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A MATHPILE Datasheet

MOTIVATION

For what purpose was
the dataset created?

Developed in a context where datasets like Google’s Minerva and
OpenAI’s MathMix are not open-sourced, MATHPILE aims to
counter this trend by enriching the open-source community and
enhancing mathematical language modeling with its (relatively)
large-scale, math-centric, diverse, high-quality dataset. It can be
used on its own or cooperated with general domain corpora like
books, and Github code, to improve the reasoning abilities of
language models.

Who created the
dataset and on behalf
of which entity?

MATHPILE was created by the authors of this work.

Who funded the cre-
ation of the dataset?

The creation of MATHPILE was funded by GAIR Lab, SJTU.

Any other comment? None.

COMPOSITION

What do the instances
that comprise the
dataset represent?

MATHPILE is comprised of text-only documents, encompassing
a broad range of sources. These include academic papers from
arXiv, educational materials such as textbooks and lecture notes,
definitions, theorems and their proofs, informative articles from
Wikipedia, interactive Q&A content from StackExchange com-
munity users, and webpages sourced from Common Crawl. All
these instances are math-focused.

How many instances
are there in total?

MATHPILE contains about 903 thousand of documents, or around
9.5 billion tokens.

Does the dataset con-
tain all possible in-
stances or is it a sam-
ple (not necessarily ran-
dom) of instances from
a larger set?

MATHPILE is curated from a diverse array of sources, including
arXiv, Textbooks, Wikipedia, StackExchange, ProofWiki, and
Common Crawl. However, it doesn’t encompass all instances
from these sources. We have implemented a rigorous data process-
ing pipeline, which involves steps like preprocessing, prefiltering,
language identification, cleaning, filtering, and deduplication.
This meticulous approach is taken to guarantee the high quality
of the content within MATHPILE .

What data does each in-
stance consist of?

Each instance in MATHPILE is a text-only document, uniquely
identified by its source, labeled under Subset. These instances
are enriched with metadata, such as the score from language iden-
tification, the ratio of symbols to words, and their respective file
paths. Note that instances from the StackExchange are composed
of a question and its accompanying answers, each with their
own set of meta data, including community users. To illustrate
them, we provide specific examples for each source, ranging from
Figure 4 to Figure 10.

Is there a label or target
associated with each in-
stance?

No.

Is any information miss-
ing from individual in-
stances?

No.
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Are relationships
between individual in-
stances made explicit?

No.

Are there recom-
mended data splits?

No.

Are there any errors,
sources of noise, or
redundancies in the
dataset?

Despite our rigorous efforts in cleaning, filtering out low-quality
content, and deduplicating documents, it’s important to acknowl-
edge that a small fraction of documents in MATHPILE might still
fall short of our quality standards, particularly those sourced from
web pages.

Is the dataset self-
contained, or does it
link to or otherwise rely
on external resources?

Yes, MATHPILE is self-contained.

Does the dataset con-
tain data that might
be considered confiden-
tial?

No.

Does the dataset con-
tain data that, if viewed
directly, might be offen-
sive, insulting, threaten-
ing, or might otherwise
cause anxiety?

We do not expect offensive content despite our significant efforts
in cleaning and filtering. But, we can not fully guarantee this.

COLLECTION

How was the data as-
sociated with each in-
stance acquired?

Our data is primarily sourced from the arXiv website and the In-
ternet Archive. The CommonCrawl data originates from SlimPa-
jama. The textbooks included are manually collected, with quality
checks performed on publicly available textbooks from various
internet sources.

What mechanisms or
procedures were used to
collect the data?

Refer to § 2 for details on how they collect data.

If the dataset is a sam-
ple from a larger set,
what was the sampling
strategy?

We strive to use the most recent data dumps available and then
selectively choose high-quality documents that are closely related
to mathematics.

Who was involved in the
data collection process
and how were they com-
pensated?

Authors from this paper were involved in collecting it and pro-
cessing it.

Over what timeframe
was the data collected?

MATHPILE encompasses documents created between 2007 and
August 2023. Note that some documents and textbooks included
may be created in the previous century.

Were any ethical review
processes conducted?

No.

PREPROCESSING
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Was any preprocessing/-
cleaning/labeling of the
data done?

Yes, during our data collection phase, we conducted extensive
filtering and cleansing procedures, detailed in § 2. After the
completion of data collection, we conducted further steps in-
cluding language identification, additional cleaning and filtering,
deduplication, and leakage detection in benchmark datasets. Sub-
sequently, we removed any contaminated examples identified
through this process. See § 3 for details.

Was the “raw” data
saved in addition to
the preprocessed/-
cleaned/labeled data?

Yes.

Is the software that
was used to prepro-
cess/clean/label the data
available?

Yes, scripts are open-sourced at https://github.com/
GAIR-NLP/MathPile/tree/main/src

USES

Has the dataset been
used for any tasks al-
ready?

Yes, this data has been used to develop mathematical language
models.

Is there a repository
that links to any or all
papers or systems that
use the dataset?

No. This dataset is currently utilized in the following research
papers: (1) JiuZhang 3.0: Efficiently Improving Mathematical
Reasoning by Training Small Data Synthesis Models. (2) Task
Oriented In-Domain Data Augmentation. (3) Great Memory,
Shallow Reasoning: Limits of kNN-LMs. (4) BAM! Just Like
That: Simple and Efficient Parameter Upcycling for Mixture of
Experts. (5) SciDFM: A Large Language Model with Mixture-
of-Experts for Science. (6) MIND: Math Informed syNthetic
Dialogues for Pretraining LLMs and so on.

What (other) tasks
could the dataset be
used for?

MATHPILE was developed to enhance language modeling, offer-
ing significant benefits for a variety of mathematical reasoning
tasks.

Is there anything about
the composition of
the dataset or the
way it was collected
and preprocessed/-
cleaned/labeled that
might impact future
uses?

Our cleaning and filtering processes, while thorough, may not
be entirely optimal, potentially leading to the exclusion of some
valuable documents. Additionally, MATHPILE is specifically
tailored for English, which limits its applicability in multilingual
contexts.

Are there tasks for
which the dataset
should not be used?

Any tasks which may considered irresponsible or harmful.

DISTRIBUTION

Will the dataset be dis-
tributed to third par-
ties outside of the entity
on behalf of which the
dataset was created?

Yes, MATHPILE has been made available through the Hug-
gingFace Hub (https://huggingface.co/datasets/GAIR/
MathPile).

How will the dataset
will be distributed?

MATHPILE has been made available through the HuggingFace
Hub (https://huggingface.co/datasets/GAIR/MathPile).

When will the dataset
be distributed?

The MATHPILE will be available after this paper is made public.
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Will the dataset be dis-
tributed under a copy-
right or other intellec-
tual property (IP) li-
cense, and/or under ap-
plicable terms of use
(ToU)?

If the source data of MATHPILE is governed by a license more
restrictive than CC BY-NC-SA 4.0, MATHPILE adheres to that
stricter licensing. In all other cases, it operates under the CC
BY-NC-SA 4.0 license. If any data owner objects to the use of
their data, we are willing to take appropriate action immediately,
including removing the relevant data.

Have any third par-
ties imposed IP-based
or other restrictions on
the data associated with
the instances?

Not to our knowledge.

Do any export controls
or other regulatory re-
strictions apply to the
dataset or to individual
instances?

Not to our knowledge.

MAINTENANCE

Who will be support-
ing/hosting/maintain-
ing the dataset?

MATHPILE will be hosted on the HuggingFace Hub.

How can the owner/cu-
rator/manager of the
dataset be contacted?

stefanpengfei@gmail.com zzwang.nlp@gmail.com

Is there an erratum? No.

Will the dataset be up-
dated?

Yes, it is currently a work in progress and updates are ongoing.

If others want to ex-
tend/augment/build
on/contribute to the
dataset, is there a
mechanism for them to
do so?

No.

Table 6: Datasheet for MATHPILE , following Gebru et al. [21].

22



B Ethics Statement

In the collection and creation of MATHPILE , we strictly adhered to all copyright and licensing
requirements of the data sources. Specifically, we gathered a large amount of data from the internet,
including mathematical textbooks, web pages, and community Q&A content, ensuring that the use of
these data complies with the original licensing terms. Wikipedia, ProofWiki, and StackExchange are
licensed under CC BY-SA (2.5, 3.0 or 4.0). Textbooks and arXiv are licensed under CC BY 4.0, CC
BY-SA 4.0, CC BY-NC-SA 4.0 and others. Common Crawl follows the Common Crawl Foundation
Terms of Use and C4 license. The final open-source MATHPILE dataset is released under the CC
BY-NC-SA 4.0 license. If the source data’s license is more restrictive than CC BY-NC-SA 4.0, we
adopt the stricter license.

However, during the collection of some data, such as publicly available and open-source textbooks,
we did not obtain explicit consent from each author. We recognize that this may involve potential
copyright issues. Therefore, we have implemented the following measures to mitigate and manage
these risks:

1. Strict Selection of Data Sources: We prioritize selecting data sources that are clearly
marked with open licenses or public domain status, avoiding the use of content explicitly
marked as copyright-protected or prohibited from distribution.

2. Adherence to Fair Use Principles: When using copyrighted and non-commercially licensed
content, we adhere to the principles of fair use, aiming to promote scientific research and
educational purposes rather than commercial purposes, thereby not affecting the market
value of the original content.

3. Acceptance of Feedback from Users and Content Authors: We welcome feedback from
data users and authors at any time to request the removal or modification of their data.

MATHPILE has been carefully curated and processed to minimize any potential ethical concerns.
We also explicitly state that if any data owner objects to the use of their data, we are willing to
take appropriate action immediately, including removing the relevant data. Through these measures,
we strive to ensure the diversity and richness of the collected data while complying with relevant
copyright and licensing regulations, thereby reducing potential legal risks. We bear full responsibility
for any potential violations of rights or licensing issues that may arise from this dataset.

C Examples of MATHPILE

We provide some illustrative examples from each source in MATHPILE , as shown in Figure 4 to
Figure 10.
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A document from MATHPILE-CommonCrawl

Text:
Are there optimizers where it is possible to specify ordinal ranking of parameters?
Assume that f is smooth (n-th order differentiable in each of the parameters).
An approach I often use when applying unconstrained optimisation algorithms to constrained problems is to transform the parameter space such that the
constraints cannot be violated.
Of course this results in θ∗1 ≥ θ∗2 ≥ θ∗3 which isn’t quite what you asked for. To get a strict ranking you’ll need to bump x1 − x2

2 and x1 − x2
2 − x2

3
down at the last digit of precision.
thus spake a.k.thus spake a.k.
These variants of your constraints are linear, so provided that your function f is well-behaved (smooth, easy to calculate, easy to compute derivatives, derivatives
are well-conditioned, etc.), any constrained optimization solver should be able to solve your problem without issue.
Not the answer you’re looking for? Browse other questions tagged optimization constrained-optimization or ask your own question.
Does the amount of correlation of model parameters matter for nonlinear optimizers?
Optimization of a blackbox function with an equality constraint?

...

Subset: CommonCrawl

meta:
language_detection_score: 0.8670,
char_num_after_normalized: 926,
contain_at_least_two_stop_words: True,
ellipsis_line_ratio: 0.0,
idx: 383668,
lines_start_with_bullet_point_ratio: 0.0,
mean_length_of_alpha_words: 5.0870,
non_alphabetical_char_ratio: 0.0,
symbols_to_words_ratio: 0.0,
uppercase_word_ratio: 0.0060,
...

Figure 4: An example Common Crawl document in MATHPILE
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A document from MATHPILE -Wikipedia

Text:
# Inner Automorphism

In abstract algebra, an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the
conjugating element. They can be realized via simple operations from within the group itself, hence the adjective "inner". These inner automorphisms form a
subgroup of the automorphism group, and the quotient of the automorphism group by this subgroup is defined as the outer automorphism group.

## Definition

If G is a group and g is an element of G (alternatively, if G is a ring, and g is a unit), then the function

φg : G → G

φg(x) := g
−1

xg

is called (right) conjugation by g (see also conjugacy class). This function is an endomorphism of G: for all x1, x2 ∈ G,

φg(x1x2) = g
−1

x1x2g = (g
−1

x1g)(g
−1

x2g) = φg(x1)φg(x2),

where the second equality is given by the insertion of the identity between x1 and x2 . Furthermore, it has a left and right inverse, namely φ
g−1 . Thus, φg is

bijective, and so an isomorphism of G with itself, i.e., an automorphism. An inner automorphism is any automorphism that arises from conjugation.[1]
When discussing right conjugation, the expression g−1xg is often denoted exponentially by xg . This notation is used because composition of conjugations
satisfies the identity: (xg1 )g2 = xg1g2 for all g1, g2 ∈ G. This shows that right conjugation gives a right action of G on itself.

### Inner and Outer Automorphism Groups

The composition of two inner automorphisms is again an inner automorphism, and with this operation, the collection of all inner automorphisms of G is a
group, the inner automorphism group of G denoted Inn(G).
Inn(G) is a normal subgroup of the full automorphism group Aut(G) of G. The outer automorphism group, Out(G), is the quotient group

Out(G) =
Aut(G)

Inn(G)
.

The outer automorphism group measures, in a sense, how many automorphisms of G are not inner. Every non-inner automorphism yields a non-trivial element
of Out(G), but different non-inner automorphisms may yield the same element of Out(G).
Saying that conjugation of x by a leaves x unchanged is equivalent to saying that a and x commute:

a
−1

xa = x ⇐⇒ xa = ax.

Therefore, the existence and number of inner automorphisms that are not the identity mapping is a kind of measure of the failure of the commutative law in the
group (or ring).
An automorphism of a group G is inner if and only if it extends to every group containing G.[2]

...

Subset: Wikipedia

meta:
language_detection_score: 0.7236,
char_num_after_normalized: 5794,
contain_at_least_two_stop_words: True,
ellipsis_line_ratio: 0.0,
lines_start_with_bullet_point_ratio: 0.0,
mean_length_of_alpha_words: 4.2245,
mimetype: text/html,
page_index: 48171,
page_path: A/Inner_automorphism,
page_title: Inner automorphism,
non_alphabetical_char_ratio: 0.1422,
symbols_to_words_ratio: 0.0,
uppercase_word_ratio: 0.0871,
...

Figure 5: An example Wikipedia document in MATHPILE
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A document from MATHPILE-Textbooks

Text:
# LINEAR TORIC FIBRATIONS

SANDRA DI ROCCO

## INTRODUCTION TO TORIC FIBRATIONS

Definition 1.1. A toric fibration is a surjective flat map f : X → Y with connected fibres where
(a) X is a toric variety
(b) Y is a normal algebraic variety
(c) dim(Y ) < dim(X).

Remark 1.2. Observe that if f : X → Y is a toric fibration then Y and a general fiber F are also toric varieties. Moreover if X is smooth, respectively
Q-factorial then so is Y and F .

Combinatorial characterization. A toric fibration has the following combinatorial characterization (see [EW, Chapter VI] for further details). Let X = XΣ ,
where Σ ⊂ N ∼= Zn , be a toric variety of dimension n and let i : ∆ ↪→ N a sublattice.

Proposition 1.3. [EW] The inclusion i induces a toric fibration if and only if:
(a) ∆ is a primitive lattice, i.e. (∆ ⊗ R) ∩ N = ∆.
(b) For every σ ∈ Σ(n), σ = τ + η, where τ ∈ ∆ and η ∩ ∆ = {0} (i.e. Σ is a splitfan).

We briefly outline the construction. The projection π : N → N/∆ induces a map of fans Σ → π(Σ) and thus a map of toric varieties f : X → Y . The
general fiber F is a toric variety defined by the fan ΣF = {σ ∈ Σ ∩ ∆}.

When the toric variety X in a toric fibration is polarized by an ample line bundle L we will call the pair (f : X → Y, L) a polarized toric fibration. Observe
that the polarized toric varieties (X,L) and

(
F, L|F

)
, for a general fiber F , define lattice polytopes P(X,L), P(F,L|F ) . The polytope P(X,L)

is in fact a "twisted sum" of a finite number of lattice polytopes fibering over P(F,L|F ) . Definition 1.4. Let R0, . . . , Rk ⊂ ∆ be polytopes. Let

π : M → Λ be a surjective map of lattices such that π (Ri) = vi and the v0, · · · , vk are distinct vertices of Conv (v0, . . . , vk). We will call a
Cayley π-twisted sum (or simply a Cayley sum) of R0, . . . , Rk a polytope which is affinely isomorphic to Conv (R0, . . . , Rk). We will denote it by:

[R0 ⋆ . . . ⋆ Rk]π

If the polytopes Ri are additionally normally equivalent, i.e. they define the same normal fan ΣY , we will denote the Cayley sum by:

Cayley (R0, . . . , Rk)(π,Y ) .

These are the polytopes that are associated to a polarized toric fibration. Consider a sublattice i : ∆ ↪→ N and the dual lattice surjection π : M → Λ.

Proposition 1.5. [CDR08] The sublattice i : ∆ ↪→ N induces a polarized toric fibration (f : X → Y, L) if and only if P(X,L) = Cayley
(R0, . . . , Rk)(π,Y ) for some normally equivalent polytopes R0, . . . , Rk .

The polarized general fiber
(
F, L|F

)
corresponds to the polarized toric variety associated to the polytope P(F,L|F ) = Conv (v0, . . . , vk) and the

polytopes R0, · · · , Rk define the embeddings of the invariant sections polarized by the restrictions of L.

Example 1.6. Consider the Hirzebruch surface F1 = Blp

(
P2

)
= P

(
OP1 ⊕ OP1 (1)

)
polarized by the tautological line bundle ξ =

2ϕ∗
(

OP2 (1)
)
− E where ϕ is the blow-up map and E the exceptional divisor. The associated polytope is P = Cayley (∆1, 2∆1).

FIGURE 1. The Hirzebruch surface P
(

OP1 ⊕ OP1 (1)
)

Example 1.7. More generally:
- when π(P ) = ∆t the polytope Cayley (R0, . . . , Rk)(π,Y ) defines the variety P (L0 ⊕ . . .⊕ Lk ), where the Li are ample line bundles on the
toric variety Y , polarized by the tautological bundle ξ. In particular L|F = OPt (1).

- When π(P ) is a simplex (not necessarily smooth) Cayley (R0, . . . , Rk)(π,Y ) defines a Mori-type fibration. A fibration whose general fiber has Picard

rank one. - When π(P ) = s∆t then again the variety has the structure of a Pt-fibration whose general fiber F is embedded via an s-Veronese embedding:(
F, L|F

)
=

(
Pt, OPt (s)

)
.

For general Cayley sums, [R0 ⋆ . . . ⋆ Rk]π , one has the following geometrical interpretation. Let (X,L) be the associated polarized toric variety and let
Y be the toric variety defined by the Minkowski sum R0 + . . . + Rk . The fan defining Y is a refinement of the normal fan of Ri for i = 0, . . . , k.
Consider the associated birational maps ϕi : Y → Yi , where (Yi, Li) is the polarized toric variety defined by the polytope Ri . The line bundles
Hi = ϕ∗

i (Li) are nef line bundles on Y . Denote by the same symbol the maps of fans ϕi : ΣY → ΣYi
. Define then the fan:

ΣZ :
{
ϕ
−1
i

(
σj

)
× ηl, for all σj ∈ ΣYi

, ηl ∈ Σ∆

}
where Λ = Conv (v0, . . . , vk). It is a refinement of ΣX and thus the defining variety Z is birational to X . Moreover it is a split fan and thus it defines a
toric fibration f : Z → Y . The Cayley sum [R0 ⋆ . . . ⋆ Rk]π is the polytope defined by the nef line bundle ϕ∗(L), and the polytopes Ri are the
polytopes defined by the nef line bundles Hi on the invariant sections.

Historical Remark. The definition of a Cayley polytope originated by what is "classically" referred to as the Cayley trick. We first recall the definition of
Resultant and Discriminant. Let f1(x), . . . , fn(x) be a system of n polynomials in n variables x = (x1, . . . , xn) supported on A ⊂ Zn . This
means that fi = Πaj∈Acjx

aj . The resultant (of A ), RA
(
cj ), is a polynomial in the coefficients cj , which vanishes whenever the corresponding

polynomials have a common zero.

The discriminant of a finite subset A,∆A , is also a polynomial ∆A
(
cj

)
in the variables cj ∈ A which vanishes whenever the corresponding polynomial

has a multiple root.

Theorem 1.8. [GKZ][Cayley Trick] The A-resultant of the system f1, . . . , fn equals the Adiscriminant of the polynomial:

p(x, y) = fi(x) +

n∑
2

yi−1fi(x).

Let Ri = N (fi) ⊂ Rn be the Newton polytopes of the polynomials fi . The Newton polytope of the polynomial p(x, y) is the Cayley sum
[R1 ⋆ . . . ⋆ Rn]π , where π : R2n−1 → Rn−1 is the natural projection such that π

(
[R1 ⋆ . . . ⋆ Rn]π

)
= ∆n−1 .

...

Subset: Textbooks

meta:
book_name: Linear Toric Fibrations_Sandra Di Rocco,
type: Notes,
...

Figure 6: An example textbook document in MATHPILE
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A document from MATHPILE-ProofWiki

Text:
\section{Test for Submonoid}
Tags: Abstract Algebra, Monoids

\begin{theorem}
To show that \struct {T, circ} is a submonoid of a monoid \struct {S, circ}, we need to show that:
:(1): T ⊆ S
:(2): \struct {T, circ} is a magma (that is, that it is closed)
:(3): \struct {T, circ} has an identity.
\end{theorem}

\begin{proof}
From Subsemigroup Closure Test, (1) and (2) are sufficient to show that \struct {T, circ} is a subsemigroup of \struct {S, circ}.
Demonstrating the presence of an identity is then sufficient to show that it is a monoid. {{qed}}
Category:Monoids
\end{proof}

...

Subset: ProofWiki

meta:
type: Theorem_Proof,
...

Figure 7: An example ProofWiki (a theorem and its proof) document in MATHPILE

A document from MATHPILE-ProofWiki

Text:
\begin{definition}[Definition:That which produces Medial Whole with Medial Area/Whole]

Let a, b ∈ R>0 be (strictly) positive real numbers such that a > b.

Let a − b be a straight line which produces with a medial area a medial whole.

The real number a is called the ”’whole”’ of the straight line which produces with a medial area a medial whole.

Category:Definitions/Euclidean Number Theory

\end{definition}

Subset: ProofWiki

meta:
type: Definition,
...

Figure 8: An example ProofWiki (definition) document in MATHPILE
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A document from MATHPILE-arXiv

Text:
\begin{document}
\title{Coherence freeze in an optical lattice investigated via pump-probe spectroscopy}
\author{Samansa Maneshi}
\email[]{smaneshi@physics.utoronto.ca}
\author{Chao Zhuang}
\author{Christopher R. Paul}
\author{Luciano S. Cruz}
\altaffiliation[Current address: ]{UFABC, São Paulo, Brazil.}
\author{Aephraim M. Steinberg}
\affiliation{Centre for Quantum Information & Quantum Control and Institute for Optical Sciences,
Department of Physics, University of Toronto, Canada }
\date{\today}
\pacs{37.10.Jk, 03.65.Yz, 03.67.-a, 42.50.Md}

\begin{abstract}
Motivated by our observation of fast echo decay and a surprising coherence freeze, we have developed a pump-probe spectroscopy technique for vibrational
states of ultracold 85Rb atoms in an optical lattice to gain information about the memory dynamics of the system. We use pump-probe spectroscopy to monitor
the time-dependent changes of frequencies experienced by atoms and to characterize the probability distribution of these frequency trajectories. We show that
the inferred distribution, unlike a naive microscopic model of the lattice, correctly predicts the main features of the observed echo decay.
\end{abstract}

\maketitle

Characterizing decoherence mechanisms is a crucial task for experiments aiming to control quantum systems, e.g., for quantum information processing (QIP).
In this work, we demonstrate how two-dimensional (2D) pump-probe spectroscopy may be extended to provide important information on these mechanisms.
As a model system, we study quantum vibrational states of ultracold atoms in an optical lattice. In addition to being a leading candidate system for QIP
\citeBrennenJaksch, optical lattices are proving a versatile testing ground for the development of quantum measurement and control techniques \citeOMandel,
Anderlini and a powerful tool for quantum simulations, e.g. the study of Anderson localization and the Hubbard model \citeMottAnderson.

In our experiment, we study the vibrational coherence of 85Rb atoms trapped in a shallow one-dimensional standing wave. Through our 2D pump-probe
technique, we obtain detailed microscopic information on the frequency drift experienced by atoms in the lattice, enabling us to predict the evolution of
coherence. Since the pioneering development of the technique in NMR\citeJeener-Ernst, 2D spectroscopy has been widely used to obtain high-resolution
spectra and gain information about relaxations, couplings, and many-body interactions, in realms ranging from NMR \citeErnst to molecular spectroscopy
\citeMukamel-Jonas, Hybl, Brixner, MillerNature to semiconductor quantum wells \citeCundiff, KWStone. Here, we show that similar powerful techniques can
be applied to the quantized center-of-mass motion of trapped atoms, and more generally, offer a new tool for the characterization of systems in QIP and quantum
control.

\begin{figure}
\caption{(Color online) Two typical measurements of echo amplitude vs. time. The echo pulse and the observed echo envelope are centered at times tp and
2tp , respectively. After an initial decay, echo amplitude stays constant for about 1ms forming a plateau, before decaying to zero. The average lattice depths
are 20ER (circles) and 18ER (squares).}
\label{fig1}
\end{figure}

We have previously measured the evolution of coherence between the lowest two vibrational states of potential wells \cite{Ours}.

The dephasing time is about 0.3ms (T⋆
2 ).

This dephasing is partly due to an inhomogeneous distribution of lattice depths as a result of the transverse Gaussian profile of the laser beams. To measure the
homogeneous decoherence time (T2), we perform pulse echoes, measuring the echo amplitude as a function of time \cite{Ours}.

Figure \ref{fig1} shows two typical measurements of echo amplitude carried out on different dates under slightly different conditions such as different average
lattice depths and different dephasing times. The echo amplitude initially decays with a time constant of about 0.7ms, which is much faster than the photon
scattering time (∼ 60ms) in the lattice. It then exhibits a 1ms-long coherence freeze followed by a final decay. Absent real decoherence on the short time
scale of 1ms, only loss of frequency memory would inhibit the appearance of echoes. This loss comes about when atoms experience time-varying frequencies.
We use 2D pump-probe spectroscopy to monitor this frequency drift. Our 2D pump-probe spectroscopy is essentially a version of spectral hole-burning for
vibrational states. By monitoring the changes in the hole spectrum as a function of time we gain information on the atoms’ frequency drift.

Information obtained from our 2D spectra enables us to characterize the temporal decay of frequency memory and through our simulations we find that
“coherence freeze" is related to the shape of this memory loss function.

Similar plateaus in echo decay and a two-stage decay of echo amplitude have been observed in a Cooper-pair box \cite{Nakamura}, for a single electron spin in
a quantum dot \cite{Vandersypen} and for electron spins in a semiconductor \cite{SClark}. Those plateaus or two-stage decays have been either explained
through {\it{a priori}} models or simply described phenomenologically. Here, we are introducing an experimental technique to directly probe the origin of
plateaus.

The periodic potential in our experiment is formed by interfering two laser beams blue-detuned by 25GHz from the D2 transition line, F = 3 → F ′ = 4
(λ = 780nm), thus trapping atoms in the regions of low intensity, which minimizes the photon scattering rate and the transverse forces. The two laser beams
intersect with parallel linear polarizations at an angle of θ = (49.0± 0.2)◦ , resulting in a spacing of L = (0.930± 0.004)µm between the wells. Due

to gravity, the full effective potential also possesses a “tilt” of 2.86ER per lattice site, where ER = h2

8mL2 is the effective lattice recoil energy. The photon
scattering time in our experiment is ≈ 60ms and the Landau-Zenner tunneling times for transitions from the lowest two levels are greater than 160ms.
Atoms are loaded to the lattice during a molasses cooling stage and prepared in the ground vibrational state by adiabatic filtering \cite{StefanQPT}. Due to the
short coherence length of atoms in optical molasses (60nm at 10µK), there is no coherence between the wells. We measure populations of atoms in the
ground vibrational, the first excited, and the (lossy) higher excited states P1 , P2 , and PL , respectively, by fluorescence imaging of the atomic cloud after
adiabatic filtering \cite{StefanQPT}.

...

Subset: arXiv

meta:
id: 1005.2635,
language_detection_score: 0.8389,
...

Figure 9: An example arXiv document in MATHPILE
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A document from MATHPILE-StackExchange

Question:
Title: Are fractions hard because they are like algebra?
Body:
It occurs to me that to really understand the ways that people work with fractions on paper requires a good grasp of the ideas that numbers have multiple
representations and that expressions can be manipulated in various ways without changing the number they represent. These are essentially algebraic ideas.
For example, adding fractions requires us to rewrite the fractions in a different form, and then essentially factorise the expression. This is the same as rearranging
expressions in algebra. Dividing fractions requires us to rerepresent an operation like ÷ 2

3
as × 3

2
. This is the same as realising the connection between

operations that you use to solve equations in algebra. And cancelling down before multiplying is very sophisticated rewriting relying on various associative and
commutative laws.
So it seems that we are really asking children to think in algebraic ways in order to understand fraction calculations well. This would seem to me to be a good
reason why children and adults find it hard - they need more scaffolding in some abstract ideas.
Is this a reasonable theory and has anyone written about this algebra-fractions connection before? To be clear, I am not asking if this is the only reason fractions
are hard, but if there is any discussion out there to draw parallels between learning algebra and learning to manipulate fractions.
Id: 7826
Score: 17
Tags: <algebra><fractions>
LastEditorDisplayName: None
OwnerDisplayName: None
ClosedDate: None
FavoriteCount: None
language_detection_score: 0.9558

...

Answers:

Body: Not sure about paper references. One reason why people dont́ understand fractions is because they are seemingly illogical.

You score one basket out of three 1/3.

A little while later you try again and score 1/2. Clearly you have scored 2/5 shots? In many ways this is the correct answer. So why shouldnt́ 1
3

+ 1
2

= 2
5

People generally dont́ understand equivalent fractions. It is strange for one farmer to say there are 4 sheep and another to say there are 8/2 sheep in the same
field. People assume that the number 4 does what it says on the tin and is how we always describe 4 ness of something. They dont́ understand equivalence.

Partly to blame is treating fractions like conjuring tricks. If this is the question...do this, if this is the question ...do another uncorrelated thing. I asked my class
(who seemingly could compute 2

3
× 3

5
correctly) to draw me a picture

instead of just multiplying. No one could do it yet they all said "but itś
frac615 you times the top and the bottom!"

I think drawing fractions is extremely useful. Draw 2
3

÷ 2 or 2 ÷ 2
3

Itś not easy but I find students develop robustness eventually and begin to abstract
themselves.

Id: 7827,
Score: 9,
is_accepted_answer: False,
language_detection_score: 0.9599,

Body: The obvious (to me) source of difficulty is that fractions are just plain complicated, more so than almost anything else in elementary education. You have
to operate with a pair of numbers, instead of a single one, and you have to keep the order straight. Adding is quite complicated in its own right. Things are
further complicated by rules about least common denominators and least terms.

Iḿ a little unclear about the questionś emphasis on algebra. Any sort of general rule or operation in arithmetic must have a connection to algebra, but I do not
see what is intrinsically difficult about algebra that relates to numeric fractions. Certainly some parts of algebra are hard, and some parts harder than others,
algebraic fractions among them. It seems to me that fractions are difficult because itś easy to confuse the various bits. Even when youv́e got them straight,
theyŕe noticeably slower to use, take concentration, and when things have such cognitive demands, theyŕe harder to think with.

Conceptually, theyŕe a little bit odd, which is probably distracting until you get used to them. What they represent do not seem to apply to the same things that
(whole) numbers do. Evidently fractions are not considered in this passage:

In that city, which was the oldest in the world, the cat was an object of veneration. Its worship was the religion of the country. The multiplication and addition of
cats were a perpetual instruction in arithmetic. Naturally, any inattention to the wants of a cat was punished with great severity in this world and the next... – A.
Bierce, "A Revolt of the Gods"

Now to have one-and-a-half cats seems a very different thing than to have three halves. In the former case, thereś a good chance that the one cat you have will be
alive and purring, while the same could not possibly be said about any of the halves. No doubt such lessons are considered blasphemous in that city. While
many things may be divided into parts – cars are a better example than cats – not many can be divided into equivalent parts that can be used as a basis for
fractions. As we get used to fractions, as well as real numbers, we are taught to ignore this and accept statements such as "the average family has 2.4 children."
Here is another example:

By then, she will have shed 80 of the 240 pounds she weighed in with when she entered Peter Bent Brigham hospital obesity program. A third of her left
behind! – The Boston Herald American, 7/7/77

The question seems to welcome references. There are certainly several that connect fractions with algebra. This paper,

Seigler et al. (2013), Fractions: the new frontier for theories of numerical development, Trends in Cognitive Sciences,

is a short survey of what is known and unknown about neural bases for oneś knowledge of fractions. Whole number arithmetic knowledge has been studied, and
the authors suggest that the representation of the knowledge fractions is an area ripe for investigation. It reviews (with references) why fractions are difficult and
the relation of skill at fractions to skill at algebra. Generally – or, rather, I only know of papers that discuss the connection in that direction, with algebra skill
being dependent on fractions skill. (OTOH, Iḿ not widely read in this area.)

Id: 7831,
Score: 11,
is_accepted_answer: False,
language_detection_score: 0.9780

Subset: StackExchange

Figure 10: An example StackExchange document in MATHPILE . Here is a question from
“matheducators” “.stackexchang.com” with two high-quality responses.
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D Details for Corpus Collection and Processing

The subjects from which we collected papers on arXiv are listed in Table 7. The specific StackEx-
change sites from which we gathered data are listed in Table 8. We illustrate the LaTeX display issue
with an example in Figure 11.

During the collection process of arXiv, we undertook extensive transformations to enhance data
clarity and consistency. Specifically, we (1) removed comments in each paper; (2) reverted many
macro commands (e.g., “newcommand”) to their original forms; (3) omitted figure environments
while retaining captions and figure labels; (4) excluded acknowledgements sections; (5) eliminated
references in each paper; (6) condensed more than three consecutive empty lines to two; (7) replaced
certain formatting commands like “hfill” and “vspace” with an empty line; (8) replaced the
“maketitle” command in the main document body with the actual title (if available); (9) preserved
only the content within the main body of the LaTex document.

We summarize the parts of the dataset collection (cf. § 2) and global data preprocessing (cf. § 3)
where human intervention was involved and whether the cleaning process was automated in the
Table 9 and Table 10. We hope this provides a clearer understanding of MATHPILE construction
process.

Table 7: The subject list during collecting corpus from arXiv.
Subjects

math.AG, math.AT, math.AP, math.CT, math.CA, math.CO, math.AC, math.CV, math.DG, math.DS,
math.FA, math.GM, math.GN, math.GT, math.GR, math.HO, math.IT, math.KT, math.LO, math.MP,
math.MG, math.NT, math.NA, math.OA, math.OC, math.PR, math.QA, math.RT, math.RA, math.SP,
math.ST, math.SG, math-ph, quant-ph, cs.CC, cs.CG, cs.DM, cs.DS, cs.FL, cs.GT, cs.LG, cs.NA,

cs.LO, q-fin.MF, stat.CO, stat.ML, stat.ME, stat.OT, stat.TH, econ.TH

Table 8: The site list during collecting corpus from StackExchange.
Sites sourced from StackExchange

math.stackexchange.com, mathoverflow.net, mathematica.stackexchange.com,
matheducators.stackexchange.com, hsm.stackexchange.com, physics.stackexchange.com,
proofassistants.stackexchange.com, tex.stackexchange.com, datascience.stackexchange,

cstheory.stackexchange.com, cs.stackexchange.com
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Table 9: Details of Human Involvement and Automation in the MATHPILE Collection Process

MATHPILE Subset Human Involvement in Data Collection Cleaning Process Automated?
Textbooks Manual search and download of open-

source, free mathematics textbooks; quality
check; setting cleaning rules

Yes, the automated application
of the PDF conversion API and
the document cleaning rules

arXiv Papers Manual selection of relevant mathematical
field categories; setting latex cleaning and
formatting rules

Yes, automated cleaning steps
like comment removal and for-
mat conversion

Wikipedia Mathemat-
ical Entries

Humans observed samples to define rules
for cleaning irrelevant content such as copy-
right statements

Yes, automated HTML to Mark-
down conversion; and removal
of extraneous lines

ProofWiki Entries No significant human intervention (mainly
data dump selection, reformatting design)

Yes, automated text parsing and
formatting

StackExchange Dis-
cussions

Selection of relevant mathematics-related
sites within the StackExchange network;
setting filter thresholds

Yes, automated HTML parsing
and conversion, score filtering

Common Crawl Web
Pages

Manual adjustment of TF-IDF rules to im-
prove mathematical content identification

Yes, automated application of
rule-based mathematical docu-
ment filtering

Table 10: Details of Human Involvement and Automation in the MATHPILE Global Data Processing
Steps

Global Data Processing Step Human Involvement Cleaning Process Automated?
Language Identification Manual adjustment of thresholds

based on observed false positives
Yes, using FastText with custom
thresholds

Data Cleaning & Filtering Human observation to define rules
for filtering irrelevant content

Yes, automated application of rules
for content filtering and removal

Data Deduplication Manual review of near-duplicate
samples from different sources

Yes, automated using MinHash LSH

Data Contamination Detection Human verification of flagged
benchmark duplicates

Yes, automated detection based on
pre-defined criteria

# Abhyankar's inequality

**Abhyankar's inequality** is an inequality involving extensions of valued fields in algebra, introduced by Abhyankar (1956).

Abhyankar's inequality states that for an extension _K_ / _k_ of valued fields, the transcendence degree of _K_ / _k_ is at least the 
transcendence degree of the residue field extension plus the rank of the quotient of the valuation groups; here the rank of an abelian group  
A {\displaystyle A} A is defined as  dim Q ( A ⊗ Q ) {\displaystyle \dim _{\mathbb {Q} }(A\otimes \mathbb {Q} )} {\\displaystyle \\dim 
_{\\mathbb {Q} }\(A\\otimes \\mathbb {Q} \)}.

## References

* Abhyankar, Shreeram (1956), "On the valuations centered in a local domain", _American Journal of Mathematics_ , **78** (2): 321–348, 
doi:10.2307/2372519, ISSN 0002-9327, JSTOR 2372519, MR 0082477

# Abhyankar's inequality

**Abhyankar's inequality** is an inequality involving extensions of valued fields in algebra, introduced by Abhyankar (1956).

Abhyankar's inequality states that for an extension $K / k$ of valued fields, the transcendence degree of $K / k$ is at least the 
transcendence degree of the residue field extension plus the rank of the quotient of the valuation groups; here the rank of an abelian group 
$A$ is defined as $\dim _{\mathbb {Q}} (A\otimes \mathbb {Q} )$.

## References

* Abhyankar, Shreeram (1956), "On the valuations centered in a local domain", _American Journal of Mathematics_ , **78** (2): 321–348, 
doi:10.2307/2372519, ISSN 0002-9327, JSTOR 2372519, MR 0082477

Figure 11: A document processed by html2text (above) compared to one obtained through another
library Resiliparse plus DOM parsing (below).
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E Example for Quality Annotation

We present a cleaned example document with quality annotations (see Figure 12).

A document from MATHPILE-Common Crawl

Text:
This number is called the Copeland–Erdős constant, and is known to be irrational and normal. I believe its transcendence or otherwise is an open problem. This
source claims that it has been proved to be transcendental, but the paper they refer to is the one in which it was proved to be normal and so I think the source is
mistaken.
For now, the knowledge that it is almost surely transcendental will have to suffice!
Not the answer you’re looking for? Browse other questions tagged number-theory transcendental-numbers or ask your own question.
Does the number 2.3, 5, 7, 11, 13 . . . exist and, if so, is it rational or irrational &or transcendental?
Is 0.248163264128. . . a transcendental number?
What is the name of this number? Is it transcendental?
Is 0.112123123412345123456 . . . algebraic or transcendental?
Is 0.121121111112111. . . a transcendental number?
Do we know a transcendental number with a proven bounded continued fraction expansion?
If we delete the non-primes from e, is the resulting number transcendental?
Is there any known transcendental b such that bb is also transcendental?

...

Subset: Common Crawl

meta:
language_detection_score: 0.9118,
char_num_after_normalized: 887,
contain_at_least_two_stop_words: True,
ellipsis_line_ratio: 0.0, idx: 95994,
lines_start_with_bullet_point_ratio: 0.0,
mean_length_of_alpha_words: 4.2941,
non_alphabetical_char_ratio: 0.0234,
symbols_to_words_ratio: 0.0117,
uppercase_word_ratio: 0.0117
...

Figure 12: An example document after cleaning and filtering with quality annotations

F Examples of Duplicates Encountered in the Deduplication Process

We provide some illustrative examples of duplicates from each source in the deduplication process,
as shown in Table 11 to Table 16.

We also provide examples of downstream task benchmarks (i.e., MATH and MMLU-STEM) leaks
identified during our data contamination detection process for our corpus (as shown in Table 17 and
Table 18) and OpenWebMath (as shown in Table 19).
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Table 11: Near-duplication matches found in CommonCrawl by MinHash LSH deduplication (in
italics).

In algebraic topology we often encounter chain complexes
with extra multiplicative structure. For example, the
cochain complex of a topological space has what is called
the E∞-algebra structure which comes from the cup prod-
uct.
In this talk I present an idea for studying such chain com-
plexes, E∞ differential graded algebras (E∞ DGAs), using
stable homotopy theory. Namely, I discuss new equiva-
lences between E∞ DGAS that are defined using commuta-
tive ring spectra.
ring spectra are equivalent. Quasi-isomorphic E∞ DGAs
are E∞ topologically equivalent. However, the examples I
am going to present show that the opposite is not true; there
are E∞ DGAs that are E∞ topologically equivalent but not
quasi-isomorphic. This says that between E∞ DGAs, we
have more equivalences than just the quasi-isomorphisms.
I also discuss interaction of E∞ topological equiva-
lences with the Dyer-Lashof operations and cases where
E∞topological equivalences and quasi-isomorphisms
agree.

Özet : In algebraic topology we often encounter chain
complexes with extra multiplicative structure. For example,
the cochain complex of a topological space has what is
called the E∞-algebra structure which comes from the cup
product. In this talk I present an idea for studying such
chain complexes, E∞ differential graded algebras (E∞
DGAs), using stable homotopy theory. Namely, I discuss
new equivalences between E∞ DGAS that are defined using
commutative ring spectra.We say E∞ DGAs are E∞ topo-
logically equivalent when the corresponding commutative
ring spectra are equivalent. Quasi-isomorphic E∞ DGAs
are E∞ topologically equivalent. However, the examples I
am going to present show that the opposite is not true; there
are E∞ DGAs that are E∞ topologically equivalent but not
quasi-isomorphic. This says that between E∞ DGAs, we
have more equivalences than just the quasi-isomorphisms.
I also discuss interaction of E∞ topological equivalences
with the Dyer-Lashof operations and cases where E∞ topo-
logical equivalences and quasi-isomorphisms agree.

Université de la Saskatchewan, 1 - 4 juin 2015
www.smc.math.ca//2015f
Comité d’organisation
Financement étudiants
Minisymposia invités
Minisymposia libres
Conférences libres
Horaire - Minisymposa invités
Open Problems
Graphs and matrices
Responsable et président: Shaun Fallat et Karen Meagher
(University of Regina)
WAYNE BARRETT, Brigham Young University
The Fielder Vector and Tree Decompositions of Graphs
[PDF]
In the 1970’s Fiedler initiated a study of the second smallest
eigenvalue of the Laplacian matrix L of a graph and the
corresponding eigenvector(s). These "Fiedler" vectors have
become spectacularly successful in revealing properties of
the associated graph. A tree decomposition T of a graph
G = (V,E) is an associated tree whose nodes are subsets
of V and whose edge set respects the structure of G. Tree
decompositions have been used in the analysis of complex
networks. This talk reports on an algorithm developed
by students at BYU for obtaining a tree decomposition by
means of Fiedler vector(s) of G.

...

Graphs that have a weighted adjacency matrix with spec-
trum {λn−2

1 , λ2
2} [PDF]

In this talk I will characterize the graphs which have an
edge weighted adjacency matrix belonging to the class of
n× n involutions with spectrum equal to {λn−2

1 , λ2
2} for

some λ1 and some λ2. The connected graphs turn out to be
the cographs constructed as the join of at least two unions
of pairs of complete graphs, and possibly joined with one
other complete graph.

University of Saskatchewan, June 1 - 4, 2015
www.cms.math.ca//2015
Invited Minisymposia
Contributed Minisymposia
Contributed Talks
Graphs and matrices
Organizer and Chair: Shaun Fallat and Karen Meagher
(University of Regina)
WAYNE BARRETT, Brigham Young University
The Fielder Vector and Tree Decompositions of Graphs
[PDF]
In the 1970’s Fiedler initiated a study of the second smallest
eigenvalue of the Laplacian matrix L of a graph and the
corresponding eigenvector(s). These "Fiedler" vectors have
become spectacularly successful in revealing properties of
the associated graph. A tree decomposition T of a graph
G = (V,E) is an associated tree whose nodes are subsets
of V and whose edge set respects the structure of G. Tree
decompositions have been used in the analysis of complex
networks. This talk reports on an algorithm developed
by students at BYU for obtaining a tree decomposition by
means of Fiedler vector(s) of G.

...

Graphs that have a weighted adjacency matrix with spec-
trum {λn−2

1 , λ2
2} [PDF]

In this talk I will characterize the graphs which have an
edge weighted adjacency matrix belonging to the class of
n× n involutions with spectrum equal to {λn−2

1 , λ2
2} for

some λ1 and some λ2. The connected graphs turn out to be
the cographs constructed as the join of at least two unions
of pairs of complete graphs, and possibly joined with one
other complete graph.
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Table 12: A near-duplication match found in arXiv by MinHashLSH deduplication (in italics).
\begin{document}

\title{Querying Guarded Fragments via Resolution}

\section{A detailed example}

Here we include some equations and theorem-like environments to show
how these are labeled in a supplement and can be referenced from the
main text.
Consider the following equation:
\begin{equation}
\label{eq:suppa}
a^2 + b^2 = c^2.
\end{equation}
You can also reference equations such as \cref{eq:matrices,eq:bb}
from the main article in this supplement.
\lipsum[100-101]

\begin{theorem}
An example theorem.
\end{theorem}

\lipsum[102]

\begin{lemma}
An example lemma.
\end{lemma}

\lipsum[103-105]

Here is an example citation: \cite{KoMa14}.

\section[Proof of Thm]{Proof of \cref{thm:bigthm}}
\label{sec:proof}

\lipsum[106-112]

\section{Additional experimental results}
\Cref{tab:foo} shows additional
supporting evidence.

\begin{table}[htbp]
{\footnotesize
\caption{Example table} \label{tab:foo}
\begin{center}
\begin{tabular}{|c|c|c|} \hline
Species & \bf Mean & \bf Std.∼Dev. \\\hline
1 & 3.4 & 1.2 \\
2 & 5.4 & 0.6 \\\hline
\end{tabular}
\end{center}
}
\end{table}

\end{document}

\begin{document}

\title{Limited memory Kelley’s Method Converges for Composite
Convex and Submodular Objectives}

\section{A detailed example}

Here we include some equations and theorem-like environments to show
how these are labeled in a supplement and can be referenced from the
main text.
Consider the following equation:
\begin{equation}
\label{eq:suppa}
a^2 + b^2 = c^2.
\end{equation}
You can also reference equations such as \cref{eq:matrices,eq:bb}
from the main article in this supplement.
\lipsum[100-101]

\begin{theorem}
An example theorem.
\end{theorem}

\lipsum[102]

\begin{lemma}
An example lemma.
\end{lemma}

\lipsum[103-105]

Here is an example citation: \cite{KoMa14}.

\section[Proof of Thm]{Proof of \cref{thm:bigthm}}
\label{sec:proof}

\lipsum[106-112]

\section{Additional experimental results}
\Cref{tab:foo} shows additional
supporting evidence.

\begin{table}[htbp]
{\footnotesize
\caption{Example table} \label{tab:foo}
\begin{center}
\begin{tabular}{|c|c|c|} \hline
Species & \bf Mean & \bf Std.∼Dev. \\\hline
1 & 3.4 & 1.2 \\
2 & 5.4 & 0.6 \\\hline

\end{tabular}
\end{center}
}
\end{table}

\end{document}
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\section{Definition:Constructed
Semantics/Instance 4/Rule of
Idempotence}

Tags: Formal Semantics

\begin{theorem}
The Rule of Idempotence:
:$(p \lor p) \implies p$
is a tautology in Instance 4 of

constructed semantics.
\end{theorem}

\begin{proof}
By the definitional abbreviation for

the conditional:
:$\mathbf A \implies \mathbf B =_{\

text{def}} \neg \mathbf A \lor \
mathbf B$

the Rule of Idempotence can be
written as:

: $\neg \left({p \lor p}\right) \lor
p$

This evaluates as follows:
:$\begin{array }{| cccc|c|c|} \hline
\neg & (p & \lor & p) & \lor & p \\
\hline
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 2 & 2 & 2 & 0 & 2 \\
2 & 3 & 3 & 3 & 0 & 3 \\
\hline
\end{array}$
{{qed}}
Category:Formal Semantics
\end{proof}

\section{Definition:Constructed
Semantics/Instance 5/Rule of
Idempotence}

Tags: Formal Semantics

\begin{theorem}
The Rule of Idempotence:
:$(p \lor p) \implies p$
is a tautology in Instance 5 of

constructed semantics.
\end{theorem}

\begin{proof}
By the definitional abbreviation for

the conditional:
:$\mathbf A \implies \mathbf B =_{\

text{def}} \neg \mathbf A \lor \
mathbf B$

the Rule of Idempotence can be
written as:

: $\neg \left({p \lor p}\right) \lor
p$

This evaluates as follows:
:$\begin{array }{| cccc|c|c|} \hline
\neg & (p & \lor & p) & \lor & p \\
\hline
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
3 & 2 & 2 & 2 & 0 & 2 \\
0 & 3 & 3 & 3 & 0 & 3 \\
\hline
\end{array}$
{{qed}}
Category:Formal Semantics
\end{proof}

\section{Imaginary Part of Complex
Product}

Tags: Complex Multiplication

\begin{theorem}
Let $z_1$ and $z_2$ be complex

numbers.
Then:
:$\map \Im {z_1 z_2} = \map \Re {z_1

} \, \map \Im {z_2} + \map \Im {
z_1} \, \map \Re {z_2}$

\end{theorem}

\begin{proof}
Let $z_1 = x_1 + i y_1$ and $z_2 =

x_2 + i y_2$.
By definition of complex

multiplication:
:$z_1 z_2 = x_1 x_2 - y_1 y_2 + i \

paren {x_1 y_2 + x_2 y_1}$
Then
{{begin -eqn}}
{{eqn | l = \map \Im {z_1 z_2}

| r = x_1 y_2 + x_2 y_1
| c = {{Defof|Imaginary Part}}

}}
{{eqn | r = \map \Re {z_1} \, \map \

Im {z_2} + \map \Im {z_1} \, \map
\Re {z_2}
| c = {{Defof|Imaginary Part}}

}}
{{end -eqn}}
{{qed}}
\end{proof}

\section{Real Part of Complex
Product}

Tags: Complex Multiplication

\begin{theorem}
Let $z_1$ and $z_2$ be complex

numbers.
Then:
:$\map \Re {z_1 z_2} = \map \Re {z_1

} \map \Re {z_2} - \map \Im {z_1}
\map \Im {z_2}$

\end{theorem}

\begin{proof}
Let $z_1 = x_1 + i y_1$ and $z_2 =

x_2 + i y_2$.
By definition of complex

multiplication:
:$z_1 z_2 = x_1 x_2 - y_1 y_2 + i \

paren {x_1 y_2 + x_2 y_1}$
Then:
{{begin -eqn}}
{{eqn | l = \map \Re {z_1 z_2}

| r = x_1 x_2 - y_1 y_2
| c = {{Defof|Real Part}}

}}
{{eqn | r = \map \Re {z_1} \map \Re

{z_2} - \map \Im {z_1} \map \Im {
z_2}

| c = {{Defof|Real Part}}
}}
{{end -eqn}}
{{qed}}
\end{proof}

Table 13: Near-duplication matches found in ProofWiki by MinHash LSH deduplication.
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Table 14: Duplication matches found in Wikipedia by MinHash LSH deduplication (in italics).
# HP-42S

The **HP-42S RPN Scientific** is a programmable RPN
Scientific hand held calculator introduced by Hewlett-
Packard in 1988. It has advanced functions suitable for ap-
plications in mathematics, linear algebra, statistical analy-
sis, computer science and others.

HP-42S
The HP-42S
—
Type| Programmable scientific
Manufacturer| Hewlett-Packard
Introduced| 1988
Discontinued| 1995 Calculator
Entry mode| RPN
Precision| 12 display digits (15 digits internally),[1] expo-
nent ±499
Display type| LCD dot-matrix
Display size| 2 lines, 22 characters, 131×16 pixels CPU
Processor| Saturn (Lewis) Programming
Programming language(s)| RPN key stroke (fully merged)
Firmware memory| 64 KB of ROM
Program steps| 7200 Interfaces
Ports| IR (Infrared) printing Other
Power supply| 3×1.5V button cell batteries (Panasonic
LR44, Duracell PX76A/675A or Energizer 357/303)
Weight| 6 oz (170 g)
Dimensions| 148×80×15mm

## Overview

Perhaps the HP-42S was to be released as a replacement
for the aging HP-41 series as it is designed to be compatible
with all programs written for the HP-41. Since it lacked
expandability, and lacked any real I/O ability, both key
features of the HP-41 series, it was marketed as an HP-15C
replacement.

The 42S, however, has a much smaller form factor than the
41, and features many more built-in functions, such as a
matrix editor, complex number support, an equation solver,
user-defined menus, and basic graphing capabilities (the
42S can draw graphs only by programs). Additionally, it
features a two-line dot matrix display, which made stack
manipulation easier to understand.

Production of the 42S ended in 1995.[2] As this calculator
is regarded amongst the best ever made in terms of quality,
key stroke feel, ease of programming, and daily usability
for engineers,[3] in the HP calculator community the 42S
has become famous for its high prices in online auctions,
up to several times its introduction price, which has created
a scarcity for utility end users.
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up to several times its introduction price, which has created
a scarcity for utility end users.
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Table 15: Duplication matches found in Textbooks by MinHash LSH deduplication (in italics).
# Basic Concepts in Graph Theory

## Section 1: What is a Graph?

There are various types of graphs, each with its own defini-
tion. Unfortunately, some people apply the term "graph"
rather loosely, so you can’t be sure what type of graph
they’re talking about unless you ask them. After you have
finished this chapter, we expect you to use the terminology
carefully, not loosely. To motivate the various definitions,
we’ll begin with some examples.

Example 1 (A computer network) Computers are often
linked with one another so that they can interchange in-
formation. Given a collection of computers, we would like
to describe this linkage in fairly clean terms so that we can
answer questions such as "How can we send a message
from computer A to computer B using the fewest possible
intermediate computers?"

We could do this by making a list that consists of pairs of
computers that are connected. Note that these pairs are
unordered since, if computer C can communicate with com-
puter D, then the reverse is also true. (There are sometimes
exceptions to this, but they are rare and we will assume that
our collection of computers does not have such an excep-
tion.) Also, note that we have implicitly assumed that the
computers are distinguished from each other: It is insuffi-
cient to say that "A PC is connected to a Mac." We must
specify which PC and which Mac. Thus, each computer
has a unique identifying label of some sort.

For people who like pictures rather than lists, we can put
dots on a piece of paper, one for each computer. We label
each dot with a computer’s identifying label and draw a
curve connecting two dots if and only if the correspond-
ing computers are connected. Note that the shape of the
curve does not matter (it could be a straight line or some-
thing more complicated) because we are only interested in
whether two computers are connected or not. Below are
two such pictures of the same graph. Each computer has
been labeled by the initials of its owner.

...

## Basic Concepts in Graph Theory

The notation Pk(V ) stands for the set of all k-element
subsets of the set V . Based on the previous example we
have

Definition 1 (Simple graph) A simple graph G is a pair
G = (V,E) where

- V is a finite set, called the vertices of G, and
- E is a subset of P2(V ) (i.e., a set E of two-element subsets
of V ), called the edges of G.

...
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- E is a subset of P2(V ) (i.e., a set E of two-element subsets
of V ), called the edges of G.

...
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Table 16: Near-duplication matches found in StackExchange by MinHash LSH deduplication (in
italics).

This was originally posted on mathoverflow, but it seems
it’s more appropriate to post here.
Let B be a paracompact space with the property that any
(topological) vector bundle E → B is trivial. What are
some non-trivial examples of such spaces, and are there
any interesting properties that characterize them?
For simple known examples we of course have contractible
spaces, as well as the 3-sphere S3. This one follows from
the fact that its rank n vector bundles are classified by
π3(BO(n)) = π2(O(n)) = 0. I’m primarily interested in
the case where B is a closed manifold. Do we know any
other such examples?
There is this nice answer to a MSE question which talks
about using the Whitehead tower of the appropriate clas-
sifying space to determine whether a bundle is trivial or
not. This seems like a nice tool (of which I am not familiar
with) to approaching this problem. As a secondary question,
could I ask for some insight/references to this approach?
EDIT Now that we know from the answer all the examples
for closed 3-manifolds (integral homology spheres), I guess
I can now update the question to the case of higher odd di-
mensions. Does there exist a higher dimensional example?

Let B be a paracompact space with the property that any
(topological) vector bundle E → B is trivial. What are
some non-trivial examples of such spaces, and are there
any interesting properties that characterize them?
For simple known examples we of course have contractible
spaces, as well as the 3-sphere S3. This one follows from
the fact that its rank n vector bundles are classified by
π3(BO(n)) = π2(O(n)) = 0. I’m primarily interested in
the case where B is a closed manifold. Do we know any
other such examples?
There is this nice answer to a MSE question which talks
about using the Whitehead tower of the appropriate clas-
sifying space to determine whether a bundle is trivial or
not. This seems like a nice tool (of which I am not familiar
with) to approaching this problem. As a secondary question,
could I ask for some insight/references to this approach?
EDIT Now that we know from the answers all the examples
for closed 3-manifolds, I guess I can now update the ques-
tion to the case of higher odd dimensions. Does there exist
a higher dimensional example?

This is a copy of my question on MSE
(https://math.stackexchange.com/questions/3372432)
because this forum seems better suited for historical
questions:
In 1985, Gosper used the not-yet-proven formula by Ra-
manujan

1

π
=

2
√
2

992
·

∞∑
n=0

(4n)!

(n!)4
· 26390n+ 1103

3964n

to compute 17 · 106 digits of π, at that time a new world
record.
Here (https://www.cs.princeton.edu/courses/archive/fall98/
cs126/refs/pi-ref.txt) it reads:
There were a few interesting things about Gosper’s com-
putation. First, when he decided to use that particular
formula, there was no proof that it actually converged to
pi! Ramanujan never gave the math behind his work, and
the Borweins had not yet been able to prove it, because
there was some very heavy math that needed to be worked
through. It appears that Ramanujan simply observed the
equations were converging to the 1103 in the formula, and
then assumed it must actually be 1103. (Ramanujan was
not known for rigor in his math, or for providing any proofs
or intermediate math in his formulas.) The math of the
Borwein’s proof was such that after he had computed 10
million digits, and verified them against a known calcula-
tion, his computation became part of the proof. Basically it
was like, if you have two integers differing by less than one,
then they have to be the same integer.
Now my historical question: Who was the first to prove this
formula? Was it Gosper because he added the last piece
of the proof, or was it the Borweins, afterwards? And was
Gosper aware of this proof when he did his computation?

In 1985, Gosper used the not-yet-proven formula by Ra-
manujan

1

π
=

2
√
2

992
·

∞∑
n=0

(4n)!

(n!)4
· 26390n+ 1103

994n

to compute 17 · 106 digits of π, at that time a new world
record.
Here (https://www.cs.princeton.edu/courses/archive/fall98/
cs126/refs/pi-ref.txt) it reads:
There were a few interesting things about Gosper’s com-
putation. First, when he decided to use that particular
formula, there was no proof that it actually converged to
pi! Ramanujan never gave the math behind his work, and
the Borweins had not yet been able to prove it, because
there was some very heavy math that needed to be worked
through. It appears that Ramanujan simply observed the
equations were converging to the 1103 in the formula, and
then assumed it must actually be 1103. (Ramanujan was
not known for rigor in his math, or for providing any proofs
or intermediate math in his formulas.) The math of the
Borwein’s proof was such that after he had computed 10
million digits, and verified them against a known calcula-
tion, his computation became part of the proof. Basically it
was like, if you have two integers differing by less than one,
then they have to be the same integer.
Now my historical question: Who was the first to prove this
formula? Was it Gosper because he added the last piece
of the proof, or was it the Borweins, afterwards? And was
Gosper aware of this proof when he did his computation?
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Table 17: Exact match examples from the test set of MATH benchmark found in Textbooks by
line-level exact match deduplication (in italics).

Coin A is flipped three times and coin B is flipped four times. What is the probability that the number of heads
obtained from flipping the two fair coins is the same?

Video Solution

Answer:

## Problem 3.2.2 (AMC 10)

Two tour guides are leading six tourists. The guides decide to split up. Each tourist must choose one of the guides, but
with the stipulation that each guide must take at least one tourist. How many different groupings of guides and tourists
are possible?

......

One morning each member of Angela’s family drank an 8-ounce mixture of coffee with milk. The amounts of coffee
and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of
the total amount of coffee. How many people are in the family?

Answer:

## Problem 20.2.15 (AMC 12)

The state income tax where Kristin lives is levied at the rate of p% of the first $28000 of annual income plus (p+2)%
of any amount above $28000. Kristin noticed that the state income tax she paid amounted to (p + 0.25)% of her
annual income. What was her annual income?

Answer:

......

Find the least positive integer k for which the equation
⌊
2002
n

⌋
= k has no integer solutions for n. (The notation ⌊x⌋

means the greatest integer less than or equal to x.)

Answer:

## Problem 40.1.9 (AIME)

Find the number of positive integers n less than 1000 for which there exists a positive real number x such that
n = x⌊x⌋.’, ”, ’Note: ⌊x⌋ is the greatest integer less than or equal to x.’

......

What is the sum of the roots of z12 = 64 that have a positive real part?

Answer:

## Problem 45.8.13 (AMC 12)

The complex numbers z and w satisfy z13 = w,w11 = z, and the imaginary part of z is sin mπ
n

, for relatively prime
positive integers m and n with m < n. Find n.’

Answer:

......
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Table 18: Exact match examples from the test set of MATH benchmark found in CommonCrawl
by line-level exact match deduplication (in italics). In these examples, we only observe repeated
questions from MATH, but do not identify duplicate answers.

Let x and y be real numbers satisfying x4y5 + y4x5 = 810 and x3y6 + y3x6 = 945. Evaluate 2x3 + (xy)3 + 2y3.
Let x1 < x2 < x3 be the three real roots of the equation

√
2014x3 − 4029x2 + 2 = 0. Find x2(x1 + x3).

Let m be the largest real solution to the equation

3

x− 3
+

5

x− 5
+

17

x− 17
+

19

x− 19
= x2 − 11x− 4

There are positive integers a, b, and c such that m = a+
√

b+
√
c. Find a+ b+ c.

Let f(x) = x4 + ax3 + bx2 + cx+ d. If f(−1) = −1, f(2) = −4, f(−3) = −9, and f(4) = −16. Find f(1).
Solve in positive integers x2 − 4xy + 5y2 = 169.
Solve in integers the question x+ y = x2 − xy + y2.
Solve in integers x+y

x2−xy+y2 = 3
7

Prove the product of 4 consecutive positive integers is a perfect square minus 1.
For any arithmetic sequence whose terms are all positive integers, show that if one term is a perfect square, this
sequence must have infinite number of terms which are perfect squares.
Prove there exist infinite number of positive integer a such that for any positive integer n, n4 + a is not a prime
number.

......

The real root of the equation 8x3 − 3x2 − 3x− 1 = 0 can be written in the form
3√a+

3√
b+1

c
, where a, b, and c are

posit ive integers. Find a+ b+ c.
Find the number of positive integers m for which there exist nonnegative integers x0, x1 , . . . , x2011 such that

mx0 =

2011∑
k=1

mxk .

Suppose x is in the interval [0, π
2
] and log24 sin x(24 cosx) =

3
2

. Find 24 cot2 x.
Let P (x) be a quadratic polynomial with real coefficients satisfying x2 − 2x+ 2 ≤ P (x) ≤ 2x2 − 4x+ 3 for all
real numbers x, and suppose P (11) = 181. Find P (16).
Let (a, b, c) be the real solution of the system of equations x3 − xyz = 2, y3 − xyz = 6, z3 − xyz = 20. The
greatest possible value of a3 + b3 + c3 can be written in the form m

n
, where m and n are relatively prime positive

integers. Find m+ n.
Find the smallest positive integer n with the property that the polynomial x4 − nx+ 63 can be written as a product of
two nonconstant polynomials with integer coefficients.
The zeros of the function f(x) = x2 − ax+ 2a are integers. What is the sum of the possible values of a?
Let a, b, and c be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation
(x− a)(x− b) + (x− b)(x− c) = 0?
At the theater children get in for half price. The price for 5 adult tickets and 4 child tickets is 24.50. How much would
8 adult tickets and 6 child tickets cost?
The quadratic equation x2 + px+ 2p = 0 has solutions x = a and x = b. If the quadratic equation x2 + cx+ d = 0
has solutions x = a+ 2 and x = b+ 2, what is the value of d?

......

Find the smallest positive integer n with the property that the polynomial x4 − nx+ 63 can be written as a product of
two nonconstant polynomials with integer coefficients.
The zeros of the function f(x) = x2 − ax+ 2a are integers. What is the sum of the possible values of a?
Let a, b, and c be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation
(x− a)(x− b) + (x− b)(x− c) = 0 ?
At the theater children get in for half price. The price for 5 adult tickets and 4 child tickets is 24.50. How much would
8 adult tickets and 6 child tickets cost?
The quadratic equation x2 + px+ 2p = 0 has solutions x = a and x = b. If the quadratic equation x2 + cx+ d = 0
has solutions x = a+ 2 and x = b+ 2, what is the value of d?
PolynomialAndEquation Root Delta SpecialEquation Function NumberTheoryBasic IndeterminateEquation
SqueezeMethod Pythagore anTripletFormula TrigIdentity Inequality LogicalAndReasoning
AMC10/12 AIME IMO
US International
With Solutions
© 2009 - 2023 Math All Star

......
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Table 19: Exact match examples from the test set of MATH benchmark (upper) and MMLU-STEM
(bottom) found in OpenWebMath by line-level exact match deduplication (in italics). In these
examples, we only observe repeated questions, but do not identify duplicate answers.

The sum of an infinite geometric series is a positive number S, and the second term in the series is 1. What is the
smallest possible value of S?

(A) 1+
√

5
2

(B) 2 (C)
√
5 (D) 3 (E) 4

## Problem 17

All the numbers 2, 3, 4, 5, 6, 7 are assigned to the six faces of a cube, one number to each face. For each of the eight
vertices of the cube, a product of three numbers is computed, where the three numbers are the numbers assigned to the
three faces that include that vertex. What is the greatest possible value of the sum of these eight products?

(A) 312 (B) 343 (C) 625 (D) 729 (E) 1680

...

What is the value of b+ c if x2 + bx+ c > 0 only when x ∈ (−∞,−2) ∪ (3,∞)?

May 11, 2020

...

An ambulance travels at 40 mph and can follow a 20-mile route making no stops to get to the hospital. A helicopter
travels at one mile per minute, and the air route is 15 miles to get to the same hospital. However, the helicopter takes
three minutes for takeoff and three minutes for landing. How many fewer minutes does it take for the helicopter to
complete its trip (takeoff, flight and landing) than for the ambulance to complete its trip?

Apr 6, 2020

#1
+34
0

Keep in mind that Time=Distance/Speed

What is the greatest possible area of a triangular region with one vertex at the center of a circle of radius 1 and the
other two vertices on the circle?

A bad first step is to put the center at the origin, one point at (1,0) , and one point at (sin x, cos x).

A start is the area of a triangle with included angle expression

a× b× sin θ

2

Assuming θ in radians. If theta is π/2 then we have a right triangle. Let a=b=1. Area expression is

A = (sin θ)/2

This is maximum for θ = π/2.

Answer is maximum area for a right triangle.

...

41



G Evaluation of Continal Pre-trained Models on General Langauge
Benchmarks

Does continual pre-training on MATHPILE lead to improvements in general language benchmarks?
To explore this, we evaluated some continual pre-trained models on MATHPILE (in Table 4) in several
representative benchmarks including PIQA [8], ARC-Easy [15], ARC-Challenge [15], SciQ [64]
and HellaSwag [69]. For these evaluations, we used the infrastructure provided by EleutherAI’s
lm-evaluation-harness, 7 and following common practices, we report the accuracy (acc norm) metric.

Table 20: Performance of continual pre-trained models on general language benchmarks

Models PiQA ARC-Challenge ARC Easy SciQ Hallswag
Mistral-7B 81.93 53.75 79.58 94.0 81.05
+ Textbooks 80.14 52.73 79.92 95.6 81.15
+ Wikipedia 80.57 56.48 79.71 94.8 82.07
+ Stackexchange 80.41 49.66 75.38 90.5 82.87

One important point that needs to be emphasised is that when enhancing a model’s capabilities in
a specific domain, it is typically necessary to mix the new domain-specific training data with the
original training data, which helps to prevent catastrophic forgetting. In current experiments, we
conducted continual pre-training exclusively on math-specific data, which means that we did not
necessarily expect improvements in general language modeling benchmarks and, in some cases, a
regression could occur. As shown in Table 20, after continual pre-training on MATHPILE subsets, the
model’s general language modeling abilities did not experience significant degradation. In fact, there
were some improvements on certain benchmarks, though some metrics did see slight declines.

7https://github.com/EleutherAI/lm-evaluation-harness
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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