
A Background

In this section, we provide an overview of blockchain technology and cryptocurrency, laying the
groundwork for understanding the subsequent discussions in this paper.

Blockchain and Cryptocurrency. Blockchain technology has gained growing attention recently
for its strong security features and decentralized structure. It is characterized by a sequence of
cryptographically secured blocks that operate on a network of nodes [42]. This design ensures data
immutability and verifiability while allowing universal access, enabling participants to interact with
the ledger from anywhere at any time. Once recorded on the ledger, transactions become irreversible
and are executed securely and transparently, which helps safeguard the integrity of data exchanges.

With the support of blockchain technology, cryptocurrencies have surged in popularity as an innovative
means of conducting secure digital transactions. Unlike traditional currencies, cryptocurrencies
operate without a centralized authority and are managed through decentralized systems. This
decentralization maintains participant anonymity, offering robust privacy protection; however, it
complicates efforts to identify fraudulent activities within the market.

Blockchain Models and EVM Chains. Various operational models exist within blockchain technol-
ogy. For instance, Bitcoin, the first cryptocurrency network, operates using the Unspent Transaction
Output (UTXO) model [66]. In this model, each transaction utilizes unspent outputs from previous
transactions as inputs, generating new unspent outputs for subsequent transactions. This method pre-
serves transaction integrity by streamlining ownership verification and enhancing security measures
related to transaction immutability.

In contrast, the Ethereum Virtual Machine (EVM) introduced an account-based model, akin to
traditional banking systems, where balances are maintained in user accounts [67]. This model
enables direct value transfer and supports advanced features such as smart contracts, which are
self-executing agreements with terms embedded directly within the blockchain. Due to its versatility
and strong developer support, the EVM has become the standard for building blockchain networks
and decentralized applications. The three notable EVM-based networks discussed in this work are
Ethereum, Polygon, and Binance Smart Chain [68]:

• Ethereum, the pioneering EVM chain, has developed a robust platform for decentralized applica-
tions. It supports a wide range of decentralized services, from financial transactions to games and
autonomous organizations. Its native token, Ether, holds the second-largest market capitalization,
second only to Bitcoin.

• Polygon enhances Ethereum’s functionality as an EVM-compatible chain by offering faster transac-
tions and reduced fees. Functioning as a sidechain to Ethereum, it addresses scalability issues with
a multi-chain infrastructure, which is particularly advantageous for developers seeking efficient
transaction throughput within the Ethereum ecosystem.

• Binance Smart Chain provides a similar EVM-compatible environment with a focus on scalability
and user experience. It has carved out a niche by emphasizing rapid transactions and minimal fees,
particularly attracting decentralized finance (DeFi) applications and NFTs.

ERC20 and BEP20 Standards. The ERC20 standard defines a framework for fungible tokens on
the Ethereum blockchain. These fungible tokens are digital assets that are identical in type and value,
making them interchangeable with one another. This standardization simplifies the process of trading
and exchanging tokens and enhances their interoperability across various applications. Similarly,
BEP20 is a standard used on the Binance Smart Chain (BSC), mirroring many of the functionalities
of ERC20 while optimizing for faster transactions and lower fees.

Accounts and Transactions. EVM-compatible chains typically support two principal types of
accounts: External Owned Accounts (EOAs) and smart contracts. EOAs function much like traditional
bank accounts, as they are directly managed by users through a private key, granting them full
autonomy over transactions. In contrast, smart contracts are autonomous programs that reside on
the blockchain and execute automatically when predefined conditions are met. These programs are
crucial for a variety of operations on EVM chains, from facilitating transactions in the token markets
to managing decentralized finance (DeFi) protocols and automated governance mechanisms.

A transaction includes various details, such as the sender’s and recipient’s actions, signature, nonce,
data, gas limit, maximum priority fee per gas, and maximum fee per gas. In the token market, these

17

transactions facilitate diverse blockchain events like token issuance and transfers. This architectural
framework not only supports complex financial interactions but also enhances security across the
blockchain ecosystem.

B Supplemental Related Work

Graphs-of-Graphs Analysis. The analysis of Graphs-of-Graphs (GoG) systems has become a
crucial method for understanding complex relationships within and across different network layers in
various domains. For instance, Chen et al. [69] examined the dynamics of event propagation on social
platforms like Twitter. They analyzed follower link roles by grouping users based on their language
settings, treating these groups as local graphs, with following or retweeting relationships represented
as edges. Similarly, Wang et al. [70] modeled intra-level and inter-level causal relationships within
interdependent networks, effectively tracing and identifying root causes in complex interconnected
system structures. In more specialized applications, Liu et al. [71] employed GoG to enhance
hazard identification at construction sites. They mapped interactions between characters and hazard
networks, simplifying complex network structures to improve safety outcomes. Additionally, Chen
et al. [72, 73] investigated the manipulation of connectivity in multi-layered networks, uncovering
the structural dynamics that govern these complex systems. These studies underscore the powerful
capability of GoG analysis in providing a deeper understanding of intricate graph systems.

C Basic Structure Properties

In this section, we explore several fundamental graph properties relevant to our analysis, as discussed
in subsection 4.1 and subsection 5.2. We measure seven key graph properties: the number of nodes,
the number of edges, density, assortativity, reciprocity, clustering coefficient, and effective diameter.
These properties provide a comprehensive structural overview of the graph, which is essential for
understanding its characteristics and implications in the context of token transfer networks.

First, we consider the number of nodes and edges, which quantitatively describe the scale and potential
complexity of the graph. Density, assortativity, and reciprocity offer insights into the connectivity
and interaction patterns among nodes, reflecting how edges are distributed and whether similar nodes
preferentially connect to each other. Additionally, the clustering coefficient and effective diameter
provide a view of the overall compactness and reachability within the graph.

Density. The density of a graph measures its compactness and connectivity. In this study, density is
calculated as:

D =
|E|

|V |(|V |� 1)

where |E| is the number of edges, and |V | is the number of nodes. In token transfer graphs, a lower
density suggests a fragmented or developing market, indicative of fewer interactions or participants.
Conversely, a high density indicates a mature market with frequent transactions between participants.
This distinction is crucial for understanding market dynamics.

Assortativity. The assortativity coefficient quantifies the tendency of nodes to connect with others
that share similar attributes. Specifically, assortativity is calculated by:

r =

P
(i,j)2E (f(i)� f1) (f(j)� f2)qP

(i,j)2E (f(i)� f1)
2 P

(i,j)2E (f(j)� f2)
2

This metric is particularly relevant in token transfer graphs, as it measures how frequently addresses
transact with others of similar characteristics. A higher assortativity may indicate a market dominated
by similar types of transactions or participants. However, it is important to note that this is a trend
observed in our data rather than an absolute rule. Understanding this property aids in identifying
market segmentation.

Reciprocity. Reciprocity measures the likelihood of directed connections being reciprocated. It is
calculated by:

⇢ =
|{(i, j) 2 G : (j, i) 2 G}|

|E(G)|

18

This metric is crucial for understanding mutual interactions between addresses, such as reciprocal
trading patterns. In token transfer graphs, a higher reciprocity suggests a strong bidirectional
transactional relationship, indicating trust or partnership between nodes. This insight is vital for
assessing the stability of relationships within the graph.

Clustering Coefficient. The clustering coefficient measures how closely nodes in a graph tend
to cluster together. This metric is essential in token transfer graphs, as it indicates the extent to
which nodes form tightly-knit groups, which may suggest collusive behavior or strong community
structures. We primarily use the average clustering coefficient to assess overall network cohesion and
the potential for collaborative behavior among participants. It is calculated as:

Cavg =
1

n

nX

i=1

Ci

Ci =
2T (i)

ki(ki � 1)
In the token transfer graph, a higher average clustering coefficient suggests a network characterized
by prevalent cliques or groups that engage in frequent interactions, potentially indicating tight-knit
trading communities.

Effective Diameter. The effective diameter provides insight into the average separation between
node pairs across the graph. We measure the effective diameter by performing breadth-first search
(BFS) from a sample of randomly selected nodes to provide a broad and representative overview of
the graph’s structure. The effective diameter is then defined as the 90th percentile of the shortest
path lengths obtained from these BFS runs. This approach estimates how far apart nodes are on
average, considering the most representative paths rather than extremes. The effective diameter
reflects how easily a token can circulate within the network, a key factor in assessing liquidity and
market efficiency. This metric is particularly important for understanding the graph’s accessibility.

D Temporal Properties Analysis

To reveal the temporal changes in the GoG systems of the three blockchains, we analyze the yearly
variation of some fundamental properties of the global graphs. Nodes represent tokens, and an edge
between two nodes indicates that the tokens share common addresses during that year.

First, we examine the dynamics of the number of nodes and edges, as illustrated in Figure 6. Across
the Ethereum, Polygon, and BSC ERC20 token networks, we observe a consistent trend of significant
growth in both nodes and edges. This growth reflects increased adoption and diversification of
blockchain platforms. Over the past three years, the average increase in the number of nodes in the
global graphs is 42.49% for Ethereum, 33.08% for Polygon, and 65.18% for BSC. These figures
indicate substantial changes in the dataset. Notably, Ethereum exhibits the most mature growth
pattern, particularly with a significant acceleration since 2020. In contrast, Polygon shows robust
growth; however, it has a slower increase in edges compared to nodes, suggesting a less interconnected
network than Ethereum’s GoG. Meanwhile, BSC experiences a rapid rise in both nodes and edges
but begins to show signs of stabilization in 2023, indicating a maturing of its initial expansion phase.
These patterns highlight that while all networks are expanding, the nature and rate of growth vary
among the different blockchains.

(a) Ethereum (b) Polygon (c) BSC

Figure 6: Yearly number of nodes and edges of three global graphs.

Second, we analyze the density and average clustering coefficient of the three global graphs, as
shown in Figure 7. A common trend emerges across Ethereum and BSC: both density and clustering

19

coefficient tend to decrease as the network size increases. This trend indicates sparser connections
as these networks expand, especially pronounced in the BSC network, which reflects significant
diffusion from its originally dense structure. Conversely, Polygon exhibits a different pattern; both
metrics initially increase and then stabilize. This indicates that the GoG not only grows but also
effectively maintains or enhances its clustering. Such behavior suggests robust internal structuring
that preserves community integrity even as the network scales. These observations highlight varied
adaptive strategies within blockchain networks, with the Polygon GoG notably sustaining community
cohesion amidst growth.

(a) Ethereum (b) Polygon (c) BSC

Figure 7: Yearly density and clustering coefficients of three global graphs.

E Model Implementation Details

In this section, we introduce the models and hyperparameters we used for the multi-class classification
and anomaly detection tasks.

E.1 Multi-class classification

Models. We conduct experiments on two groups of models: (1) 5 GNN models on individual graphs,
and (2) 3 GoG-based GNN models on graphs-of-graphs.

Group (1) includes GNN models for individual graphs:

• Graph Convolutional Network (GCN) [31] utilizes a layer-wise propagation rule based on spectral
graph convolutions, enabling it to learn representations that capture graph structure and node
features effectively.

• Graph Attention Network (GAT) [47] introduces an attention mechanism in the propagation step,
allowing nodes to dynamically weigh the contributions of their neighbors.

• Graph Isomorphism Network (GIN) [48] is designed to capture the power of the Weisfeiler-
Lehman graph isomorphism test. It approximates the Weisfeiler-Lehman graph isomorphism test
by adjusting aggregators to better distinguish between different graph structures.

• Residual Graph Convolutional Network (ResidualGCN) [49] incorporates residual connections
into the graph convolutional layers to improve gradient flow during training, which enhances the
learning of deeper GNN architectures by mitigating the vanishing gradient problem.

• GraphSAGE [50] generates node embeddings by sampling and aggregating features from a node’s
local neighborhood. Its inductive learning framework supports embedding generation for unseen
data, making it scalable and efficient for large graphs.

Group (2) includes models designed for graphs-of-graphs:

• Semi-supervised Graph Classification via Cautious Iteration (SEAL) [20] utilizes a self-attentive
graph embedding method with GCN as a backbone to embed graph instances into fixed-length
vectors, facilitating graph-based classification tasks. It enhances the encoding of local graph
structures and their relationships within a larger graph context.

• Graph of Graphs Neural Network (GoGNN) [19] extends traditional GCN capabilities by integrating
an attention-based pooling mechanism and GAT. It effectively identifies significant substructures
within local graphs and interactions within the interaction graph, providing a powerful framework
for analyzing complex graph relationships.

20

• Denoising Variational Graph Autoencoder (DVGGA) [39] employs a denoising variational autoen-
coder combined with a self-attentive graph neural network and a readout operation. This model is
adept at handling noise in graph data, making it suitable for tasks requiring robust feature extraction
and anomaly detection in noisy environments.

Model structures. For GNN models targeting individual graphs, we employ a configuration that
includes two GNN layers followed by a fully connected layer for classification. This two-layer setup,
consistent with the backbone design of SEAL [20], ensures fair comparisons. Each layer transforms
node features to enhance feature extraction, using ReLU activation and dropout for regularization.
Following the convolution layers, a global mean pooling layer aggregates node features into a cohesive
graph-level representation. This representation is then processed through a fully connected layer,
which outputs class probabilities using a logarithmic softmax function. For GoG models, we utilize
publicly available code from the Github repositories of the original studies. For GoGNN and DVGGA,
we adapt the original code from edge prediction to node classification tasks on the global graph.

Hyperparameters. For individual GNN models, we configure each layer with a dimension of 16, a
dropout rate of 0, a learning rate of 0.01, and set the number of training epochs to 50. Cross-entropy
serves as the loss function. For GoG-based models using a single GCN model as the backbone, we
ensure that the dimensions and dropout rates are consistent with those of the individual GNN models.
To fine-tune additional hyperparameters, we experiment with various settings listed in Table 6 to
achieve optimal performance.

Table 6: GoG models parameter settings.
Model Parameter Values
SEAL First dense neurons 16, 32, 64

Second gcn dimensions 8, 16
Number of epochs 50, 100, 150
Weight 0, 0.001, 0.00001

GOGNN Nhid 32, 64, 128
Number of epochs 50, 100, 150
Pooling rate 0.4, 0.5, 0.6

DVGGA Vgae hidden dimensions 8, 16, 32
Number of epochs 50, 100, 150

E.2 Anomaly Detection

Models. We test two groups of models: (1) 4 models for multivariate anomaly detection, and (2) 5
models for the graph anomaly detection.

Group (1) includes probabilistic-based and outlier ensembles methods designed for multivariate
anomaly detection:

• Copula-Based Outlier Detection (COPOD) [54] is a probabilistic model that leverages the advan-
tages of copulas for outlier detection. It does not assume a normal distribution of data, making it
robust and effective in identifying outliers in various datasets with complex distributions.

• Isolation Forest (IForest) [55] utilizes a decision tree structure to isolate outliers by randomly
selecting features and split values between the feature’s maximum and minimum. Its efficiency and
scalability make it well-suited for large datasets.

• Deep Isolation Forest (DIF) [56] extends the traditional isolation forest by incorporating deep
learning techniques to enhance its capability to handle high-dimensional and complex structured
data.

• Variational Autoencoder (VAE) [57] is a generative model that uses a neural network architecture to
model data distributions and encode data into a latent space. It is widely used for anomaly detection
by reconstructing inputs and measuring reconstruction errors to identify anomalies.

Group (2) includes anomaly detection methods on graphs, primarily utilizing GNN combined with
Autoencoder techniques:

21

• Graph Autoencoder (GAE) [58] employs a graph convolutional network to encode the graph
structure into a latent space, then reconstructs the graph to identify anomalies by measuring
reconstruction loss.

• Detection of Outliers in Network Data (DONE) [59] integrates graph structural information with
node feature information to detect anomalous nodes effectively within graph data.

• Deep Anomaly Detection on Attributed Networks (DOMINANT) [60] uses a deep autoencoder
model adapted to graph data, enhancing the ability to capture non-linearities and complex patterns
in the data, which helps in identifying both global and local anomalies in graphs.

• Anomaly Detection with Autoencoder (AnomalyDAE) [61] is an autoencoder-based model that
particularly focuses on detecting anomalies in dynamic graphs by learning a representation that
captures both the graph structure and changes over time.

• Contrastive Learning for Anomaly Detection (CoLA) [62] utilizes contrastive learning to differenti-
ate between normal and abnormal nodes, leveraging the discriminative power of contrastive loss to
enhance anomaly detection performance in graph settings.

Hyperparameters. We test on the following hyperparameters in Table 7 and select the best setting
with superior performance.

Table 7: Models of anomaly detection parameter settings. n represents the number of features.
Model Parameter Values
COPOD Contamination 0.01 to 0.1 (linear space)

Isolation Forest Number of estimators 100, 200
Maximum samples 256, 512

DIF Contamination 0.01 to 0.05 (linear space)

VAE Encoder neurons n/4, n/2, min(20, n)
Decoder neurons n/4, n/2, min(20, n)
Contamination 0.1 to 0.3 (linear space)

DOMINANT, DONE, GAE, Hidden dimensions 16, 32, 64
AnomalyDAE, CoLA Learning rate 0.01, 0.005, 0.1

Number of epochs 50, 100, 150

F Global Link Prediction

Link prediction is an essential task in graph learning, widely applied in recommendation systems [74]
and social media analysis [75]. In the context of blockchain analysis, predicting interactions between
tokens is essential for forecasting future market behaviors. This section focuses on global edge
prediction, specifically aiming to forecast interactions for newly launched tokens using information
from existing tokens.

Models. We compare two groups of models based on the previous section subsection 5.1. The
first group consists of traditional Graph Neural Network (GNN) models applied to global token
graphs. The second group includes Graphs of Graphs (GoG) models, which leverage the hierarchical
structure of token-to-token interactions. We provide a detailed comparison of performance metrics to
substantiate our claims regarding the effectiveness of these models.

Settings. Our analysis focuses on the most recent tokens launched within the past year. We divided
global token-token interactions into training and test sets, following an 80/20 ratio based on the tokens’
launch times. Node degree serves as the primary feature for local graph embeddings, consistent with
our approach in the classification task. We evaluate model performance using accuracy and AUC,
supplemented by precision and recall to provide a comprehensive assessment.

Results. The performance of global edge prediction methods across three blockchains is summa-
rized in Table 8. As shown, GoG models do not consistently outperform individual GNN models,
particularly on the BSC dataset. One potential reason for these results is that the node degree, used
as a node feature in this experiment, may not be as effective for predicting global edges as it is for

22

Table 8: Edge prediction performance by blockchain.
Ethereum Polygon BSC

Model Accuracy AUC Accuracy AUC Accuracy AUC

GCN 58.07±0.36 62.02±0.23 59.64±1.71 66.92±5.37 66.73±3.12 72.87±3.42

GAT 50.80±0.43 54.50±2.43 50.70±2.07 54.64±4.47 52.82±0.77 53.62±2.86

GIN 56.48±1.61 56.36±1.77 59.03±3.47 58.17±4.33 59.98±2.61 63.57±3.48

ResidualGCN 50.31±0.37 50.66±0.54 49.91±0.08 49.92±0.10 50.41±0.43 50.74±0.94

GraphSage 50.92±1.03 53.67±2.11 56.63±8.88 60.17±12.83 71.02 ± 0.05 78.07 ± 1.08

SEAL 57.09±1.64 64.74±4.83 56.98±4.93 64.62±10.34 56.52±4.62 58.05±6.04

GoGNN 66.94 ± 2.08 72.04 ± 2.41 57.10±5.21 56.72±4.75 58.99±2.77 66.25±1.84

DVGGA 50.40±1.79 62.93±1.73 72.38 ± 1.36 76.00 ± 0.32 63.63±4.94 69.11±3.95

classification tasks. This suggests that further exploration of edge feature engineering could enhance
the predictive capabilities of GoG models for token-token interactions.

Additionally, the dynamic nature of blockchain networks presents opportunities to monitor and predict
future token-token interactions, which could forecast significant market trends. However, most current
GoG models are not designed with dynamic algorithms [19, 20], highlighting both challenges and
potential areas for further research. We recommend future work to explore the integration of dynamic
features and more sophisticated edge feature engineering to improve prediction accuracy. In summary,
our findings indicate that while GoG models show promise, there is a need for further refinement and
exploration of features to enhance their predictive performance in the context of blockchain networks.

G Multi-Class Graph Classification - Temporal Split

In this section, we present additional experiments that focus on predicting the class label of younger
tokens using information derived from older tokens. To simulate a realistic scenario where future
tokens are classified based on historical data, we implement a temporal split of the dataset. Specifically,
we divide the tokens into training and test sets following an 80/20 ratio based on their first transaction
timestamps. This approach enables evaluation of the model’s performance within a time-sensitive
context, which is crucial for applications in dynamic environments like blockchain.

The experimental settings align with those described in subsection 5.1. The results of these experi-
ments are summarized in Table 9, which provides a comparative analysis of classification performance
across different models and blockchain platforms.

Upon comparing these results with those presented in Table 4, we observe that the performance for
Ethereum and BNB shows only slight differences regardless of the node-splitting method employed.
However, for Polygon, we note a significant deterioration in performance. This discrepancy may be
due to Polygon’s status as the fastest of the major Ethereum-based chains [76], leading to varying
transaction patterns across different time periods. These findings suggest that while our methods
demonstrate competitive performance, further investigation is warranted to understand the underlying
factors affecting classification accuracy across different blockchains.

H Graph Anomaly Detection with Deepwalk Embeddings

In this section, we present an effective method for representing token graphs in anomaly detection
tasks by employing the DeepWalk algorithm [65]. DeepWalk is well-known for generating robust
graph embeddings through the simulation of random walks. This approach captures the network
topology and provides a nuanced representation of graph structures.

We configured DeepWalk with a walk length of 20 and performed 40 walks per node on each token
transaction graph. This configuration strikes a balance between the depth and breadth of neighborhood
exploration, ensuring that the embeddings accurately capture the structural and contextual nuances of
the token graphs. We then aggregated these node embeddings into a unified graph-level representation
by computing their mean, resulting in an embedding of 32 dimensions for each graph.

23

Table 9: 3-class and 5-class classification performance by blockchain (node split by time).
Ethereum Polygon BSC

Model F1-macro F1-micro F1-macro F1-micro F1-macro F1-micro

3-Class Classification

GCN 60.16±5.60 87.70±0.83 22.37±0.57 48.22±0.67 50.01±5.27 57.39±3.78

GAT 57.50±6.25 87.33±1.16 26.00±2.67 48.91±1.02 51.15±6.52 59.48±5.58

GIN 60.38±5.76 87.68±0.94 21.74±1.21 48.03±0.63 42.56±2.73 56.59±3.65

ResidualGCN 40.62±8.06 83.83±1.41 22.86±1.02 48.24±0.55 48.09±5.30 60.13±2.95

GraphSage 61.71±6.27 88.25±0.97 24.91±1.87 48.72±0.55 53.86±6.99 62.16±4.28

SEAL 67.42 ± 1.05 88.72 ± 0.33 27.20±1.81 49.37 ± 0.59 55.14±5.62 64.03 ± 3.82
GoGNN 66.10±1.98 88.28±0.80 30.85 ± 2.32 44.75±4.09 61.80 ± 0.50 62.17±0.33

DVGGA 53.80±1.98 75.60±7.67 28.22±1.44 41.52±0.98 24.03±13.78 35.37±15.33

5-Class Classification

GCN 38.75±5.44 85.18±0.93 12.11±0.53 41.16±0.95 26.76±3.74 47.21±4.33

GAT 37.02±5.64 85.24±1.07 16.63 ± 3.04 42.10±2.27 28.43±4.08 49.37±5.87

GIN 22.69±1.43 80.65±0.52 12.15±0.77 41.06±0.76 22.02±2.97 43.48±5.83

ResidualGCN 41.19±5.45 85.00±1.13 12.03±0.58 41.15±0.70 24.38±4.34 47.78±6.34

GraphSage 40.51±5.82 86.31±1.10 14.97±1.69 41.98±0.69 27.89±5.48 49.06±6.83

SEAL 48.85 ± 0.52 86.29±0.27 15.54±2.32 42.41 ± 0.15 30.41 ± 1.81 52.65 ± 1.09
GoGNN 45.25±5.83 86.36 ± 0.76 14.49±1.94 41.77±0.60 28.29±3.51 52.11±2.66

DVGGA 25.35±4.28 68.96±16.54 11.65±0.01 41.03±0.00 10.91±2.72 31.36±4.46

Table 10: Graph anomaly detection performance using DeepWalk. We report the ratio of number of
non-fraud:fraud case of each data at the top.

Ethereum (8387: 6022) Polygon (2257: 58) BNB (6339: 1042)

Model AUC AP AUC AP AUC AP

COPOD 50.87±0.09 42.57±0.70 62.16±8.3 3.42±1.62 52.47±0.47 13.82±0.91

IForest 50.43±0.28 42.69±1.07 60.95±8.7 3.11±1.12 52.14±1.17 14.02±0.85

DIF 50.58±0.31 42.10±0.89 59.72±6.85 2.80±0.55 52.16±0.72 13.77±0.91

VAE 50.77±0.34 42.87±0.94 61.86±7.98 3.47±1.69 51.69±1.24 14.00±0.81

GAE 51.22±1.39 41.44±0.56 60.81±1.25 5.40 ± 2.42 61.15±2.67 24.02 ± 1.92
DONE 68.86 ± 10.27 32.89±5.57 71.29 ± 2.21 1.63±0.06 77.55±0.13 8.62±0.01

DOMINANT 60.92±4.57 38.12±2.63 67.15±3.41 2.43±1.00 79.73 ± 0.07 8.42±0.01

AnomalyDAE 65.14±3.63 46.12 ± 10.08 57.90±3.58 3.44±0.31 52.75±0.98 15.67±0.20

CoLA 50.51±0.42 41.90±0.44 59.61±3.94 2.67±0.77 54.87±0.03 14.88±0.56

The results of our anomaly detection analysis using the DeepWalk algorithm are presented in
Table 10. Notably, the GoG models generally outperform multivariate outlier detection methods in
our experiments, although this may vary depending on the specific characteristics of each dataset.
When comparing the results in Table 7, the superiority of GoG models is evident across all three
blockchains when using the DeepWalk algorithm, particularly in scenarios with high fraud rates.

It is important to note that the anomaly detection performance on Polygon remains the poorest among
the chains, consistent with previous findings in subsection 5.2. While GoG models benefit from the
use of the DeepWalk algorithm, the performance of multivariate outlier detection methods appears to
decrease. This suggests that the DeepWalk algorithm significantly enhances the effectiveness of GoG
models in identifying anomalies.

I Details of Compute Resources

We use two machine, one for experiements of inidividual GNN, one for experiements of GoG-based
GNN. First, all experiments involving individual GNN models were conducted on machine outfitted

24

with eight NVIDIA GeForce GPUs, each with a maximum power capacity of 350W and 24,576
MiB of available memory. Second, all experiments utilizing GoG-based GNN models were carried
out on the machine equipped with eight NVIDIA A100-SXM4-80GB GPUs. These GPUs, each
with a maximum power capacity of 400W and a substantial 81,920 MiB of memory, are specifically
chosen for their high performance and large memory capacity, which are ideal for the complex and
memory-intensive computations required by GoG-based GNN models.

J License

The dataset is released under the Creative Commons Attribution-NonCommercial-ShareAlike (CC
BY-NC-SA) license.

K Hosting Plan

We choose GitHub as our hosting platform for both code and data due to its ease of use, cost-
effectiveness, and scalability. Ensuring easy access to our data is crucial. To facilitate straightforward
and reliable data retrieval, we will maintain a curated interface. We are committed to keeping our
platform stable and functional, with regular updates and maintenance to ensure our repository remains
up-to-date, bug-free, and efficient.

Our project is driven by a commitment to open access. By regularly updating our GitHub repository,
we ensure that users have timely access to the latest data. We believe that GitHub’s user-friendly
environment will provide a dependable and efficient solution for sharing our data with the global
community.

25

	Introduction
	Literature Review
	Dataset Details
	Background
	Data Collection
	Graph Construction
	Local Graph Construction
	Global Graph Construction

	Observations and Analysis
	Local Graph Analysis
	Global Graph Analysis

	Downstream Applications
	Multi-class Graph Classification
	Graph Anomaly Detection

	Conclusion
	Border Impact and Limitation
	Background
	Supplemental Related Work
	Basic Structure Properties
	Temporal Properties Analysis
	Model Implementation Details
	Multi-class classification
	Anomaly Detection

	Global Link Prediction
	Multi-Class Graph Classification - Temporal Split
	Graph Anomaly Detection with Deepwalk Embeddings
	Details of Compute Resources
	License
	Hosting Plan

