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Abstract

Transformer architectures have become a dominant paradigm for domains like
language modeling but suffer in many inference settings due to their quadratic-time
self-attention. Recently proposed subquadratic architectures, such as Mamba, have
shown promise, but have been pretrained with substantially less computational
resources than the strongest Transformer models. In this work, we present a method
that is able to distill a pretrained Transformer architecture into alternative archi-
tectures such as state space models (SSMs). The key idea to our approach is that
we can view both Transformers and SSMs as applying different forms of mixing
matrices over the token sequences. We can thus progressively distill the Trans-
former architecture by matching different degrees of granularity in the SSM: first
matching the mixing matrices themselves, then the hidden units at each block, and
finally the end-to-end predictions. Our method, called MOHAWK, is able to distill
a Mamba-2 variant based on the Phi-1.5 architecture (Phi-Mamba) using only 3B
tokens. Despite using less than 1% of the training data typically used to train mod-
els from scratch, Phi-Mamba boasts substantially stronger performance compared
to all past open-source non-Transformer models. MOHAWK allows models like
SSMs to leverage computational resources invested in training Transformer-based
architectures, highlighting a new avenue for building such models.

1 Introduction

Large language models based upon Transformer architectures have become a staple of natural
language processing but suffer from their reliance on quadratic self-attention — the need to compute
inner products between tokens at all positions up to the context length. This has motivated the
development of several alternative subquadratic models, either approximations of self-attention [23]
or entirely different architectures, such as state space models (SSMs) [13, 12, 30, 35]. Training
strong subquadratic models such as SSMs can benefit the community through their cheaper finetuning
and inference costs; however, they have not benefitted from the same amount of community effort in
the form of training and compute as for Transformers. This raises a natural question: is it possible to
leverage the vast amounts of resources that have been invested in training quadratic-time Transformers
and use these models to produce stronger alternative models, such as state-space models?

In this paper, we present an approach for training subquadratic state-space models (specifically from
the class of Mamba SSMs [12]) through the distillation of different elements of a pretrained Trans-
former model. The key intuition is viewing both Attention and SSMs as sequence transformations
that mix different token embeddings by applying different classes of matrices across them. Sequence
model architectures can then be factored into separate (i) sequence mixing and (ii) channel mixing
blocks, e.g., a Transformer is composed of Attention (sequence mixer) and MLP (channel mixer)
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Figure 1: Plot of trained token budget to averaged accuracy on Winogrande, Arc-E, Arc-C, PIQA,
and Hellaswag on various open-source models (mainly non-Transformer-based models). Our model
(Phi-Mamba) uses more than 33× less token budget to achieve 5% higher average accuracy than the
next best model.

blocks. Using this breakdown, we can separately distill the mixing elements of each model explicitly
at different levels of granularity. Specifically, we propose a three-phase distillation process that
progressively targets higher levels of supervision from the teacher model: (1) a matrix orientation
phase that aligns the sequence transformation matrices themselves; (2) a hidden-state distillation that
aligns the hidden-state representations of each individual layer of the network without sacrificing pre-
existing learned representations; and (3) an end-to-end training phase with weight transfer that finally
distills the final output of the network using only a fraction of training data. We term our approach
MOHAWK after these three stages (Matrix Orientation, Hidden-State Alignment, Weight-Transfer
and Knowledge Distillation).

We apply our approach to a modified instantiation of the Mamba-2 architecture [8], termed Phi-
Mamba, which is aimed at more directly corresponding to the different architectural blocks of
the Phi-1.5 language model [15] — a very strong Transformer model at the 1.3B parameter scale.
Using our approach, the Phi-Mamba model achieves performance on benchmarks stronger than any
previous Mamba models of similar size. Although performance still lags behind that of the base
Phi-1.5 model on these benchmarks, the model is distilled with only 3.0B tokens, less than 1% of
the data used to train either the previously best-performing Mamba models and 2% for the Phi-1.5
model itself. For instance, our Phi-Mamba achieves a 71.7% accuracy on the Winogrande dataset,
compared to the pretrained Mamba-2 model’s 60.9% accuracy, and 44.1% accuracy on the ARC-C
dataset, compared to Mamba-2’s 33.3% accuracy. Our results highlight the benefit of our three-phase
distillation approach: we show in ablation experiments that each phase is highly beneficial for the
eventual performance of the model, and that, e.g., only attempting to directly distill the Phi-1.5 model
(i.e., Phase 3 alone) substantially underperforms the full MOHAWK method. Moreover, our findings
emphasize the benefits of state-space models while training on fewer than 100× tokens than the
original pretrained Mamba model.

2 Related Work

Sequence Models. State-of-the-art autoregressive language models have been pretrained on massive
amounts of data, resulting in models that exhibit extensive downstream capabilities, such as zero-
shot translation and long-range reasoning [3, 15, 37]. Recent work has focused on addressing the
quadratic complexity of Transformers by developing subquadratic alternatives based on RNN [30, 1],
SSM [12, 35], and linear attention mechanisms [23, 43, 25, 7, 32], highlighting the importance of
efficient sequence models in the era of large-scale autoregressive language models.
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Distillation. Knowledge distillation can be used to transfer knowledge from a large teacher model
to a smaller student model, resulting in a more efficient model that retains the performance of the
teacher model [18]. Distillation has been applied to various language modeling tasks, such as text
generation [5, 17], machine translation [16, 48, 36], and question-answering system [19, 44].

Distillation in language models has been largely focused on compression: turning a larger pretrained
Transformer into a smaller one by utilizing the weights of the teacher model [41, 21, 42]. Some of the
techniques proposed look similar to ours; for example, [41] match attention matrices in a step similar
to our matrix orientation, and [24] align outputs of each block (i.e., the hidden states). However, these
differ in subtle and important ways because of our setting; for example, the former uses a different loss
function than us that relies on softmax attention, and the latter is an end-to-end objective while our
hidden state alignment occurs completely independently block-per-block. Consequently, prior work
has observed that combining these objectives does not actually help or even hurts distillation [21],
whereas we show that our techniques all significantly help improve the student model.

A smaller body of work has focused on our objective of distilling across architectures, in particular,
turning a pretrained Transformer into a different architecture (usually some recurrent model) of the
same size. [22] converted a pretrained softmax attention into linear attention by directly transferring
weights and continuing fine-tuning. A similar approach was taken by concurrent works for converting
Attention into linear RNNs [27, 40]. Recently, [47, 46] also proposed distilling into linear attention
by first matching attention matrices. Our approach differs by using a different loss function that
works beyond linear attention; incorporating more stages (e.g., the hidden state alignment step); and
using recent, more expressive classes of efficient student models (Mamba-2), which we show are
significantly easier to distill into (Table 4).

3 Preliminaries

To facilitate a clear understanding of our distillation approach, we start with the necessary background
and definitions. An overview of the Mamba-2 architecture, which forms the foundation of our
Phi-Mamba model, is also provided.

3.1 Matrix Mixers

Following [8], we refer to an equivalent function that represents the input and output of a sequence
model as a sequence transformation or a sequence mixer. Formally,
Definition 1 (Sequence Transformation). We use the term to refer to a parameterized map on
sequences Y = fθ(X) where X,Y ∈ R(T,P ) and θ is an arbitrary collection of parameters. T
represents the sequence or time axis; subscripts index into the first dimension, e.g. Xt, Yt ∈ RP .

To put it differently, sequence mixers combine tokens at various time steps, facilitating the model’s
comprehension of temporal information and interactions. Sequence transformations form the foun-
dation of deep sequence models, being integral components of neural network frameworks such as
Transformers. A particular family of sequence transformations can be represented by Y = MX for
a matrix M ∈ R(T,T ), which we refer to as a sequence transformation matrix or matrix mixer. An
example of such a matrix mixer is the vanilla self-attention, Softmax(QK⊤), which is applied to the
input-dependent V resulting in the familiar Softmax(QK⊤)V. Similarly, Linear Attention [23] has a
sequence transformation matrix of the form K⊤. In addition, we can easily obtain their causal variants
by multiplying by L, a lower triangular matrix filled with 1s, to obtain L ◦ Softmax(QK⊤) and
L ◦QK⊤, respectively. Another example is a Toeplitz matrix T used to perform discrete convolution
on input X, resulting in TX [31].

A naive approach to computing the output of a sequence transformation is to multiply the input
sequence X by the matrix M. However, this approach has a time complexity of O(T 2), which is
prohibitive for long sequences. Subquadratic sequence transformations, such as Mamba-2, have been
developed to address such inefficiencies through structured matrix multiplication.

3.2 Mamba-2

Mamba-2 [8], a type of structured state space models (SSMs) [13, 11], was recently introduced.
Similarly to the original Mamba model [12], Mamba-2 uses a time-varying state-space model which
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can selectively focus on or ignore inputs due to its input-dependent parameterization of the system
components. The time-varying SSM is defined as follows:

ht+1 = Atht +Btxt

yt = Ctht
(1)

Here, Bt and Ct are input-dependent projections of the system, as in Mamba-1; however, At is the
identity matrix I multiplied by a scalar αt. The above formulation also differs from the previous one
by treating the underlying sequence as originating from a discrete signal instead of a continuous one
and therefore omits the sampling component ∆t from the original Mamba model.

Importantly, Mamba-2 draws a new connection between SSMs and Transformers, termed Structured
State Space Duality (SSD), which shows that a special case of SSMs can be viewed as a form of
causal linear attention. In particular, fixing At = I (a further restriction of Mamba-2 to αt = 1)
results in the formulation of causal linear attention [23] with the matrices B and C representing the
projections of the key and the query, respectively, while the input projection X corresponds to the
projection of the value.

Mamba-2 as a matrix sequence transformation. Inspired by the aforementioned connection
between SSMs and Transformers, [8] shows that Mamba-2’s SSD mixer family is equivalent to
sequentially-semi-separable matrices [4]. Formally, the SSD mixer family can be represented as:

ht+1 = αt · Iht +Bxt

yt = C · ht
⇒


α1 0 0 · · · 0
α2:1 α2 0 · · · 0
α3:1 α3:2 α3 · · · 0

...
...

...
. . .

...
αn:1 αn:2 αn:3 · · · αn

 ◦ (C ·B⊤) ·X (2)

where αt:i = αt−1 · αt−2 · · ·αi. An interesting observation is that the Mamba-2 architecture can be
viewed as a causal linear attention with a learnable causal mask.

4 Methods

Throughout this section, we will describe each phase of MOHAWK. Specifically, we will cover the
stages of matrix orientation, hidden-state alignment, and knowledge distillation, all three of which
are crucial for developing an effective student model from the pretrained Transformer model. Unlike
traditional distillation techniques, the student model retains the overall architecture of the teacher
model, differing only in the replacement of the attention matrix mixer with a subquadratic alternative.
We will progressively unveil our architecture, Phi-Mamba, along with the specifics of its distillation
process. This section concludes with an in-depth description of the Phi-Mamba architecture and
its hybrid version, which surpasses the performance of other subquadratic matrix mixers. Further
examinations of the effectiveness of the method and ablation studies are discussed in Section 5.

For clarity, the term block refers to the repeating components that form the end-to-end model. The
blocks are composed of layers, such as the self-attention layer (including projections), the SSM layer
(including the mixer and convolution), and the convolutional layer. In this manner, many Transformer
models, like Llama [37], are viewed as a stack of alternating self-attention and MLP blocks, whereas
the Phi and Phi-Mamba models are comprised of Phi blocks that have parallel Attention/SSM and
MLP blocks.

4.1 Stage 1: Matrix Orientation

The first stage of MOHAWK aims to align the student matrix mixer with the teacher’s self-attention
matrix. Achieving this alignment is a two-step process: first, at every mixing layer, the student
components preceding the matrix mixer are set to match the teacher’s components. This ensures that
each layer’s input undergoes the same transformation up to the matrix mixer section. Consequently,
the only variation from the input to the mixing process is the matrix calculation. We then minimize
the distance between the matrix mixer, e.g., the self-attention matrix and the materialized SSM matrix
(2), of each layer within the student and teacher models:

min
ϕ

∥TeacherMixer(u)− StudentMixerϕ(u)∥F (3)
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where ϕ denotes the parameters within the student’s sequence mixing layer, and u indicates any
arbitrary input. In our experimental setup, u was chosen as the output from the teacher model’s
preceding layer to better mimic the input distribution to the layer. This stage ensures that the student
and teacher models have roughly similar mixing layers and sets the foundation for the subsequent
stages of the distillation process. In particular, this stage can be done in parallel across all the student
layers, as the inputs to the student and teacher blocks are identical.

For Mamba-2, we begin by setting the convolution to an identity function, effectively nullifying its
initial impact. This results in the computation of the semi-separable matrix being the sole distinction
between the layers. We then proceed to minimize the distance between the two matrix mixers: the
semiseparable scalar identity and the attention matrix (see Figure 2). Figure 3 demonstrates the
importance of this stage in the distillation process. Furthermore, Table 3 shows that the Mamba-2
matrix mixer is more expressive than popular alternatives and can closely approximate the self-
attention matrix of various data samples across all layers of a Transformer model through gradient
descent, solidifying it as a strong sequence mixer.

4.2 Stage 2: Hidden-State Alignment

Following the optimization of Equation (3), we must still address the differences between the outputs
of the student and teacher blocks. To achieve this, we further align the components of the two blocks
using initialization and distillation. Specifically, our goal is to match each student and teacher mixing
blocks by minimizing the L2 norm of their output (e.g., the entire Mamba block with the self-attention
block):

min
ϕ

∥AttnBlock(u)− StudentMixerBlockϕ(u)∥2 (4)

where similar to Section 4.1, ϕ represents student’s block parameters, and u is an input. Once again,
this stage can be done in parallel across all the student layers.

In the case of Mamba-2, we modify the remaining components to be identical to the Phi-1.5’s
Attention block, so that the overall functionality is preserved from Stage 1. Concretely, we initialize
the gate (see Figure 2) to a constant value of 1 to “open” the gate, canceling its initial effect. In
addition, we remove the normalization prior to the output projection, as it cannot be set to align with
the Attention block. We then minimize the distance between the output of the Mamba-2 block and
the output of the teacher’s self-attention block. Our analysis indicates that the distance between the
Mamba-2 block and the self-attention block is strongly correlated with the model’s ability to learn
the teacher’s distribution, as shown in Table 3. Furthermore, Figure 3 shows that a better independent
alignment of the student and teacher blocks results in performance improvements, highlighting the
importance of this stage in the distillation process.

4.3 Stage 3: Weight-Transfer and Knowledge Distillation

The final stage of the distillation process aims to fine-tune the student model to match the performance
of the teacher model. Although each student mixing block is aligned with its corresponding teacher
mixing block, discrepancies are still present between consecutive blocks throughout the network To
bridge these gaps and address the remaining components of the language model, we transfer the
remaining weights of the teacher model to the student’s respective components. For Phi-Mamba, this
involves the token embedding, the final layer normalization, the Language Model head, and the MLP
and input norm at each block (see Figure 2). We then fine-tune the complete end-to-end student model
under teacher supervision. Concretely, we use a distillation loss to encourage the student model to
mimic the distribution of the teacher model’s logits, also known as knowledge distillation [18]:

min
ϕ

LCE

(
TeacherModel(x),StudentModelϕ(x)

)
(5)

where x is the input tokens to the models.

It has been hypothesized that much of the information stored in language models resides in MLP
blocks [28]. To utilize the work already done pretraining the teacher, MOHAWK adjusts the structure
of the student blocks to utilize the MLP in the same way as the teacher model, effectively swapping
the teacher’s matrix mixer with that of the student.

Interestingly, during this step, the MLP weights can be kept frozen while keeping the model perfor-
mant. This showcases Mamba-2’s powerful expressiveness crucial for replacing Attention, cuts the
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Figure 2: The Phi-Mamba architecture consists of a stack of blocks, each of which contains a Mamba
block and an MLP block. The Mamba block is a simplified version of the Mamba-2 block [8] that
omits the non-linear activation function after the convolutional operation and the layer normalization
present before the output projection, so that the parts of the model outside the matrix mixer can
be transferred from the teacher model. The MOHAWK distillation process involves progressively
matching fine-to-coarse parts of the model to the corresponding part of the teacher model: (1) the
mixer mixer itself (2) the full Mamba vs. Attention blocks, and (3) the end-to-end model.

number of trained parameters by more than half, and, in larger models, helps prevent the student
model from experiencing catastrophic forgetting of the teacher model’s information. We validate
Mamba-2’s ability to do so in Table 5.

4.4 Phi-Mamba architecture

Combining the three stages of MOHAWK, we introduce the Phi-Mamba architecture, which merges
the Mamba-2 model of [8] with the Phi-1.5 Transformer model of [15]. It consists of a stack of
Phi-Mamba blocks (Figure 2), initialized and distilled as described in previous sections.

Overall, the Phi-Mamba architecture, as depicted in Figure 2, differs from the vanilla Mamba-2
architecture by modifying the structure of the SSM matrix mixer, removing components from the
SSM block and incorporating dense layers from the teacher model. In particular, each Mamba-2 block
was modified by removing post-convolution activation and pre-output projection normalization, while
setting the gate and convolution to be identity functions. Interestingly, although these components
were found to be beneficial for performance when Mamba-2 was trained from scratch [8], we find
that they are unnecessary for our distillation process.

Two key changes were made to the Mamba-2 matrix mixer. The first was converting the SSM head
structure from multi-value to multi-head, much like the multi-head attention mechanism found in
Transformers [39], enabling the independent distillation of each Transformer head into a Mamba
head. Moreover, we handle the sequence mixer as entirely discrete-time by making the A matrix a
projection of the input and eliminating the ∆ discretization parameter. Although this formulation
slightly differs from Mamba-2, the original algorithm can still be applied as a black-box method.

5 Empirical Validation

We empirically validate the MOHAWK framework is able to achieve better performance on various
downstream benchmarks compared to previous subquadratic models of similar size. Our final Phi-
Mamba-1.5B model is distilled on 3 billion tokens (distributed as 80M in Stage 1, 160M in Stage 2,
and 2.76B tokens in Stage 3 as described in Appendix A) from the C4 dataset, with a sequence length
of 2048. This constitutes less than 1% of the resources used by many top-performing subquadratic
open-source models (e.g., the original Mamba-1/2 models pretrain on 315B tokens).

Table 1 presents a comprehensive breakdown of downstream evaluation results for our models
and multiple baselines on a standard set of commonsense reasoning and language understanding
tasks: WinoGrande [33], HellaSwag [45], PIQA [2], ARC-Challenge and ARC-Easy [6], and
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Table 1: Downstream evaluation results for full methods, comparing Phi-Mamba against open-source
models of similar sizes pretrained on standard language modeling corpuses. Phi-Mamba attains
performance close to the teacher model and better than all pretrained models, while using less than
1% of the training data.

MODEL TOKENS WINOG. ARC-E ARC-C PIQA HELLAS. LAMB. AVG. ↑
Phi-1.5-1.3B 150B 73.4 75.6 48.0 76.6 62.6 53.4 64.9

Phi-Mamba-1.5B 3.0B 71.7 74.0 44.1 75.5 60.2 50.1 62.6
Mamba-1-1.4B 315B 61.5 65.5 32.8 74.2 59.1 64.9 59.7
Mamba-2-1.3B 315B 60.9 64.3 33.3 73.2 59.9 65.7 59.6
Finch-1.6B 1.1T 59.4 64.2 34.1 72.6 57.3 66.8 59.1
xLSTM-1.4B 300B 60.6 64.3 32.6 74.6 60.9 57.8 58.5
Eagle-1.5B 1.1T 59.1 64.3 33.5 71.1 55.0 65.7 58.1
Pythia-1.4B 300B 57.3 60.6 26.0 71.1 52.1 61.6 54.8
RWKV4-1.5B 330B 54.6 60.5 29.4 72.4 52.5 56.4 54.3
DeltaNet-1.3B 100B 53.6 57.2 28.3 71.2 50.2 48.9 51.6
GLA-1.3B 100B 53.9 57.2 26.6 71.8 49.8 46.9 51.0

Table 2: MOHAWK distillation from Phi-1.5 teacher model to Phi-Mamba-1.5B. “Stages Applied”
details which of the three MOHAWK stages was performed, highlighting the importance of each
stage. All experiments executed using a fixed amount of 5B tokens for the entire distillation process.

STAGES WINOG. ARC-E ARC-C PIQA HELLAS. LAMB. AVG.
TYPE APPLIED ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑
2 55.9 75.4 38.0 75.2 56.6 18.9 53.3
3 62.8 64.3 27.8 75.6 52.6 43.8 54.5
2-3 72.3 75.0 40.8 75.2 59.7 50.6 62.3
1-3 74.8 72.7 43.5 75.6 59.6 49.2 62.7

LAMBADA [29]. Figure 1 shows the performance versus the training cost of Phi-Mamba compared
to many open-source baselines from the literature at similar model sizes.

For the remainder of this section, we will analyze the impact of the 3 stages of MOHAWK one
by one. Throughout the experiments detailed in this section, we use the AdamW optimizer with
β = (0.9, 0.95), a weight decay of 0.1, and a learning rate of 1× 10−4, combined with a Warmup-
Stable-Decay (WSD) scheduler featuring 10% warmup and 10% decay. The training law figures and
the final Phi-Mamba model use the regime detailed in Appendix A.

5.1 Stage 3 (Weight-Transfer and Knowledge Distillation)

As described in Section 4.3, this phase employs a simple end-to-end distillation of teacher-model
logits. It leverages the alignment among all sequence mixers and successive blocks to jointly fine-tune
all components of the network. Experiments shown in Table 2 highlight the relevance of implementing
this end-to-end alignment, with all three architectures achieving their highest scores only after this
phase. Predictably, the impact of end-to-end alignment varies by architecture: models with more
mixing layers similar to the teacher model see a reduced importance of this phase.

Stage 3 is the only stage in MOHAWK that trains the student model end-to-end and can be seen as the
“main” stage. Many distillation methods employ only this stage; however, Table 2 shows that using
only end-to-end knowledge distillation is less than ideal. Although it is slightly advantageous to use
only Stage 3 compared to only Stage 2, there is a significant gap between using only Stage 2 versus
using Stage 2 + 3. As elaborated in Section 6, this phase can freeze all network components except
the Mamba-2 sequence mixer without a significant performance drop. This in particular indicates that
the third stage (like the other stages of MOHAWK) can operate in computationally limited settings.

5.2 Stage 2 (Hidden-State Alignment)

Following the analysis of the model’s end-to-end distillation in Stage 3, we evaluate the impact of
aligning the hidden-state outputs of mixer blocks (Stage 2) on both the subsequent Stage 3 process
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Figure 3: Training laws comparing the token budget between Stages 2 and 3, as measured by the
Stage 2 metric (hidden state distance) and Stage 3 metric (perplexity). Stage 2 initializations are used
as the starting checkpoint for their respective Stage 3 finetuning models. Stage 3 pretrained is trained
from scratch only with weight transfer and knowledge distillation. Despite training for less tokens on
Stage 3 than the Stage 3 from scratch, almost all Stage 2 initialized models eventually outperform the
baseline in perplexity on a fixed budget. In general, better aligned Stage 2 initializations improve
post-Stage 3 performance.

and overall downstream model performance. We accomplish this by training Phi-Mamba instances
from scratch using Stage 2 to various token counts. From these checkpoints, we proceed to Stage
3 training, ending with different total budgets to allow us to analyze how the degree of Stage 2
“pretraining” impacts Stage 3 performance at various token budgets.

Figure 3 demonstrates that given an adequate training budget, models beginning with weights with
lower hidden state distances (after Stage 2) outperform those that depend exclusively on knowledge
distillation (Stage 3). These lower hidden states are also correlated with lower starting perplexities,
which in turn are correlated with downstream performance, as shown in Figure 5. Furthermore,
Table 2 shows the synergy between Stage 2 and Stage 3, as applying Stage 3 on top of Stage
2 outperforms vanilla knowledge distillation, highlighting the importance of incorporating both
hidden-state alignment and knowledge distillation methods for the tested architectures.

5.3 Stage 1 (Matrix Mixer Orientation)

Motivated by our previous finding, we then analyze how matching the matrix mixers can decrease
the overall mixer block’s hidden-state distance with the teacher model even further. Similarly to our
previous protocol, we assess the positive impact of the current stage on the following phase’s metrics
and final model’s performance by comparing models with varying amount of Stage 1 and Stage 2
training on both stage metrics.

Figure 4 shows that even with constrained budgets, performing Stage 1 for a small period can help
with subsequent stages and their performances. Thus, even a small amount of Stage 1 training
can help their respective Stage 2 models reach better hidden-state distances compared to the from-
scratch counterpart. This is despite the phenomenon that the teacher and student mixers diverge
and then re-converge in Stage 2 after mixer similarity is no longer directly optimized. Coupled
with Section 5.2, which discovers that lower hidden state initializations lead to better perplexity and
downstream performance, it can be inferred that Stage 1 aids the overall distillation process. We
further empirically validate this intuition in Table 2, which indicates that this stage aligns the matrix
mixers to a stronger degree than only the hidden state alignment.

6 Self-Attention Approximation with Structured Matrix Mixers

We start by testing the ability of various matrix mixer families to match the empirical self-attention
matrices of a pretrained Transformer. We take 1000 samples from each layer of a Llama2-7b-Chat
model [37], materialize the attention matrices, and project them onto given classes of structured
matrices. The results in Table 3 are averaged across all layers.
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Figure 4: Training laws comparing the token budget between Stages 1 and 2, as measured by the Stage
1 metric (matrix mixer distance) and Stage 2 metric (hidden state distance). Even a small amount of
Stage 1 training can improve the model’s hidden-state distances in subsequent stages. Notably, this
improvement occurs despite an increase in matrix mixer distance during Stage 2. This suggests that
early Stage 1 training provides a foundational benefit that enhances the model’s performance in later
stages, demonstrating the importance of initial training phases in model optimization.

Table 3: Attention matrix approximation by structured matrix mixers (Frobenius distance; lower
is better). Structures are Toeplitz, low-rank (LR), state space dual (SSD) model (3.2) and general
semi-separable matrices (SSM), all causal. We used 1,000 samples, each 512 tokens. Samples were
passed through Llama2-7B-Chat, and one attention head from each layer was randomly chosen for
approximation. We evaluated (LR) and SSD families with 10,000 gradient descent steps per sample.

STRUCTURE TOEP. LR SSD SSM LR SSD SSM LR SSD SSM
(State size N ) - (16) (16) (16) (32) (32) (32) (64) (64) (64)

WT-103 12.0 0.619 0.477 0.266 0.322 0.237 0.127 0.132 0.097 0.046
OWT 12.2 0.606 0.466 0.259 0.314 0.231 0.123 0.129 0.095 0.045
C4 12.3 0.595 0.453 0.236 0.310 0.226 0.112 0.128 0.093 0.041
IMdB 12.3 0.598 0.455 0.238 0.312 0.226 0.113 0.129 0.094 0.043

In particular, to describe the class of linear attention matrices (3.1), we use the fact that Q and K are
projections of the input x ∈ Rdin onto Rdout , and therefore their rank is bounded by min {din, dout}.
For multihead linear attention, dout (also known as head dimension) is typically a small value
(e.g., Phi-1.5 and Llama2-7b-Chat have head dimensions of 64 and 128, respectively). Thus, we
approximate this family of sequence mixers using causal low-rank matrices L ◦QK⊤, where L is
a lower-triangular causal mask of 1s, and Q, K are in Rn×d with d ≪ n (indicating that the head
dimension is substantially smaller than the sequence length).

To describe the multi-head Mamba-2 matrix family, we utilize the state space dual (SSD) layer (3.2)
in a manner similar to the previous linear attention, but now the causal matrix L possesses an n-degree
rolling multiplicative structure for SSD which can be seen as a more expressive mask that generalizes
the causal mask (Section 3.2).

Both causal low-rank and SSD matrix families were approximated with 10,000 steps of gradient
descent per sample. To approximate the general class of SSM matrix mixers, we utilize balanced
truncation, a gradient-free projection algorithm. This method is mainly known in the field of
time-invariant Dynamical System model reduction [14] and has been modified for use in time-
varying systems [34]. Similarly, for the family of causal Toeplitz matrices, representing convolution
operations, we employ a simple heuristic that minimizes the error for each attention matrix.

Table 3 shows that while the SSM matrix family provides the closest approximation to the self-
attention matrix mixer, the Mamba-2 mixer family (SSD) has just twice the distance from the SSM
matrices. This is in contrast to Linear Attention, which has three times the distance, all while keeping
a computational cost on par with Linear Attention. More details can be found in Appendix C.

We further validate the ability of a Mamba-2 block to replace an Attention layer within a language
model. Firstly, we create two variants of our architecture, Phi-Toeplitz and Phi-LR, and run the
MOHAWK process for 1B tokens at each stage (see Table 4) to verify that the previous finding
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Table 4: Ablations of matrix structure using the same training recipe (Stages 2 and 3). While many
efficient sequence models (e.g. global convolutions, linear attention, and state space models) can
be represented as structured matrix mixers (e.g. Toeplitz, low-rank, and semi-separable matrices
respectively), more expressive structured matrix families can match the attention matrix more closely.

MATRIX BLOCK OUTPUT WINOG. ARC-E ARC-C PIQA HELLAS. AVG.
STRUCTURE L2 DIST. ↓ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑
Causal Toeplitz 9.6 49.3 21.2 26.2 52.3 25.9 35.0
Causal low-rank 7.6 50.2 27.9 25.0 53.3 25.6 36.4
SSD 5.5 67.2 71.0 38.6 74.2 45.0 59.2

Table 5: MOHAWK distillation for Phi-Mamba-1.5B on the entire model vs just the Mamba-2
component, i.e., frozen MLP, embedding, etc. MOHAWK can be used on just the sequence mixer
blocks while keeping all other components frozen without compromising performance (Section 5.1).

TRAINABLE WINOG. ARC-E ARC-C PIQA HELLAS. LAMB. AVG.
COMPONENTS ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑
All 74.8 72.7 43.5 75.6 59.6 49.2 62.7
Mamba-2 69.1 73.5 43.8 74.7 59.3 48.2 61.4

hold in a multilayer, end-to-end model case. Secondly, we run MOHAWK while freezing various
parts of the Phi-Mamba modules (refer to Table 5), revealing that limiting the trainable elements to
the Mamba-2 blocks (excluding the embedding, head and all MLP layers) results in only a minor
performance decrease during MOHAWK distillation.

Interestingly, in all of the aforementioned experiments, we have found a consistent correlation between
the projection distances of the matrix (Frobenius distance) in Table 3 and the downstream performance
metrics (accuracy) in Table 4. Essentially, a better matrix approximation (lower Frobenius distance)
is correlated with better model performance (higher accuracy) on various tasks. This connection
highlights the relationship between the quality of the matrix approximation and the performance of
the model. Such findings are echoed in [20], which find that more expressive matrix mixers lead to
more performant models, e.g., Low-rank-based BERT models outperform Toeplitz-based ones.

7 Discussion and Conclusion

Our experiments shows that the Mamba-2 model can be successfully distilled from a pretrained
Transformer teacher model, utilizing its extensive knowledge learned from custom datasets and
higher computational resources. Despite using less than 100× data compared to many open-source
models, including Mamba, our subquadratic model outperforms other subquadratic models in various
benchmark tests by a wide margin.

The MOHAWK framework’s multi-stage process which gradually increased the scope of distillation
is essential extracting the teacher model’s knowledge to the fullest extent as shown in our ablations
and training laws. We continue to find the effectiveness of MOHAWK when distilling hybrid
Attention-SSM models and provide ablations on the number and position of Attention layers.

Additionally, we demonstrate that Mamba-2’s relationship to Transformers is evident not only in
theory, but also in practice, as it captures interactions similar to those of Transformers, and is
able to replace Attention with little drop in performance. Coupled with past research which has
posited that much of a language model’s knowledge is embedded in the MLP blocks, we believe
that any subquadratic model with a sufficiently expressive matrix mixer can replicate the behavior
of pretrained Transformers, bringing quadratic knowledge to subquadratic models. We recommend
further research to explore the role of sequence mixing layers in subquadratic models and their impact
on performance. Advancements in both the distillation process and the sequence mixer architecture
could lead to further improved performance in a range of tasks. We propose that “trainability” and
“distillability” are distinct properties of the models, and therefore, distillation techniques should be
more appropriately tailored to the model.
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A Experiments and Experimental Details

Hyperparameter Search To construct Appendix A, we performed grid searches for training in
Stages 1, 2, and 3 independently from scratch to find the optimal hyperparameters. We explored
learning rates lr = {1, 2, 5} × 10{−3,−4} and batch sizes 2{15,16,17,18}. AdamW Optimizer was
used with β = (0.9, 0.95), incorporating a weight decay of 0.1, gradient clipping at 1.0, and a
Warmup-Stable-Decay (WSD) scheduler with 10% warmup and 10% decay utilizing linear warmup
and cooldown functions. Automatic mixed precision training to bf16 was used in all stages. For
Stages 1 and 2, we initially fixed the batch size at 216, then varied the learning rates. After identifying
the optimal learning rate, we adjusted the batch sizes and subsequently finalized the learning rate
after fixing the batch size. Consequently, Stage 1 used bs = 215, lr = 5 × 10−4 and Stage 2 used
bs = 215, lr = 2 × 10−3. In Stage 3, we set the batch size to 219 ≈ 0.5M and focused solely on
varying the learning rate, resulting in 5 × 10−4. Stages 1 and 2 were trained to 200M steps each
while Stage 3 extended to 1B steps. For the Phi-Mamba ultimate model, the Stage 3 learning rate was
reduced to 2× 10−4 to enhance stability.

Multi-Stage Distillation Procedure In the development of the training law (see Figure 3), we
executed a single "continuous" run initialized from a state that included several checkpoints. The
warm-up period was determined as 10% of the tokens processed during the continuous run. For
instance, if the model’s goal was to process 640 million tokens, and it started from a run that had
processed 40 million tokens, then the warm-up would be set at 60 million tokens. The checkpoints
recorded during the warm-up phase were preserved as they were, while subsequent checkpoints
underwent a cooling of 10% of the current phase. To illustrate, in the scenario mentioned earlier, a
checkpoint at 320 million tokens during the 40M to 640M run would maintain the original warmup,
while the cooldown would span 28 million tokens. Conversely, a checkpoint at 80 million tokens
within the warm-up phase would be saved without any cooldown.

Training Laws on Downstream Metrics Figure 5 extends the Stage 2 versus Stage 3 comparison
in Figure 3, except we measure average accuracy on downstream metrics instead of perplexity. We
observe a strong correlation between the training laws of perplexity and downstream evaluation
metrics. While the general trend indicates that models exposed to more tokens during the prior stage
initialization tend to perform better on both perplexity and downstream metrics, the relationship is
not perfectly aligned. Specifically, the order of model performance based on perplexity does not
always match the order based on downstream metrics, highlighting some differences in how these
metrics capture model effectiveness.

Training the Final Phi-Mamba Model After confirming the importance of the stages in Section 5.1,
Section 5.2, and Section 5.3, we proceed to distill the final Phi-Mamba model using the three elements
of MOHAWK. We use 80M tokens for Stage 1, due to the strong performance of the token count in
both the matrix and hidden state distances (Figure 4). Stage 2 was distilled for 160M tokens given the
apparent saturation of both hidden state distance and perplexity compared to the other initialization
states, such as 10M, 20M, 40M, etc. (Figure 3). We employed Stage 3 to a total of 3B tokens across
all stages and observed that the previously optimal learning rate applied for training training laws led
to instabilities in training, particularly spikes in evaluation perplexity. Decreasing the learning rate
for Stage 3 mitigated this issue as mentioned above. We hypothesize that the instability is due to the
Stage 1 + 2 initialization’s Mamba component being quite similar to that of the teacher model, so a
large learning rate coupled with disconnect between blocks, which are mended in Stage 3, can cause
training instabilities. The performance of the final model is reported in Table 1.

B Applying Mamba-2 as a Black Box

As noted previously Section 4.4, our Mamba-based sequence mixer is slightly modified from the
original to make it more amenable for distilling from a Transformer architecture. In particular,
the Mamba-2 sequence mixer is treated entirely in discrete time by projecting the input onto the
matrix A and removing the discretization parameter ∆. Even though this formulation is somewhat
different from Mamba-2, the original algorithm remains applicable through a reduction expressed in
Appendix B.
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Figure 5: Training laws comparing the amount of token budget between Stages 2 and 3, as measured
by the average accuracy of downstream evaluation metrics.

Listing 1 PyTorch example for using the Mamba algorithm for a Delta-free variation.
"""
X: (batch, seqlen, nheads, headdim)
A_log: (batch, seqlen, nheads)
B: (batch, seqlen, nheads, dstate)
C: (batch, seqlen, nheads, dstate)
D: (nheads)
"""

y = Mamba(
X = X / A_log.unsqueeze(-1),
dt = rearrange(A_log, "b c h -> b h c"),
A = torch.ones(self.nheads),
B = B,
C = C,

)
Du = torch.einsum("h,blhp->blhp", D, X)
y = rearrange(y + Du, "b l h p -> b l (h p)")

C Attention Matrix Approximation Details

This section serves as a complement to Section 6 and outlines the methods employed to create Table 3.
Appendices C.1 to C.5 describe our strategies for finding a matrix within the specified families that
closely approximates the original attention matrix using a selected distance metric. Formally, we
consider the following optimization problem:

min
X∈M

∥M−X∥ (6)

where M is the subspace of a specific matrix family, M is the attention matrix, and ∥·∥ corresponds
to a selected distance metric. In the following sections, we explore different methods and matrix
families for this optimization problem.

C.1 Semi-Separable Matrix Approximation

Considering a time-varying system denoted by {Ak,Bk,Ck,Dk}k∈[l], we can describe it using the
matrix mixer T (also known as the transfer matrix) as follows:

T =



D1 0 0 0 0 · · · 0
C2B1 D2 0 0 0 · · · 0

C3A2B1 C3B2 D3 0 0 · · · 0
C4A3:2B1 C4A3B2 C4B3 D4 0 · · · 0

...
...

...
...

...
. . .

...
ClAl−1:2B1 ClAl−1:3B2 ClAl−1:4B3 ClAl−1:5B4 · · · ClBl−1 Dl


With Ak ∈ Rn×n, Bk ∈ Rm×n, Ck ∈ Rp×n, and Dk ∈ Rp×m, where n is the state dimension, m
the input dimension, and p the output dimension.
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Table 6: Full attention matrix approximation by structured matrix mixers Structures are Toeplitz,
causal low-rank (LR), RetNet, state space dual (SSD) model (3.2) with and without the diagonal D
term and general semi-separable matrices (SSM). We have used 1,000 samples, each consisting of
512 tokens. Llama2-7B-Chat was applied on every sample, and one attention head from each layer
was randomly chosen for approximation. We evaluated (LR), RetNet, and SSD families with 10,000
gradient descent steps per sample.
STRUCTURE TOEPLITZ CAUSAL LOW-RANK RETNET SSD WITHOUT D SSD SEMI. SEP. MATRIX
(State size N ) - (16) (16) (16) (16) (16)

WT-103 12.0 0.619 0.530 0.522 0.477 0.266
OWT 12.2 0.606 0.516 0.508 0.466 0.259
C4 12.3 0.595 0.503 0.496 0.453 0.236
IMdB 12.3 0.598 0.505 0.498 0.455 0.238

(State size N ) - (32) (32) (32) (32) (32)

WT-103 12.0 0.322 0.268 0.262 0.237 0.127
OWT 12.2 0.314 0.261 0.255 0.231 0.123
C4 12.3 0.310 0.255 0.249 0.226 0.112
IMdB 12.3 0.312 0.256 0.251 0.226 0.113

(State size N ) - (64) (64) (64) (64) (64)

WT-103 12.0 0.132 0.110 0.107 0.097 0.046
OWT 12.2 0.129 0.107 0.104 0.095 0.045
C4 12.3 0.128 0.106 0.102 0.093 0.041
IMdB 12.3 0.129 0.106 0.103 0.094 0.043

As T’s form corresponds to a semi-separable matrix (i.e., each sub-matrix has a rank of up to n),
we will label this matrix form as SSM with state size n throughout the remainder of this appendix,
representing a state-space model with state size n or a semi-separable matrix of order n.

Every matrix can be represented as a linear combination of rank-one matrices. Thus, the attention
matrix M ∈ Rl×l can be interpreted as an SSM with a state size of up to l ≫ n. Consequently, we
can employ prior research on time-varying model order reduction [9, 26, 38] to reduce M to an SSM
with a smaller state size n. Specifically, we utilize the following SVD-based approximation:

Algorithm 1 Approximation of Attention Matrix M as an SSM with State Size n

Input: Attention matrix M ∈ RL×L, state size n
Output: Approximated attention matrix M̃ ∈ RL×L

Procedure:
1. For k = 1, . . . , L− 1:

1.1 Define Hk as the submatrix of M below and to the left of entry Mk,k:

Hk =

Mk,1 · · · Mk,k−1

...
. . .

...
Ml,1 · · · Ml,k−1


1.2 Perform the SVD on Hk and truncate it to rank n
1.3 Integrate the truncated Hk back into the new matrix M̃

Note that the diagonal elements of M were not subject to approximation in Algorithm 1 as they
remain unchanged.

Although this approximation method for the semi-separable matrix is heuristic, it has been empirically
shown to deliver good results. For further details on approximation methods for semi-separable
matrices, and the theoretical background behind them, we refer the reader to [10, 26]

16



C.2 Causal Low-rank Matrix Approximation

Given a set of self-attention matrices, we tried to find how close an causal low-rank matrix could
approximate M = Softmax(QK⊤). To ensure the state size N , or in this case rank of N , of the
approximation M̃ , we composed M̃ = L ◦AB⊤ where A,B ∈ RD,N , L is a RD,D lower triangular
mask, and D = 512.

We used the results from our causal low-rank (LR) experiments to inform much of our experimental
design for later gradient descent-based approximations, which include both SSD classes (with and
without D matrix) and RetNet. We experimented with various different low-rank approximation
solvers. We found that gradient descent performed better than alternating gradient descent. Both
types of gradient descent were better than alternating least-squares which often times reached less
than optimal local minima. Causal low-rank matrix approximation can also be seen as a softer version
of the low-rank matrix completion problem, but a semi-definite programming (SDP) approach was
not able to outperform standard gradient descent.

Due to our LR approximation requiring gradient descent, we selected the number of steps in relation
to the time required to calculate the semi-separable approximation of the same matrix. Given the
heuristic approach for converting self-attention matrices to a semi-separable form (Appendix C.1)
and its ability to be parallelized, we selected the number of steps for gradient descent based on the
time it took to run an entire batch of matrices (32) using gradient decent on causal low-rank versus
one matrix using the semi-separable heuristic. After testing with the state sizes N = 16, 32, 64, we
found that 10,000 steps suitable as it was around a factor of 5× compared to SSM. The 10,000 steps
was maintained across all gradient based approximation classes (SSD, SSD without D, and RetNet).
Experiments using the finalized step count showed AdamW provided better results compared to
SGD/Adam, and the use of a scheduler provided little gain.

During the experiments, we also found that initialization of the matrices A,B played a significant
role in the resulting approximation difference. The original A,B values were sampled from [0, 1);
however, given ∀Mij ≤ 1, i, j ∈ [D] due to the SoftMax operator, A,B values was then sampled

from
[
0, 1√

512N

)
to have the last row of the self-attention matrix be uniform probability. We then

proceeded to vary the factor of the range exponentially, testing
[
0, 1√

512N

)
∗ 2{−2,−1,0,1,2,4,8}

where we found
[
0, 1√

512N

)
∗ 24 provided the best initialization across multiple datasets. A normal

distribution with µ = 0 and σ2 with the above tested values performed worse than the uniform
distribution. Initialization experiments were conducted using the AdamW optimizer with a learning
rate of 0.001 and the standard 10,000 steps. This and subsequent gradient descent classes use the
same initialization for their A,B matrices.

For all gradient descent experiments in Table 6, Three learning rates 0.1, 0.01, 0.001 and AdamW
were used for each combination of matrix class, state size, and dataset, with the best approximation
being documented. The Frobenius matrix norm was used as the loss function.

Listing 2 PyTorch example for generating Causal Low-rank approximation.
n_states = 512
state_size = 16 # or 32, 64
num_heads = 32

A = torch.rand((num_heads, n_states, state_size))
B = torch.rand((num_heads, state_size, n_states))

L = torch.tril(torch.ones((n_states, n_states)))

M_approximation = L * (A @ B)
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C.3 State Space Dual (SSD) Approximation

For the SSD approximation, we utilize the scalar SSM recurrent (1SS) representation introduced in
[8]. A key component is the values of a, which we will refer to l from here on out to avoid confusion
with matrix A, that constitute the final matrix mixer M.

Listing 3 PyTorch example for generating SSD (with and without D component) approximation.
n_states = 512
state_size = 16 # or 32, 64
softplus = torch.nn.Softplus()
num_heads = 32

A = torch.rand((num_heads, n_states, state_size))
B = torch.rand((num_heads, state_size, n_states))
D = torch.rand((num_heads))

l = torch.rand((h, n_states))
L = torch.exp(segsum(softplus(l) * -1))

M_approximation = L * (A @ B)
if apply_D:

M_approximation = M_approximation + torch.eye(n_states,n_states) * D[:, None, None]

Given the rolling multiplicative property of L and the size of n_states, initialization of l was important
to prevent the bottom-right values of L quickly reaching 0. We explored the uniform initialization
of [0, 1) + {−10,−8,−6,−4,−2, 0, 2} where smaller values of l leads to less “decay” within the L
matrix. We found sampling l from [−8,−7) resulted in the best performance and use this initialization
in the SSD family and RetNet class. As expected, adding the D component helps reduce the error
between the approximation and actual attention matrix Table 6.

C.4 RetNet Matrix Approximation

The Retention mechanism, introduced by [35], is a key component in RetNet models and can be
represented mathematically as (QK⊤ · L)V. Here, the matrix L is defined element-wise by

Lnm =

{
γn−m, n ≥ m

0, n < m
(7)

where γ is a decay factor. This lower triangular matrix L captures the temporal dependencies by
decaying past values with respect to the current position.

In our approximation, we replace the product QK with matrices A and B. The matrix L can be
efficiently constructed in PyTorch using the following code, which generates a RetNet approximation:

Listing 4 PyTorch example for generating the RetNet matrix approximation.
n_states = 512
state_size = 16 # or 32, 64
softplus = torch.nn.Softplus()
num_heads = 32

A = torch.rand((num_heads, n_states, state_size))
B = torch.rand((num_heads, state_size, n_states))

l = torch.rand((num_heads))
L = torch.exp(segsum(softplus(einops.repeat(l, 'h -> h n', n=n_states) * -1))

M_approximation = L * (A @ B)

This implementation provides a practical method for simulating the Retention mechanism, crucial for
reducing computational complexity in RetNet models.
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C.5 Toeplitz Approximation

Our Toeplitz approximation technique calculates the matrix approximation by setting the value of
each band of the Toeplitz matrix as the average of the values of the respective band in the attention
matrix. Since each band in a Toeplitz matrix is constant along its diagonal, this method ensures that
the approximation preserves the structure of the original matrix while maintaining computational
efficiency.

To justify this approach, we observe that taking the mean per band minimizes the L2 norm (i.e., the
sum of squared differences) between the original attention matrix and the approximated Toeplitz
matrix. Specifically, for each band, the optimal value that minimizes the L2 difference between the
two matrices is the average of the elements in that band. This is because the mean is the value that
minimizes the sum of squared deviations for a set of numbers. As such, using the mean ensures
that the approximation is as close as possible to the original matrix in terms of L2 distance, thereby
providing a robust and efficient approximation method.

As before, we assume that the approximation is input-dependent, meaning that each attention matrix
has its own unique Toeplitz approximation.

C.6 Segsum Operator

The segsum operator computes the sum of elements across specified segments of a matrix, which, as
applied in Appendices C.3 and C.4, corresponds to summing over the columns. This operation is
crucial for various matrix manipulations, including the computation of the state-space dual (refer to
Equation (2)). Below is the Python implementation of the ‘segsum‘ operator using PyTorch.

Listing 5 PyTorch implementation of the Segmented Summation (segsum) operator.
def segsum(x):

"""Naive segment sum calculation. exp(segsum(A)) produces a 1-SS matrix,
which is equivalent to a scalar SSM."""

T = x.size(-1)
x_cumsum = torch.cumsum(x, dim=-1)
x_segsum = x_cumsum[..., :, None] - x_cumsum[..., None, :]
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool), diagonal=0)
x_segsum = x_segsum.masked_fill(~mask, -torch.inf)
return x_segsum
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims are supported by concrete results and thorough ablations for each
stage of our proposed method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: N/A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our proposed method is quite simple and all significant details are included.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Our proposed method is quite simple and all important details are reported.
The datasets used are reported and are all standard, open source datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental details are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments are expensive for academic results; furthermore, it is common
knowledge that language modeling results are reproducible across runs, when only the
model initialization varies and the dataset order is fixed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Experiments were run across different types of hardware with frequent check-
pointing and resuming, but all using commercially available standard resources (e.g. single-
node training on A100 or H100 GPUs).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No additional harms beyond standard concerns exist from this line of research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: No additional harms beyond standard concerns exist from this line of research.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: N/A

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The open source assets that we use have been credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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