
7 Appendix749

7.1 Extended Related Works750

Other Robust Fine-Tuning Methods. WiSE-FT [14] discovers that linearly interpolating between751

the fine-tuned and pre-trained models after fine-tuning can improve out-of-distribution robustness.752

This demonstrates that a closer distance to the pre-trained model can improve robustness. However, it753

only applies to models with zero-shot capabilities. Another orthogonal line of research for robust fine-754

tuning focuses on feature distortion. LP-FT [19] shows that fine-tuning with a randomly initialized755

head layer distorts learned features. It proposes a simple two-stage method to train the head layer756

first and then fine-tune the entire model. FLYP [20] shows that fine-tuning a foundation model757

using the same objective as pre-training can better preserve the learned features. Our contribution758

is an optimization method to penalize the derivation between the fine-tuned and pre-trained models759

explicitly during fine-tuning, which is orthogonal to them.760

7.2 Interpreting ct as an Early Layer Selection Criterion761

In previous sections, we interpreted the selection condition ct in SPD as a measure of consistency762

between the current heading direction and the gradient direction. This perspective is more valid when763

the algorithm has accumulated some updates, i.e., k✓t � ✓0k2 � 0, and less justified when a heading764

has not been established at the beginning of training. This section discusses SPD from the perspective765

of stochastic optimization when k✓t � ✓0k2 is small at the beginning of training.766

Inner product of gradients captures gradient variance. Modern deep learning models are trained767

by stochastic optimization techniques, e.g., mini-batch SGD, leading to stochasticity due to sampling.768

We first show that the inner product of gradients captures the variance of a sampling process. We769

invoke a common assumption in the convergence analysis of stochastic gradient descent [1, 40, 21].770

Assuming that the stochastic gradient gt is a stationary process G over a short period, with a small771

step size, successive gradients, e.g., gt, gt+1, can be seen as samples drawn from the same distribution772

G. Given two successive draws g1 and g2, we can approximate the first and second moment of G.773
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Remarks. Eq. 10 shows that the inner product of two consecutive stochastic gradients, under certain776

assumptions, can be seen as the estimator for the difference between the gradient norm and the777

variance of gradients. When the inner product is negative, this indicates that the variance outweighs778

the magnitude of the gradient.779

SPD prioritizes layers with higher expected gain. At the beginning of training, the heading780

direction (✓1 � ✓0) is dominated by early gradients. For example, at t = 2 the direction of (✓1 � ✓0)781

is the same as �g1 in Adam. The sign of �g|2 (✓1 � ✓0) is the same as the sign of g|2g1. This shows782

that the condition ct captures the difference between gradient norm and gradient variance. With this783

interpretation, we show that ct reflects expected performance gain in stochastic optimization. To784

see it, we can invoke the descent lemma for SGD. For an L-smooth function f(W ) [41], the descent785

lemma for SGD states that,786
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V ar(gk),787

where ⌘k  2
L is the learning rate.788

Remarks. The term on the left hand side E[f(✓k+1)]� f(✓k) is the expected performance improve-789

ment for each step. Ideally, this should be a negative quantity. On the right-hand side, we observe790

19



that improvement depends on two quantities kḡkk2 and V ar(gk). To lower the upper bound, we want791

a large kḡkk2 and a small V ar(gk). According to the decoupling Eq. 10, the inner product between792

successive gradients approximates this proportionality. Consequently, a negative ct likely indicates793

a higher upper bound on the expected gain, meaning a smaller improvement. Therefore, SPD will794

prioritize layers with potentially larger expected gains.795

8 Training Details796

DomainNet. We use the vision transformer public repository for DEIT [37] to fine-tune all methods.797

Standard augmentations are used for all: weight-decay (0.1), drop-path (0.2) [43], label-smoothing798

(0.1) [44], Mixup (0.8) [45] and Cutmix (1.0) [46]. The learning rate is 2e � 5 and trained for 60799

epochs for Tab. 1 and 30 epochs for Tab. 2. We use � = 1 for all Adam-SPD results in Tab. 1. We800

use 1 A40 GPU for each experiment.801

ImageNet. The same procedure as the DomainNet experiment is used for training the ImageNet802

models. Standard augmentations are used for all: weight-decay (0.1), drop-path (0.2) [43], label-803

smoothing (0.1) [44], Mixup (0.8) [45] and Cutmix (1.0) [46]. We fine-tune all methods for 30804

epochs and use the best hyper-parameters reported by the prior work [11]. For Adam-SPD, we805

fine-tune the model with a learning rate of 3e� 5 and � = 1.4. The regularization hyper-parameter806

is found through cross-validation, and the model with the best ID validation accuracy is taken. We807

use 2 A40 GPUs for each experiment.808

Pascal Segmentation. We follow the training code released by a prior work [31]. We fine-tune all809

methods for 60 epochs and use the best hyper-parameters reported by the prior work. For Adam-SPD,810

we fine-tune the model with a learning rate of 1e�4 and � = 2.2. The regularization hyper-parameter811

is found through cross-validation, and the model with the best ID validation accuracy is taken. We812

use 4 2080Ti GPUs for each experiment.813

Commonsense-170K. Training Details. We follow the training code released by a prior work [35].814

We report the best performance from the original paper and compare them with Adam-SPD. For815

Adam-SPD, we fine-tune the model with an identical hyper-parameter setup as the released code816

and only adjust the regularization strength �. The regularization hyper-parameter is found through817

cross-validation, and the model with the best ID validation loss is taken. We use 1 A40 GPU for each818

experiment.819
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