDR Recovery NTIRE

PSNR SSIM PSNR SSIM PSNR SSIM LPIPS FID

DeepRFT[32] 33.23 0.963 31.42 0.944 Deep-HDR[33] 21.66 0.76 0.26 57.52
MSDI-Net[34] 33.28 0.964 31.02 0.940 AHDRNet[35] 18.72 0.58 0.39 81.98
NAFNet[36] 33.69 0.967 31.32 0.943 HDR-GAN[37] 21.67 0.74 0.26 52.71
UFPNet[38] 34.06 0.968 31.74 0.947 GDP[10] 24.88 0.86 0.13 50.05

BIR-D 34.12 0.968 32.09 0.948 BIR-D 25.03 0.88 0.16 48.74

Table 4: Quantitative comparison of motion blur reduction and HDR image recovery tasks.

HDR Image Recovery. In the HDR image restoration task, we compared BIR-D with other lead-
ing methods, including DeepHDR [33], AHDRNet [35], HDR-GAN [37], and GDP [10], on the
NTIRE2021 Multi-Frame HDR Challenge [29] dataset. The quantitative and qualitative results
are presented in Table 4 and Figure 7, with BIR-D showing the best PSNR and SSIM levels, and
successfully generating results with rich and accurate detailed information.

Motion Blur Reduction. To evaluate the performance of BIR-D in the motion blur reduction tasks,
we compare BIR-D with the state-of-the-art motion blur reduction methods on GoPro dataset [30]
and HIDE dataset [31]. We used the same input image, which also means that the motion blur of the
input image is the same, ensuring fairness in comparison. The comparison results of the metrics are
presented in Table 4, where BIR-D outperforms existing methods in both PSNR and SSIM. As shown
in Figure 8, BIR-D can effectively achieve the elimination of motion blur. The generated images not
only achieve a better quality but also receive restoration with more clear details.

Multi-Degradation Image Restoration. Encouraged by the excellent restoration performance of
BIR-D on single restoration task, we further tested the image restoration performance of BIR-D in
solving multi-task image restoration. As shown in Figure 9, we take a degraded image on the ImageNet

Methods Dynamic Update LOL LoLi-Phone

Kernel Guidance Scale PSNR SSIM LOE FID PI LOE PI

Model A % % 8.96 0.46 210.88 113.36 8.24 110.05 8.36
Model B % ! 9.58 0.48 203.83 102.47 7.90 102.55 8.25
Model C ! % 14.35 0.54 113.56 82.14 5.23 75.34 7.94

BIR-D ! ! 14.52 0.56 105.42 68.98 4.87 72.83 6.12

Table 5: The ablation study on the optimizable convolutional kernel and the empirical settings
of guidance scale.
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Figure 9: Results of multi-task image restoration.

Task Random initial value Biased initial value

PSNR SSIM Consistency FID PSNR SSIM Consistency FID
BIR-D without

pre-training model 25.88 0.69 40.24 2.55 21.49 0.61 53.78 4.32

BIR-D 26.31 0.73 38.42 2.32 25.97 0.71 39.87 2.41

Table 6: The ablation study on the effectiveness of the pre-training model.

dataset where two types of degradation are mixed as an example. The optimizable convolution kernel
of BIR-D can also simulate these complicated degradation functions. The generated images obtained
have excellent results in both image quality and details.

4 Ablation study

The Effectiveness of Optimizable Convolutional Kernel and Adaptive Guidance Scale. The
ablation studies on the real-time optimizable convolutional kernel parameters and guidance scale
were performed to reveal the effectiveness of these settings. We further tested the LOL [22] and the
most challenging LoLi-phone [24] datasets. Model A fixed the convolutional kernel parameters and
guidance scale. Models B and C represent fixed parameters for the convolution kernel and the fixed
guidance scale, respectively. As illustrated in Figure 10, the fixed guidance scale with a bias set at
s = 80000 resulted in the emergence of mineral textures in the images. By contrast, as shown in
Table 5, BIR-D outperformed other models in all indicators, demonstrating the effectiveness of an
optimizable convolutional kernel and adaptive guidance scale.

The Effectiveness of the First Stage Pre-training Model. We conducted further experiments on the
deblur task to demonstrate the impact of the first-state pre-training model. As shown in Table 6, for
a randomly initialized convolution kernel parameter, all metrics of BIR-D were better than BIR-D
without the pre-training model. These results indicate that the first-stage pre-trained model is able to
provide better initial state of images for our BIR-D.

5 Parameter analysis

The Parameter Variations of the Optimizable Convolution Kernel and Mask in the Reverse
Steps. In order to visualize the variation trends of the parameters of convolution kernel mask in the
reverse process, we conducted experiments on the test set of the LOL dataset from the low-light
enhancement task. As shown in Figure 11(a), the mean values of the convolution kernel parameters
and degradation mask are given by random initialization and gradually increase with the progress of
the time steps. This increase in magnitude is influenced by the gradient of the distance metric with
respect to the corresponding parameters. When the sampling step t<500, the difference between x̃0

and y changes slightly, resulting in correspondingly smaller gradient values.
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Figure 10: Qualitative results when the fixed guidance scale is biased towards a larger value of
s = 80000.

(a) (b) (c)

Figure 11: Illustration of (a) the variation of the mean of optimizable convolutional kernel parameters
in each step of the sampling process. (b) The variation of the mean of degradation mask in each step
of the sampling process. (c) The variation of adaptive guidance scale in each step of the sampling
process. These experiments are performed on LOL dataset.

BIR-D employs masks in the degradation function with the intent to address the image restoration of
local regions characterized by substantial shifts in brightness. Figure 11(b) shows that the mask M of
the degradation model has an upward trend from their initial values, making the overall degradation
function approach the true degradation. As shown in Figure 12, during the sampling process, the
degradation mask learns the detailed information of the image, including local regions with significant
brightness differences. This process is obtained by updating the gradient of the distance metric with
respect to the degradation mask parameters.

The Theoretical Analysis of the Changing Trend of Guidance Scale in the Reverse Steps. We
take the variation in the guidance scale of BIR-D on the LOL dataset as an example to analyze the
trend of its changes during the reverse steps. As shown in Figure 11(c), the guidance scale gradually
decreases with the sampling step, which aligns with the actual situation. When the sampling step
t<500, as t decreases, the difference between xt and xt−1 decreases with decreasing t, indicating
a reduction in the simulated noise at each step. Therefore, the level of guidance required for each
sampling step should also be reduced accordingly, leading to a decrease in the required guidance
scale values. According to Equation (3), when step t is small, the gradient term g also decreases due
to the small change in xt at each step. The speed of the gradient term decreases is greater than the
speed of distance metric decreases, resulting in a decrease in the value of the guidance scale.

Figure 12: The changing of degradation mask during the sampling process in HDR recovery.

6 Conclusion

In this paper, we propose Blind Image Restoration Diffusion, which is a unified model that can be
used to solve various blind image restoration problems. We utilize optimized convolutional kernels to
simulate and update the degradation function in the diffusion step in real time, and derive the empirical
formula of the guidance scale in detail, so that it can better utilize the unconditional diffusion model
to generate high-quality images. The ability to solve various blind image restoration tasks, including
low-light enhancement and motion blur reduction, has also been verified through various indicators
of datasets.
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In this appendix, we provide a more detailed derivation process for adaptive guidance scale and
more image restoration results. Appendix A provides more blind image restoration results for
images undergoing various multi-degradation modes. Appendix B is a preliminary for the diffusion
model. Appendix C introduces the related work, including an introduction to diffusion-based image
restoration models and existing leading methods in the field of blind image restoration. Appendix D
is the complete derivation process of the empirical setting of the adaptive guidance scale. Appendix E
proposes the algorithmic process of BIR-D for accomplishing multi-guidance blind image restoration.
Appendix F conducts further ablation experiments on the size and other parameters of the convolution
kernel and provides the optimal convolution kernel parameter settings for different image restoration
tasks. Appendix G presents and analyzes the variations of the mask parameters in the reverse steps of
LOL dataset. Appendix H presents the results of blind image restoration tasks, including blind face
restoration, low-light enhancement, motion blur reduction, and HDR image restoration. Appendix I
provides more results on the ImageNet dataset for four basic tasks, including super-resolution,
colorization, deblurring and inpainting, as well as corresponding experimental details and parameter
settings. Appendix J discusses limitations and future works for BIR-D.

A Multi-degradation Image Restoration

In this section, we attempted more complex degradation scenarios to test the image restoration ability
of BIR-D. The input images are derived from adding different degradation types, which include 4 ×
super-resolution, colorization, deblurring, and inpainting. As shown in Figure 13, BIR-D achieved
satisfactory restoration results in four different multi-task image restoration tasks, which indicates the
image restoration capability of BIR-D under complex degraded scenarios.

B Preliminary

Diffusion models consists of the forward and reverse processes. The forward process continuously
adds noise to a natural image x0 through T diffusion steps to obtain the noise distribution xT ∼
N (0, I), where N represents the Gaussian distribution. The reverse process aims to simulate the
noise in each diffusion step and eliminate it, ultimately obtaining the restored generated image x0.

The forward process is a Markov chain defined by the following equation:

q(x1, · · · , xT |x0) =

T∏
t=1

q(xt|xt−1) (7)

It corrupts the initial data x0 into distribution xT that is close to Gaussian noise after T steps of
diffusion, with each sample process defined by q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where βt is

the variance of a forward process. The variance can be set as a constant or learned by reparameteriza-
tion. Simultaneously defining αt = 1− βt,ᾱt =

∏t
i=1αi. It has been proven by [42] that through

mathematical reasoning, xt at any diffusion step can be directly calculated from the starting x0:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (8)

where ϵ ∼ N (0, I). When T is large enough,
√
ᾱt approaches 0, and at this point q(xT |x0) is closer

to the latent distribution of xT .

The reverse process is also a Markov chain, which gradually denoises a standard multivariate Gaussian
distribution into a denoised image x0. Firstly, sample xt ∼ N (0, I). The conditional distribution of
the reverse process is pθ(xt−1|xt) = N (xt−1;µθ(xt, t),ΣθI). According to the Bayesian formula,
it can be transformed as follows:

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)

q(xt|x0)
(9)

Expand and simplify the three terms at the right end of the equation. The variance Σθ of the reverse
process can be obtained as a fixed value. Note that [43] indicates that it can also be learned parameters.
And the mean of the reverse process µθ related to xt and x̃0:

µ̃t(xt, x̃0) =

√
ᾱt − 1βt

1− ᾱt
x̃0 +

ᾱt(1− ᾱt−1)

1− ᾱt
xt (10)
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Figure 13: Image results of BIR-D in multi-degradation tasks on the ImageNet dataset. Each row in
the figure consists of two sets of images, and the left, middle and right images of each set represent
input, output, and ground truth respectively.

According to the formula of the forward process, x̃0 can be predicted by xt, where ϵ is a noise
function approximator obtained by a neural network θ.

x̃0 =
xt√
ᾱt

−
√
1− ᾱtϵθ(xt, t)√

ᾱt
(11)
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Substitute it into Equation (10) to obtain the mean value µθ:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (12)

C Related Work

Diffusion Model for Image Restoration. Image restoration and denoising have seen various
advancements with diffusion-based models [16; 17]. They have been thoroughly explored for linear
inverse problems [11; 10], nonlinear inverse problems [44; 10]. To alleviate the fixed- and small-size
generation of diffusion models, patch-based algorithm [45] and large-size generation [46; 12] are
proposed. Our model introduces the guidance of degraded images to form an unconditional diffusion
model, and attempts to simulate and update the degradation function in real-time, making it suitable
for general tasks while maintaining both image quality and efficiency.

Blind Image Restoration. Many problem-solving approaches have emerged in the field of blind
image restoration [47; 48]. The emergence of GANs [2; 49] provides several solutions for unsuper-
vised learning in blind image restoration. Generative prior-based image restoration methods [50; 51]
employ deep generative models to learn the prior and demonstrate that GAN can be employed as
a density estimation model to address various image restoration task. Besides, [51; 52] can also
generate a broad spectrum of highly nonlinear complex degradation without any explicit supervision
through training in concert with a deep restoration neural network governed by a minmax criterion.
On top of GANs and other relevant methods, DDPMs are more studied for this task due to the
enhanced diversity. For instance, both DiffBIR [17] and GDP [10] leverage generative diffusion
priors for blind image restoration. BlindDPS [53] introduces parallel diffusion models for solving
blind inverse problems when the functional forms are known. PromptIR [54] uses prompts to encode
degradation-specific information and dynamically guide the recovery of the network. Nevertheless,
these methods are still limited to specific tasks. BIR-D can be regarded as a unified solver for multiple
restoration tasks by simultaneously estimating the recovered images and specific degradation models.

D Adaptive Guidance Scale

In the reverse process of the diffusion model, we added guidance from y to transform the original
reverse denoising distribution pθ(xt | xt+1) into a conditional distribution pθ(xt | xt+1, y). This
distribution can be further simplified:

pθ(xt | xt+1, y) =
pθ(xt, xt+1, y)

pθ(xt+1, y)
(13)

=
pθ(xt, xt+1, y)

pθ(y | xt+1)pθ(xt+1)
(14)

=
pθ(xt | xt+1)pθ(y | xt, xt+1)pθ(xt+1)

pθ(y | xt+1)pθ(xt+1)
(15)

=
pθ(y | xt, xt+1)pθ(xt | xt+1)

pθ(y | xt+1)
(16)

=
pθ(y | xt)pθ(xt | xt+1)

pθ(y | xt+1)
(17)

=
p(y | xt)pθ(xt | xt+1)

pθ(y | xt+1)
(18)

In this formula, distribution pθ(y | xt+1) is independent of xt, so we use the constant N instead:

pθ(xt | xt+1, y) =
1

N
pθ(xt | xt+1)pθ(y | xt) (19)
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Therefore, compared to the original diffusion model, the conditional reverse process requires approxi-
mation of pθ(y | xt). We used a heuristic approximation method:

p(y | xt) =
1

N
exp(−sL(D(xt), y)) (20)

Where L is image distance metric, which represents the MSE loss in this experiment. K is the constant
in the above formula, which serves as a normalization factor here. And s is a guidance scale, which is
used to control the magnitude of guidance. Take the logarithm of both sides of the equation:

log p(y | xt) = − logN − sL(D(xt), y) (21)

When the diffusion step approaches infinity, ∥Σ∥ → 0, so we can assume that distribution
log pθ(y | xt) has low curvature compared to Σ−1. We can perform Taylor expansion on distri-
bution log pθ(y | xt) around x = µ and take the first two terms:

log pθ(y | xt) ≈ log p(y | xt) |xt=µ +(xt − µ)T∇xt
log pθ(y | xt) |xt=µ (22)

= (xt − µ)T g + C (23)

Where g = ∇xt log pθ(y | xt) |xt=µ, C = log p(y | xt) |xt=µ. By combining the heuristic approx-
imation formula and Taylor expansion formula mentioned above, we can simplify the empirical
formula for the guidance scale:

− logN − sL(D(xt), y) = (xt − µ)T g + C (24)

The empirical formula is shown below. For each image at every moment t, the applicable value of the
guidance scale can be calculated.

s = − (xt − µ)T g + C + logN

L(D(xt), y)
(25)

Because here y is a loss image without noise, while xt itself has noise. The use of MSE errors
between xt and y can lead to the introduction of noise into the guidance process. Therefore, we are
using the MSE error between the estimated value of x̃0 and y here, and the above formula needs to be
corrected as:

s = − (xt − µ)T g + C + logN

L(D(x̃0), y)
(26)

E Multi-Guidance Blind Image Restoration

BIR-D is capable of accepting multiple input images to incorporate multi-guidance during the reverse
steps. Taking HDR image restoration task as an example, BIR-D receives three images as inputs
separately. As shown in Figure 14 and Algorithm 2, BIR-D uses three degradation functions for
three input images. In each sampling step, after obtaining x̃0, x̃0 is respectively substituted into
three degradation function at diffusion step t. The parameters of convolution kernels and masks are
updated by measuring the gradient of its parameters with the distance metric. The average of three
distance metrics are used as the overall loss to update the mean and variance used during sampling.
The empirical formula of adaptive guidance scale is also based on this loss.

F The Optimal Size of Optimizable Convolutional Kernel.

In the main paper, in order to assure the versatility of BIR-D, we used convolution kernels of size
7× 7 for all tasks. Nevertheless, for different types of tasks, the size of the convolution kernel might
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Figure 14: BIR-D image restoration pipeline for multi-guidance tasks.

Algorithm 2: BIR-D with the multi-guidance of degraded images set
{
yi|i = 1, 2, . . . , n

}
(For

HDR image restoration tasks, n=3), given a diffusion model noise prediction function ϵθ(xt, t).

Input: Degraded image set
{
yi|i = 1, 2, . . . , n

}
. For each image yi in the set, there is a corresponding

degradation function Di composed of optimized convolutional kernels Ki with parameters φi and
maskMi with parameters ϕi, learning rate l, distant measure Li.

Output: Output image x0 conditioned on set
{
yi|i = 1, 2, . . . , n

}
.

Sample xT fromN (0, I)
for t from T to 1 do

x̃0 = xt√
ᾱt
−

√
1−ᾱtϵθ(xt,t)√

ᾱt

for i from 1 to n do
Lφi,ϕi,x̃0

= L(yi,Dφi,ϕi

(x̃0))

φi ← φi − l∇φiLφi,ϕi,x̃0

ϕi ← ϕi − l∇ϕiLφi,ϕi,x̃0

Lφ,ϕ,x̃0 =
∑n

i=1 Lφi,ϕi,x̃0

s = − (xt−µ)T g+C+log N

Lφ,ϕ,x̃0

x̃0 ← x̃0 − s(1−ᾱt)√
ᾱt−1βt

∇x̃0Lφ,ϕ,x̃0

µ̃t =

√
ᾱt−1βt

1−ᾱt
x̃0 +

√
ᾱt(1−ᾱt−1)

1−ᾱt
xt

β̃t =
1−ᾱt−1

1−ᾱt
βt

Sample xt−1 fromN (µ̃t, β̃tI)

return x0
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Task Low-Light Enhancement Motion Blur Reduction
PSNR SSIM LOE FID PI PSNR SSIM

kernel size=1 13.73 0.49 118.38 78.52 5.67 31.14 0.917
kernel size=3 13.90 0.54 113.89 74.41 5.24 32.07 0.937
kernel size=7 14.47 0.56 108.75 70.55 4.93 33.94 0.961

BIR-D with
5 × 5 kernel 14.52 0.56 105.42 68.98 4.87 34.12 0.968

Table 7: The ablation study of kernel size in blind issues.

Task 4 × Super resolution Deblur
PSNR SSIM Consistency FID PSNR SSIM Consistency FID

kernel size=13 24.05 0.66 6.65 39.02 26.12 0.74 41.29 3.09
kernel size=7 24.31 0.67 6.64 38.91 26.53 0.77 38.60 2.53
kernel size=11 24.36 0.69 6.50 38.07 26.79 0.79 38.52 2.44

BIR-D with
9 × 9 kernel 24.58 0.71 6.32 37.54 27.14 0.84 37.86 2.32

Task 25% Inpainting Colorization
PSNR SSIM Consistency FID PSNR SSIM Consistency FID

kernel size=7 29.58 0.80 6.17 18.09 20.07 0.76 39.85 42.29
kernel size=13 31.12 0.84 5.64 16.56 21.04 0.83 37.71 38.14
kernel size=11 32.91 0.86 5.41 16.17 21.57 0.85 37.69 38.01

BIR-D with
9 × 9 kernel 33.59 0.90 5.18 15.73 22.09 0.89 36.12 36.58

Table 8: The ablation study of kernel size in linear inverse problem.

be different. To explore the impact of kernel size on the quality of generated images, we conducted
experiments using convolution kernels of different sizes in various types of image restoration tasks.
As shown in Table 7, for blind image restoration tasks, the experiment showed that the results of
a 5×5 convolution kernel perform best. For linear inverse tasks (Table 8), the optimal convolution
kernel size was 9×9.

G The Parameter Variations of the Optimizable Mask in the Reverse Steps

In order to visualize the variation of the parameters of convolution kernel mask in the reverse process,
we conducted experiments on the test set of the LOL dataset from the low-light enhancement task. As
shown in Figure 15, the mask has successfully captured certain intricate details within the low-light
images, thereby facilitating the restoration of brightness during the reverse step.

H More Blind Image Restoration Results

In this section, we present more generated results for several types of image restoration tasks in blind
issues, including low-light enhancement, motion blur reduction, and HDR image restoration.

For the blind face restoration task, we randomly selected 1000 images from the LFW [14] and
WIDER [15] test sets as input samples. More image results are shown in Figure 16. BIR-D effectively
eliminates the blurring in degraded images, resulting in clearer and more detailed facial images.

For the low-light enhancement task, we use datasets including LOL [22] and VE-LOL-L [23]. The
image results are shown in Figure 17. BIR-D achieved excellent results on different datasets, with the
brightness of the generated images very close to the ground truth without losing any details during
the restoration process.

For the motion blur reduction task, the datasets used include GoPro dataset [30] and HIDE dataset
[31]. Figure 18 shows the results of BIR-D in eliminating motion blur. This also demonstrates the
capabilities of BIR-D for unknown degradation functions.
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Figure 15: The changing of degradation mask during the sampling process in low light enhancement.

Figure 16: More image generation results for blind face restoration task. Each row consists of three
sets of images, with the left and right images representing blurred facial images and BIR-D output
images, respectively.

Meanwhile, we use the NTIRE2021 Multi-Frame HDR Challenge dataset [29] to test the HDR
image restoration capability of BIR-D. Each image scene contains three LDR images, including
long, medium, and short exposures. Following [10], we leverage three images as condition for HDR
recovery. The more generated results of this task are shown in Figure 19. The over-exposure part in
the image has been corrected, while the low-light part has been enhanced in brightness, resulting in a
more distinct and detailed generation result.
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Figure 17: More image generation results for low-light enhancement task. The left half shows the
image restoration results of the LOL dataset, and the right half shows the image restoration results of
the VE-LOL dataset. The left, middle, and right of each group of images represent the input, BIR-D
output, and ground truth respectively.

I More Results on Commonly-used Tasks

In this section, we will provide more image restoration results on commonly used tasks, including
super-resolution, colorization, deblurring, and inpainting tasks. Noted that although BIR-D has the
capability to perform image restoration when the diffusion function is unknown, in order to ensure a
fair comparison with other methods, an initially set and known degradation function will be used,
and all image generation results and comparison metrics will be obtained under this condition. The
images used in the test are all from the ImageNet dataset, and the degradation method and parameters
of the input images are the same as the state-of-the-art methods, including DGP [18], SNIPS [20],
DDRM [11], GDP [10], which ensures the effectiveness and fairness of the comparison.

As shown in Figure 20, BIR-D effectively removes the blur in the input image and effectively restores
the details in the image. For the inpainting task, we set 25% of pixels in images to have missing pixel
values, and use this as a degraded image to test the image restoration ability of BIR-D. Figure 21
shows that BIR-D has the ability to restore these 25% of missing pixels, resulting in an overall output
image that is closer to the ground truth. Meanwhile, we set the ratio to 4 in the super-resolution task.
As shown in Figure 22, low-resolution images can be restored from BIR-D to high-resolution images
without losing clarity, while preserving various subtle details of natural images. Besides, for a given
grayscale image, Figure 23 shows the level of color restoration by BIR-D for the image, and the
output results also indicate the ability of BIR-D to solve the colorization task.
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Figure 18: More image restoration results of motion blur reduction task on GoPro dataset and HIDE
dataset.

J Limitation and Future Works

Since we utilize a single pre-trained unconditional diffusion model provided by [13], the generation
speed will increase when dealing with image size increasing due to the patch-based solution. In the
future, it is a very promising direction to use stable diffusion to achieve faster speed in large-size
image restoration.
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Figure 19: More image restoration results of HDR image recovery task on NTIRE2021 Multi-Frame
HDR Challenge dataset.
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Figure 20: The image generation result of the deblurring task, where each horizontal row is composed
of two sets of images, each set of images representing the input image, the image after pre-training
model, the output image of BIR-D, and the ground truth from left to right.
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Figure 21: The image generation result of the inpainting task, where each row is composed of two
sets of images and the left, middle, and right images of each set represents the degraded image, the
output image of BIR-D, and the ground truth, respectively.
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Figure 22: The image generation result of the 4 × super-resolution task, the left, middle, and right
images of each set represent the low-resolution images processed by the resize function, the output
images of BIR-D and the ground truth respectively.

27



Figure 23: The image generation result of the colorization task, the left, middle and right images of
each set represent the grayscale images, the output images of BIR-D and the ground truth respectively.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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appendix and code.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms to the NeuroIPS Code of Ethics
in all aspects
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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societal impacts of the work performed?
Answer: [N/A]
Justification: There is no societal impact of the work performed.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
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to point out that an improvement in the quality of generative models could be used to
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: This paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers used in the article have been cited and annotated with their
sources.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The assets introduced in the paper are all submitted after being documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [N/A]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [N/A]
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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