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Abstract

The performance of a large language model (LLM) depends heavily on the quality
and size of its pretraining dataset. However, the pretraining datasets for state-of-
the-art open LLMs like Llama 3 and Mixtral are not publicly available and very
little is known about how they were created. In this work, we introduce FineWeb, a
15-trillion token dataset derived from 96 Common Crawl snapshots that produces
better-performing LLMs than other open pretraining datasets. To advance the
understanding of how best to curate high-quality pretraining datasets, we carefully
document and ablate all of the design choices used in FineWeb, including in-
depth investigations of deduplication and filtering strategies. In addition, we
introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered
from FineWeb. LLMs pretrained on FineWeb-Edu exhibit dramatically better
performance on knowledge- and reasoning-intensive benchmarks like MMLU and
ARC. Along with our datasets, we publicly release our data curation codebase and
all of the models trained during our ablation experiments.

1 Introduction

Large Language Models (LLMs) have quickly become a ubiquitous technology thanks to their ability
to competently perform a wide range of text-based tasks. A driving factor in the success of LLMs
has been a steady increase in model sizes [1–3], which in turn necessitate ever-larger pretraining
datasets. Beyond scale, other characteristics of pretraining data have proven to be important, including
filtering out “low-quality” content [2, 4] and removing duplicate text [5]. Ultimately, the curation
choices made when developing a pretraining dataset can have a huge impact on the downstream
capabilities and performance of an LLM. As such, pretraining dataset curation strategies are often
treated as closely guarded trade secrets. In fact, there are many popular “open” language models
whose parameters are publicly available but whose pretraining datasets were not released and are
scarcely documented [6, 7]. The lack of access to high-quality large-scale pretraining datasets and
lack of information about their curation has led to concerns of a growing gap between proprietary
and public knowledge.

In this work, we aim to minimize this gap by developing and releasing the FineWeb datasets, a
collection of large-scale pretraining datasets that can be used to train performant LLMs. Specifically,
we first introduce FineWeb, a 15-trillion token dataset of text sourced from 96 Common Crawl
snapshots. FineWeb is sufficiently large to train a Chinchilla-optimal model [1] with more than
500 billion parameters. Beyond scale, FineWeb’s recipe involves a principled strategy for choosing
and tuning filtering heuristics that helped produce a small set of effective filters out of over fifty
candidate filters from past work. In addition, we performed an in-depth exploration of how different
deduplication strategies and granularities can impact performance. To validate our design choices,
we ultimately demonstrate that models trained on FineWeb perform better than those trained on other
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public web-based pre-training datasets. Inspired by recent work advocating for training LLMs on
educational data [8, 9], we additionally introduce FineWeb-Edu, a subset of 1.3 trillion tokens from
FineWeb that was rated as highly educational by a custom classifier. Models trained on FineWeb-Edu
exhibit significantly better performance on knowledge- and reasoning-intensive benchmarks like
MMLU [10] and ARC [11]. Both datasets are released under the permissive ODC-By License. Apart
from contributing datasets, we also release datatrove [12], the data processing library we developed
to create FineWeb. On the whole, our work represents a significant step towards improving public
knowledge and resources for curating LLM pre-training datasets.

2 Background

In this work, we focus on the curation of training datasets for autoregressive Transformer-based large
language models (LLMs) [13]. At their core, LLMs aim to produce a distribution over the next token
of text conditioned on past tokens, where each token is typically a word or subword unit [3]. The
generality of this paradigm allows LLMs to be applied to virtually any text-based task by formulating
a prefix whose continuation corresponds to performing the task (e.g. “The cat sat on the mat translated
to French is...” for English-to-French translation). Such models may undergo many stages of training
including pretraining on unstructured text data, fine-tuning to improve performance on a specific
task [14], multitask fine-tuning to improve generalization to new tasks [15], and learning from human
feedback to improve instruction-following capabilities [16, 2]. In this work, we focus solely on
curating data for the pretraining stage.

While many sources have been considered for pretraining data including text from books [2, 3, 17, 4],
Wikipedia [2, 3, 17, 4], and research papers [2, 4, 18], a highly common choice is to use web
text, i.e. text scraped from webpages on the public internet [19, 20]. While some companies like
OpenAI [21] and Anthropic [22] perform their own web scrapes, designing, implementing, and
running a web scraper at scale requires significant resources and expertise. Many LLM pretraining
datasets have therefore been constructed from text from the Common Crawl [23], a publicly available
and continually updated collection of website snapshots that has been running since 2007. As of
writing, Common Crawl has produced 100 web snapshots totaling petabytes of data.

Although Common Crawl has produced more than enough data to train recent LLMs, it has been
shown that the performance of an LLM can heavily depend on how web text has been filtered and
preprocessed before being used for pretraining [19]. In particular, web text can contain a large amount
of “unnatural” language (e.g. “boilerplate” text, gibberish, etc.). Training on unnatural language
data can harm the performance of LLMs, possibly because most downstream uses of LLMs do not
involve such data. On the other hand, filtering out too much content can produce a dataset that is
too small to perform sufficient pretraining (which typically involves only one pass or a few passes
over the pretraining dataset [24]) for a general use model. Separately, web text can contain a large
amount of duplicated content, which has also been shown to be harmful in the context of pretraining
data [5]. While deduplication may seem as straightforward as “removing duplicate text”, in practice
many design choices must be made (line, paragraph, or document-level deduplication? fuzzy or
exact matching? etc.). The curation and relative performance of different web text-based pretraining
datasets therefore heavily depends on a given dataset’s filtering and deduplication pipeline.

Given that the focus of our work is to carefully design an effective Common Crawl-based pre-
training dataset, we now briefly discuss the filtering and deduplication used in past public datasets.
OSCAR [25] processes Common Crawl using a pipeline inspired by that of Touvron et al. [2],
which uses a fastText-based language classifier [26] to filter pages based on their language and then
performs deduplication at the line level using a non-cryptographic hash algorithm. C4 [15] uses
langdetect [27] to filter out non-English pages, then applies a series of heuristic filters (retaining
only those lines that end in a terminal punctuation mark, removing short lines, discarding any page
that contains a word from a “bad words” list, etc.), and finally deduplicates over three-line windows.
CC-100 [28] uses the cc_net pipeline, which includes fastText for language identification, performs
paragraph-level hash-based deduplication, and retains only the text that is assigned a low perplexity
by a n-gram language model trained on Wikipedia. The Pile [29] is a composite dataset that includes
“Pile-CC”, a collection of text from one Common Crawl snapshot that uses pycld2 [30] for language
detection, jusText [31] for boilerplate removal, a classifier to filter out pages that are dissimilar form
WebText (described below), and fuzzy deduplication using MinHash [32]. ROOTS [33] includes text
from the pre-processed web crawl OSCAR with additional heuristic-based filtering and SimHash-
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based deduplication. RedPajama [34] is a composite dataset that includes Common Crawl-sourced
text processed using the cc_net pipeline as well as quality filtering using a classifier trained to
distinguish Wikipedia level content from random Common Crawl samples. SlimPajama [35] further
processed RedPajama by removing short documents and performing additional fuzzy MinHash-based
deduplication. RefinedWeb [36] uses trafilatura [37] for text extraction, fastText for language
identification, heuristic rules inspired by MassiveText (discussed below) to filter data, and both
MinHash (fuzzy) and ExactSubstr (exact) deduplication. RedPajama v2 [34] has 84 Common
Crawl snapshots released unfiltered and non-deduplicated but with labels from filtering techniques
from cc_net, C4, MassiveText, RefinedWeb and others, as well as deduplication labels for exact
(Bloom filter) and fuzzy (MinHash) deduplication. Finally, Dolma [38] has a Common Crawl-based
subset that uses fastText for language classification, heuristic rules from MassiveText and C4 for
quality filtering, rules- and classifier-based toxicity filtering, and URL, document and paragraph-level
deduplication using a Bloom filter.

Apart from public datasets, the technical reports accompanying the announcement of closed LLMs
occasionally discuss pretraining datasets. WebText [20] (used to train GPT-2) involves only those
non-Wikipedia webpages that were linked to from Reddit posts with at least 3 karma, with text
extracted using Dragnet [39] and Newspaper1 [40] and an unspecified deduplication pipeline. GPT-
3’s Dataset [3] includes content from Common Crawl that has been filtered using a classifier trained
on WebText, Wikipedia, and Books, and deduplicated using MinHash. MassiveText [41] (used
to train Gopher) is a web-based dataset using Google’s SafeSearch to remove explicit content and
heuristic filters based on document’s content (number of words, stop-words appearance, character
repetition, etc.) as well as MinHash-based deduplication.

3 Building FineWeb

Our design of FineWeb is primarily empirical: we performed a series of “data ablation” experiments
to test different methods at each stage of the pipeline. In this section, we chronicle our experimental
results and design choices. All ablations follow our iterative dataset building process, i.e., the baseline
model for each subsection includes only the processing steps from the previous subsections, unless
explicitly mentioned. Our results are fully reproducible with code in our datatrove repository.

3.1 Experimental setup

We compare pipeline design choices at each stage by training data ablation models that are identical
apart from the data they were trained on (same number of parameters, architecture hyper-parameters,
and trained on an equal number of randomly sampled tokens from each version of the data). We
then evaluated them on the same set of downstream task benchmark datasets (discussed below). To
minimize the impact of random data subset selection on evaluation scores, we trained two models
for each dataset version, each using a different but equal-sized random subset of the full data and a
different initialization seed, and then compared average scores.

All training was performed using the nanotron library. Data ablation models all had 1.71B parame-
ters (including embeddings), used the Llama architecture [2] with a sequence length of 2048, a global
batch size of ~2 million tokens, and the GPT2 tokenizer [20]. Within a given experiment, all models
were trained on the same amount of data for the same number of steps. Filtering ablations were trained
on ~28 billion tokens (roughly the Chinchilla-optimal training size for this model size [1]), while
some deduplication ablations and runs to confirm cumulative relative performance improvements
after each step of filtering were conducted on 350 billion tokens. The full training hyperparameter
are available in Appendix D. We make all models trained for our ablations publicly available on our
dataset repository. In total, we trained over 70 models on our internal cluster, for an estimated total of
80,000 H100 GPU hours.

Evaluation was performed using the lighteval library. We aimed to select a set of benchmarks
that would provide good signal at the relatively small scale of our data ablations. Specifically, we
chose benchmarks where models showed minimal score variance between runs trained on different
random samples of the same dataset; monotonic (or nearly monotonic) score improvement over
a given training; and scores above random baseline for models of this size. These criteria ensure
that the scores obtained on a subset of the data are representative of the entire dataset and that they
reflect a reliable measurement of the effect of the training data on model performance. Ultimately,
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we selected benchmark datasets CommonSense QA [42], HellaSwag [43], OpenBook QA [44],
PIQA [45], SIQA [46], WinoGrande [47], ARC [11], and MMLU [10], truncating large benchmarks
to 1000 samples so that we could efficiently evaluate over the course of training. We publicly release
our exact evaluation setup.

3.2 Text extraction

Common Crawl data is available in two different formats: WARC and WET. WARC (Web ARChive
format) files contain the raw data from the crawl, including the full page HTML and request metadata.
WET (WARC Encapsulated Text) files provide a text-only version of crawled websites by using
htmlparser [48]. While WET files are commonly used as a starting point for dataset creation,
similarly to Gao et al. [29], we found that WET files retained too much boilerplate and menu text.
We therefore experimented with extracting the text content from the WARC files using the open
source trafilatura library [49], which from visual inspection of the results provided good quality
extraction when compared to other available libraries (less boilerplate and menu text). Custom
text extraction is relatively costly, but its effects are felt on model performance: Fig. 1 shows the
performance of ablation models trained on either trafilatura applied to WARC data or WET data, with
minimal additional filtering (fastText language identification to filter samples with English as the
highest probability label) and no deduplication. Using trafilatura-extracted text from WARC files
clearly results in a more performant model and we therefore use WARC-based data in all of our
following experiments.
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Figure 1: Trafilatura-extracted WARC vs WET
28B tokens ablation study. Custom text extraction
outperforms the default WET data. No filtering or
deduplication was applied except fastText English
language filtering.
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Figure 2: Base filtered WARC vs Unfiltered WARC
data 28B tokens ablation study. Our base filtering
step provides a significant performance uplift.

3.3 Base filtering

As a starting point to our filtering, we applied a basic filtering pipeline using part of the setup from
RefinedWeb [50]. Concretely, we applied URL filtering using a blocklist [51] to remove adult content,
applied a fastText language classifier [52, 26] to keep only English text with a score >= 0.65, and
applied quality and repetition filters from MassiveText [41], using the original thresholds. After
applying this filtering to all of the WARC-based text extracted from the 96 snapshots available at
the time of writing, we obtained roughly 36 trillion tokens of data when tokenized with the GPT-2
tokenizer. Applying these steps results in a performance uplift, as seen in Fig. 2.

3.4 Deduplication

The web has many aggregators, mirrors, templated pages or just otherwise repeated content spread
over different domains and webpages. Removing these duplicates (deduplicating) has been correlated
with improvements in model performance [5] and a reduction in memorization of pretraining data [53,
54]. There are different ways to identify and even define duplicated data. Common approaches rely
on hashing techniques or efficient data structures like suffix arrays [55]. Methods can also be “fuzzy”
by using a similarity metric or “exact” by checking for exact matches between two text chunks [56].
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Following RefinedWeb [50], we experimented with MinHash, a fuzzy hash-based deduplication
technique that scales efficiently to many CPU nodes and allows tuning of similarity thresholds (by
controlling the number and the number of hashes per bucket) as well as the length of the subsequences
considered (by controlling the n-gram size). We chose to collect each document’s 5-grams, obtained
using an English word tokenizer [57], and computed MinHashes using 112 hash functions in total,
split into 14 buckets of 8 hashes each — targeting documents that are at least 75% similar. Documents
with the same 8 MinHashes in any bucket are considered duplicates of each other. We then perform a
transitive clustering step where documents A, B and C will be in the same duplicate cluster if A and
C are duplicates and B and C are duplicates, even if A and B do not have 8 matching MinHashes in
any bucket with each other. One (randomly chosen) document is kept per duplicate cluster while the
remaining duplicates are removed. We further discuss deduplication parameters in Appendix E.1.
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Figure 3: Global minhash deduplication study. Ap-
plying minhash deduplication globally to the dataset
provides only a modest performance uplift, with the
resulting model far behind one trained on Refined-
Web.
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Figure 4: 2013-48 global minhash impact study.
Global deduplication upsamples lower-quality data in
the last deduplicated crawl, resulting in worse perfor-
mance of the retained data compared to the removed
data.

Our first approach was to apply MinHash deduplication globally to the entire dataset (all 96 snapshots).
We did this in an iterative manner: starting with the most recent snapshot (2023-50, at the time the
experiment was run) and proceeding chronologically until we reached the oldest snapshot. When
applied to the oldest snapshots, this process removed as much as 90% of the original base filtered
data, as they were deduplicated against a large number of other snapshots. Deduplicating the entire
dataset in this manner resulted in 4 trillion tokens of data. However, when training on a randomly
sampled 350 billion tokens subset, our ablation models showed little improvement over a model
trained on the non-deduplicated data, scoring far below RefinedWeb on our aggregate of tasks, as
shown in Fig. 3.

This challenged our initial assumption that global deduplication would inevitably result in higher
benchmark scores. We therefore performed an additional experiment to investigate the quality of
the remaining data. We trained two models on two slices from the older 2013-48 snapshot: (a) the
fully deduplicated remaining ~31 billion tokens (originally kept data); and (b) 171 billion tokens
obtained by individually deduplicating (without considering the other crawls) the ~460 billion tokens
that had been removed from this crawl in the iterative deduplication process (originally removed
data). Results are presented in Fig. 4. They show that, for this older crawl taken in isolation, the data
from it that was kept (10% of the original data) was actually of worse quality than the 90% of data
that was removed. We confirmed this by visual inspection: originally kept data contains more ads,
incoherent lists of keywords and generally badly formatted text than originally removed data.

We therefore tried an alternative approach: individually deduplicating each snapshot (independently
from the others), using the same parameters as before. This resulted in 20 trillion tokens of data.
When training on a random sample from this dataset (with data sampled from all snapshots) it
matched RefinedWeb’s performance, as per Fig. 5.

One of our hypotheses is that the main improvement gained from deduplication lies in the removal of
large clusters of duplicates with hundreds of thousands of documents [50] present in all crawls, while
further deduplication of clusters with a small number of duplicates (less than ~100, i.e., the number
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of crawls) can harm performance. More specific filtering targeting the long tail of data quality might
be more suited than deduplication for this subset of the data.
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Figure 5: Individual minhash deduplication study.
Unlike Global minhash, deduplicating individually
improves the average score.

To attempt to improve upon individual dedu-
plication of each snapshot, we additionally ex-
perimented with “lighter” global deduplication
techniques. Ultimately, none of these tech-
niques improved performance over independent
per-snapshot deduplication. A full description of
these methods and results are in Appendix E.3.

3.5 Adding C4’s filters

By this point we had reached the same perfor-
mance as RefinedWeb [50] using our base fil-
tering and independent MinHash. However, we
noted that the C4 dataset [15], while smaller than
FineWeb, still showed stronger performance on
some of the benchmarks in our evaluation suite, in
particular HellaSwag [43], one of the benchmarks
in our aggregate group of tasks with the highest
signal-to-noise ratio. Despite being one of the first
large scale LLM training datasets, C4 is still fre-
quently part of the pretraining data mixture of recent models such as LlamaA 1 [2]. We set out to
explore additional filtering steps that would allow us to match or surpass the performance of C4. A
natural starting point was to look into the processing of C4 itself.
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Figure 6: Comparison of C4 filters impact on Hel-
laSwag benchmark performance. The Terminal
Punctuation filter provides the most significant per-
formance uplift.
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Figure 7: Custom FineWeb filters study. The com-
bined filters outperform both the base filtered base-
line as well as the best performing C4 filter (Terminal
Punctation), while removing less.

C4 was constructed from the 2019-18 crawl by applying heuristic filters, which included drop-
ping lines without a terminal punctuation mark, that mentioned javascript, or that had “terms-of-
use”/“cookie policy” statements, and dropping documents that were too short or that contained “lorem
ipsum” or a curly bracket ({). We experimented with applying these filters to a baseline of the base
filtered and individually deduplicated 2019-18 crawl, and, additionally, compared the results to C4
itself.

Fig. 6 shows that applying All filters allows us to match C4’s HellaSwag performance; the Curly
bracket filter, and the Word lengths filter only give a small boost, removing 2.8% and 4.3% of tokens,
respectively; the Terminal punctuation filter, by itself, gives the biggest individual boost, but removes
around 30% of all tokens; the lorem_ipsum, javascript and policy rules each remove <0.5% of
training tokens, so we did not train on them individually; All but terminal punct performs better
than terminal_punct by itself, while removing less in total (~7%). We decided to apply all C4 filters
mentioned above except the terminal punctuation filter, as it eliminates an excessively large amount
of data.
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3.6 Developing additional heuristic filters

Past work has mainly developed heuristic filters through data inspection [15]. In this work we devised
a more systematic process for designing heuristic filters and tuning their thresholds. We started by
collecting over 50 high-level statistics ranging from document-level metrics (e.g. number of lines,
avg. line/word length, etc) to inter-document repetition metrics (inspired by MassiveText [1]) on both
a high- and low-quality web dataset. Specifically, we used the individually and globally deduplicated
versions of the 2013-48 snapshot (previously mentioned in Section 3.4) as our “high-quality” and
“low-quality” datasets respectively. We then identified metrics for which the distribution of values
differed significantly across the two datasets, inspected the histograms of the two distributions and
empirically chose thresholds that would target sections of the histogram where the lower quality
dataset frequency was higher than on the corresponding higher quality dataset section. As an example,
we plot the distribution of the fraction of lines ending with punctuation metric in Fig. 8. We can
see that the higher quality dataset has in general higher document density for larger values of our
metric, and, in particular, the lower quality dataset has a much higher density of documents for values
< 0.12. We thus conclude that documents with a fraction of lines ending with punctuation < 0.12 are
generally lower quality and use this value as a tentative threshold to filter documents. Following this
process for all metrics yielded 16 candidate metric-threshold pairs.
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Figure 8: Impact of Deduplication Methods on
2013-48 Crawl. Histogram showcasing higher fre-
quency of documents with small fraction of lines end-
ing with a terminal mark for Global minhash com-
pared to Indivudal one. A threshold selected for filter-
ing is also indicated.

We then assessed the effectiveness of these 16
newly created filters by conducting several 28B
token ablation runs on the 2019-18 crawl. Full de-
tails for these runs are in Appendix E.4. Out of all
those runs, we identified three filters (see their ab-
lations runs in Fig. 7) that demonstrated the most
significant improvements on the aggregate bench-
mark score. Specifically, the chosen filters remove
documents where the fraction of lines ending with
punctuation is <= 0.12 (10.14% of tokens re-
moved vs. 30% from the original C4 terminal
punctuation filter), where the fraction of charac-
ters in duplicated lines is >= 0.1 (12.47% of to-
kens removed; the original MassiveText threshold
for this ratio is >= 0.2), and/or where the frac-
tion of lines shorter than 30 characters is >= 0.67
(3.73% of tokens removed). When applying the
three together, ~22% of tokens were removed and
the aggregate score increased by about 1% in the
28B token ablations. These filters allowed us to
further improve performance and, notably, surpass
the C4 dataset performance while filtering out a smaller proportion of data.

3.7 The final FineWeb dataset

Combining the decisions made in the previous sections and applying the resulting pipeline to 96
Common Crawl snapshots produces the 15T-token FineWeb dataset. Specifically, we extract text from
WARC files (Section 3.2), apply base filtering (Section 3.3), perform individual per-crawl MinHash
deduplication (Section 3.4), apply a selection of C4 filters (Section 3.5), and finally apply custom
filters (Section 3.6). Each step provides a relative performance boost on our group of benchmark
tasks, as seen in Fig. 9. For the public release of the dataset, we have also applied Personal Identifiable
Information (PII) removal, by anonymizing email and public IP addresses.

In Fig. 10 we compare FineWeb with the following commonly used openly accessible web-scale
datasets: RefinedWeb (500B tokens) [50], C4 (172B tokens) [15]; the Common Crawl-based part of
Dolma 1.6 (3T tokens) and 1.7 (1.2T tokens) [58], The Pile (340B tokens) [29], SlimPajama (627B
tokens) [35], the deduplicated variant of RedPajama21 (20T tokens) [34], English CommonCrawl
section of Matrix (1.3T tokens) [59], English CC-100 (70B tokens) [60], and Colossal-OSCAR
(850B tokens) [61]. Notably, FineWeb shows strong performance and FineWeb-Edu (detailed below)
outperforms all other open datasets we compared on our aggregate group of tasks, further validating

1RedPajama2 includes 40+ quality annotations but is only actually filtered with the CCNet pipeline[28]
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the design choices we made. Note that to train these models we randomly sampled 350 billion tokens
from each dataset, without upsampling any individual Common Crawl snapshot.
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Figure 9: Each processing step in FineWeb pro-
vides a performance uplift. Compared to the base
filtering (Section 3.3), applying individual-crawl Min-
Hash deduplication (Section 3.4) the C4 filters (Sec-
tion 3.5), and our additional heuristic filters (Sec-
tion 3.6) each improve performance.
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Figure 10: Comparing FineWeb datasets to other
public datasets. Base FineWeb shows strong perfor-
mance, with the educational subset (FineWeb-Edu)
surpassing all other public datasets and further en-
hancing the aggregate score by approximately 2%.

4 FineWeb-Edu

An interesting approach has recently emerged for filtering LLM training datasets: using synthetic
data to develop classifiers for identifying educational content. This technique was notably used in
the non-public pretraining datasets of Llama 3 [6] and Phi-3 [8], but its large-scale impact on web
data filtering has not been publicly explored. We applied this technique to FineWeb by filtering it
with an educational quality classifier developed from synthetic annotations generated by Llama-3-
70B-Instruct [62]. The resulting dataset, FineWeb-Edu, contains 1.3 trillion tokens. FineWeb-Edu
is specifically optimized for educational content and outperforms all openly accessible web-based
datasets on a number of reasoning- and knowledge-intensive benchmarks such as MMLU, ARC, and
OpenBookQA by a significant margin.

To build the synthetic annotations, we use Llama-3-70B-Instruct to score 460,000 randomly sampled
webpages from the FineWeb CC-MAIN-2024-10 snapshot for their educational quality on a scale
from 0 to 5. We explored several prompt formats to automatically extract an educational score using
an LLM and found that the additive scale used in previous work Yuan et al. [63] worked best. It
allows the LLM to evaluate each criterion and build the score step-by-step, unlike the single-rating
scale [64] which assigns a fixed score based on predefined categories. To avoid having the LLM favor
highly technical pages like arXiv abstracts and submissions, we prompted it to focus on grade-school
and middle-school level knowledge. The prompt used for synthetic annotations is in Appendix F.1.

To scale our filtering to the entirety of FineWeb, we trained a linear regression model on top of the
Snowflake-arctic-embed-m embedding model [65]. We fine-tuned this linear regressor on 410,000
of our Llama 3 synthetic annotations for 20 epochs with a learning rate of 3e-4 (while keeping the
embedding and encoder layers frozen). We selected the checkpoint with the highest F1 score on
the held-out validation set containing the remaining 50,000 samples, treating Llama 3 annotations
as ground-truth. After training, we rounded the model’s output scores to integers from 0 to 5. We
then used fixed thresholds to classify whether a given document from FineWeb was educational. We
investigated the impact of using different thresholds for the filtering and ultimately chose a minimum
threshold of 3 for FineWeb-Edu, which ultimately gave the best trade-off between performance
on knowledge and reasoning intensive benchmarks and the performance on other benchmarks like
HellaSwag [66]. With a threshold of 3, the model achieved an F1 score of 82% on the validation set,
indicating strong performance in distinguishing high-quality educational content.

Applying the classifier to the 15 trillion tokens of FineWeb required 6,000 H100 GPU hours.

To confirm the effectiveness of education filtering at a larger scale, we conducted a larger ablation
training a 1.71B model on 350 billion tokens, similar to the FineWeb filtering ablations mentioned
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above. As shown in Fig. 10 and Fig. 11, we observed that FineWeb-Edu surpasses FineWeb and all
other open web datasets, with quite remarkable improvements on educational benchmarks such as
MMLU, ARC and OpenBookQA. Specifically, MMLU score increases from 33% to 37%, a relative
improvement of approximately 12%, and ARC score goes from 46% to 57%, an improvement of
about 24%.
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Figure 11: Performance Comparison on MMLU.
FineWeb-Edu achieves a 33.6% accuracy on the
MMLU benchmark at only 38 billion tokens, sig-
nificantly outperforming Matrix (second best on the
metric), which reaches similar accuracy at 300 billion
tokens.

On MMLU, FineWeb-Edu can match the final
performance of Matrix with almost 10x fewer to-
kens, demonstrating the effectiveness of classifiers
trained on LLM annotations for large-scale data
filtering. Additional evaluation plots can be found
in Appendix F.2.

4.1 Topic distribution

To examine how the educational classifier may
skew the dataset towards certain topics, we em-
bed [67] 50k samples from FineWeb and 50k
samples from FineWeb-Edu using a sentence-
transformers [68] model (all-MiniLM-L6-v2)
which we then project to 2D space using
UMAP [69]. Finally, we use DBSCAN [70] clus-
tering to find the 100 densest topic clusters in the
union of the two datasets, which we label using
Llama 3.1 70B [6]. To compare the two datasets,
we plot the difference of the size (as a percentage
of the entire dataset) of each cluster in FineWeb-
Edu and FineWeb in Fig. 18. The educational
classifier heavily favors topics such as ’Education,
Learning, Teaching’ or ’History, Culture, Politics’, while down-sampling ’Business, Finance, Law’,
’Entertainment, Film, Theater’ and ’Places, Travel, Real Estate’, among others.

4.2 Domain fit

We evaluate the macro average perplexity of six checkpoints from our FineWeb and FineWeb-Edu
ablation models on the domains from Paloma [71]. We use the codebase provided in [71] but
intentionally do not perform decontamination, to compare how well each dataset covers different
domains. The results are in Fig. 12. The FineWeb model generally shows lower perplexity in broad
web sources such as C4, mC4, Falcon, Dolma V1.5 or the CommonCrawl subset of RedPajama,
as well as on Twitter AAE, Manosphere, Gab, reddit (100 Subreddits) or 4chan. FineWeb-Edu
tends to favour sources containing Wikipedia (WikiText-103 and M2D2 Wikipedia) or that are heavy
in academic content (M2D2 S2ORC, which has semantic scholar papers, and the Arxiv subset of
RedPajama). FineWeb-Edu also seems to have better coverage of programming content (100 PLs)
than FineWeb. We have included results per subset for some of these sources in Appendix F.4.

5 Bias analyses

Language models are known to reflect the biases present in their pretraining datasts [72–77]. To pro-
vide a brief picture of dataset bias in FineWeb and FineWeb-Edu, we focus on subgroups recognised
as “sensitive” or “protected” in English-speaking countries. These are a subset of subgroups that are
historically subject to discrimination and are disproportionately the target of negative societal norms
such as stereotyping, which is reflected in text-based language consumed for a dataset. We find that
the FineWeb dataset has a relative overrepresentation of words that reflect hegemonic norms, known
to be overrepresented in online text [72], such as ‘man’ and ‘christian’. Although biases across the
gender, religion, and age subgroups examined are not strong, we see the most skewed association
between religion words and intimacy, such as ‘christian dating’ and ‘jewish singles’. Fittingly, the
FineWeb-Edu dataset captures associations that are less tied to intimacy compared to FineWeb and
more expected from educational content of history and health, such as ‘man’ being associated to
‘king’, and ‘woman’ associated to ‘pregnancy’. Further details are provided in Appendix G.
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Figure 12: FineWeb and FineWeb-Edu fit to Paloma domains. FineWeb has lower perplexity on broad web
sources while FineWeb-Edu has better coverage of Wikipedia and programming content.

6 Conclusion

In this paper, we developed the FineWeb datasets, a collection of large-scale LLM pretraining datasets
that produce performant LLMs. Specifically, we release FineWeb, a 15-trillion token dataset derived
from 96 Common Crawl snapshots, as well as FineWeb-Edu, a 1.3-trillion token dataset of educational
content from FineWeb. FineWeb was created through a series of experiments that provided empirical
evidence for our choice of text extraction strategy, deduplication procedure, and content filters. Both
datasets are publicly released, along with the code and processing library that we used and all of the
models we trained during our dataset ablation experiments.

While FineWeb and FineWeb-Edu attain state-of-the-art performance among public LLM pretraining
datasets, we identify various paths to further improvement. First, both datasets are entirely comprised
of web content scraped by Common Crawl. It is possible that augmenting either datasets with other
datatypes (books, speech transcripts, etc.) could further improve performance. In addition, most of
the experiments we ran were at a smaller scale due to computational constraints. Designing datasets
at more realistic scales could provide more reliable guidance. Our evaluation setup was also by
necessity limited to performance on academic benchmarks without any further instruction tuning
or alignment. An evaluation setup that better reflected current usage patterns of LLMs might also
be more reliable. We hope that our released datasets, code, and models help further improve public
knowledge and development of performant LLM pretraining datasets.
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A FineWeb Datasheet

Dataset Details

Purpose of the dataset We released FineWeb to make large language
model training more accessible to the machine
learning community at large.

Curated by The dataset was curated by Hugging Face.

Funded by The dataset was funded by Hugging Face.

Language(s) English

License The dataset is released under the Open Data Com-
mons Attribution License (ODC-By) v1.0 license.
The use of this dataset is also subject to Common-
Crawl’s Terms of Use.

Dataset Structure

Data Instances The following is an example sample
from the dataset. It is part of the
CC-MAIN-2021-43 snapshot and was crawled on
2021-10-15T21:20:12Z:

{
"text": "This is basically a

peanut flavoured cream
thickened with egg yolks and
then set into a ramekin on top
of some jam. Tony, one of the
Wedgwood chefs, suggested
sprinkling on some toasted
crushed peanuts at the end to
create extra crunch, which I
thought was a great idea. The
result is excellent.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"id":
"<urn:uuid:e5a3e79a-13d4-4147-
a26e-167536fcac5d>",

↪→

↪→

"dump": "CC-MAIN-2021-43",
"url": "<http://allrecipes.co.uk

/recipe/24758/peanut-butter-and
-jam-creme-brulee.aspx
?o_is=SimilarRecipes&o_ln=Sim
Recipes_Photo_7>",

↪→

↪→

↪→

↪→

"date": "2021-10-15T21:20:12Z",
"file_path":

"s3://commoncrawl/crawl-data/
CC-MAIN-2021-43/segments/
1634323583083.92/warc/
CC-MAIN-20211015192439
-20211015222439-00600.warc.gz",

↪→

↪→

↪→

↪→

↪→

"language": "en",
"language_score": 0.948729,
"token_count": 69

}
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Data Fields - text (string): the main text content
- id (string): original unique identifier for this
sample from CommonCrawl
- dump (string): the CommonCrawl
dump/snapshot this sample was a part of
- url (string): url to the original page where
text was present
- date (string): crawl date (from Common-
Crawl)
- file_path (string): s3 path for the individ-
ual CommonCrawl warc file containing this sample
- language (string): en for all the samples in
this dataset
- language_score (float): language predic-
tion score (0.01.0) as reported by the fastText lan-
guage classifier
- token_count (int): number of tokens when
applying the gpt2 tokenizer to this sample

Data Splits The default subset includes the entire dataset. We
also include separate splits for each CommonCrawl
dump. FineWeb-Edu, a subset filtered for educa-
tional content, is also available.

Dataset Creation

Curation Rationale With FineWeb, we aim to provide the open source
community with a clean and large-scale dataset for
pretraining performant large language models.

Source Data The source data consists of webpages crawled by
the CommonCrawl foundation over the 2013-2024
time period. We then extracted the main page text
from the HTML of each webpage, filtered each
sample and deduplicated each individual Common-
Crawl dump/crawl.

Data processing steps The data processing pipeline consists of:

- URL filtering
- Trafilatura text extraction
- FastText language filter
- MassiveText repetition and quality

filters↪→

- C4 quality filters
- FineWeb custom filters
- MinHash deduplication
- PII reformatting

For FineWeb-Edu, we further apply a filtering step
based on our educational content classifier.

Annotations We augment the original samples with
the language, language_score and
tokens_count annotations. The language
related annotations are automatically generated by
our language filter. token_count is generated by
applying the GPT-2 tokenizer to the text column.

Personal and Sensitive Information We anonymize email addresses and public IP ad-
dresses using regex patterns.
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Considerations for Using the Data

Social Impact of Dataset With the release of FineWeb, we aim to make LLM
training more accessible to the machine learning
community by:
(a) making the dataset creation process more trans-
parent, by sharing our entire processing setup in-
cluding the codebase used
(b) helping alleviate the costs of dataset curation,
both in time and in compute, for model creators by
publicly releasing our dataset with the community.

Biases Efforts were made to minimize the amount of
NSFW and toxic content present in the dataset
by employing filtering on the URL level. However,
there are still a significant number of documents
present in the final dataset that could be consid-
ered to be toxic or contain harmful content. As
FineWeb was sourced from the web as a whole,
any harmful biases typically present in the web
may be reproduced on our dataset. Bias analy-
ses for sensitive subgroups demonstrate that ‘man’
is more common in the dataset than other gender
terms, ‘christian’ is more common than other re-
ligion terms. The disproportionate association of
specific terms to sensitive subgroups is relatively
low, with the most notable bias that some religion
terms tend to be more associated with online dating
terms. We provide a more detailed bias analysis
in Section 5.

Other Known Limitations As a consequence of some of the filtering steps
applied, it is likely that code content is not preva-
lent in our dataset. Users are advised to con-
sider complementing FineWeb with other code
datasets and specialized curated sources, such as
Wikipedia, which may have better formatting than
the Wikipedia content included in FineWeb.

B License and hosting

The FineWeb datasets are released under the Open Data Commons Attribution License (ODC-By)
v1.0. The full text of the license is available at https://opendatacommons.org/licenses/by/
1-0/. The use of the dataset is also subject to CommonCrawl’s Terms of Use. The authors of this
work are solely responsible for the content and the views presented herein. NeurIPS is not associated
and shall bear no responsibility for the work presented, including the dataset itself.

The FineWeb datasets are hosted on the HuggingFace hub, where they will remain available for the
foreseeable future. We plan to regularly update the dataset with new CommonCrawl snapshots as
they are released.
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C Linked resources

Resource URL

FineWeb repository (DOI
10.57967/hf/2493)

https://hf.co/datasets/HuggingFaceFW/fineweb

FineWeb Croissant metadata https://hf.co/api/datasets/HuggingFaceFW/fineweb/
croissant

FineWeb-Edu repository (DOI
10.57967/hf/2497)

https://hf.co/datasets/HuggingFaceFW/fineweb-edu

FineWeb-Edu Croissant metadata https://hf.co/api/datasets/HuggingFaceFW/
fineweb-edu/croissant

FineWeb Llama3 annotations https://huggingface.co/datasets/HuggingFaceFW/
fineweb-edu-llama3-annotations

Educational classifier https://huggingface.co/HuggingFaceFW/
fineweb-edu-classifier

Dataset comparison models https://hf.co/collections/HuggingFaceFW/
comparison-models-662457b0d213e8c14fe47f32

Ablation models https://hf.co/collections/HuggingFaceFW/
data-experiments-665ed849020d8b66a5d9896f

Datatrove processing code to repro-
duce FineWeb

https://github.com/huggingface/datatrove/blob/
main/examples/fineweb.py

Evaluation setup https://hf.co/datasets/HuggingFaceFW/fineweb/
blob/main/lighteval_tasks.py

D Data ablation setup

D.1 Model architecture

Parameter Value

Architecture Llama

Number of attention heads 32

Number of hidden layers 24

Number of key-value heads 32

RMS Norm epsilon 1e-05

Tied word embeddings True

Embedding size 50257

Total number of parameters 1.71B

Random initialization std 0.02

Tokenizer GPT2
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D.2 Distributed training setup

Parameter Value

Data parallelism (dp) 64

Tensor parallelism (tp) 1

Pipeline parallelism (pp) 1

Micro-batch size 4

Sequence length 2048

Batch accumulation per replica 4

D.3 Optimizer Configuration

Parameter Value

Adam beta1 0.9

Adam beta2 0.95

Adam epsilon 1.0e-8

Gradient clipping 1.0

Weight decay 0.1

Learning rate 3e-4

Warmup steps 500

Warmup style linear

Decay style cosine

Minimum decay LR 3.0e-5

E Deduplication

E.1 Deduplication parameters

As mentioned in Section 3.4, we use 5-grams and 112 hash functions for our MinHash deduplication.
Each 5-gram is hashed with each of the 112 hash functions, and a document signature is obtained by
taking the minimum hash value (minhash) across all 5-grams for each hash function. We further split
the resulting 112 minhashes into 14 buckets of 8 hashes each. Documents are matched if they have
the same 8 minhashes in at least one of the 14 buckets.

With these parameters, the probability that two documents with a n-gram similarity (s) of 0.7, 0.75,
0.8 and 0.85 would be identified as duplicates would be 56%, 77%, 92% and 98.8%, respectively.
This split therefore will match documents that are at least 75% similar with a high probability, and
almost guarantee that documents with similarities of 85% or above will be matched. These values
can be computed by taking the following probabilities: that the two documents would have the same
value for a given hash function, s; that they do not have the same 8 minhashes in one bucket, 1− s8;
that they do not have the same 8 minhashes in any of the 14 buckets, (1− s8)14; and finally that they
have the same 8 minhashes on at least one of the 14 buckets, 1− (1− s8)14.

See Fig. 13 for a match probability comparison between our setup with 112 hashes and the one from
RefinedWeb, with 9000 hashes, divided into 450 buckets of 20 hashes.

While the high number of hash functions in RefinedWeb allows for a steeper, more well-defined cut
off (document pairs with similarity near the threshold are more likely to be correctly identified), this
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Figure 13: Comparison between FineWeb and RefinedWeb document matching probabilities.

larger number of hash functions also requires a substantially larger amount of compute resources, as
each individual hash must be computed, stored, and then compared with hashes from other documents.
We believe the compute and storage savings make up for the higher uncertainty on documents near
the threshold.

E.2 Measuring the effect of deduplication

Given the nature of deduplication, its effect is not always visible in a smaller slice of the dataset (such
as 28B tokens, the size used for our filtering ablations). Furthermore, there are specific effects at
play when deduplicating across different Common Crawl dumps, as some URLs and webpages are
recrawled from one snapshot to the next.
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Figure 14: Small ablations are ineffective for deduplication analysis. The chart displays the distribution of
document repetitions across different sample sizes (1 billion, 10 billion, 100 billion, 350 billion, and 1 trillion
tokens) from a dataset of 20T tokens.
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To visualize the effect of scaling the number of training tokens when measuring deduplication impact,
we simulated creating different-sized subsets of randomly sampled documents from the full dataset
under the following extreme conditions: there are 100 snapshots, where each one is made up of
unique documents with a total of 200 billion tokens (yielding our total of 20 trillion from Section 3.4),
and each snapshot is an exact copy of each other (worst case scenario for inter snapshot duplication).

In Fig. 14, we can see that for a 1 billion subset, almost all documents would be unique (#duplicates=1),
despite each document being repeated 100 times in the full dataset. At the 100 billion scale (0.5% of
the total dataset), there starts to be a larger number of documents being repeated twice, and a few
even 4-8 times. At the larger scale of 1 trillion (5% of the total dataset), the majority of the documents
are repeated up to 8 times, with some being repeated up to 16 times. This simulation illustrates the
inherent difficulties with measuring deduplication impact on the training of larger LLMs once the
largest duplicate clusters have been removed. We ran our performance evaluations for deduplicated
data at the 350 billion scale, which would, under this theoretical scenario, be made up of a significant
portion of documents duplicated up to 8 times.

E.3 Alternative global deduplication
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Figure 15: URL and Line-wise deduplication study. None of the attempted deduplication methods outperform
individual deduplication.

To attempt to improve performance on top of independently deduplicating each snapshot, we experi-
mented with applying other “lighter” global deduplication methods to all the individually MinHash
deduplicated snapshots (comprising 20 trillion tokens of data).

We explored URL deduplication, where we only kept one document per normalized (lowercased)
URL (71.5% of tokens removed, 5.6 trillion left) — FineWeb URL dedup. Different line-based
deduplication variations were also considered: remove all but 1 (randomly chosen) occurrence of
each duplicated line (77.8% of tokens dropped, 4.4 trillion left) — FineWeb line dedup; same as
above, but only removing duplicate lines with at least 10 words and dropping documents with fewer
than 3 sentences after deduplication (85% of tokens dropped, 2.9 trillion left) — FineWeb line dedup
w/ min words; and remove all but 1 occurrence of each span of 3 duplicated lines with each number
treated as 0 when finding duplicates, (80.9% of tokens removed, 3.7 trillion left) — FineWeb 3-line
dedup.

As can be seen in Fig. 15 the performance of the models trained on each of these methods was
consistently worse (albeit to different degrees) than that of the original individually deduplicated data.
We therefore did not apply any additional deduplication beyond individual-snapshot MinHash-based
deduplication.
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E.4 Other filters considered

Metric Threshold Aggregate
Acc (%)

Tokens removed
(%)

lines-with-punct-ratio ≥ 0.12 42.85 10.14

duplicated-line-char-ratio ≤ 0.01 42.78 12.47

lines-with-punct-ratio ≥ 0.12 or = 0 42.72 5.82

lines-shorter-30-ratio ≤ 0.67 42.65 3.37

line-with-most-3-words-ratio ≤ 0.49 42.61 2.51

duplicate-(5-10)-grams-char-ratio ≤ 0.1, 0.084, 0.073,
0.065, 0.057, 0.05

42.60 10.92

lines-with-punct-ratio ≥ 0.08 or = 0 42.59 3.42

top-(2,3,4)-gram-char-ratio ≤ 0.13, 0.087,
0.079

42.58 56.71

lines-shorter-30-ratio 0.69 42.58 3.73

avg-words-per-line ≥ 7 42.56 2.32

lines-shorter-30-ratio ≤ 0.5 42.53 11.17

avg-words-per-line ≥ 5 42.39 0.83

avg-words-per-line ≥ 9 42.27 4.47

avg-line-length-0.5-sampling ≥ 56 42.93 3.24

avg-line-length ≥ 56 42.12 6.48

avg-line-length-0.5-sampling ≥ 40 42.03 1.50

Table 2: Full list of heuristic filters tested
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F FineWeb-Edu

F.1 Annotation Prompt

We use the following prompt template to generate document annotations using the Llama3 model:

Below is an extract from a web page. Evaluate whether the page has a high educational
value and could be useful in an educational setting for teaching from primary school to
grade school levels using the additive 5-point scoring system described below. Points are
accumulated based on the satisfaction of each criterion:
- Add 1 point if the extract provides some basic information relevant to educational top-
ics, even if it includes some irrelevant or non-academic content like advertisements and
promotional material.
- Add another point if the extract addresses certain elements pertinent to education but
does not align closely with educational standards. It might mix educational content with
non-educational material, offering a superficial overview of potentially useful topics, or
presenting information in a disorganized manner and incoherent writing style.
- Award a third point if the extract is appropriate for educational use and introduces key
concepts relevant to school curricula. It is coherent though it may not be comprehensive
or could include some extraneous information. It may resemble an introductory section of
a textbook or a basic tutorial that is suitable for learning but has notable limitations like
treating concepts that are too complex for grade school students.
- Grant a fourth point if the extract highly relevant and beneficial for educational purposes
for a level not higher than grade school, exhibiting a clear and consistent writing style. It
could be similar to a chapter from a textbook or a tutorial, offering substantial educational
content, including exercises and solutions, with minimal irrelevant information, and the
concepts aren’t too advanced for grade school students. The content is coherent, focused,
and valuable for structured learning.
- Bestow a fifth point if the extract is outstanding in its educational value, perfectly suited for
teaching either at primary school or grade school. It follows detailed reasoning, the writing
style is easy to follow and offers profound and thorough insights into the subject matter,
devoid of any non-educational or complex content.
The extract: <EXAMPLE>.
After examining the extract:
- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: "Educational score: <total points>"

F.2 Additional results

Fig. 16 compares FineWeb-Edu to other open web datasets on 9 becnhmarks, using a 1.71B model
trained on 350 billion tokens. Additionally, Fig. 17 displays the results of experiments with various
filtering thresholds for building FineWeb-Edu, using a 1.71B model trained on 28 billion tokens. Our
findings indicate that a threshold of 3 yields the best average performance.
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Figure 16: Comparing FineWeb datasets to other public datasets on each benchmark.
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Figure 17: Ablation study of FineWeb Edu thresholds. Using a filtering threshold of 3 yields the best
Aggregate Accuracy when building FineWeb-Edu. FW-Edu-i denotes dataset filtered to only contain documents
with an educational score greater or equal i.
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F.3 Topic distribution

Business, Finance, Law-3.2%
Entertainment, Film, Theater-2.8%
Places, Travel, Real Estate-2.5%
Food, Summer, Recipes-2.1%
Sports, Teams, Games-2.1%
Music, Entertainment, Arts-2.1%
Personal, Family, Leisure-1.4%
Fashion, Clothing, Accessories-1.3%
Crime, Law, Police-1.2%
Gaming, Technology, Games-1.2%
Technology, Gadgets, Innovation-1.1%
Sports, Football, Soccer-1.0%
Cars, Automotive, Industry-1.0%
Literature, War, Fantasy-0.8%
Crafts, Personal, Journaling-0.8%
Furniture, Architecture, Design-0.8%
Jewelry, Accessories, Shopping-0.8%
Politics, Conflict, International-0.7%
Baseball, Sports, News-0.6%
Technology, Support, Marketing-0.6%
Dating, Relationships, Places-0.5%

Health, Medicine, Diseases +0.5%
Math, Formulae, Education +0.5%
Math, Education, Teaching +0.5%
Culture, India, Spirituality +0.6%

Health, Nutrition, Diet +0.7%
Weather, Climate, Science +0.8%
Plants, Gardening, Nature +0.8%

Fish, Environment, Conservation +0.9%
History, War, Military +0.9%

History, Religion, Culture +1.0%
Space, Astronomy, Science +1.1%

Energy, Environment, Climate +1.2%
Water, Environment, Conservation +1.2%

History, Royalty, Philosophy +1.2%
Wildlife, Animals, Nature +1.2%

Health, Medicine, Biology +1.8%
History, Culture, Politics +2.2%

Education, Learning, Teaching +3.2%

More in FineWeb Edu

More in FineWeb

Topic distribution

Figure 18: FineWeb and FineWeb-Edu topic comparison. FineWeb-Edu has a higher representation of topics
like ’Education, Learning, Teaching’ and ’History, Culture, Politics’ compared to FineWeb. Conversely, it
down-samples topics such as ’Business, Finance, Law’ and ’Entertainment, Film, Theater.’ Values indicate
the absolute difference in the percentage of each topic between the datasets and only topics with an absolute
difference of at least 0.5% are displayed.
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F.4 Domain fit

Source Domain FineWeb ppl FineWeb-Edu ppl

Dolma V1.5 common-crawl 14.499 18.336

Dolma V1.5 pes2o 12.226 10.242

Dolma V1.5 reddit uniform 23.814 29.864

Dolma V1.5 stack uniform 7.65 7.014

Dolma V1.5 wiki 12.0 12.243

M2D2 Wikipedia Culture and the arts 10.367 14.518

M2D2 Wikipedia Culture and the arts Culture and Humanities 14.037 14.116

M2D2 Wikipedia Culture and the arts Games and Toys 15.774 18.912

M2D2 Wikipedia Culture and the arts Mass media 14.352 18.134

M2D2 Wikipedia Culture and the arts Performing arts 14.311 13.313

M2D2 Wikipedia Culture and the arts Sports and Recreation 11.295 14.735

M2D2 Wikipedia Culture and the arts The arts and Entertainment 13.669 19.039

M2D2 Wikipedia Culture and the arts Visual arts 14.967 15.158

M2D2 Wikipedia General referece 11.962 11.246

M2D2 Wikipedia General referece Further research tools and topics 16.202 19.191

M2D2 Wikipedia General referece Reference works 14.914 18.621

M2D2 Wikipedia Health and fitness 12.0 13.448

M2D2 Wikipedia Health and fitness Exercise 11.874 13.951

M2D2 Wikipedia Health and fitness Health science 11.509 10.997

M2D2 Wikipedia Health and fitness Human medicine 12.0 13.448

M2D2 Wikipedia Health and fitness Nutrition 10.09 8.489

M2D2 Wikipedia Health and fitness Public health 12.804 11.797

M2D2 Wikipedia Health and fitness Self care 14.62 12.782

M2D2 Wikipedia History and events 13.446 12.516

M2D2 Wikipedia History and events By continent 14.174 12.066

M2D2 Wikipedia History and events By period 12.94 11.0

M2D2 Wikipedia History and events By region 13.61 11.63

M2D2 Wikipedia Human activites 15.159 18.728

M2D2 Wikipedia Human activites Human activities 12.784 11.117

M2D2 Wikipedia Human activites Impact of human activity 15.092 13.592

M2D2 Wikipedia Mathematics and logic 12.703 9.903

M2D2 Wikipedia Mathematics and logic Fields of mathematics 12.703 9.903

M2D2 Wikipedia Mathematics and logic Logic 14.281 13.367

M2D2 Wikipedia Mathematics and logic Mathematics 14.923 14.207

M2D2 Wikipedia Natural and physical sciences 12.884 10.529

M2D2 Wikipedia Natural and physical sciences Biology 12.718 10.221

M2D2 Wikipedia Natural and physical sciences Earth sciences 15.346 13.145
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Source Domain FineWeb ppl FineWeb-Edu ppl

M2D2 Wikipedia Natural and physical sciences Nature 12.594 9.886

M2D2 Wikipedia Natural and physical sciences Physical sciences 13.088 10.643

M2D2 Wikipedia Philosophy and thinking 14.081 16.067

M2D2 Wikipedia Philosophy and thinking Philosophy 14.209 12.91

M2D2 Wikipedia Philosophy and thinking Thinking 14.081 16.067

M2D2 Wikipedia Religion and belief systems 12.636 11.326

M2D2 Wikipedia Religion and belief systems Allah 14.072 10.808

M2D2 Wikipedia Religion and belief systems Belief systems 12.843 11.652

M2D2 Wikipedia Religion and belief systems Major beliefs of the world 13.824 11.834

M2D2 Wikipedia Society and social sciences 11.777 11.195

M2D2 Wikipedia Society and social sciences Social sciences 11.81 13.03

M2D2 Wikipedia Society and social sciences Society 11.777 11.195

M2D2 Wikipedia Technology and applied sciences 11.592 9.368

M2D2 Wikipedia Technology and applied sciences Agriculture 13.941 14.998

M2D2 Wikipedia Technology and applied sciences Computing 15.562 16.091

M2D2 Wikipedia Technology and applied sciences Engineering 14.897 13.861

M2D2 Wikipedia Technology and applied sciences Transport 16.519 17.886

Manosphere avfm 27.332 32.058

Manosphere incels 18.253 20.788

Manosphere love shy 28.206 33.374

Manosphere mgtow 24.913 29.702

Manosphere pua forum 25.133 33.297

Manosphere red pill talk 33.87 42.947

Manosphere reddit 24.786 30.903

Manosphere rooshv 23.593 27.819

Manosphere the attraction 24.988 30.907

RedPajama arxiv 32.338 23.368

RedPajama books 22.095 23.953

RedPajama c4 12.685 15.599

RedPajama commoncrawl 8.0 8.979

RedPajama github 5.613 5.247

RedPajama stackexchange 9.055 8.862

RedPajama wikipedia 8.741 8.608

Twitter AAE AA 246.907 575.106

Twitter AAE white 98.536 192.374

Table 3: Paloma domain comparison between FineWeb and FineWeb-Edu. Lower perplexity
(ppl) in bold. A lower perplexity value indicates a better fit to a given domain.
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G Bias Analyses

G.1 Distributional Analysis

Subgroup Terms

age ‘old’, ‘young’

gender ‘man’, ‘woman’, ‘non-binary’

religion ‘muslim’, ‘christian’, ‘jewish’, ‘hindu’, ‘buddhist’, ‘atheist’
Table 4: Subgroups and terms used for bias analyses.

FineWeb 10BT FineWeb-Edu 10BT

Figure 19: Distribution of gender terms in FineWeb (Left) and FineWeb-Edu (Right), 10BT samples.

FineWeb 10BT FineWeb-Edu 10BT

Figure 20: Distribution of age terms in FineWeb (Left) and FineWeb-Edu (Right), 10BT samples.

To begin, we examine the distribution over subgroup terms for gender (Fig. 19) age (Fig. 20), and
religion (Fig. 21) in a subset of FineWeb and FineWeb-Edu randomly sampled from the whole dataset,
of around 10 Billion GPT-2 tokens (FineWeb 10BT and FineWeb-Edu 10BT). Terms used are shown
in Table 4 and are all normalized to lowercase for this analysis.

We find that ‘man’ appears much more frequently than ‘woman’ and ‘non-binary’, and ‘christian’
appears much more frequently than all other religions terms tested.
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FineWeb 10BT FineWeb-Edu 10BT

Figure 21: Distribution of religion terms in FineWeb (Left) and FineWeb-Edu (Right), 10BT samples.

G.2 Association Analysis

We next examine the skews with respect to the different subgroup terms, as measured by TF-IDF [78].
This method is described as capturing the specificity of words in the dataset, here applied as specificity
with respect to the terms for the different subgroups. This provides a way to quantify how “biased”
each subgroup term is with respect to the words they co-occur with. Specifically, given the dataset
and terms for a subgroup of interest, we:

1. Build a vocabulary of all words that occur at least twice in the dataset.
2. Extract all data instances where the subgroup term is present.
3. Compute the TF-IDF for all words in the vocabulary that co-occur in the same documents

as a given subgroup term.
4. Compute the difference between the TF-IDF for the given subgroup terms and the average

TF-IDF of all other words they co-occur with.
5. Extract the words co-occurring with the given subgroup terms with a TF-IDF greater than 0.

G.2.1 Gender

We find that ‘man’ is associated with terms such as ‘god’, ‘police’, ‘said’ and ‘good’, ‘woman’
is associated with terms like ‘said’, ‘women’, ‘police’, ‘life’, ‘love’, ‘dating’ and ‘family’, and
‘non-binary’ is associated with ‘gender’ and LGBTQIA+ terms such as ‘trans’, ‘transgender’, and
‘queer’ (Fig. 22). Applying this same analysis to FineWeb-Edu-Sample-10BT, we find that ‘man’
is associated with the term ‘god’, and slightly associated with terms like ‘war’, ‘great’, and ‘king’.
‘woman’ is associated with terms like ‘pregnancy’, ‘cancer’, ‘mother’, ‘children’, and ‘family’.

G.2.2 Religion

Throughout, we see skews towards words associated with online intimacy: ‘online’, ‘singles’, ‘sex’,
‘mature’, ‘girls’. As can be seen in Fig. 27, ‘jewish’ is particularly associated with ‘dating‘ and
‘singles’. ‘muslim’, ‘jewish’, ‘hindu’ and ‘buddhist’ are slightly skewed to co-occur with ‘women’,
while ‘sex’ is skewed with ‘muslim’, ‘christian’, ‘jewish’; and ‘girl’ with ‘muslim’, ‘jewish’, ‘hindu’.

G.2.3 Age

The word ‘young’ is skewed to co-occur with ‘women’, consistent with the problematic tendencies in
English-speaking societies to infantilize women and over-indexing on womens’ youth [79, 80]. We
also see expected skews, such as ‘young’ co-occurring with words like ‘children’ and ‘school’.

33



A B

C

Figure 22: Most skewed associations in FineWeb for gender terms ‘non-binary’ (A), ‘woman’ (B),
and ‘man’ (C) in FineWeb compared to one another, measured using TF-IDF. Columns are sorted by
the ‘non-binary+’, ‘woman+’ and ‘man+’ columns, measuring the difference from the mean over all
words occurring more than once in the dataset.
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Figure 23: Most skewed associations in FineWeb for ‘atheist’ compared to other religions, measured
using TF-IDF. Columns are sorted by the ‘atheist+’ column, measuring the difference from the mean
over all words.

Figure 24: Most skewed associations in FineWeb for ‘buddhist’ compared to other religions, measured
using TF-IDF. Columns are sorted by the ‘buddhist+’ column, measuring the difference from the
mean over all words.
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Figure 25: Most skewed associations in FineWeb for ‘christian’ compared to other religions, measured
using TF-IDF. Columns are sorted by the ‘christian+’ column, measuring the difference from the
mean over all words.

Figure 26: Most skewed associations in FineWeb for ‘muslim’ compared to other religions, measured
using TF-IDF. Columns are sorted by the ‘muslim+’ column, measuring the difference from the mean
over all words.
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Figure 27: Most skewed associations in FineWeb for ‘jewish’ compared to other religions, measured
using TF-IDF. Columns are sorted by the ‘jewish+’ column, measuring the difference from the mean
over all words.
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Figure 28: Most skewed associations in FineWeb for ‘hindu’ compared to other religions, measured
using TF-IDF. Columns are sorted by the ‘hindu+’ column, measuring the difference from the mean
over all words.
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A B

Figure 29: Age bias in FineWeb, measured as most skewed associations for ‘old’ and ‘young’, using
TF-IDF. Sorted by the difference from the mean TF-IDF for all words associated to ‘old’ (‘old+’, A)
and ‘young’ (‘young+’, B).
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