
A Appendix565

A.1 Proof of Theorem 1566

As illustrated in Sec. 3.2, it is hard to build the unlearned data xu for the feature unlearning since567

adding the perturbation may influence the model accuracy seriously. Suppose the feature is success-568

fully removed when the norm of perturbation is larger than C. We define the utility loss `1 with569

unlearning feature successfully:570

`1 = min
k�Fk�C

E(x,y)2D min
✓

`
�
f✓(x+ �F), y

�
(10)

And we define the maximum utility loss with the norm perturbation less than C as:571

`2 = max
k�FkC

E(x,y)2D min
✓

`
�
f✓(x+ �F), y

�
(11)

Assumption 3. Assume `2  `1572

Assumption 3 elucidates that the utility loss associated with a perturbation norm less than C is smaller573

than the utility loss when the perturbation norm is greater than C. This assumption is logical, as574

larger perturbations would naturally lead to greater utility loss.575

Assumption 4. Suppose the federated model achieves zero training loss.576

We have the following theorem to elucidate the relation between feature sensitivity removing via577

Algo. 1 and exact unlearning (see proof in Appendix).578

Theorem 2. If Assumption 3 and 4 hold, the utility loss of unlearned model obtained by Algo. 1 is579

less than the utility loss with unlearning successfully, i.e.,580

`u  `1, (12)

where `u = E(x,y)2D

�
`(f✓u(x), y)581

Proof. When the unlearning happens during the federated training, the unlearning clients would582

also optimize the training loss and feature sensitivity simultaneously. Specifically, the optimization583

process could be written as:584

✓u = argmin
✓

E(x,y)2D

�
`(f✓(x), y) + �E�F

kf✓(x)� f✓(x+ �F)k2
k�Fk2

�
,

where � � 1
C is one coefficient. Without loss of generality, we assume the `(f✓(x), y) = kf✓(x)�y)k.585

Denote586

⇥⇤ = argmin
✓

E(x,y)2D`(f✓(x), y).

If Assumption 4 holds, then f✓⇤(x) = y for any ✓⇤ 2 ⇥⇤. Therefore, for any k�Fk � 1
� such that587

E(x,y)2D

�
`(f✓⇤(x), y) + �Ek�Fk� 1

�

kf✓(x)� f✓⇤(x+ �F)k2
k�Fk2

�

= �E(x,y)2DEk�Fk� 1
�

ky � f✓⇤(x+ �F)k2
k�Fk2

 E(x,y)2DEk�Fk� 1
�
ky � f✓⇤(x+ �F)k2.

(13)
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The last inequality is due to Therefore, we further obtain:588

`u  min
✓2Rd

E(x,y)2D

�
`(f✓(x), y) + �Ek�Fk� 1

�

kf✓(x)� f✓(x+ �F)k2
k�Fk2

�

 min
✓2⇥⇤

E(x,y)2D

�
`(f✓(x), y) + �Ek�Fk� 1

�

kf✓(x)� f✓(x+ �F)k2
k�Fk2

�

 min
✓2⇥⇤

E(x,y)2DEk�Fk� 1
�
ky � f✓⇤(x+ �F)k2

 E(x,y)2DEk�Fk� 1
�
min
✓2⇥⇤

ky � f✓⇤(x+ �F)k2

= Ek�Fk� 1
�
E(x,y)2D min

✓2⇥⇤
ky � f✓⇤(x+ �F)k2

 max
k�Fk� 1

�

E(x,y)2D min
✓2Rd

ky � f✓⇤(x+ �F)k2

 max
k�FkC

E(x,y)2D min
✓2Rd

ky � f✓⇤(x+ �F)k2

= `2,

(14)

where the last inequality is due to � � 1
C . According to Assumption 3, we have `u  `1589

590

A.2 Experimental Setup591

Datasets MNIST[90]: Both the MNIST[90] and Fashion-MNIST(FMNIST)[92] datasets contain592

images of handwritten digits and attire, respectively. Each dataset comprises 60,000 training examples593

and 10,000 test examples. In both datasets, each example is represented as a single-channel image594

with dimensions of 28x28 pixels, categorized into one of 10 classes. Additionally, the Colored-595

MNIST(CMNIST)[90] dataset, an extension of the original MNIST, introduces color into the digits of596

each example. Consequently, images in the Colored MNIST dataset are represented in three channels.597

CIFAR[93]: The CIFAR-10[93] dataset comprises 60,000 images, each with dimensions of 32x32598

pixels and three color channels, distributed across 10 classes. This dataset includes 6,000 images599

per class and is partitioned into 50,000 training examples and 10,000 test examples. Similarly, the600

CIFAR-100[93] dataset shares the same image dimensions and structure as CIFAR-10 but extends to601

100 classes, with each class containing 600 images. Within each class, there are 500 training images602

and 100 test images. Moreover, CIFAR-100 organizes its 100 classes into 20 superclasses, forming603

the CIFAR-20 dataset[93]. CelebA [85]: A face recognition dataset featuring 40 attributes such as604

gender and facial characteristics, comprising 162,770 training examples and 19,962 test examples.605

This study will focus on utilizing the CelebA[85] dataset primarily for gender classification tasks.606

(a) MNIST (b) CMNIST (c) FMNIST (d) CIFAR-10 (e) CIFAR-20 (f) CIFAR-100 (g) CelebA

Figure 8: Visual representation of dataset samples utilized in this study.

Adult Census Income (Adult)[86] includes 48, 842 records with 14 attributes such as age, gender,607

education, marital status, etc. The classification task of this dataset is to predict if a person earns over608

$50K a year based on the census attributes. We then consider marital status as the sensitive feature609

that aim to unlearn in this study. Diabetes[87] includes 768 personal health records of females at least610

21 years old with 8 attributes such as blood pressure, insulin level, age and etc. The classification611

task of this dataset is to predict if a person has diabetes. We then consider number of pregnancies as612

the sensitive feature that aim to unlearn in this study.613

Baselines The baseline methods in this study:614

Baseline: Original model before unlearning.615
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Retrain: In scenarios involving sensitive feature unlearning, the retrained model was simply trained616

using a dataset where Gaussian noise was applied to the unlearned feature region. This approach617

may lead to performance deterioration, as discussed in Sec. 3.2. For backdoor feature unlearning618

scenarios, the retrained model was trained using the retain dataset Dr, also referred to as the clean619

dataset. In biased feature unlearning scenarios, the retrained model was trained using a combination620

of 50% from each of the retain dataset Dr (bias dataset) and the unlearn client local dataset Du621

(unbias dataset). This ensures fairness in the model’s performance across both datasets.622

Fine-tune: The baseline model is fine-tuned using the retained dataset Dr for 5 epochs. Class-623

Discriminative Pruning(FedCDP)[66]: A FU framework that achieves class unlearning by utilizing624

Term Frequency-Inverse Document Frequency (TF-IDF) guided channel pruning, which selectively625

removes the most discriminative channels related to the target category and followed by fine-tuning626

without retraining from scratch.627

FedRecovery[62]: A FU framework that achieves client unlearning by removing the influence of a628

client’s data from the global model using a differentially private machine unlearning algorithm that629

leverages historical gradient submissions without the need for retraining.630

A.3 Attention Map631

A.3.1 Backdoor Feature Unlearning632

Attention map analysis for backdoor samples across model iterations of baseline, retrain, and unlearn633

model using our proposed Ferrari method on MNIST(Fig. 9), FMNIST(Fig. 10), CIFAR-10(Fig. 11),634

CIFAR-20(Fig. 12) and CIFAR-100 (Fig. 13)datasets.635

Label 1 2 3 4 5 6 7 8 9

Input

Baseline

Retrain

Ferrari

Figure 9: MNIST

Label Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot

Input

Baseline

Retrain

Ferrari

Figure 10: FMNIST

18



Label Car Bird Cat Deer Dog Frog Horse Ship Truck

Input

Baseline

Retrain

Ferrari

Figure 11: CIFAR-10

Label Fish Flowers Cont. Fruit Device Furniture Insects Carniv. Synthetic

Input

Baseline

Retrain

Ferrari
Label Natural Omniv. Medium Inverteb. People Reptiles Small Trees Vehicles

Input

Baseline

Retrain

Ferrari

Figure 12: CIFAR-20
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Label Fish Baby Bear Beaver Bed Bee Beetle Bicycle Bottle

Input

Baseline

Retrain

Ferrari
Label Boy Bridge Bus B.fly Camel Can Castle C.plar Cattle

Input

Baseline

Retrain

Ferrari
Label Chimpz. Clock Cloud C.krch Couch Crab Croc. Cup Dino.

Input

Baseline

Retrain

Ferrari
Label E.phant F.fish Forest Fox Girl Hamster House K.groo K.board

Input

Baseline

Retrain

Ferrari
Label Mower Leopard Lion Lizard Lobster Man Mapple M.cycle Mountain

Input

Baseline

Retrain

Ferrari
Continued on next page
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Continued from previous page
Label Mushr. Oak Orange. Orchid Otter Palm Pear Pickup Pine

Input

Baseline

Retrain

Ferrari
Label Plate Poppy Porcp. Possum Rabbit Racc.n Ray Road Rocket

Input

Baseline

Retrain

Ferrari
Label Sea Seal Shark Shrew Skunk Skyscr. Snail Snake Spider

Input

Baseline

Retrain

Ferrari
Label Car S.flwer S.pepr Table Tank Phone TV Tiger Tractor

Input

Baseline

Retrain

Ferrari
Label Trout Tulip Turtle W.drobe Whale Willow TV Woman Worm

Input

Baseline

Retrain

Ferrari

Figure 13: CIFAR-100
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A.3.2 Biased Feature Unlearning636

Label Female Male

Target

Baseline

Retrain

Ferrari

(a) Bias Dataset
Label Female Male

Target

Baseline

Retrain

Ferrari

(b) Unbias Dataset

Figure 14: Attention map analysis for bias and unbias samples across model iterations of baseline,
retrain, and unlearn model using our proposed Ferrari to unlearn ’mouth’ on CelebA dataset.

A.4 Limitation and Future Work637

While our proposed approach of federated feature unlearning demonstrates effectiveness in various638

unlearning scenarios using only the local dataset of unlearning clients without requiring participation639

from other clients, thus simulating practical application, it has some inevitable limitations.640

The proposed approach necessitates access to the entire dataset from the unlearning client to achieve641

maximal unlearning effectiveness. However, as demonstrated in Section 5.5, a partial dataset642

comprising at least 70% of the data yields similar performance to the full dataset. In certain cases, the643

unlearning client may lose a significant portion of their data, rendering our approach ineffective in644

such scenarios. Therefore, future work should investigate federated feature unlearning approaches that645
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require only a small portion of the unlearning client’s dataset. Additionally, the proposed approach646

has only been proven effective for classification models, as it was specifically designed for this647

purpose. Its effectiveness in other domains, such as generative models, remains to be investigated.648

Therefore, future work should explore methods that require only a small portion of the client’s dataset.649

Additionally, future research will investigate advanced perturbation techniques, support for diverse650

data types and models, and integration with other privacy-preserving methods to further enhance data651

protection in FL systems.652
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Answer: [Yes]657

Guidelines:658

• The answer NA means that the abstract and introduction do not include the claims659

made in the paper.660
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Answer: [Yes]670
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address problems of privacy and fairness.691
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judgment and recognize that individual actions in favor of transparency play an impor-695

tant role in developing norms that preserve the integrity of the community. Reviewers696
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referenced.705
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• The proofs can either appear in the main paper or the supplemental material, but if707
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instructions for how to replicate the results, access to a hosted model (e.g., in the case731
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either be a way to access this model for reproducing the results or a way to reproduce742
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authors are welcome to describe the particular way they provide for reproducibility.746

In the case of closed-source models, it may be that access to the model is limited in747

some way (e.g., to registered users), but it should be possible for other researchers748

to have some path to reproducing or verifying the results.749

5. Open access to data and code750
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