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Abstract

Solving a polynomial system, or computing an associated Gröbner basis, has
been a fundamental task in computational algebra. However, it is also known for
its notorious doubly exponential time complexity in the number of variables in
the worst case. This paper is the first to address the learning of Gröbner basis
computation with Transformers. The training requires many pairs of a polynomial
system and the associated Gröbner basis, raising two novel algebraic problems:
random generation of Gröbner bases and transforming them into non-Gröbner
ones, termed as backward Gröbner problem. We resolve these problems with
0-dimensional radical ideals, the ideals appearing in various applications. Further,
we propose a hybrid input embedding to handle coefficient tokens with continuity
bias and avoid the growth of the vocabulary set. The experiments show that our
dataset generation method is a few orders of magnitude faster than a naive approach,
overcoming a crucial challenge in learning to compute Gröbner bases, and Gröbner
computation is learnable in a particular class.

1 Introduction

Understanding the properties of polynomial systems and solving them have been a fundamental
problem in computational algebra and algebraic geometry with vast applications in cryptography [8,
93], control theory [71], statistics [27, 41], computer vision [78], systems biology [60], and so
forth. Special sets of polynomials called Gröbner bases [16] play a key role to this end. In linear
algebra, the Gaussian elimination simplifies or solves a system of linear equations by transforming its
coefficient matrix into the reduced row echelon form. Similarly, a Gröbner basis can be regarded as a
reduced form of a given polynomial system, and its computation is a generalization of the Gaussian
elimination to general polynomial systems. However, computing a Gröbner basis is known for its
notoriously bad computational cost in theory and practice. It is an NP-hard problem with the doubly
exponential worst-case time complexity in the number of variables [29, 67]. Nevertheless, because of
its importance, various algorithms have been proposed in computational algebra to obtain Gröbner
bases in better runtime. Examples include Faugère’s F4/F5 algorithms [33, 34] and M4GB [66].

∗corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:kera@chiba-u.jp
mailto:ishihara.yuki@nihon-u.ac.jp
mailto:kambe.yuta@bx.mitsubishielectric.co.jp
mailto:tristan.vaccon@unilim.fr
mailto:kazuhiro@rikkyo.ac.jp


In this study, we investigate Gröbner basis computation from a learning perspective, envisioning
it as a practical compromise to address large-scale polynomial system solving and understanding
when mathematical algorithms are computationally intractable. The learning approach does not
require explicit design of computational procedures, and we only need to train a model using a large
amount of (non-Gröbner set, Gröbner basis) pairs. Further, if we restrict ourselves to a particular
class of Gröbner bases (or associated ideals), the model may internally find some patterns useful
for prediction. The success of learning indicates the existence of such patterns, which encourages
the improvement of mathematical algorithms and heuristics. Several recent studies have already
addressed mathematical tasks via learning, particularly using Transformers [14, 19, 58]. For example,
[58] showed that Transformers can learn symbolic integration simply by observing many (df/dx , f)
pairs in training. The training samples are generated by first randomly generating f and computing
its derivative df/dx and/or by the reverse process.

However, a crucial challenge in the learning of Gröbner basis computation is that it is mathematically
unknown how to efficiently generate many (non-Gröbner set, Gröbner basis) pairs. We need an
efficient backward approach (i.e., solution-to-problem computation) because, as discussed above, the
forward approach (i.e., problem-to-solution computation) is prohibitively expensive. To this end, we
frame two problems: (i) a random generation of Gröbner bases and (ii) a backward transformation
from a Gröbner basis to an associated non-Gröbner set. To our knowledge, neither of them has been
addressed in the study of Gröbner bases because of the lack of motivations; all the efforts have been
dedicated to the forward computation from a non-Gröbner set to Gröbner basis.

Another challenge in the learning approach using Transformers lies in the tokenization of polynomials
on infinite fields, such as R and Q. To cover a wide range of coefficients, one has to either prepare
numerous number tokens or split a number into digits. The former requires a large embedding
matrix, and the latter incurs large attention matrices due to the lengthy sequences. To resolve this,
we introduce a continuous embedding scheme, which embeds coefficient tokens by a small network
and avoids the tradeoff between vocabulary size and sequence length. The continuity of the function
realized by the network naturally implements the continuity of the numbers in the embedding.

We summarize the contributions as follows.

• We investigate the first learning approach to the Gröbner computation using Transformers
and experimentally show its learnability. Unlike most prior studies, our results indicate that
training a Transformer may be a compromise to NP-hard problems to which no efficient
(even approximate or probabilistic) algorithms have been designed.

• We uncovered two unexplored algebraic problems—random generation of Gröbner bases
and backward Gröbner problem and propose efficient methods to address them in the 0-
dimensional case. The problems are essential to the learning approach but also algebraically
interesting and need interaction between computational algebra and machine learning.

• We propose a new input embedding to efficiently handle a large range of coefficients without
the tradeoff between the size of the embedding matrix and attention maps.

Our experiments show that the proposed dataset generation is highly efficient and faster than a baseline
method by a few orders of magnitude. Further, we observe a learnability gap between polynomials
on finite fields and infinite fields while predicting polynomial supports are more tractable.

2 Related Work

Gröbner basis computation. Gröbner basis is one of the fundamental concepts in algebraic
geometry and commutative ring theory [24, 39]. By its computational aspect, Gröbner basis is a very
useful tool for analyzing the mathematical structures of solutions of algebraic constraints. Notably,
the form of Gröbner bases is suited for finding solutions and allows parametric coefficients, and
thus, it is vital to make Gröbner basis computation efficient and practical in applications. Following
the definition of Gröbner bases in [16], the original algorithm to compute them can be presented
as (i) create potential new leading terms by constructing S-polynomials, (ii) reduce them either to
zero or to new polynomials for the Gröbner basis, and (iii) repeat until no new S-polynomials can
be constructed. Plenty of work has been developed to surpass this algorithm. There are four main
strategies: (a) avoiding unnecessary S-polynomials based on the F5 algorithm and the more general
signature-based algorithms [9, 34]. Machine learning appeared for this task in [73]. (b) More efficient
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reduction using efficient linear algebraic computations using [33] and the very recent GPU-using [12].
(c) Performing modular computations, following [6, 70], to prevent coefficient growth during the
computation. (d) Using the structure of the ideal, e.g., [13, 35] for change of term ordering for
0-dimensional ideals or [83] when the Hilbert function is known. In this study, we present the fifth
strategy: (e) Gröbner basis computation fully via learning without specifying any mathematical
procedures.

Transformers for mathematics. Recent studies have revealed that Transformers can be used
for mathematical reasoning and symbolic computation. The training only requires samples (i.e.,
problem–solution pairs), and no explicit mathematical procedures need to be specified. In [58],
the first study that uses Transformers for mathematical problems is presented. It showed that
Transformers can learn symbolic integration and differential equation solving with training with
sufficiently many and diverse samples. Since then, Transformers have been applied to checking
local stability and controllability of differential equations [22], polynomial simplification [3], linear
algebra [19, 20], symbolic regression [14, 26, 44, 45], Lyapunov function design [4] and attacking
the LWE cryptography [61, 89]. In [75], comprehensive experiments over various mathematical tasks
are provided. In contrast to the aforementioned studies, we found that Gröbner basis computation, an
NP-hard problem, even has an algebraic challenge in the dataset generation. This paper introduces
unexplored algebraic problems and provides an efficient algorithm for a special but important case
(i.e., 0-dimensional ideals), thereby realizing an experimental validation of the learning of Gröbner
basis computation.

3 Notations and Definitions

We introduce the necessary notations and definitions in this Section. The reader interested in a gentle
introduction to Gröbner basis theory can refer to the classical book [25]. For their comfort, we have
moreover compiled most elementary additional definitions and notations in App. A.

We consider a polynomial ring k[x1, . . . , xn] with a field k and variables x1, . . . , xn. For a set
F ⊂ k[x1, . . . , xn], the ideal generated by F is denoted by ⟨F ⟩. Once a term order on the terms of
k[x1, . . . , xn] is fixed, one can define leading terms and Gröbner bases.
Definition 3.1 (Leading term). Let F = {f1, . . . , fs} ⊂ k[x1, . . . , xn] and let ≺ be a term order.
The leading term LT(fi) of fi is the largest term in fi in ordering ≺. The leading term set of F is
LT(F ) = {LT(f1), . . . ,LT(fs)}.
Definition 3.2 (Gröbner basis). Fix a term order ≺. A finite subset G of an ideal I is said to be a
≺-Gröbner basis of I if ⟨LT(G)⟩ = ⟨LT(I)⟩.

The condition ⟨LT(G)⟩ = ⟨LT(I)⟩ means that for any element h ∈ I , the leading term LT(h) is
divided by the leading term LT(g) of an element g ∈ G. It gives a complete test whether a given
polynomial h is in I or not by polynomial division with G, similar to Gaussian elimination by a
basis of a vector space. The remainder is 0 means that h ∈ I , and otherwise means that h ̸∈ I . This
is related to finding solutions. Roughly speaking, if h ∈ I = ⟨f1, . . . , fs⟩, then we have a form
h =

∑s
i=1 hifi and the system f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0 shares solutions with

the equation h(x1, . . . , xn) = 0.

Note that ⟨LT(G)⟩ ⊂ ⟨LT(I)⟩ is trivial from G ⊂ I . The nontriviality of the Gröbner basis lies in
⟨LT(G)⟩ ⊃ ⟨LT(I)⟩; that is, a finite number of leading terms can generate the leading term of any
polynomial in the infinite set I . The Hilbert basis theorem [25] guarantees that every ideal I ̸= {0}
has a Gröbner basis. Moreover, using the multivariate division algorithm, one gets that any Gröbner
basis G of an ideal I generates I . We are particularly interested in the reduced Gröbner basis G of
I = ⟨F ⟩, which is unique once the term order is fixed.

Intuition of Gröbner bases and system solving. Let G = {g1, . . . , gt} be a Gröbner basis of an
ideal ⟨F ⟩ = ⟨f1, . . . , fs⟩. The polynomial system g1(x1, . . . , xn) = · · · = gt(x1, . . . , xn) = 0 is a
simplified form of f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0 with the same solution set. With the
term order ≺lex, G has a form g1 ∈ k[xn1 , . . . , xn], g2 ∈ k[xn2 , . . . , xn], . . . , gt ∈ k[xnt , . . . , xn]
with n1 ≤ n2 ≤ . . . ≤ nt, which may be regarded as the “reduced row echelon form” of a polynomial
system. In our particular case (i.e., 0-dimensional ideals in shape position; cf. Sec. 4.2), we have
(n1, n2, . . . , nt) = (1, 2, . . . , n). Thus, one can obtain the solutions of the polynomial system using
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a backward substitution, i.e., by first solving a univariate polynomial gt, next solving bivariate
polynomial gt−1, which becomes univariate after substituting the solutions of gt, and so forth.

Other notations. The subset k[x1, . . . , xn]≤d ⊂ k[x1, . . . , xn] denotes the set of all polynomials
of total degree at most d. For a polynomial matrix A ∈ k[x1, . . . , xn]

s×s, its determinant is given
by det(A) ∈ k[x1, . . . , xn]. The set Fp with a prime number p denotes the finite field of order
p. The set ST(n, k[x1, . . . , xn]) denotes the set of upper-triangular matrices with all-one diagonal
entries (i.e., unimodular upper-triangular matrices) with entries in k[x1, . . . , xn]. The total degree of
f ∈ k[x1, . . . , xn] is denoted by deg(f).

4 New Algebraic Problems

Our goal is to realize Gröbner basis computation through a machine learning model. To this end, we
need a large training set {(Fi, Gi)}mi=1 with finite polynomial set Fi ⊂ k[x1, . . . , xn] and Gröbner
basis Gi of ⟨Fi⟩. As the computation from Fi to Gi is computationally expensive in general, we
instead resort to backward generation (i.e., solution-to-problem process); that is, we generate a
Gröbner basis Gi randomly and transform it to non-Gröbner set Fi.

What makes the learning of Gröbner basis computation hard is that, to our knowledge, neither
(i) a random generation of Gröbner basis nor (ii) the backward transform from Gröbner basis to
non-Gröbner set has been considered in computational algebra. Its primary interest has been instead
posed on Gröbner basis computation (i.e., forward generation), and nothing motivates the random
generation of Gröbner basis nor the backward transform. Interestingly, machine learning now sheds
light on them. Formally, we address the following problems for dataset generation.

Problem 4.1 (Random generation of Gröbner bases). Find a collection G = {Gi}mi=1 with the
reduced Gröbner basis Gi ⊂ k[x1, . . . , xn] of ⟨Gi⟩, i = 1, . . . ,m. The collection should contain
diverse bases, and we need an efficient algorithm for constructing them.

Problem 4.2 (Backward Gröbner problem). Given a Gröbner basis G ⊂ k[x1, . . . , xn], find a col-
lection F = {Fi}µi=1 of polynomial sets that are not Gröbner bases but ⟨Fi⟩ = ⟨G⟩ for i = 1, . . . , µ.
The collection should contain diverse sets, and we need an efficient algorithm for constructing them.

Problems 4.1 and 4.2 require the collections G,F to contain diverse polynomial sets. Thus, the algo-
rithms for these problems should not be deterministic but should have some controllable randomness.
Several studies reported that the distribution of samples in a training set determines the generalization
ability of models trained on it [19, 58]. However, the distribution of non-Gröbner sets and Gröbner
bases is an unexplored and challenging object of study. It can be another challenging topic and goes
beyond the scope of the present study.

4.1 Scope of this study

Non-Gröbner sets have various forms across applications. For example, in cryptography (particularly
post-quantum cryptosystems), polynomials are restricted to dense degree-2 polynomials and generated
by an encryption scheme [93]. On the other hand, in systems biology (particularly, reconstruction of
gene regulatory networks), they are typically assumed to be sparse [59]. In statistics (particularly
algebraic statistics), they are restricted to binomials, i.e., polynomials with two monomials [41, 79].

As the first study of Gröbner basis computation using Transformers, we do not focus on a particular
application and instead address a generic case reflecting a motivation shared by various applications
of computing Gröbner basis: solving polynomial systems or understanding ideals associated with
polynomial systems having solutions. Particularly, we focus on 0-dimensional radical ideals, a special
but fundamental class of ideals.

Definition 4.3 (0-dimensional ideal). Let F be a set of polynomials in k[x1, . . . , xn]. An ideal ⟨F ⟩
is called a 0-dimensional ideal if all but a finite number of terms belong to LT(⟨F ⟩).

In fact, the number of terms not belong to LT(⟨f1, . . . , fs⟩) is an upper bound of the number of
solutions of the system f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0. In particular, the finiteness of
the number of terms not belong to LT(⟨f1, . . . , fs⟩) implies the finiteness of the number of solutions.
This is the reason why we call such ideals “0-dimensional” ideals in Def. 4.3.
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0-dimensional ideals are the fundamental ideals in the study of pure algebra. This is partly because
of the ease of analysis. As Def. A.5 shows, 0-dimensional ideals relate to finite-dimensional vector
spaces, and thus, analysis and algorithm design can be essentially addressed by matrices and linear
algebra.

Also ideals in most practical scenarios are known to be 0-dimensional. For example, a multivariate
public-key encrypted communication (a candidate of post-quantum cryptosystems) with a public
polynomial system F over a finite field Fp will be broken if one finds any root of the system
F ∪ {xp

1 − x1, . . . , x
p
n − xn}). One should note that the ideal ⟨F ∪ {xp

1 − x1, . . . , x
p
n − xn}⟩ is

0-dimensional [84, Sec. 2.2]. Generically, 0-dimensional ideals defined from polynomial systems
having solutions are radical2 (i.e., non-radical ideals are in a zero-measure set in the Zariski topology).
The proofs of the results in the following sections can be found in App. C. Hereinafter, the sampling
of polynomials is done by a uniform sampling of coefficients from a prescribed range.

It is also worth noting that Transformers cannot be an efficient tool for general Gröbner basis
computation, and thus, we should focus on a particular class of ideals and pursue in-distribution
accuracy. This is evident from the facts that Gröbner basis computation is NP-hard and that machine
learning models perform best on in-distribution samples and do not generalize perfectly. Fortunately,
unlike standard machine learning tasks (e.g., image classification task), users can frame their problems
beforehand (i.e., they know what types of polynomials they want to handle), and they can collect as
many training samples as they want if an efficient algorithm exists. As mentioned above, the form of
non-Gröbner sets varies across applications, and thus, we focus on the generic case and leave the
specialization to future work.

4.2 Random generation of Gröbner bases

We address Prob. 4.1 using the fact that 0-dimensional radical ideals are generally in shape position.

Definition 4.4 (Shape position). Ideal I ⊂ k[x1, . . . , xn] is called in shape position if some univariate
polynomials h, g1, . . . , gn−1 ∈ k[xn] form the reduced ≺lex-Gröbner basis of I as follows.

G = {h, x1 − g1, . . . , xn−1 − gn−1}. (4.1)

As can be seen, the≺lex-Gröbner basis consists of a univariate polynomial in xn and the difference of
univariate polynomials in xn and a leading term xi for i < n. While not all ideals are in shape position,
0-dimensional radical ideals are almost always in shape position: if an ⟨f1, . . . , fs⟩ ⊂ k[x1, . . . , xn]
is a 0-dimensional and radical ideal, a random coordinate change (y1, . . . , yn) = (x1, . . . , xn)R

with a regular (i.e., invertible) matrix R ∈ kn yields f̃1, · · · , f̃s ∈ k[y1, . . . , yn], and the ideal
⟨y1, . . . , yn⟩ generally has the reduced ≺lex-Gröbner basis in the form of Eq. (4.1) (cf. Prop. A.14).

With this fact, an efficient sampling of Gröbner bases of 0-dimensional radical ideals can be realized
by sampling n polynomials in k[xn], i.e., h, g1, . . . , gn−1 with h ̸= 0. We have to make sure that
the degree of h is always greater than that of g1, . . . , gn−1, which is necessary and sufficient for
G to be a reduced Gröbner basis. This approach involves efficiency and randomness, and thus
resolving Prob. 4.1. Note that while our approach assumes term order ≺lex, if necessary, one can use
an efficient change-of-ordering algorithm, e.g., the FGLM algorithm [35]. The cost of the FGLM
algorithm is O(n · deg(h)3) based on the number of arithmetic operations over k. Besides the ideals
in shape position, we also consider the Cauchy module in App. B, which defines another class of
0-dimensional ideals.

4.3 Backward Gröbner problem

To address Prob. 4.2, we consider the following problem.

Problem 4.5. Let I ⊂ k[x1, . . . , xn] be a 0-dimensional ideal, and let G = (g1, . . . , gt)
⊤ ∈

k[x1, . . . , xn]
t be its ≺-Gröbner basis with respect to term order ≺.3 Find a polynomial matrix

A ∈ k[x1, . . . , xn]
s×t giving a non-Gröbner set F = (f1, . . . , fs)

⊤ = AG such that ⟨F ⟩ = ⟨G⟩.

2See App. A for the definition.
3We surcharge notations to mean that the set {g1, . . . , gt} defined by the vector G is a ≺-Gröbner basis.
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Namely, we generate a set of polynomials F = (f1, . . . , fs)
⊤ from G = (g1, . . . , gt)

⊤ by fi =∑t
j=1 aijgj for i = 1, . . . , s, where aij ∈ k[x1, . . . , xn] denotes the (i, j)-th entry of A. Note that

⟨F ⟩ and ⟨G⟩ are generally not identical, and the design of A such that ⟨F ⟩ = ⟨G⟩ is of our question.

A similar question was studied without the Gröbner condition in [17, 18]. They provided an algebraic
necessary and sufficient condition for the polynomial system of F to have a solution outside the
variety defined by G. This condition is expressed explicitly by multivariate resultants. However,
strong additional assumptions are required: A,F,G are homogeneous, G is a regular sequence, and
in the end, ⟨F ⟩ = ⟨G⟩ is only satisfied up to saturation. Thus, they are not compatible with our
setting and method for Prob. 4.1.

Our analysis gives the following results for the design A to achieve ⟨F ⟩ = ⟨G⟩ for the 0-dimensional
case (without radicality or shape position assumption).

Theorem 4.6. Let G = (g1, . . . , gt)
⊤ be a Gröbner basis of a 0-dimensional ideal in k[x1, . . . , xn].

Let F = (f1, . . . , fs)
⊤ = AG with A ∈ k[x1, . . . , xn]

s×t.

1. If ⟨F ⟩ = ⟨G⟩, it implies s ≥ n.

2. If A has a left-inverse in k[x1, . . . , xn]
t×s, ⟨F ⟩ = ⟨G⟩ holds.

3. The equality ⟨F ⟩ = ⟨G⟩ holds if and only if there exists a matrix B ∈ k[x1, . . . , xn]
t×s

such that each row of BA− Et is a syzygy4 of G, where Et is the identity matrix of size t.

The first statement of Thm. 4.6 argues that polynomial matrix A should have at least n rows. For
an ideal in shape position, we have a ≺lex-Gröbner basis G of size n, and thus, A is a square or tall
matrix. The second statement shows a sufficient condition. The third statement provides a necessary
and sufficient condition. Using the second statement, we design a simple random transform of a
Gröbner basis to a non-Gröbner set without changing the ideal.

We now assume ≺=≺lex and 0-dimensional ideals in shape position. Then, G has exactly n
generators. When s = n, we have the following.

Proposition 4.7. For any A ∈ k[x1, . . . , xn]
n×n with det(A) ∈ k \ {0}, we have ⟨F ⟩ = ⟨G⟩.

As non-zero constant scaling does not change the ideal, we focus on A with det(A) = ±1 without
loss of generality. Such A can be constructed using the Bruhat decomposition:

A = U1PU2, (4.2)

where U1, U2 ∈ ST(n, k[x1, . . . , xn]) are upper-triangular matrices with all-one diagonal entries
(i.e., unimodular upper-triangular matrices) and P ∈ {0, 1}n×n denotes a permutation matrix. Noting
that A−1 satisfies A−1A = En, we have ⟨AG⟩ = ⟨G⟩ from Thm. 4.6. Therefore, random sampling
(U1, U2, P ) of unimodular upper-triangular matrices U1, U2 and a permutation matrix P resolves the
backward Gröbner problem for s = n.

We extend this idea to the case of s > n using a rectangular unimodular upper-triangular matrix:

U2 =

(
U ′
2

Os−n,n

)
∈ k[x1, . . . , xn]

s×n, (4.3)

where U ′
2 ∈ ST(n, k[x1, . . . , xn]) and Os−n,n ∈ k[x1, . . . , xn]

(s−n)×n is the zero matrix. The
permutation matrix is now P ∈ {0, 1}s×s. Note that U2G already gives a non-Gröbner set such
that ⟨U2G⟩ = ⟨G⟩; however, the polynomials in the last s − n entries of U2G are all zero by its
construction. To avoid this, the permutation matrix P shuffles the rows and also U1 to exclude the
zero polynomial from the final polynomial set.

To summarize, our strategy is to compute F = U1PU2G, which only requires a sampling of O(s2)
polynomials in k[x1, . . . , xn], and O(n2 + s2)-times multiplications of polynomials. Note that even
in the large polynomial systems in the MQ challenge, a post-quantum cryptography challenge, we
have n < 100 and s < 200 [93].

4Refer to App. A for the definition.
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4.4 Dataset generation algorithm

The combination of the discussion in the previous sections gives an efficient dataset generation
algorithm (see Alg. 1 for a pseudocode).

Theorem 4.8. Consider a polynomial ring k[x1, . . . , xn]. Given the dataset size m, maximum
degrees d, d′ > 0, maximum size of non-Gröbner set smax ≥ n, and term order ≺, Alg. 1 returns a
collection D = {(Fi, Gi)}mi=1 with the following properties: For all i = 1, . . . ,m,

1. |Gi| = n and |Fi| ≤ smax.

2. The set Gi is the reduced ≺-Gröbner basis of ⟨Fi⟩. The set Fi is not, unless Gi, U1, U
′
2, P

are all sampled in a non-trivial Zariski closed subset.5

3. The ideal ⟨Fi⟩ = ⟨Gi⟩ is a 0-dimensional ideal in shape position.

The time complexity is O(m(nS1,d + s2Sn,d′ + (n2 + s2)Mn,2d′+d)) when ≺=≺lex, where Sn,d

denotes the complexity of sampling an n-variate polynomial with total degree at most d, and Mn,d

denotes that of multiplying two n-variate polynomials with total degree at most d. If ⊀=≺lex,
O(mnd3) is additionally needed.

The proposed dataset generation method is a backward approach, which first generates solutions
and then transforms them into problems. In this case, we have control over the complexity of
the Gröbner bases and can add some intrinsic structure if any prior information is available. For
example, a multi-variate encryption scheme encapsulates secret key information in the solution of
a polynomial system with a single solution in a base field [93]. The ideal associated with such a
system is 0-dimensional and in shape position; namely, its Gröbner basis has the following form:
G = ⟨xn − an, x1 − a1, . . . , xn−1 − an−1⟩, where a1, a2, . . . , an are constants [84]. The backward
approach allows one to restrict the Gröbner bases in a dataset into such a class.

This is not the case with forward approaches. While they may include prior information into non-
Gröbner sets, it is computationally expensive to obtain the corresponding Gröbner bases. It is
also worth noting that a naive forward approach, which randomly generates non-Gröbner sets and
computes their Gröbner bases, should be avoided even if it were computationally tractable because,
for example, if the Gröbner basis of such F is generally {1} when |F | > n.

5 Hybrid Input Embedding

Transformers are an efficient learner of sequence-to-sequence functions. They receive and generate
a sequence of tokens. In our context, for example, {x2 − 10, y} can be tokenized as [x, ^, 2,
+, -10, <sep>, y], a sequence of tokens. The vocabulary set V is the collection of all possible
tokens. Each token s ∈ V has a predesignated token ID i(s) ∈ N, and the input embedding layer of
Transformer associates them with the i(s)-th row of the embedding matrix WE ∈ R|V|×D, where D
is the embedding dimension. The embedding matrix is updated during training, and eventually, we
have a nice vector representation for each token.

However, this approach requires a large embedding matrix to handle a wide range of number tokens.6
The number tokens dominate the vocabulary set, and Transformers have to learn the relationship of
the number tokens from scratch during the training. At the inference, if the given numbers are out
of range, the model cannot work. In our case, this is inconvenient, particularly when the coefficient
field is k = Q. For example, let F = {−5/3y3 − y − 1/2, 7/2xy2 − 5/3x− 2}, which we obtained
from a random sampling with some upper bounds on the degree, number of terms, and integers
appearing in numerators and denominators. Even the simplicity of F , its reduced ≺lex-Gröbner
basis has a polynomial of g1 = x + 569520/427411y2 − 158760/427411y + 612912/427411. If
we tokenize a/b as [a, /, b], we need to prepare more than a million integer tokens. Noting that
g1 ≈ x+ 1.33y2 − 0.37y + 1.43, it is more reasonable to handle coefficients as real values and also
implement the inductive bias on the continuity of numbers in the embedding.

5This can happen with probability zero if k is infinite and very low probability over a large finite field.
6We may tokenize a number by the digits (e.g., 123 by [1, 2, 3]), but this makes input sequences long and

affects the quadratic memory cost of attention mechanism. See [19] for the effect of number tokenization.
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Table 1: Runtime comparison (in seconds) of forward generation (F.) and backward generation (B.)
of dataset Dn(Q) of size 1,000. The forward generation used either of the three algorithms provided
in SageMath with the libSingular backend. We set a timeout limit to five seconds (added to the total
runtime at every occurrence) for each Gröbner basis computation. The numbers with † and ‡ include
the timeout for more than 13% and 25% of the runs, respectively (cf. Tab. 5 for the success rate).

Method n = 2 n = 3 n = 4 n = 5

F. (STD) 4.20 216.3 740.1† 1411.1‡

F. (SLIMGB) 4.29 183.4 697.5† 1322.7‡
F. (STDFGLM) 7.22 8.29 21.0 164.3
B. (ours) 5.23 5.46 7.05 7.91

We propose a hybrid input embedding that accepts both discrete token IDs and continuous values. Let
s = [s1, . . . , sL] to be a sequence of tokens. Some of these tokens are in V and otherwise in R. For
those in V , the standard input embedding based on the embedding matrix is applied. For the others, a
small feed-forward network fE : R→ RD is applied. A Transformer with the proposed embedding
should equip a regression head for these continuous tokens. This allows us to handle any number as a
single token without the explosion of the vocabulary set (i.e., embedding matrix). As feed-forward
networks are a continuous function, they naturally implement the continuity of numbers; two close
values s1, s2 ∈ R are expected to be embedded in similar vectors. The hybrid input embedding has
two advantages. First, as claimed above, we are no longer suffering from the large embedding matrix
for registering many number tokens and can naturally implement the continuity bias. Second, We
do not have the “out-of-range” issue. Further, we can scale the coefficients of given polynomials
globally so that they match our training coefficient range.7 Refer to App. D for the details.

6 Experiments

We now present the efficiency of the proposed dataset generation method and the learnability of
Gröbner basis computation.8 All the experiments were conducted with 48-core CPUs, 768GB RAM,
and NVIDIA RTX A6000ada GPUs. The training of a model takes less than a day on a single GPU.
More information on the profile of generated datasets, the training setup, and additional experimental
results are given in Apps. E and F.

6.1 Dataset generation

First, we demonstrate the efficiency of the proposed dataset generation framework. We constructed 16
datasetsDn(k) for n ∈ {2, 3, 4, 5} and k ∈ {F7,F31,Q,R} and measured the runtime of the forward
generation and our backward generation. The dataset Dn(k) consists of 1,000 pairs of non-Gröbner
set and Gröbner basis in k[x1, . . . , xn] of ideals in shape position. Each sample (F,G) ∈ Dn(k)
was prepared using Alg. 1 with (d, d′, smax,≺) = (5, 3, n + 2,≺lex). The number of terms of
univariate polynomials and n-variate polynomials is uniformly determined from [1, 5] and [1, 2],
respectively. When k = Q, the coefficient a/b are restricted to those with a, b ∈ {−5, . . . , 5} for
random polynomials and a, b ∈ {−100, . . . , 100} for polynomials in F . In the forward generation,
one may first generate random polynomial sets and then compute their Gröbner bases. However,
this leads to a dataset with a totally different complexity from that constructed by the backward
generation, leading to an unfair runtime comparison between the two generation processes. As
such, the forward generation instead computes Gröbner bases of the non-Gröbner sets given by the
backward generation, leading to the identical dataset. We used SageMath [82] with the libSingular
backend. As Tab. 1 shows, our backward generation is a few orders of magnitude faster than the
forward generation. A sharp runtime growth is observed in the forward generation as the number of
variables increases. Note that these numbers only show the runtime on 1,000 samples, while training
typically requires millions of samples. Therefore, the forward generation is almost infeasible, and the
proposed method resolves a bottleneck in the learning of Gröbner basis computation.

7In the follow-up survey, we found that a very similar idea was proposed in [37] in a broader context, which
shows continuous embedding of number tokens perform better than the discrete embedding in various tasks.

8The code is available at https://github.com/HiroshiKERA/transformer-groebner.
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Table 2: Accuracy [%] / support accuracy [%] of Gröbner basis computation by Transformer on
D−

n (k). In the support accuracy, two polynomials are considered identical if they consist of an
identical set of terms (i.e., identical support), Transformers are trained on either discrete input
embedding (disc.) and the hybrid embedding (hyb.). Note that the datasets for n = 3, 4, 5 are here
constructed using U1, U

′
2 (cf. Alg. 1) with density σ = 0.6, 0.3, 0.2, respectively.

Coeff. Shape position Cauchy module

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3

Q disc. 93.7 / 95.4 88.7 / 92.0 90.8 / 94.0 86.5 / 90.6 99.7 / 99.8 97.2 / 97.6
hyb. 66.8 / 87.3 69.0 / 89.8 62.7 / 86.8 0.0 / 84.9 98.3 / 99.7 80.1 / 89.2

F7
disc. 72.3 / 79.1 78.1 / 83.2 71.3 / 84.6 84.3 / 88.5 98.7 / 99.8 98.1 / 98.7
hyb. 54.1 / 78.7 55.8 / 84.3 46.1 / 81.8 54.4 / 81.5 95.8 / 99.7 80.8 / 91.2

F31
disc. 46.8 / 77.3 50.2 / 80.9 51.1 / 83.7 28.6 / 77.9 93.8 / 99.7 94.7 / 99.6
hyb. 6.1 / 75.3 5.8 / 80.4 0.1 / 73.0 0.1 / 76.9 15.1 / 99.5 10.9 / 98.4

R hyb. 57.2 / 85.0 61.0 / 88.0 61.7 / 87.5 45.6 / 82.9 28.3 / 100 4.3 / 100

6.2 Learnability of Gröbner basis computation

We now demonstrate that Transformers can learn to compute Gröbner bases. To examine the general
Transformer’s ability, we focus on a standard architecture (e.g., 6 encoder/decoder layers and 8
attention heads) and a standard training setup (e.g., the AdamW optimizer [65] with (β1, β2) =
(0.9, 0.999) and a linear decay of learning rate from 10−4). The batch size was set to 16, and models
were trained for 8 epochs. We also tested the hybrid input embedding. Refer to App. E for the
complete information. Each polynomial set in the datasets is converted into a sequence using the
prefix representation and the separator tokens. Unlike natural language processing, our task does
not allow the truncation of an input sequence because the first term of the first polynomial in F
certainly relates to the last term of the last polynomial. To make the input sequence length manageable
for vanilla Transformers, we used simpler datasets D−

n (k) using U1, U
′
2 in Alg. 1 of a moderate

density σ ∈ (0, 1]. This makes the maximum sequence length less than 5,000. Specifically, we
used σ = 1.0, 0.6, 0.3, 0.2 for n = 2, 3, 4, 5, respectively. The training set has one million samples,
and the test set has one thousand samples. With hybrid input embedding, coefficients are predicted
by regression, and we quantized them for Fp and otherwise regarded them correct when the mean
squared error is less than 0.1.

Table 2 shows that trained Transformers successfully compute Gröbner bases with moderate/high
accuracy. Several intriguing observations below are obtained. See App. F for more results. Particu-
larly, App. F.3 presents several examples found in the datasets for which Transformer successfully
computed Gröbner bases significantly faster than math algorithms. Table 2 also includes the results
on Cauchy module datasets on which Transformers are trained and tested. The dataset generation
starts with sampling the roots in kn, and the other parts follow the generation of D−

n (k). The results
on (Q, n = 3) with standard embedding is not shown as it requires too many number tokens.

The performance gap across the rings. The accuracy shows that the learning is more successful
on infinite field coefficients k ∈ {Q,R} than finite field ones k = Fp. This may be a counter-intuitive
observation because there are more possible coefficients in G and F for Q than Fp. Specifically, for G,
the coefficient a/b ∈ Q is restricted to those with a, b ∈ {−5, . . . , 5} (i.e., roughly 50 choices), and
a, b ∈ {−100, . . . , 100} (i.e., roughly 20,000 choices) for F . In contrast, there are only p choices for
Fp. The performance even degrades for the larger order p = 31. Interestingly, the support accuracy
shows that the terms forming the polynomial (i.e., the support of polynomial) are correctly identified
well. Thus, Transformers have difficulty determining the coefficients in finite fields. Several studies
have also reported that learning to solve a problem involving modular arithmetic may encounter some
difficulties [21, 38, 74], but no critical workaround is known.

Incorrect yet reasonable failures. We observed that the predictions by a Transformer are mostly
reasonable even when they are incorrect. For example, only several coefficients may be incorrect,
and the support can be correct as suggested by the relatively high support accuracy in Tab. 2. In such
a case, one can use a Gröbner basis computation algorithm that works efficiently given the leading
terms of the target unknown Gröbner basis [83]. Refer to App. F.2 for extensive lists of examples.
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Figure 1: Visual analysis of embedding vectors of numbers given by the proposed embedding.
Embedding c ∈ R to fE(c) ∈ RD from cmin to cmax with B bins to obtain M ∈ RB×D, the fix
figures show from the left, (i) the Euclidean distance matrix of M , (ii) its slice at 0, (iii) the norm of
embedding vectors, (iv) the dot product M̃M̃⊤ with M̃ of the row-normalized M , (v) fE(0)⊤M̃ and
(vi) fE(c0)⊤M . (a) Trained on R[x1, x2]; (cmin, cmax) = (−100, 100). (b) Trained on F31[x1, x2];
(cmin, cmax) = (0, 31). The embedding layer fE has one/two hidden layers (top/bottom rows). As
can be seen, the relationship between embedding vectors in terms of distance and dot product is
aligned well in the infinite field and not in the finite field.

Hybrid embedding. Table 2 shows that determining coefficients by regression is less successful
than classifications. For infinite field k, this may be because of the accumulation of coefficient errors
during the auto-regressive generation. Thus, the current best practice would be to prepare many
number tokens in the vocabulary set, or a sophisticated regression-by-classification approach may be
helpful [76]. Note that the results for k = Fp are shown for reference as the finite field elements do
not have ordering. Figure 1 shows a contrast between the embedding functions learned in infinite field
and finite field. Particularly, the slice of distance matrix (ii) and that of the dot-product matrix (vi)
show that these metrics align well with the difference between numbers in R. However, we cannot
observe convincing patterns in the embedding in F31. For the two-layer case in Fig. 1(a), we observe
sharp changes around ±5 of the horizontal axis. This may be because of the gap in the coefficient
range in the input and output space. The coefficients of F ranges between [−100, 100], while that of
G does between [−5, 5]. In Tab. 3, we show that the increase of hidden layers of fE does not lead to
improvement.

7 Conclusion

This study proposed the first learning approach to a fundamental algebraic task, the Gröbner basis
computation. While various recent studies have reported the learnability of mathematical problems by
Transformers, we addressed the first problem with nontriviality in the dataset generation. Ultimately,
the learning approach may be useful to address large-scale problems that cannot be approached by
Gröbner basis computation algorithms because of their computational complexity. Transformers
can output predictions in moderate runtime. The outputs may be incorrect, but there is a chance
of obtaining a hint of a solution, as shown in our experiments. We believe that our study reveals
many interesting open questions to achieve Gröbner basis computation learning. Some are algebraic
problems, and others are machine learning challenges, further discussed in Sec. H.

Acknowledgement. We would like to thank Masayuki Noro (Rikkyo University) for his fruitful
comments on our dataset construction algorithm and Noriki Nishida (RIKEN Center for Advanced
Intelligence Project) for his help in the implementation. Hiroshi Kera was supported by JST PRESTO
Grant Number JPMJPR24K4, JST ACT-X Grant Number JPMJAX23C8, Mitsubishi Electric Infor-
mation Technology R&D Center, and the Chiba University IAAR Research Support Program and the
Program for Forming Japan’s Peak Research Universities (J-PEAKS). Yuki Ishihara was supported
by JSPS KAKENHI Grant Number JP22K13901 and Institute of Mathematics for Industry, Joint
Usage/Research Center in Kyushu University (FY2023 Short-term Joint Research “Speeding up of
symbolic computation and its application to solving industrial problems” (2023a006)). Yuta Kambe
was supported by Mitsubishi Electric Research Associate Program.

10



References
[1] J. Abbott, C. Fassino, and M.-L. Torrente. Stable border bases for ideals of points. Journal of

Symbolic Computation, 43(12):883–894, 2008.

[2] J. Abbott, M. Kreuzer, and L. Robbiano. Computing zero-dimensional schemes. Journal of
Symbolic Computation, 39(1):31–49, 2005.

[3] V. Agarwal, S. Aditya, and N. Goyal. Analyzing the nuances of transformers’ polynomial
simplification abilities. In The First Mathematical Reasoning in General Artificial Intelligence
Workshop at International Conference on Learning Representations, 2021.

[4] A. Alfarano, F. Charton, and A. Hayat. Global Lyapunov functions: a long-standing open
problem in mathematics, with symbolic transformers. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

[5] R. Antonova, M. Maydanskiy, D. Kragic, S. Devlin, and K. Hofmann. Analytic manifold
learning: Unifying and evaluating representations for continuous control. arXiv, abs/2006.08718,
2020.

[6] E. Arnold. Modular algorithms for computing Gröbner bases. Journal of Symbolic Computation,
35:403–419, 2003.

[7] M. F. Atiyah and I. G. MacDonald. Introduction To Commutative Algebra. Addison-Wesley
series in mathematics. Avalon Publishing, 1994.

[8] G. V. Bard. Algorithms for Solving Polynomial Systems. Springer US, 2009.

[9] M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of the F5 Gröbner basis algorithm.
Journal of Symbolic Computation, 70:49–70, September 2015.

[10] T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases: A Computational Approach to
Commutative Algebra. Graduate texts in mathematics. Springer-Verlag, 1993.

[11] I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The long-document transformer. arXiv,
2020.

[12] J. Berthomieu, S. Graillat, D. Lesnoff, and T. Mary. Modular matrix multiplication on GPU for
polynomial system solving. ACM Commun. Comput. Algebra, 57(2):35–38, August 2023.

[13] J. Berthomieu, V. Neiger, and M. Safey El Din. Faster change of order algorithm for Gröb-
ner bases under shape and stability assumptions. In Proceedings of the 2022 International
Symposium on Symbolic and Algebraic Computation, pages 409–418, 2022.

[14] L. Biggio, T. Bendinelli, A. Neitz, A. Lucchi, and G. Parascandolo. Neural symbolic regression
that scales. In Proceedings of the 38th International Conference on Machine Learning, volume
139, pages 936–945, 18–24 Jul 2021.

[15] M. Brickenstein. Slimgb: Gröbner bases with slim polynomials. Revista Matemática Com-
plutense, 23:453–466, 2010.

[16] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem nulldimensionalen Polynomideal (An Algorithm for Finding the Basis Elements in the
Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal). PhD thesis, Mathematical
Institute, University of Innsbruck, Austria, 1965. English translation in J. of Symbolic Com-
putation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Vol. 41,
Number 3-4, Pages 475–511, 2006.

[17] L. Busé. Étude du résultant sur une variété algébrique. Theses, Université Nice Sophia
Antipolis, 2001.

[18] L. Busé, M. Elkadi, and B. Mourrain. Resultant over the residual of a complete intersection.
Journal of Pure and Applied Algebra, 164(1):35–57, 2001.

11



[19] F. Charton. Linear algebra with transformers. Transactions on Machine Learning Research,
2022.

[20] F. Charton. What is my math transformer doing? - three results on interpretability and
generalization. arXiv, abs/2211.00170, 2022.

[21] F. Charton. Learning the greatest common divisor: explaining transformer predictions. In The
Twelfth International Conference on Learning Representations, 2024.

[22] F. Charton, A. Hayat, and G. Lample. Learning advanced mathematical computations from
examples. In International Conference on Learning Representations, 2021.

[23] Y. Chen, Q. Tao, F. Tonin, and J. A. Suykens. Primal-Attention: Self-attention through
asymmetric kernel SVD in primal representation. In Advances in Neural Information Processing
Systems, 2023.

[24] D. A. Cox. Solving equations via algebras. In Solving Polynomial Equations, pages 63–124.
Springer-Verlag, Berlin, 2005.

[25] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in
Mathematics. Springer International Publishing, 2015.

[26] S. D’Ascoli, P.-A. Kamienny, G. Lample, and F. Charton. Deep symbolic regression for recur-
rence prediction. In Proceedings of the 39th International Conference on Machine Learning,
volume 162, pages 4520–4536, 17–23 Jul 2022.

[27] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional distributions.
The Annals of Statistics, 26(1):363 – 397, 1998.

[28] J. Ding, S. Ma, L. Dong, X. Zhang, S. Huang, W. Wang, N. Zheng, and F. Wei. LongNet:
Scaling Transformers to 1,000,000,000 tokens. arXiv, 2307.02486, 2023.

[29] T. W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM Journal on Computing,
19(4):750–773, 1990.

[30] N. Dziri, X. Lu, M. Sclar, X. L. Li, L. Jiang, B. Y. Lin, S. Welleck, P. West, C. Bhagavatula,
R. L. Bras, J. D. Hwang, S. Sanyal, X. Ren, A. Ettinger, Z. Harchaoui, and Y. Choi. Faith
and fate: Limits of transformers on compositionality. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[31] D. Eisenbud. Commutative algebra: with a view toward algebraic geometry. Springer Science
& Business Media, 2013.

[32] C. Fassino. Almost vanishing polynomials for sets of limited precision points. Journal of
Symbolic Computation, 45(1):19–37, 2010.

[33] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure
and Applied Algebra, 139(1):61–88, 1999.

[34] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In Proceedings of the 2002 International Symposium on Symbolic and Algebraic
Computation, ISSAC ’02, page 75–83, New York, NY, USA, 2002. Association for Computing
Machinery.

[35] J.-C. Faugère, P. M. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional
Gröbner bases by change of ordering. Journal of Symbolic Computation, 16(4):329–344, 1993.

[36] P. Gianni and T. Mora. Algebraic solution of systems of polynomial equations using Groebner
bases. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 247–257,
Berlin, Heidelberg, 1989. Springer Berlin Heidelberg.

[37] S. Golkar, M. Pettee, M. Eickenberg, A. Bietti, M. Cranmer, G. Krawezik, F. Lanusse, M. Mc-
Cabe, R. Ohana, L. Parker, B. R.-S. Blancard, T. Tesileanu, K. Cho, and S. Ho. xVal: A
continuous number encoding for large language models, 2023.

12



[38] A. Gromov. Grokking modular arithmetic. arXiv, abs/2301.02679, 2023.

[39] G.-M. Gruel and G. Pfister. A Singular Introduction to Commutative Algebra, 2nd Edition.
Sringer Verlag, 2008.

[40] D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse. Approximate computation of zero-
dimensional polynomial ideals. Journal of Symbolic Computation, 44(11):1566–1591, 2009.

[41] T. Hibi. Gröbner bases. Statistics and software systems. Springer Tokyo, March 2014.

[42] C. Hou, F. Nie, and D. Tao. Discriminative vanishing component analysis. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, pages 1666–1672, Palo Alto, California,
2016. AAAI Press.

[43] R. Iraji and H. Chitsaz. Principal variety analysis. In Proceedings of the 1st Annual Conference
on Robot Learning (ACRL), pages 97–108. PMLR, 2017.

[44] P.-A. Kamienny, S. d’Ascoli, G. Lample, and F. Charton. End-to-end symbolic regression with
transformers. In Advances in Neural Information Processing Systems, 2022.

[45] P.-A. Kamienny, G. Lample, S. Lamprier, and M. Virgolin. Deep generative symbolic regression
with Monte-Carlo-Tree-Search. arXiv, abs/2302.11223, 2023.

[46] A. Karimov, E. G. Nepomuceno, A. Tutueva, and D. Butusov. Algebraic method for the
reconstruction of partially observed nonlinear systems using differential and integral embedding.
Mathematics, 8(2):300–321, February 2020.

[47] A. Karimov, V. Rybin, E. Kopets, T. Karimov, E. Nepomuceno, and D. Butusov. Identifying
empirical equations of chaotic circuit from data. Nonlinear Dynamics, 111(1):871–886, 2023.

[48] A. Kehrein and M. Kreuzer. Computing border bases. Journal of Pure and Applied Algebra,
205(2):279–295, 2006.

[49] H. Kera. Border basis computation with gradient-weighted normalization. In Proceedings of
the 2022 International Symposium on Symbolic and Algebraic Computation, pages 225–234,
New York, 2022. Association for Computing Machinery.

[50] H. Kera and Y. Hasegawa. Noise-tolerant algebraic method for reconstruction of nonlinear
dynamical systems. Nonlinear Dynamics, 85(1):675–692, 2016.

[51] H. Kera and Y. Hasegawa. Approximate vanishing ideal via data knotting. In Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, pages 3399–3406, Palo Alto,
California, 2018. AAAI Press.

[52] H. Kera and Y. Hasegawa. Spurious vanishing problem in approximate vanishing ideal. IEEE
Access, 7:178961–178976, 2019.

[53] H. Kera and Y. Hasegawa. Gradient boosts the approximate vanishing ideal. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pages 4428–4425, Palo Alto,
California, 2020. AAAI Press.

[54] H. Kera and Y. Hasegawa. Monomial-agnostic computation of vanishing ideals. Journal of
Computational Algebra, 11:100022, 2024.

[55] H. Kera and H. Iba. Vanishing ideal genetic programming. In Proceedings of the 2016 IEEE
Congress on Evolutionary Computation (CEC), pages 5018–5025, Piscataway, NJ, 2016. IEEE.

[56] F. J. Király, M. Kreuzer, and L. Theran. Dual-to-kernel learning with ideals. arXiv,
abs/1402.0099, 2014.

[57] N. Kitaev, L. Kaiser, and A. Levskaya. Reformer: The efficient Transformer. In International
Conference on Learning Representations, 2020.

[58] G. Lample and F. Charton. Deep learning for symbolic mathematics. In International Conference
on Learning Representations, 2020.

13



[59] R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse engineering
of gene regulatory networks. Journal of Theoretical Biology, 229(4):523–537, 2004.

[60] R. Laubenbacher and B. Sturmfels. Computer algebra in systems biology. American Mathemat-
ical Monthly, 116(10):882–891, 2009.

[61] C. Y. Li, E. Wenger, Z. Allen-Zhu, F. Charton, and K. E. Lauter. SALSA VERDE: a machine
learning attack on LWE with sparse small secrets. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

[62] J. Limbeck. Computation of approximate border bases and applications. PhD thesis, Passau,
Universität Passau, 2013.

[63] R. Livni, D. Lehavi, S. Schein, H. Nachliely, S. Shalev-Shwartz, and A. Globerson. Vanishing
component analysis. In Proceedings of the 30th International Conference on Machine Learning,
volume 28(1) of Proceedings of Machine Learning Research, pages 597–605, Atlanta, Georgia,
USA, June 2013. PMLR.

[64] H. Lombardi and I. Yengui. Suslin’s algorithms for reduction of unimodular rows. Journal of
Symbolic Computation, 39(6):707–717, 2005.

[65] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[66] R. H. Makarim and M. Stevens. M4GB: An efficient Gröbner-basis algorithm. In Proceedings of
the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC’17,
pages 293–300, New York, NY, USA, 2017. Association for Computing Machinery.

[67] E. W. Mayr and A. R. Meyer. The complexity of the word problems for commutative semigroups
and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982.

[68] H. M. Möller and B. Buchberger. The construction of multivariate polynomials with preassigned
zeros. In Computer Algebra. EUROCAM 1982. Lecture Notes in Computer Science, pages
24–31. Springer Berlin Heidelberg, 1982.

[69] M. Noro and K. Yokoyama. A modular method to compute the rational univariate representation
of zero-dimensional ideals. Journal of Symbolic Computation, 28(1):243–263, 1999.

[70] M. Noro and K. Yokoyama. Usage of modular techniques for efficient computation of ideal
operations. Math. Comput. Sci., 12(1):1–32, 2018.

[71] H. Park and G. Regensburger, editors. Gröbner Bases in Control Theory and Signal Processing.
De Gruyter, 2007.

[72] H. Park and C. Woodburn. An algorithmic proof of Suslin’s stability theorem for polynomial
rings. Journal of Algebra, 178(1):277–298, 1995.

[73] D. Peifer, M. Stillman, and D. Halpern-Leistner. Learning selection strategies in buchberger’s
algorithm. In Proceedings of the 37th International Conference on Machine Learning, ICML’20.
JMLR.org, 2020.

[74] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra. Grokking: Generalization beyond
overfitting on small algorithmic datasets. arXiv, abs/2201.02177, 2022.

[75] D. Saxton, E. Grefenstette, F. Hill, and P. Kohli. Analysing mathematical reasoning abilities of
neural models. In International Conference on Learning Representations, 2019.

[76] D. Shah and T. M. Aamodt. Learning label encodings for deep regression. In The Eleventh
International Conference on Learning Representations, 2023.

[77] Y. Shao, G. Gao, and C. Wang. Nonlinear discriminant analysis based on vanishing component
analysis. Neurocomputing, 218:172–184, 2016.

[78] H. Stewenius. Gröbner Basis Methods for Minimal Problems in Computer Vision. PhD thesis,
Mathematics (Faculty of Engineering), 2005.

14



[79] B. Sturmfels. Solving systems of polynomial equations. Number 97. American Mathematical
Soc., 2002.

[80] Y. Sun, L. Dong, S. Huang, S. Ma, Y. Xia, J. Xue, J. Wang, and F. Wei. Retentive network: A
successor to Transformer for large language models. arXiv, 2023.

[81] A. Suslin. On the structure of the special linear group over polynomial rings. Mathematics of
the USSR - Izvestija, 11(2):221–238, April 1977.

[82] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.0), 2023.
https://www.sagemath.org.

[83] C. Traverso. Hilbert functions and the Buchberger algorithm. Journal of Symbolic Computation,
6:287–304, 1997.

[84] E. Ullah. New Techniques for Polynomial System Solving. PhD thesis, Universität Passau, 2012.

[85] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[86] L. Wang and T. Ohtsuki. Nonlinear blind source separation unifying vanishing component
analysis and temporal structure. IEEE Access, 6:42837–42850, 2018.

[87] M. Wang and J. Deng. Learning to prove theorems by learning to generate theorems. In
Advances in Neural Information Processing Systems, volume 33, pages 18146–18157. Curran
Associates, Inc., 2020.

[88] Z. Wang, Q. Li, G. Li, and G. Xu. Polynomial representation for persistence diagram. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6116–6125, 2019.

[89] E. Wenger, M. Chen, F. Charton, and K. E. Lauter. SALSA: Attacking lattice cryptography
with Transformers. In Advances in Neural Information Processing Systems, volume 35, pages
34981–34994, 2022.

[90] E. S. Wirth, H. Kera, and S. Pokutta. Approximate vanishing ideal computations at scale. In
International Conference on Learning Representations, 2023.

[91] E. S. Wirth and S. Pokutta. Conditional gradients for the approximately vanishing ideal. In
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics,
volume 151, pages 2191–2209, 28–30 Mar 2022.

[92] H. Yan, Z. Yan, G. Xiao, W. Wang, and W. Zuo. Deep vanishing component analysis network
for pattern classification. Neurocomputing, 316:240–250, 2018.

[93] T. Yasuda, X. Dahan, Y.-J. Huang, T. Takagi, and K. Sakurai. MQ challenge: hardness evaluation
of solving multivariate quadratic problems. Cryptology ePrint Archive, 2015.

15



A Basic Definitions in Algebra

Definition A.1 (Ring, Field ([7], Chap. 1 §1)). A set R with an additive operation + and a
multiplicative operation ∗ is called a (commutative) ring if it satisfies the following conditions:

1. a+ (b+ c) = (a+ b) + c for any a, b, c ∈ R,

2. there exists 0 ∈ R such that a+ 0 = 0 + a = a for any a ∈ R,

3. for any a ∈ R, there exists −a such that a+ (−a) = (−a) + a = 0,

4. a+ b = b+ a for any a, b ∈ R,

5. a ∗ (b ∗ c) = (a ∗ b) ∗ c for any a, b, c ∈ R,

6. there exists 1 ∈ R such that a ∗ 1 = 1 ∗ a = a for any a ∈ R,

7. a ∗ (b+ c) = a ∗ b+ a ∗ c for any a, b, c ∈ R,

8. (a+ b) ∗ c = a ∗ c+ b ∗ c for any a, b, c ∈ R,

9. a ∗ b = b ∗ a for any a, b ∈ R.

A commutative ring R is called a field if it satisfies the following condition

10. for any a ∈ R \ {0}, there exists a−1 such that a ∗ a−1 = a−1 ∗ a = 1.
Definition A.2 (Polynomial Ring ([7], Chap. 1 §1)). In Definition A.1, k[x1, . . . , xn], the set of all
n-variate polynomials with coefficients in k, satisfies all conditions (1)-(9). Thus, k[x1, . . . , xn] is
called a polynomial ring.
Definition A.3 (Quotient Ring ([7], Chap. 1 §1)). Let R be a ring and I an ideal of R. For each
f ∈ R, we set [f ] = {g ∈ R | f − g ∈ I}. Then, the set {[f ] | f ∈ R} is called the quotient
ring of R modulo I and denoted by R/I . Indeed, R/I is a ring with an additive operation + and a
multiplicative operation ∗, where [f ] + [g] = [f + g] and [f ] ∗ [g] = [f ∗ g] for f, g ∈ R respectively.
Definition A.4 (Generators). For F = {f1, . . . , fs} ⊂ k[x1, . . . , xn], the following set

⟨F ⟩ =

{
s∑

i=1

hifi | h1, . . . , hs ∈ k[x1, . . . , xn]

}
. (A.1)

is an ideal and said to be generated by F , and f1, . . . , fs are called generators.
Definition A.5 (0-dimensional ideal ([25], Chap. 5 §3, Thm. 6)). Let F be a set of polynomials in
k[x1, . . . , xn]. An ideal ⟨F ⟩ is called a 0-dimensional ideal if the k-linear space k[x1, . . . , xn]/⟨F ⟩
is finite-dimensional, where k[x1, . . . , xn]/⟨F ⟩ is the quotient ring of k[x1, . . . , xn] modulo ⟨F ⟩.
Definition A.6 (Radical ideal ([7], Chap. 1 §1)). For an ideal I of k[x1, . . . , xn], the set {f ∈
k[x1, . . . , xn] | fm ∈ I for a positive integer m} is called the radical of I and denoted by

√
I . Also,

I is called a radical ideal if I =
√
I .

Definition A.7 (Syzygy ([10], Chap. 3, §3)). Let F = {f1, . . . , fs} ⊂ k[x1, . . . , xn]. A syzygy of F
is an s-tuple of polynomials (q1, . . . , qs) ∈ k[x1, . . . , xn]

s such that q1f1 + · · ·+ qsfs = 0.
Definition A.8 (Term ([10], Chap. 2, §1)). For a polynomial f =

∑
α1,...,αn

cα1,...,αn
xα1
1 · · ·xαn

n

with cα1,...,αn ∈ K and α1, . . . , αn ∈ Z≥0, each xα1
1 · · ·xαn

n is called a term in f .
Definition A.9 (Total Degree ([25], Chap. 1 §1, Def. 3)). For a term xα1

1 · · ·xαn
n , its total degree is

the sum of indices α1 + · · · + αn. For a polynomial f , the total degree of f is the maximal total
degree of terms in f .
Definition A.10 (Term order ([10], Definition 5.3)). A term order ≺ is a relation between terms such
that

1. (comparability) for different terms xα1
1 · · ·xαn

n and xβ1

1 · · ·xβn
n , either xα1

1 · · ·xαn
n ≺

xβ1

1 · · ·xβn
n or xβ1

1 · · ·xβn
n ≺ xα1

1 · · ·xαn
n holds,

2. (order-preserving) for terms xα1
1 · · ·xαn

n , xβ1

1 · · ·xβn
n and xγ1

1 · · ·xγn
n ̸= 1, if xα1

1 · · ·xαn
n ≺

xβ1

1 · · ·xβn
n then xα1+γ1

1 · · ·xαn+γn
n ≺ xβ1++γ1

1 · · ·xβn+γn
n holds,
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3. (minimality of 1) the term 1 is the smallest term i.e. 1 ≺ xα1
1 · · ·xαn

n for any term
xα1
1 · · ·xαn

n ̸= 1.
Example A.11. The lexicographic order ≺lex prioritizes terms with larger exponents for the variables
of small indices, e.g.,

x2 ≻lex x2
3 and x1x2x

2
3 ≺lex x1x

2
2x3. (A.2)

Two terms are first compared in terms of the exponent in x1 (larger one is prioritized), and if a
tie-break is needed, the next variable x2 is considered, and so forth.
Example A.12. The graded lexicographic order ≺grlex prioritizes terms with higher total degree.9
For tie-break, the lexicographic order is used, e.g.,

1 ≺grlex xn and x2 ≺grlex x2
3 and x1x2x

2
3 ≺grlex x1x

2
2x3. (A.3)

Term orders prioritizing lower total degree terms as ≺grlex are called graded term orders.
Definition A.13 (Reduced Gröbner basis). A ≺-Gröbner basis G = {g1, . . . , gt} of I is called the
reduced Gröbner basis of I if

1. the leading coefficient of gi with respect to ≺ is 1 for all i = 1, . . . , t,

2. no terms of gi lies on ⟨LT(G \ {gi})⟩ for any i = 1, . . . , t.
Proposition A.14 ([36], Prop. 1.6; [69], Lem. 4.4). Let I be a 0-dimensional radical ideal. If k is of
characteristic 0 or a finite field of large enough order, then a random linear coordinate change puts I
in shape position.

B Cauchy module

We here provide the definition of the Cauchy module, which defines another class of 0-dimensional
ideals.
Definition B.1 (Elementary symmetric polynomials). The elementary symmetric polynomials
s1, . . . , sn in n variables x1, . . . , xn are

sk =
∑

i1<···<ik

xi1 · · ·xik , k = 1, . . . , n. (B.1)

Definition B.2 (Cauchy module). Let Sn be the symmetric group on a finite set of size n. Let k be
an algebraically closed field, and let α = (α1, · · · , αn) ∈ kn be a generic point (i.e., αi ̸= αj for
i ̸= j). Let the finite subset A ⊂ kn

A = {σ(α) = (ασ(1), . . . , ασ(n)) | σ ∈ Sn}. (B.2)

Let f1(t) be a polynomial of t,

f1(t) = t2 − s1(α)t
n−1 + s2(α)t

n−2 − · · ·+ (−1)nsn(α) =
n∏

i=1

(t− αi). (B.3)

Let us introduce indeterminates z1, . . . , zn and

f2 (z2, z1) =
f1 (z2)− f1 (z1)

z2 − z1
(B.4)

f3 (z3, z2, z1) =
f2 (z3, z1)− f2 (z2, z1)

z3 − z2
(B.5)

... (B.6)

fn (zn, . . . , z1) =
fn−1 (zn, zn−2, . . . , z1)− fn−1 (zn−1, zn−2, . . . , z1)

zn − zn−1
(B.7)

( = z1 + · · ·+ zn − s1(α)) (B.8)
The set of polynomials C = {f1, . . . , fs} is called the Cauchy module.
Remark B.3. The Cauchy module is the reduced ≺lex-Gröbner basis of ⟨C⟩ with z1 ≺lex · · · ≺lex

zn.
9The total degree of term xα1

1 · · ·xαn
n refers to

∑n
i=1 αi. The total degree of polynomial f refers to the

maximum total degree of the terms in f .
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Algorithm 1: Dataset generation for learning to compute 0-dimensional Gröbner bases.
Assumption: polynomial ring k[x1, . . . , xn]
Input: dataset size m, maximum degrees d, d′, maximum size of non-Gröbner set smax ≥ n,

and term order ≺.
Output: collection D = {(Fi, Gi)}mi=1 of non-Gröbner set Fi ∈ k[x1, . . . , xn]

m and the
reduced ≺-Gröbner basis Gi ⊂ k[x1, . . . , xn] of 0-dimensional ideal ⟨F ⟩ = ⟨G⟩.

1 D ← { }
2 for i = 1, . . . ,m do
3 Gi ← {h} with h, non-constant, monic/primitive, sampled from k[xn]≤d. ▷ Prob. 4.1
4 for j = 1, . . . , n− 1 do
5 Gi ← Gi ∪ {gj} with gj sampled from k[xn]≤deg(h)−1.
6 end
7 s ∼ U[n, smax] ▷ Prob. 4.2
8 Sample a unimodular upper-triangular matrix U1 ∈ ST(s, k[x1, . . . , xn]≤d′).
9 Sample a unimodular upper-triangular matrix U ′

2 ∈ ST(n, k[x1, . . . , xn]≤d′).
10 Sample a permutation matrix P ∈ {0, 1}s×s

11 Fi ← U1PU2Gi, where U2 = [U ′
2
⊤

On,s−n]
⊤ ∈ k[x1, . . . , xn]

s×n.
12 if ≺ ≠≺lex then
13 Gi ← FGLM(Gi,≺lex,≺)
14 end
15 D ← D ∪ {(Fi, Gi)} ▷ Reorder terms in Fi if ⊀=≺lex.
16 end

C Dataset generation algorithm

Theorem 4.6. Let G = (g1, . . . , gt)
⊤ be a Gröbner basis of a 0-dimensional ideal in k[x1, . . . , xn].

Let F = (f1, . . . , fs)
⊤ = AG with A ∈ k[x1, . . . , xn]

s×t.

1. If ⟨F ⟩ = ⟨G⟩, it implies s ≥ n.

2. If A has a left-inverse in k[x1, . . . , xn]
t×s, ⟨F ⟩ = ⟨G⟩ holds.

3. The equality ⟨F ⟩ = ⟨G⟩ holds if and only if there exists a matrix B ∈ k[x1, . . . , xn]
t×s

such that each row of BA−Et is a syzygy10 of G, where Et is the identity matrix of size t.

Proof.
(1) In general, if an ideal I is generated by s elements and s < n, then the Krull dimension of
k[x1, . . . , xn]/I satisfies that dim k[x1, . . . , xn]/I ≥ n− s > 0 (Krull’s principal ideal theorem [31,
§10]). Since the Krull dimension of k[x1, . . . , xn]/⟨G⟩ is 0, we have s ≥ n.

(2) From F = AG, we have ⟨F ⟩ ⊂ ⟨G⟩. If A has a left-inverse B ∈ k[x1, . . . , xn]
t×s, we have

BF = BAG = G, indicating ⟨F ⟩ ⊃ ⟨G⟩. Therefore, we have ⟨F ⟩ = ⟨G⟩.
(3) If the equality ⟨F ⟩ = ⟨G⟩ holds, then there exists a t × s matrix B ∈ k[x1, . . . , xn]

t×s such
that G = BF . Since F is defined as F = AG, we have G = BF = BAG and G = EtG in
k[x1, . . . , xn]

t. Therefore we obtain (BA − Et)G = 0. In particular, each row of BA − Et is a
syzygy of G. Conversely, if there exists a t× s matrix B ∈ k[x1, . . . , xn]

t×s such that each row of
BA−Et is a syzygy of G, then we have (BA−Et)G = 0 in k[x1, . . . , xn]

t, therefore the equality
⟨F ⟩ = ⟨G⟩ holds since we have G = EtG = BAG = BF .

Proposition 4.7. For any A ∈ k[x1, . . . , xn]
n×n with det(A) ∈ k \ {0}, we have ⟨F ⟩ = ⟨G⟩.

10Refer to App. A for the definition.
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Proof. From the Cramer’s rule, there exists B ∈ k[x1, . . . , xn]
n×n such that BA = det(A)En,

where En denotes the n-by-n identity matrix. Indeed, the i-th row Bi of B satisfies for i = 1, . . . , n,

Bi =
1

det(A)

(
det

(
Ã

(i)
1

)
, . . . ,det

(
Ã

(i)
n

))
, (C.1)

where Ã(i)
j is the matrix A with the j-th column replaced by the i-th canonical basis (0, ..., 1, ..., 0)⊤.

Since det(A) is a non-zero constant, A has the left-inverse B in k[x1, . . . , xn]
n×n. Thus ⟨F ⟩ = ⟨G⟩

from Thm. 4.6.

Theorem 4.8. Consider a polynomial ring k[x1, . . . , xn]. Given the dataset size m, maximum
degrees d, d′ > 0, maximum size of non-Gröbner set smax ≥ n, and term order ≺, Alg. 1 returns a
collection D = {(Fi, Gi)}mi=1 with the following properties: For all i = 1, . . . ,m,

1. |Gi| = n and |Fi| ≤ smax.

2. The set Gi is the reduced ≺-Gröbner basis of ⟨Fi⟩. The set Fi is not, unless Gi, U1, U
′
2, P

are all sampled in a non-trivial Zariski closed subset.11

3. The ideal ⟨Fi⟩ = ⟨Gi⟩ is a 0-dimensional ideal in shape position.

The time complexity is O(m(nS1,d + s2Sn,d′ + (n2 + s2)Mn,2d′+d)) when ≺=≺lex, where Sn,d

denotes the complexity of sampling an n-variate polynomial with total degree at most d, and Mn,d

denotes that of multiplying two n-variate polynomials with total degree at most d. If ⊀=≺lex,
O(mnd3) is additionally needed.

Proof. Outside of the Zariski subset part, statements 1–3 are trivial from Alg. 1 and the discussion in
Sec.s 4.2 and 4.3. To obtain the desired Zariski subsets, we consider the vector space of polynomials
of degree d+ 2d′ or less. We remark that if Fi is a ≺-Gröbner basis, its leading terms must belong
to a finite amount of possibilities. For a polynomial to have a given term as its leading term, zero
conditions on terms greater than this term are needed, defining a closed Zariski subset condition. By
considering the finite union of all these conditions, we obtain the desired result.

To obtain one pair (F,G), the random generation of G needs O(nS1,d), and the backward transform
from G to F needs O(s2Sn,d′) to get U1, U2 and (n2 + s2)Mn,2d′+d) for the multiplication F =
U1PU2G. Note that the maximum total degree of polynomials in F is 2d′ + d.

D Hybrid Input Embedding

We here present the supplemental information of Transformers with hybrid input embedding. Let
s = [s1, . . . , sL] to be a sequence of tokens. Some of these tokens are in V and otherwise in R. We
call the former discrete tokens and the latter continuous tokens. For discrete tokens, the standard input
embedding based on the embedding matrix is applied. For continuous tokens, a small feed-forward
network fE : R → RD is applied. Unlike discrete tokens, continuous tokens are predicted by
regression. For this sake, Transformers should equip a regression head, and they solve a classification
task and a regression task simultaneously. In the classification task, continuous tokens are all replaced
with a single coefficient token. In other words, the classification head predicts the support of the
polynomials, while the regression head predicts the coefficients to be filled in the coefficient tokens.
The auto-regressive generation process is naturally induced by a standard method.

In our experiments, we implemented fE by one-hidden layer ReLU Network, i.e.,
fE(x) = W2φ(w1x+ b1) + b2, (D.1)

where w1, b1 ∈ RD,W2 ∈ RD×D, b2 ∈ RD and φ is the ReLU function applied entry-wise. We
also tried fE with one more hidden layer. However, this only has a minor improvement on the R case;
see Tab. 3.

E Training Setup

This section provides the supplemental information of our experiments presented in Sec. 6.
11This can happen with probability zero if k is infinite and very low probability over a large finite field.
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Table 3: Comparison of implementations of continuous input embedding fE on D−
2 (k).

Coefficient Q F7 F31 R
one hidden layer 66.8 / 87.3 54.1 / 78.7 6.1 / 75.3 57.2 / 85.0
two hidden layers 67.2 / 87.7 54.3 / 78.8 5.6 / 75.7 56.2 / 83.6

E.1 Gröbner basis computation algorithms

In Tab. 1, we tested three algorithms provided in SageMath with the libSingular backend for forward
generation.

STD (libsingular:std): The standard Buchberger algorithm.

SLIMGB (libsingular:slimgb): A variant of the Faugère’s F4 algorithm. Refer to [15].

STDFGLM (libsingular:stdfglm): Fast computation using STD with the graded reverse lex-
icographic order followed by the FGLM for the change of term orders. Only for 0-dimensional
cases.

E.2 Training setup

Dataset. Both training and test samples are generated using our method. It involves sampling of
random polynomials. The degree and the support size (the number of terms) of them as well as coeffi-
cients are restricted by user-defined bounds (see Sec. 6.1). Let dmax, µmax be the maximum degree
and the maximum support size. A random polynomial is obtained as the sum of µ ∼ U[1, µmax]
monomials uniformly and randomly sampled from k[x1, . . . , xn]≤dmax . When the samples are fed to
a Transformer, polynomials are tokenized into an infix representation. For example, {x2−1/2y, y} ⊂
Q[x, y] is tokenized to [C1, E2, E0, +, C-1, /, C2, E0, E1, <sep>, C1, E0, E1].

Training. We used a Transformer model [85] with a standard architecture: 6 encoder/decoder
layers, 8 attention heads, token embedding dimension of 512 dimensions, and feed-forward networks
with 2048 inner dimensions. The absolute positional embedding is learned from scratch. The dropout
rate was set to 0.1. We used the AdamW optimizer [65] with (β1, β2) = (0.9, 0.999) with no weight
decay. The learning rate was initially set to 10−4 and then linearly decayed over training steps. All
training samples are visited in a single epoch, and the total number of epochs was set to 8. The batch
size was set to 16. At the inference time, output sequences are generated using a beam search with
width 1. For the hybrid input embedding, we used a ReLU network with one hidden layer (cf. Sec. D).
A model with this embedding predicts coefficients as continuous values, and the mean-squared loss
with weight 0.01 is additionally used for the training. Note that while the exponents are also numbers,
we treat them as discrete tokens because they are always discrete and their range is moderate.

F Additional Experimental Results.

We provide the additional experimental results with Transformers with the standard input embedding.

F.1 Dataset generation

The runtime comparison for datasets with and without density control is given in Tab. 4, and the
success rate (i.e., not encountering the timeout) is given in Tab. 5. The generation of density-controlled
datasets D−

n (k) (1,000 samples) requires less runtime, and the proposed method is not always the
fastest. However, it is important to remember that the forward method is still not feasible because of
the difficulty in sampling overdetermined non-Gröbner sets (i.e., F s). Generally, such F only leads
to a trivial ideal with Gröbner basis {1}. The profile of datasets is given in Tab. 6.
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Table 4: Runtime comparison (in seconds) of forward generation (F.) and backward generation (B.)
of dataset Dn(k) of size 1,000. The forward generation used either of the three algorithms provided
in SageMath with the libSingular backend. For D−

n (k), the proposed method is not necessarily the
fastest. Note that the runtime of the forward methods does not include the sampling of F , and F is
given from the datasets constructed by the backward method. The sampling step roughly consists of
30% of the runtime in the backward method. It is also worth noting that sampling of overdetermined
F generally leads to a trivial ideal with the Gröbner basis {1}.

Method Dn(Q) D−
n (Q)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ =
1.0

σ =
0.6

σ =
0.3

σ =
0.2

F. (STD) 4.20 216.3 740.1 1411.1 4.20 104.3 101.0 117.4
F. (SLIMGB) 4.29 183.4 697.5 1322.7 4.29 77.1 98.9 134.5
F. (STDFGLM) 7.22 8.29 21.0 164.3 7.22 12.1 9.75 14.9
B. (ours) 5.23 5.46 7.05 7.91 5.23 11.2 7.85 13.7

Method Dn(F7) D−
n (F7)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ =
1.0

σ =
0.6

σ =
0.3

σ =
0.2

F. (STD) 4.93 4.57 818.9 2123.3 4.93 4.30 48.8 91.5
F. (SLIMGB) 4.92 5.57 561.0 1981.2 4.92 4.65 32.9 81.8
F. (STDFGLM) 8.02 6.33 9.20 62.6 8.02 7.50 7.25 7.46
B. (ours) 6.79 8.36 10.5 14.2 6.79 8.72 10.5 14.5

Method Dn(F31) D−
n (F31)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ =
1.0

σ =
0.6

σ =
0.3

σ =
0.2

F. (STD) 5.08 5.04 777.6 2110.4 5.08 4.39 20.6 114.0
F. (SLIMGB) 5.07 6.91 664.2 2026.0 5.07 4.98 22.2 103.2
F. (STDFGLM) 8.10 6.73 9.14 80.2 8.10 6.95 7.23 8.58
B. (ours) 7.40 8.37 10.5 14.7 7.40 18.0 9.91 15.3

F.2 Success and failure cases

Tables 7–18 show examples of success cases. One can see that Transformers can solve many non-
trivial instances. Tables 19 and 21 show examples of failure cases. One can see that, interestingly,
the incorrect predictions appear reasonable. Examples are all taken according to their order in each
dataset (i.e., no cherry-picking).

F.3 Superiority of Transformer in several cases.

Approaching Gröbner basis computation using a Transformer has a potential advantage in the runtime
because the computational cost has less dependency on the problem difficulty than mathematical
algorithms do. However, currently, mathematical algorithms run faster than Transformers because of
our naive input scheme. Nevertheless, we observed several examples in ourD−

n (k) datasets for which
Transformers generate the solutions efficiently, while mathematical algorithms take significantly
longer time or encounter a timeout.

Particularly, we examined the examples inD−
n (k) where several forward methods encounter a timeout

with the five-second budget, see Tab. 5. We fed these examples to Transformer and the three forward
algorithms again, but now with a 100-second budget. For such examples, as shown in Tab. 22,
Transformers completed the computation in less than a second, while the two forward algorithms,
STD and SLIMGB, often used longer computation time or encountered a timeout.

It is worth noting that STD and SLIMGB are general-purpose algorithms, while STDFGLM is specially
designed for the zero-dimension ideals. To summarize, Transformers successfully computed Gröbner
bases with much less runtime than general-purpose algorithms for several examples. This shows a
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Table 5: Success rate [%] of forward generation with the five-second timeout limit.

Method Dn(Q) D−
n (Q)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ =
1.0

σ =
0.6

σ =
0.3

σ =
0.2

F. (STD) 100.0 96.0 85.5 72.2 100.0 98.3 98.2 97.9
F. (SLIMGB) 100.0 96.6 86.4 74.4 100.0 98.7 98.3 97.6
F. (STDFGLM) 100.0 100.0 99.9 98.4 100.0 100.0 100.0 100.0

Method Dn(F7) D−
n (F7)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ =
1.0

σ =
0.6

σ =
0.3

σ =
0.2

F. (STD) 100.0 100.0 84.8 58.7 100.0 100.0 99.3 98.4
F. (SLIMGB) 100.0 100.0 91.6 62.9 100.0 100.0 99.7 98.7
F. (STDFGLM) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Method Dn(F31) D−
n (F31)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ =
1.0

σ =
0.6

σ =
0.3

σ =
0.2

F. (STD) 100.0 100.0 86.0 59.2 100.0 100.0 99.7 98.0
F. (SLIMGB) 100.0 100.0 89.6 62.3 100.0 100.0 99.8 98.5
F. (STDFGLM) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 6: Dataset profiles. The standard deviation is shown in the superscript.

Metric Dn(Q) D−
n (Q)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ = 1.0 σ = 0.6 σ = 0.3 σ = 0.2

Size of F 2.57(±0.71) 3.46(±0.66) 4.40(±0.62) 5.37(±0.60) 2.57(±0.71) 3.71(±0.77) 4.86(±0.80) 5.90(±0.81)

Max degree in F 7.31(±1.91) 8.54(±1.44) 9.02(±1.26) 9.17(±1.22) 7.31(±1.91) 8.20(±1.62) 8.34(±1.53) 8.46(±1.46)

Min degree in F 4.09(±1.93) 4.45(±1.92) 4.75(±1.89) 4.96(±1.85) 4.09(±1.93) 3.96(±2.00) 3.54(±2.09) 3.38(±2.08)

# of terms in F 15.46(±7.67) 23.86(±7.97) 33.18(±8.25) 42.70(±8.74) 15.46(±7.67) 24.36(±9.15) 32.36(±10.39) 40.32(±11.38)

Gröbner ratio 0.001(±0.026) 0(±0) 0(±0) 0(±0) 0.001(±0.026) 0(±0.012) 0(±0) 0(±0)

Size of G 2.00(±0) 3.00(±0) 4.00(±0) 5.00(±0) 2.00(±0) 3.00(±0) 4.00(±0) 5.00(±0)

Max degree in G 4.00(±1.32) 4.00(±1.32) 4.00(±1.32) 4.00(±1.32) 4.00(±1.32) 4.00(±1.32) 4.00(±1.32) 4.00(±1.32)

Min degree in G 2.47(±1.23) 2.07(±1.14) 1.79(±1.02) 1.60(±0.90) 2.47(±1.23) 2.07(±1.14) 1.79(±1.02) 1.60(±0.90)

# of terms in G 6.46(±2.33) 8.93(±3.25) 11.40(±4.13) 13.86(±4.99) 6.46(±2.33) 8.93(±3.24) 11.39(±4.13) 13.87(±4.99)

Gröbner ratio 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0)

Metric Dn(F7) D−
n (F7)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ = 1.0 σ = 0.6 σ = 0.3 σ = 0.2

Size of F 3.00(±0.82) 4.00(±0.82) 5.00(±0.82) 6.00(±0.82) 3.00(±0.82) 4.00(±0.82) 5.00(±0.82) 6.00(±0.82)

Max degree in F 7.91(±2.04) 8.45(±1.67) 8.43(±1.55) 8.51(±1.47) 7.91(±2.04) 8.45(±1.67) 8.43(±1.55) 8.51(±1.47)

Min degree in F 4.37(±2.06) 4.15(±2.07) 3.64(±2.13) 3.44(±2.11) 4.37(±2.06) 4.15(±2.07) 3.64(±2.13) 3.44(±2.11)

# of terms in F 19.88(±9.62) 27.56(±10.42) 34.02(±11.07) 41.50(±11.90) 19.88(±9.62) 27.56(±10.42) 34.02(±11.07) 41.50(±11.90)

Gröbner ratio 0.002(±0.045) 0(±0.011) 0(±0) 0(±0) 0.002(±0.045) 0(±0.011) 0(±0) 0(±0)

Size of G 2.00(±0) 3.00(±0) 4.00(±0) 5.00(±0) 2.00(±0) 3.00(±0) 4.00(±0) 5.00(±0)

Max degree in G 3.94(±1.34) 3.93(±1.34) 3.93(±1.34) 3.94(±1.34) 3.94(±1.34) 3.93(±1.34) 3.93(±1.34) 3.94(±1.34)

Min degree in G 2.39(±1.22) 1.98(±1.11) 1.72(±0.97) 1.53(±0.84) 2.39(±1.22) 1.98(±1.11) 1.72(±0.97) 1.53(±0.84)

# of terms in G 6.32(±2.33) 8.70(±3.23) 11.08(±4.10) 13.47(±4.94) 6.32(±2.33) 8.70(±3.23) 11.08(±4.10) 13.47(±4.94)

Gröbner ratio 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0)

Metric Dn(F31) D−
n (F31)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5
σ = 1.0 σ = 0.6 σ = 0.3 σ = 0.2

Size of F 3.00(±0.82) 4.00(±0.82) 5.00(±0.82) 6.00(±0.82) 3.00(±0.82) 4.00(±0.82) 5.00(±0.82) 6.00(±0.82)

Max degree in F 8.11(±2.02) 8.65(±1.65) 8.62(±1.54) 8.69(±1.46) 8.11(±2.02) 8.65(±1.65) 8.62(±1.54) 8.69(±1.46)

Min degree in F 4.55(±2.06) 4.33(±2.08) 3.81(±2.16) 3.61(±2.15) 4.55(±2.06) 4.33(±2.08) 3.81(±2.16) 3.61(±2.15)

# of terms in F 20.46(±9.74) 28.36(±10.52) 35.00(±11.19) 42.69(±12.00) 20.46(±9.74) 28.36(±10.52) 35.00(±11.19) 42.69(±12.00)

Gröbner ratio 0(±0.017) 0(±0.009) 0(±0.001) 0(±0) 0(±0.017) 0(±0.009) 0(±0.001) 0(±0)

Size of G 2.00(±0) 3.00(±0) 4.00(±0) 5.00(±0) 2.00(±0) 3.00(±0) 4.00(±0) 5.00(±0)

Max degree in G 4.07(±1.31) 4.07(±1.31) 4.06(±1.31) 4.07(±1.31) 4.07(±1.31) 4.07(±1.31) 4.06(±1.31) 4.07(±1.31)

Min degree in G 2.56(±1.24) 2.16(±1.18) 1.88(±1.07) 1.68(±0.95) 2.56(±1.24) 2.16(±1.18) 1.88(±1.07) 1.68(±0.95)

# of terms in G 6.63(±2.33) 9.18(±3.26) 11.74(±4.15) 14.30(±5.03) 6.63(±2.33) 9.18(±3.26) 11.74(±4.15) 14.30(±5.03)

Gröbner ratio 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0)
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potential advantage of using a Transformer in Gröbner basis computation, particularly for large-scale
problems.

F.4 Generalization to out-distribution samples

Handling out-distribution samples is beyond the scope of the current work. Several studies of using a
Transformer for math problems (e.g., integer multiplication [30] and linear algebra [19]) addressed
out-distribution generalization by controlling the training sample distribution. This is because these
problems are of moderate difficulty, and naive training sample generation methods exist. However,
this is not the case for our task, and we thus focused on the problem of efficient generation of
training samples in this paper. Nevertheless, we consider that presenting a limitation of our work by
experiments is helpful for future work. Thus, we here present that the Transformers trained on our
datasets certainly fail on out-distribution samples through several cases.

Out-distribution samples. We generate additional datasets Du
n(k) for k ∈ {Q,F7,F31}. These

datasets are generated as Dn(k) with a slight difference in sampling of random polynomials. Origi-
nally, a (degree-bounded) random polynomial is obtained using monomials randomly sampled from
k[x1, . . . , xn]≤dmax

. Since there are more high-degree terms than low-degree ones, random polyno-
mials are more likely to be high-degree. In Du

n(k), we instead uniformly sample the degree-bound
d from U[1, dmax], and then conduct the sampling of monomials. As Tab. 23 shows, this change in
the sampling strategy causes some distribution shifts. Table 24 shows the prediction accuracy and
support accuracy on the new datasets. As can be seen, the accuracy drops when the base field is a
finite field Fp. When it is Q, the accuracy drop is moderate.

Katsura-n. Katsura-n is a typical benchmarking example for Gröbner basis computation algorithms
(“-n” denotes the number of variables). Table 25 shows a list of examples for different n ∈ {2, 3, 4}
and k ∈ {Q,F7,F31}. While the Gröbner bases in Katsura-n have a form of Eq. (4.1), one can
readily find its qualitative difference in the non-Gröbner sets from those in our Dn(k) datasets (cf.
Tables 7–18). For example, non-Gröbner sets in Katsura-n consist of low-degree sparse polynomials,
whereas those in Dn(k) are not because of the generation processes (i.e., the product and sum
of polynomials through the multiplication by polynomial matrices U1, U2). Therefore, Katsura-n
examples are greatly out-distributed samples for our Transformers. We fed these samples to the
trained Transformers, but only obtained the output sequences that cannot be transformed back to
polynomials because of their invalid prefix representation.

As Gröbner basis computation is an NP-hard problem, it may not be a good idea to peruse a general
solver via learning. Instead, we should ultimately aim at a solver for large-scale but specialized
cases. Thus, the generation of application-specific training samples and the pursuit of in-distribution
accuracy will be a future direction. From this perspective, existing mathematical benchmark examples
may not be practical because they are mostly artificial, empirically found difficult, and/or designed
for easily generating variations in the number of variables n.12 They are useful for math algorithms,
i.e., the algorithms proved to work for all the cases (i.e., 100% in/out-distribution samples), but not
for our current work because they are out-distribution samples.

G Buchberger–Möller Algorithm for Prob. 4.1

Here, we discuss another approach for Prob. 4.1 using the Buchberger–Möller (BM) algorithm [2, 68].
Although we did not adopt this approach, we include this for completeness as many variants have been
recently developed and applied extensively in machine learning and other data-centric applications.

Given a set of points X ⊂ kn and a graded term order, the BM algorithm computes a Gröbner basis
of its vanishing ideal I(X) = {g ∈ k[x1, . . . , xn] | g(p) = 0,∀p ∈ X}. While several variants
follow in computational algebra [1, 32, 40, 48, 49, 54, 62], interestingly, it is also recently tailored for
machine learning [42, 51–53, 56, 63, 90, 91]. Various applications have followed such as machine
learning [77, 92], signal processing [86–88], nonlinear dynamics [46, 47, 50], and more [5, 43, 55].
Such broad applications derived from the distinguishing design of the BM algorithm: unlike most
computer-algebraic algorithms, it takes a set of points (i.e., dataset) as input, not a set of polynomials.

12For example, refer to https://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/node1.
html.
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Therefore, to address Prob. 4.1, one may consider using the BM algorithm or its variants, e.g., by
running the BM algorithm m times while sampling diverse sets of points. An important caveat
is that Gröbner bases that can be given by the BM algorithm may be more restrictive than those
considered in the main text (i.e., the Gröbner bases of ideals in shape position). For example, the
former generates the largest ideals that have given k-rational points for their roots, whereas this is not
the case for the latter. Another drawback of using the BM algorithm is its large computational cost.
The time complexity of the BM algorithm is O(n · |X|3). Furthermore, we need O(nd) points to
obtain a Gröbner basis that includes a polynomial of degree d in the average case. Therefore, the BM
algorithm does not fit our settings that a large number of Gröbner bases are needed (i.e., m ≈ 106).
Accelerating the BM algorithm by reusing the results of runs instead of independently running the
algorithm many times can be interesting for future work.

H Open Questions

Random generation of Gröbner bases To our knowledge, no prior studies addressed this problem.
Our study focuses on generic 0-dimensional ideals. These ideals are generally in shape position,
and a simple sampling strategy is available. However, some applications may be interested in other
classes of ideals (e.g., positive dimensional or binomial ones) or a particular subset of 0-dimensional
ideals (e.g., those associated with a single solution in the coefficient field). The former case is an open
problem. The latter case may be addressed by the Buchberger–Möller algorithms [68] (cf. App. G).

Backward Gröbner problem. Machine learning models perform better for in-distribution samples
than out-distribution samples. Thus, it is essential to design a training sample distribution that is
close to one’s use case. As noted in Sec. 4.1, polynomial systems (either Gröbner basis or not)
take a domain-specific form. Backward generation gives us control over Gröbner bases but not for
non-Gröbner sets. Hence, we need a well-tailored backward generation method specialized to an
application, as the specialized Gröbner basis computation algorithms in computational algebra. This
paper addressed a generic case. Prop. 4.7 states that any matrix A ∈ SLn(k[x1, . . . , xn]) satisfies
Prob. 4.5. This raises two sets of open questions: (i) are there matrices outside SLn(k[x1, . . . , xn])
satisfying Prob. 4.5? Can we sample them? and (ii) is it possible to efficiently sample matrices of
SLn(k[x1, . . . , xn])? To efficiently generate our dataset, we have restricted ourselves to sampling
matrices having a Bruhat decomposition (see Eq. (4.2)), which is a strict subset of SLn(k[x1, . . . , xn]).
Sampling matrices in SLn(k[x1, . . . , xn]) remains an open question. Thanks to Suslin’s stability
theorem and its algorithmic proofs [64, 72, 81], SLn(k[x1, . . . , xn]) is generated by elementary
matrices and a decomposition into a product of elementary matrices can be computed algorithmically.
One may hope to use sampling of elementary matrices to sample matrices of SLn(k[x1, . . . , xn]). It
is unclear whether this can be efficient as many elementary matrices are needed [64].

Distribution analysis. Several studies have reported that careful design of a training set leads
to a better generalization of Transformers [19, 21]. Algebraically, analyzing the distribution of
Gröbner bases and the non-Gröbner sets is challenging, particularly when some additional structures
(e.g., sparsity) are injected. Thus, the first step may be to investigate the generic case (i.e., dense
polynomials). In this case, Thm. 4.6(3) is helpful to design an algorithm that is certified to be able
to yield all possible G and F almost uniformly. While dataset generation algorithms should run
efficiently for practicality, a solid analysis may be of independent interest in computational algebra.

Long mathematical expressions. As in most of the prior studies, we used a Transformer of a
standard architecture to see the necessity of a specialized model. From the accuracy aspect, such a
vanilla model may be sufficient for Q[x1, . . . , xn] but not for Fp[x1, . . . , xn]. From the efficiency
perspective, the quadratic cost of the attention mechanism prevents us from scaling up the problem
size. For large n, both non-GB sets and Gröbner bases generally consist of many dense polynomials,
leading to long input and output sequences. Unlike natural language processing tasks, the input
sequence cannot be split as all the symbols are related in mathematical tasks. It is worth studying
several attention mechanisms that work with sub-quadratic memory cost [11, 23, 28, 57, 80] can
be introduced with a small degradation of performance even for mathematical sequences, which
have a different nature from natural language (e.g., a single modification of the input sequence can
completely change the solution of the problem).
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Table 7: Success examples from the D−
2 (Q) test set.

ID F G

0 f1 = x0+5/2x4
1−2x3

1+5x2
1−2/3x1+1/5 g1 = x0+5/2x4

1−2x3
1+5x2

1−2/3x1+1/5
f2 = 3/5x2

0x
2
1 + 1/5x2

0x1 + 3/2x0x
6
1 −

7/10x0x
5
1 + 13/5x0x

4
1 + 3/5x0x

3
1 −

1/75x0x
2
1 +1/25x0x1 +x5

1− 5/4x3
1 +5x1

g2 = x5
1 − 5/4x3

1 + 5x1

1

f1 = x0x
3
1 + x5

1 + 3x4
1 − x1 + 2/3 g1 = x0 + x1

f2 = 1/3x2
0x

2
1 +4x0x

7
1 +8x0x

6
1− 2x0x

5
1−

11/3x0x
3
1 +8/3x0x

2
1− 2x7

1− 6x6
1 +2x3

1−
4/3x2

1

g2 = x5
1 + 2x4

1 − x1 + 2/3

f3 = 4/3x4
0x

2
1 + 16x3

0x
7
1 + 32x3

0x
6
1 −

44/3x3
0x

3
1 + 32/3x3

0x
2
1 + 3/5x3

0x1 +
13/4x2

0x
5
1 + 5/2x2

0x
4
1 − 33/20x2

0x
2
1 −

5/4x2
0x1 + 5/6x2

0 − x0x
7
1 + 3/5x0x

6
1 +

6/5x0x
5
1−5/4x0x

3
1−19/15x0x

2
1+2/5x0x1

f4 = −3/25x5
0x1 − 1/4x4

0x
5
1 − 1/2x4

0x
4
1 +

7/25x4
0x

2
1+1/4x4

0x1−1/6x4
0−3/25x3

0x
6
1−

6/25x3
0x

5
1 + 13/20x3

0x
3
1 − 22/25x3

0x
2
1 −

2/25x3
0x1−12x2

0x
7
1−24x2

0x
6
1+1/4x2

0x
5
1+

3/4x2
0x

4
1 + 11x2

0x
3
1 − 8x2

0x
2
1 − 1/4x2

0x1 +
1/6x2

0 + x0 + x1

2
f1 = 3/4x2

0x
3
1−x0x

5
1+2x0x

2
1−1/5x0x1−

2x3
1 + 1/5x2

1

g1 = x0 − x1

f2 = −5/3x3
0 − 3/2x2

0x
4
1 + 5/3x2

0x1 +
2x0x

6
1 − 4x0x

3
1 + 2/5x0x

2
1 + 4x4

1 + 3/5x3
1

g2 = x3
1

f3 = −5/6x5
0 + 5/6x4

0x1 − 5/2x3
0x

3
1 +

13/4x2
0x

4
1 + 1/2x2

0x
3
1 − x0x

6
1 + 2x0x

3
1 −

1/5x0x
2
1+x0+3/2x6

1− 2x4
1+1/5x3

1−x1

3
f1 = −5x3

0x1 + 4x2
0x1 + x1 g1 = x0 − 4/5

f2 = −25/3x4
0x

3
1 + 20/3x3

0x
3
1 − 4x2

0x
2
1 −

5/3x2
0x1 + 5/3x0x

3
1 + 4/3x0x1

g2 = x1

f3 = −5/2x4
0x

3
1 + 2x3

0x
3
1 − 2x2

0x
5
1 −

5/6x2
0x

4
1+2/3x0x

4
1+1/2x0x

3
1+x0− 4/5

4
f1 = x0 + 5/3x4

1 + x2
1 + 5/4x1 − 5/2 g1 = x0 + 5/3x4

1 + x2
1 + 5/4x1 − 5/2

f2 = x3
0 + 5/3x2

0x
4
1 + x2

0x
2
1 + 5/4x2

0x1 −
1/2x2

0 + 5x0x
6
1 − 25x0x

5
1 + 10/3x0x

4
1 +

2x0x
2
1 + 2x0x1 − 5x0 + 5/6x5

1 + 1/2x3
1 +

5/8x2
1 − 5/4x1

g2 = x5
1 − 5x4

1 − 1/5

f3 = x5
0 + 5/3x4

0x
4
1 + x4

0x
2
1 + 5/4x4

0x1 −
1/2x4

0 + 5x3
0x

6
1 − 25x3

0x
5
1 + 10/3x3

0x
4
1 +

2x3
0x

2
1+5/2x3

0x1−5x3
0+5/3x2

0x
5
1+x2

0x
3
1+

5/4x2
0x

2
1−5/2x2

0x1+x0x1+8/3x5
1−5x4

1+
x3
1 + 5/4x2

1 − 5/2x1 − 1/5

5 f1 = x0 + 2/5x1 g1 = x0 + 2/5x1

f2 = −1/3x2
0x

2
1 − 3/4x2

0 − 2/15x0x
3
1 −

1/20x0x1 + 11/10x2
1 − 4

g2 = x2
1 − 4

6 f1 = 3/5x2
0x

2
1 − x0x

6
1 + 3/25x0x

4
1 −

12/25x0x
3
1 + 3/4x0 + x5

1 − 29/20x4
1 +

19/20x2
1 − 3/5x1 − 1/2

g1 = x0 − 5/3x4
1 + 1/5x2

1 − 4/5x1

f2 = 3/10x2
0x

3
1 − 1/2x0x

7
1 + 3/50x0x

5
1 −

6/25x0x
4
1 + 3/8x0x1 + x0 + 1/2x6

1 −
29/40x5

1 − 5/3x4
1 + 19/40x3

1 − 1/10x2
1 −

21/20x1

g2 = x5
1 − 1/5x4

1 + 4/5x2
1 − 1/2

7 f1 = x0 + 5/4x3
1 − 5/4 g1 = x0 + 5/4x3

1 − 5/4
f2 = −x3

0 − 5/4x2
0x

3
1 + 4x2

0x1 + 5/4x2
0 +

5x0x
4
1 − 5x0x1 + x5

1 + 1/2x3
1 + 2/5x1

g2 = x5
1 + 1/2x3

1 + 2/5x1
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Table 8: Success examples from the D−
3 (Q) test set.

ID F G

0

f1 = 4x0x
2
1x2 + 4/5x0x1x2 + 4/5x0x

2
2 −

x2
1x

2
2 − 4x2

1x2 + x2
2 − 1

g1 = x0 − 1/4x2 − 1

f2 = 20x0x
3
1x

2
2+4x0x

2
1x

2
2+4x0x1x

3
2+x0−

5x3
1x

3
2−20x3

1x
2
2+5x1x

3
2−5x1x2−1/4x2−

1

g2 = x1 + x2

f3 = 4/5x3
0x

2
1x

2
2 + 4/25x3

0x1x
2
2 +

4/25x3
0x

3
2 − 1/5x2

0x
2
1x

3
2 − 4/5x2

0x
2
1x

2
2 +

1/5x2
0x

3
2 − 3/5x2

0x2 + 16/3x0x
3
1x

3
2 +

16/15x0x
2
1x

3
2+16/15x0x1x

4
2+1/10x0x

2
2+

2/5x0x2 − 4/3x3
1x

4
2 − 16/3x3

1x
3
2 +

4/3x1x
4
2 − 4/3x1x

2
2 + x1 + x2

g3 = x2
2 − 1

f4 = 1/2x2
0x1x2 + 1/2x2

0x
2
2 + 20x0x

3
1x

2
2 +

4x0x
2
1x

2
2 + 4x0x1x

3
2 + 3/5x0x1x2 +

4/3x0x1 + 3/5x0x
2
2 − 5x3

1x
3
2 − 20x3

1x
2
2 −

5/4x3
1x2−5/4x2

1x
2
2+5x1x

3
2−16/3x1x2−

4/3x1

f5 = −1/3x4
0x1x2 − 1/3x4

0x
2
2 −

2/5x3
0x1x2 − 2/5x3

0x
2
2 + 16x2

0x
4
1x2 +

16/5x2
0x

3
1x2+16/5x2

0x
2
1x

2
2−4/3x2

0x1x2−
4x0x

4
1x

2
2−16x0x

4
1x2+4x0x

2
1x

2
2−4x0x

2
1+

5x0x1x
3
2 + 1/3x0x1x

2
2 − 11/3x0x1x2 +

2/15x0x
3
2 + 1/5x0x2 − x2

1 − x1x2 −
1/12x4

2 − 1/3x3
2

2

f1 = x1 − x2
2 − 4x2 g1 = x0 + 1/5x2

2 + 4/3x2 + 5/3
f2 =−2/3x2

0x1x2+2/3x2
0x

3
2+8/3x2

0x
2
2−

1/5x0x1x
2
2 − 2/3x0x1 − 2/5x0x

4
2 −

8/5x0x
3
2+2/3x0x

2
2+8/3x0x2−1/5x2

1x2−
3/25x1x

4
2 − 3/5x1x

3
2 − 1/5x1x

2
2

g2 = x1 − x2
2 − 4x2

f3 = −1/2x2
0x

3
1x2 + 1/2x2

0x
2
1x

3
2 +

2x2
0x

2
1x

2
2 − 2/3x2

0x1x2 + 2/3x2
0x

3
2 +

8/3x2
0x

2
2 − 3/20x0x

3
1x

2
2 − 3/10x0x

2
1x

4
2 −

6/5x0x
2
1x

3
2 − 1/5x0x1x

2
2 − 2/5x0x

4
2 −

8/5x0x
3
2 + x0 − 9/100x3

1x
4
2 − 3/5x3

1x
3
2 −

3/4x3
1x

2
2 − 3/25x1x

4
2 + 1/5x1x

3
2 −

9/5x1x
2
2 − x5

2 − 16/5x4
2 + 16/5x3

2 +
1/5x2

2 + 4/3x2 + 5/3

g3 = x3
2 + 3/5x2

2 − 3/2

f4 = −1/2x3
0x

2
1x2 + 1/2x3

0x1x
3
2 +

2x3
0x1x

2
2 − x3

0x1 − 3/20x2
0x

2
1x

2
2 −

3/10x2
0x1x

4
2 − 6/5x2

0x1x
3
2 − 1/5x2

0x1x
2
2 −

4/3x2
0x1x2 − 5/3x2

0x1 − 9/100x0x
2
1x

4
2 −

3/5x0x
2
1x

3
2 − 3/4x0x

2
1x

2
2 − 1/4x0x

2
1 +

1/2x0x1x
2
2 + 3/2x0x1x2 − 1/2x0x

4
2 −

7/2x0x
3
2−6x0x

2
2−1/20x2

1x
2
2−1/3x2

1x2−
5/12x2

1 − x1x2 + 2x3
2 + 23/5x2

2 − 3/2
f5 = 4/9x3

0x
3
1x2 + 3x3

0x
3
1 − 4/9x3

0x
2
1x

3
2 −

16/9x3
0x

2
1x

2
2 + 11/15x2

0x
3
1x

2
2 + 4x2

0x
3
1x2 +

5x2
0x

3
1 + 4/15x2

0x
2
1x

4
2 + 16/15x2

0x
2
1x

3
2 −

1/2x2
0x

2
1 + 2/25x0x

3
1x

4
2 + 8/15x0x

3
1x

3
2 −

5/6x0x
3
1x

2
2 + 3/2x0x

2
1x

4
2 + 6x0x

2
1x

3
2 −

1/10x0x
2
1x

2
2 − 2/3x0x

2
1x2 + 2/3x0x

2
1 −

3/2x0x1x
2
2 − 23/3x0x1x2 + 5/3x0x

3
2 +

20/3x0x
2
2 − x0x2 + 3x3

1x2 − 6x2
1x

3
2 −

69/5x2
1x

2
2 + 9/2x2

1 + 1/3x1x
4
2 +

17/10x1x
3
2 − 3/4x1x2 − 3/2x5

2 − 6x4
2 +

1/20x3
2 − 1/3x2

2 − 5/3x2
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Table 9: Success examples from the D−
4 (Q) test set.

ID F G

0

f1 = x0 + 3x4
3 − x3

3 − 3/2x3 g1 = x0 + 3x4
3 − x3

3 − 3/2x3

f2 = −3/5x2
0x

2
3 − 9/5x0x

6
3 + 3/5x0x

5
3 +

9/10x0x
3
3 + x1 + x3

g2 = x1 + x3

f3 =−1/2x2
0x

2
1−3/2x0x

2
1x

4
3+1/2x0x

2
1x

3
3+

3/4x0x
2
1x3 − x4

1 − x3
1x3 − 4/5x1x

2
2x3 −

4/5x2
2x

2
3 + x5

3 − x4
3 + 4/3x2

3

g3 = x2 − 1/5x4
3 + 1/4x3 + 1

f4 = x2
0x1 + x2

0x3− 1/4x0x1x
2
3− 3/2x3

1−
3/2x2

1x3−3/4x1x
6
3+1/4x1x

5
3+3/8x1x

3
3+

1/5x2x
5
3 − 1/5x2x

4
3 + 4/15x2x

2
3 + x2 −

1/5x4
3 + 1/4x3 + 1

g4 = x5
3 − x4

3 + 4/3x2
3

1

f1 = x1 − 2/5x3 − 1/2 g1 = x0 + 1/2x3

f2 = x0x
2
1 − 2/5x0x1x3 − 1/2x0x1 −

2/3x3
1x3 − 1/3x2

1x2x3 + 4/15x2
1x

2
3 +

1/3x2
1x3+2/15x1x2x

2
3+1/6x1x2x3+x5

3+
1/2x4

3 − 5/2

g2 = x1 − 2/5x3 − 1/2

f3 =−4/3x0x
3
1+8/15x0x

2
1x3+2/3x0x

2
1+

x0 + 5/2x2
1x2 − x1x2x3 − 5/4x1x2 −

4/3x1x
5
3−2/3x1x

4
3+1/4x1x3+10/3x1−

1/10x2
3 + 3/8x3

g3 = x2 + 4/3x4
3 + x3

3 + 4/5x2
3

f4 = 4x3
0x3 + 2x2

0x
2
3 + x0x

2
1x

2
2 −

2/5x0x1x
2
2x3 − 1/2x0x1x

2
2 + 1/3x3

1x2 −
2/15x2

1x2x3 − 1/6x2
1x2 − 1/5x2

1x
2
3 +

2/25x1x
3
3+1/10x1x

2
3+x2

2x
5
3+1/2x2

2x
4
3−

5/2x2
2 + x2 + 4/3x4

3 + x3
3 + 4/5x2

3

g4 = x5
3 + 1/2x4

3 − 5/2

2

f1 = x2 + x3 g1 = x0 + 1/3x3 − 2/3
f2 = −3/2x2

0x2 − 3/2x2
0x3 − 5/4x2

0 −
5/3x0x1x3 + 2/3x0x

3
2 + 2/3x0x

2
2x3 −

5/12x0x3+5/6x0−5/9x1x
2
3+10/9x1x3+

x1 + 3/2x3

g2 = x1 + 3/2x3

f3 =−15/8x3
0x

2
3−5/2x2

0x1x
3
3−5/8x2

0x
3
3+

5/4x2
0x

2
3 − 5/6x0x1x

4
3 + 5/3x0x1x

3
3 +

3/2x0x1x
2
3 + 9/4x0x

3
3 + 1/2x2

1x2 +
1/2x2

1x3 + 1/2x2 + 1/2x3

g3 = x2 + x3

f4 = −5/8x2
0x

2
2 − 5/6x0x1x

2
2x3 −

5/24x0x
2
2x3 − 31/12x0x

2
2 − 3x0x2x3 −

5/18x1x
2
2x

2
3 + 5/9x1x

2
2x3 + 1/2x1x

2
2 +

3/4x2
2x3 + 1/2x2

2 + 1/2x2x3 + x2
3

g4 = x2
3

f5 = 5x2
0x

3
3−3/4x0x1x

2
2−3/4x0x1x2x3+

20/3x0x1x
4
3 + 9/4x0x

3
2x3 + 9/4x0x

2
2x

2
3 +

5/3x0x
4
3 − 10/3x0x

3
3 + x0 + 20/9x1x

5
3 −

40/9x1x
4
3−4x1x

3
3+1/4x1x

2
3−3/4x2x

3
3+

2x2x
2
3 − 6x4

3 + 2x3
3 + 1/3x3 − 2/3

3

f1 = x0 − 1/3x3 g1 = x0 − 1/3x3

f2 = −1/3x0x
2
1 + 1/2x0x

3
3 + 1/9x2

1x3 −
1/6x4

3 + x2
3 + 3/5x3

g2 = x1 + 1/2x3

f3 = −x2
0x2x

2
3 − 3/5x2

0x2x3 − x0x
2
1x2 +

5x0 + 1/3x2
1x2x3 + x1 − 7/6x3

g3 = x2 + x3

f4 = 1/2x0x1x2 + 4/5x0x
3
2 + x0x

3
3 +

3/5x0x
2
3 + 4/5x1x

2
2 − 1/6x1x2x3 −

4/15x3
2x3 + 2/5x2

2x3 + x2 + x3

g4 = x2
3 + 3/5x3

f5 = −5x2
0x2x3 − 3/10x0x

2
1x

2
2 −

2x0x1x2x3 − 3/2x0x
2
2x3 + 5/12x0x2x

2
3 −

3/4x0x2x3 + 1/2x0x
4
3 + 3/10x0x

3
3 +

1/10x2
1x

2
2x3 − 3/5x1x

2
2 + x1x2x

2
3 −

3/5x1x2x3 +1/2x2
2x

2
3 +1/6x2x

3
3− 5x5

3−
3x4

3
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Table 10: Success examples from the D−
5 (Q) test set.

ID F G

0

f1 = x0 − x4
4 − x3

4 − 2x2
4 + 1/4 g1 = x0 − x4

4 − x3
4 − 2x2

4 + 1/4
f2 = 5/4x0x

3
1 + 1/2x0x

2
1 − 5/4x3

1x
4
4 −

5/4x3
1x

3
4−5/2x3

1x
2
4+5/16x3

1−1/2x2
1x

4
4−

1/2x2
1x

3
4 − x2

1x
2
4 + 1/8x2

1 − 1/3x1x2x
2
3 +

3x1x3x4 + 5/3x2x
2
3x4 + x2 − 15x3x

2
4 −

5x4
4 + x3

4 + 2/5x2
4 + 2x4 − 5/2

g2 = x1 − 5x4

f3 = x3
0x4 − x2

0x
5
4 − x2

0x
4
4 − 2x2

0x
3
4 +

1/4x2
0x4 + x0x

2
1x4 + 2x0x1x

2
4 +

x0x
3
3 − x2

1x
5
4 − x2

1x
4
4 − 2x2

1x
3
4 +

1/4x2
1x4 − 4/3x1x

3
2x

2
3x4 + 1/15x1x

2
2x

3
3 +

12x1x
2
2x3x

2
4 − 3/5x1x2x

2
3x4 − 2x1x

6
4 −

2x1x
5
4−4x1x

4
4+1/2x1x

2
4+20/3x3

2x
2
3x

2
4+

4x3
2x4 − 1/3x2

2x
3
3x4 − 60x2

2x3x
3
4 −

1/5x2
2x3 − 20x2

2x
5
4 + 4x2

2x
4
4 + 8/5x2

2x
3
4 +

8x2
2x

2
4 − 10x2

2x4 + 3x2x
2
3x

2
4 + x2x3x

4
4 −

1/5x2x3x
3
4 − 2/25x2x3x

2
4 − 2/5x2x3x4 +

1/2x2x3−x3
3x

4
4−x3

3x
3
4−2x3

3x
2
4+1/4x3

3+
x5
4 + 3/2x4

4 − 1/2x3
4 − 5/3x2

4 − 1

g3 = x2 − 5x4
4 + x3

4 + 2/5x2
4 + 2x4 − 5/2

f4 = 1/2x2
0x1x2 + 1/2x0x

2
1x

2
3x4 +

4/3x0x
2
1x3x

2
4 − 5/3x0x

2
1x3 −

5/6x0x1x2x
4
3 − 1/2x0x1x2x

4
4 −

1/2x0x1x2x
3
4 − x0x1x2x

2
4 + 1/8x0x1x2 +

15/2x0x1x
3
3x4 + 25/6x0x2x

4
3x4 +

5/2x0x2x
2
3 + 1/2x0x

5
3 + 4/3x0x

4
3x4 −

75/2x0x
3
3x

2
4−25/2x0x

2
3x

4
4+5/2x0x

2
3x

3
4+

x0x
2
3x

2
4 + 5x0x

2
3x4 − 25/4x0x

2
3 −

1/2x2
1x

2
3x

5
4 − 1/2x2

1x
2
3x

4
4 − x2

1x
2
3x

3
4 +

1/8x2
1x

2
3x4 − 4/3x2

1x3x
6
4 − 4/3x2

1x3x
5
4 −

x2
1x3x

4
4 + 5/3x2

1x3x
3
4 + 11/3x2

1x3x
2
4 −

5/12x2
1x3 − 1/2x5

3x
4
4 − 1/2x5

3x
3
4 − x5

3x
2
4 +

1/8x5
3 − 4/3x4

3x
5
4 − 4/3x4

3x
4
4 − 8/3x4

3x
3
4 +

1/3x4
3x4+1/2x2

3x
5
4+3/4x2

3x
4
4−1/4x2

3x
3
4−

5/6x2
3x

2
4 − 1/2x2

3 + 4/3x3x
6
4 + 2x3x

5
4 −

2/3x3x
4
4 − 20/9x3x

3
4 − 4/3x3x4 + x3 +

5x4
4 + 1/5x2

4 + 1/2x4 + 2/5

g4 = x3 + 5x4
4 + 1/5x2

4 + 1/2x4 + 2/5

f5 = −x2
0x

2
3 + 3/2x0x

2
1x2x

2
3x4 +

3/2x0x2x
5
3+x0x

2
3x

4
4+x0x

2
3x

3
4+2x0x

2
3x

2
4−

1/4x0x
2
3−3/2x2

1x2x
2
3x

5
4−3/2x2

1x2x
2
3x

4
4−

3x2
1x2x

2
3x

3
4+3/8x2

1x2x
2
3x4+1/3x1x

2
2x

4
3−

3x1x2x
3
3x4 + x1 − 5/3x2

2x
4
3x4 − x2

2x
2
3 −

3/2x2x
5
3x

4
4 − 3/2x2x

5
3x

3
4 − 3x2x

5
3x

2
4 +

3/8x2x
5
3 + 15x2x

3
3x

2
4 + 3/2x2x

2
3x

5
4 +

29/4x2x
2
3x

4
4−7/4x2x

2
3x

3
4−29/10x2x

2
3x

2
4−

2x2x
2
3x4 + x2x

2
3 − 3x2

3x
2
4 − 15x3x

6
4 −

3/5x3x
4
4 − 3/2x3x

3
4 − 6/5x3x

2
4 − 5x4

g5 = x5
4 + 3/2x4

4 − 1/2x3
4 − 5/3x2

4 − 1
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Table 11: Success examples from the D−
2 (F7) test set.

ID F G

0 f1 = x0 + 3x1 g1 = x0 + 3x1

f2 = x3
0 + x2

0x1 + 3x0x
2
1 + x4

1 − x3
1 − 3 g2 = x4

1 − 3

1
f1 = −3x0x

3
1 + 2x3

1 g1 = x0 − 2
f2 =−x2

0x1+2x0x
4
1+x0x

3
1+2x0x1+x4

1−
3x3

1 + x1

g2 = x1

f3 = x3
0x

3
1 − 2x2

0x
3
1 + x0x

4
1 − x0x

3
1 + x0 −

3x4
1 − 2

3
f1 = 2x3

0−x2
0x

4
1+3x2

0x
2
1+x2

0−2x6
1+3x3

1+
2x2

1 + 3x1

g1 = x0 + 3x4
1 − 2x2

1 − 3

f2 = −3x4
0x

2
1 + 3x4

0x1 − 2x3
0x

6
1 + 2x3

0x
5
1 −

x3
0x

4
1 + x3

0x
3
1 + 2x3

0x
2
1 − 2x3

0x1 + 3x0x
8
1 −

3x0x
7
1 − x0x

5
1 − 2x0x

4
1 + 2x0x

3
1 + x0x

2
1 +

x0 + 3x4
1 − 2x2

1 − 3

g2 = x5
1 + 2x2

1 − x1 + 2

f3 =−2x5
0+x4

0x
4
1−3x4

0x
2
1−x4

0+2x2
0x

6
1−

3x2
0x

3
1 − 2x2

0x
2
1 − 3x2

0x1 + x2
0 + 3x0x

4
1 −

3x0 − x6
1 + x5

1 + 3x4
1 + 3x2

1 − x1 + 2

4

f1 = −2x2
0x

2
1 − 2x0x

3
1 − 2x0x

2
1 + 2x0x1 +

x4
1 + 2x2

1 + 2x1

g1 = x0 + x1 + 1

f2 = x3
0x

2
1 + x2

0x
3
1 + x2

0x
2
1 − x2

0x1 + x2
0 +

3x0x
4
1 − 2x0x

2
1 + x0x1 + x0 + x2

1 + x1

g2 = x2
1

f3 = −x4
0x

2
1 − x3

0x
3
1 + x3

0x1 − 3x2
0x

4
1 +

2x2
0x

3
1 + 2x2

0x
2
1 + x2

0x1 + x0x
5
1 + 2x0x

4
1 +

x0 + 3x6
1 − x4

1 − x3
1 + x1 + 1

f4 =−3x4
0x1+2x3

0x
3
1+x3

0x
2
1−3x3

0x1+x3
0−

x2
0x

4
1+3x2

0x
3
1−2x2

0x
2
1+x2

0x1+x2
0−3x0x

5
1+

x0x
3
1+3x0x

2
1−2x0+2x3

1+3x2
1−2x1−2

5 f1 = −x2
0x1 + 3x0x1 + x3

1 g1 = x0 − 3
f2 = 3x2

0x
4
1−3x2

0x
3
1−2x0x

4
1+2x0x

3
1+x0−

3x6
1 + 3x5

1 − 3
g2 = x3

1

7

f1 = 3x2
0x1 − x0x

4
1 − x0x

2
1 − x7

1 − 3x5
1 +

2x3
1 − x1

g1 = x0 + 2x3
1 + 2x1

f2 = 2x2
0x

3
1− 3x0x

6
1− 3x0x

4
1 +x0− 3x9

1−
2x7

1 − x5
1 − x3

1 + 2x1

g2 = x4
1 − 2

f3 = −2x3
0x

2
1 + x3

0x1 + 3x2
0x

5
1 + 2x2

0x
4
1 +

3x2
0x

3
1+2x2

0x
2
1+3x0x

8
1+2x0x

6
1+x0x

4
1−

2x0x
2
1 − x0x1 − 3x5

1 − x4
1 − 3x3

1 − 2x2
1 − 2

f4 = x3
0x

2
1 +2x3

0x1 +x3
0 +2x2

0x
5
1 +x2

0x
4
1−

3x2
0x

3
1 − 3x2

0x
2
1 + 2x2

0 − 2x0x
7
1 + x0x

5
1 −

2x0x
4
1+3x0x

3
1+2x0x1+3x0+x5

1−2x4
1+

x3
1 + 3x2

1 + 3

10
f1 = x0 − 1 g1 = x0 − 1
f2 = −3x2

0x
2
1 + 3x2

0x1 + 2x2
0 − 2x0x

3
1 +

3x0x
2
1 − 3x0x1 − 2x0

g2 = x1

f3 =−x4
0x

3
1− 3x3

0x
4
1+x3

0x
3
1+x3

0x
2
1+x3

0+
3x2

0x
3
1 − x2

0x
2
1 − x2

0 + 3x0x
2
1 − 3x2

1 + x1

11

f1 = x0 + x4
1 + 2x2

1 g1 = x0 + x4
1 + 2x2

1

f2 = 3x2
0x1+3x0x

5
1−x0x

3
1−2x0x

2
1−2x6

1+
x5
1 + 3x4

1 − x3
1 − x2

1 − x1

g2 = x5
1 − x3

1 − x2
1 − x1

f3 = −x3
0x

2
1 + 2x2

0x
6
1 − 3x2

0x
5
1 + 2x2

0x
4
1 +

3x2
0x1 − 2x2

0 − 2x0x
4
1 + 3x0x

2
1 − 2x0x1 +

3x0 + x6
1 − 2x5

1 + 2x4
1 + 2x3

1 − 2x2
1

f4 = 2x3
0x

8
1 − 2x3

0x
6
1 − 2x3

0x
5
1 − 2x3

0x
4
1 −

3x3
0x

2
1 − 3x2

0x
6
1 + x2

0x
3
1 + 3x2

0x
2
1 + 2x2

0 +
2x0x

8
1− 2x0x

7
1 + x0x

6
1 +2x0x

5
1− 2x0x

4
1 +

x0x
2
1
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Table 12: Success examples from the D−
3 (F7) test set.

ID F G

0

f1 = −2x2
0x

2
1 − x2

0x1x
2
2 − x2

0x1 − 2x0x
2
1 +

x2
1x

2
2

g1 = x0 + 3x2
2

f2 =−2x3
0x1+3x2

0x
4
1−2x2

0x
3
1x

2
2−2x2

0x
3
1+

x2
0x1x

2
2+3x0x

4
1−3x0x1+2x4

1x
2
2−2x1x

2
2+

x1 − 3x2
2 − 3

g2 = x1 − 3x2
2 − 3

f3 = 2x3
0x

2
1x

2
2 + x3

0x1x
4
2 − 3x3

0x1x
3
2 +

x3
0x1x

2
2 +2x2

0x
2
1x

2
2− 2x2

0x1x
5
2−x0x

2
1x

4
2−

x0x1x
3
2+x0−3x1x

5
2−2x1x

3
2−x5

2−x3
2+3x2

2

g3 = x5
2 − 3x4

2 − 2x3
2 − 3x2

2 − 1

f4 = 3x4
0x

2
1+3x4

0x1x
2
2+3x4

0x1−2x3
0x

2
1x

2
2+

3x3
0x

2
1+3x3

0x1+2x2
0x

5
1+x2

0x
4
1x

2
2+x2

0x
4
1+

2x2
0x

2
1x

2
2 − x2

0x
2
1 + 2x2

0x1x
2
2 + 2x2

0x1 +
2x0x

5
1−3x0x

2
1x

2
2−3x0x

2
1−x5

1x
2
2−2x3

1x2−
x2
1x

3
2−3x2

1x
2
2−x2

1x2−2x2
1−x1x

4
2+2x1x

2
2−

x1 + x5
2 − 3x4

2 − 2x3
2 − 3x2

2 − 1

1

f1 = x0 + 3x2 g1 = x0 + 3x2

f2 = 3x2
0x

2
2 + 2x0x

3
2 + x1 + x2 + 3 g2 = x1 + x2 + 3

f3 = −3x3
0x

3
1−x3

0x1− 2x2
0x

3
1x2 +2x2

0x
2
1 +

x2
0x1x2− 2x2

0x1− 2x2
0x2+x2

0−x0x
5
1x2−

x0x
2
1x2 − 2x0x1x

2
2 + x0x1x2 + x0x

2
2 +

3x0x2−3x5
1x

2
2+3x3

1x2+3x2
1x

2
2+2x2

1x2+
x2
2

g3 = x2
2

f4 =−3x4
0x

3
1+3x3

0x
3
1x2+2x3

0x
3
1+x2

0x
3
1x

2
2+

2x2
0x

3
1x2+3x2

0x
2
1x

2
2+2x2

0x
2
1x2+3x2

0x1x
2
2−

x2
0x1−x2

0x2−3x2
0−3x0x

5
1x2−3x0x

4
1x

2
2+

3x0x
2
1x

2
2 + 3x0x

2
1x2 + 2x0x

2
1 − x0x1x

2
2 +

2x0x1x2−x0x1+x0x
4
2−x4

1x
2
2+2x2

1x
2
2−

x2
1x2 − 3x1x

3
2 − x1x

2
2 − 3x1x2

2

f1 = 2x0x2+2x2
1x

2
2+2x1x

2
2−2x1−3x2

2+3 g1 = x0 − 2
f2 = −3x2

0x2 − 3x0x
2
1x

2
2 + 3x0x1x2 +

3x0x1 + x0x
2
2 − x0 + 3x3

1x
3
2 + 3x2

1x
3
2 −

3x2
1x2 − x1x

3
2 + 2x1x2 + x1 + 2

g2 = x1 + 2

f3 = x3
0x1 − 2x2

0x1 − x0x1x
3
2 + 2x0x

3
2 −

x0x2 + 2x2
1x

4
2 − x2

1x
2
2 + 2x1x

4
2 + 2x1x

3
2 −

x1x
2
2 + x1 − 3x4

2 − 2x2
2 + x2 + 2

g3 = x2

f4 = −2x4
0x1 + 2x3

0x
3
1 − 3x3

0x1 + 3x2
0x

3
1 +

2x0x1x
2
2+2x0x

4
2+2x0x

3
2−2x0x2+2x2

1x
5
2+

2x2
1x2+2x1x

5
2−2x1x

3
2+3x1x

2
2+3x1x2−

3x5
2 + 3x3

2 − x2

f5 = 2x5
0x1 + 3x4

0x1 + x3
0x1x

3
2 − x2

0x
2
1x2 +

2x2
0x2 − x0x

2
1x

2
2 + 2x0x

2
1x2 + 2x0x

2
1 +

2x0x1x2− 3x0x1+3x0x
3
2+x0+2x3

1x
2
2−

3x2
1x

2
2 + 2x2

1x2 − 2x2
1 − 3x1x

2
2 − 3x1x2 +

3x1 − 2
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Table 13: Success examples from the D−
4 (F7) test set.

ID F G

2

f1 = x2 − 3x3
3 + 2x2

3 + 1 g1 = x0 − x3

f2 = x1x2 − 3x1x
3
3 +2x1x

2
3 +2x1 − 3x3

3 +
x2
3 − 2x3 + 2

g2 = x1 − 3x3
3 + x2

3 − 2x3 + 2

f3 = −2x2
0x

2
1 − x2

0x1x
3
3 − 2x2

0x1x
2
3 −

3x2
0x1x3 + 3x2

0x1 − x0x1x
2
2 − x0x1x2x3 +

3x0x
2
2x

3
3 − x0x

2
2x

2
3 + 2x0x

2
2x3 − 2x0x

2
2 +

3x0x2x
4
3−x0x2x

3
3+2x0x2x

2
3−2x0x2x3−

x2
1x2 + 3x2

1x
3
3 − 2x2

1x
2
3 − x2

1

g3 = x2 − 3x3
3 + 2x2

3 + 1

f4 = 2x3
0x

3
1x3 + x3

0x
2
1x

4
3 + 2x3

0x
2
1x

3
3 +

3x3
0x

2
1x

2
3 − 3x3

0x
2
1x3 + x2

0x
2
1x2x

2
3 −

3x2
0x

2
1x

3
3 − 3x2

0x1x2x
5
3 + x2

0x1x2x
4
3 −

2x2
0x1x2x

3
3 + 2x2

0x1x2x
2
3 + 3x2

0x1x2 +
2x2

0x1x
6
3− 3x2

0x1x
5
3−x2

0x1x
4
3−x2

0x1x
3
3−

x2
0x1x

2
3 + 3x2

0x1 + 3x0x
2
1x2 − 2x0x

2
1x

3
3 −

x0x
2
1x

2
3 + x0x

2
1 − x0x1x

2
2 + 2x0x1x2x

4
3 −

x0x1x
3
3 − 2x0x1x

2
3 − 3x0x1x3 + 3x0x1 +

3x0x
2
2x

3
3 − x0x

2
2x

2
3 + 2x0x

2
2x3 − 2x0x

2
2 +

x0x2x
7
3+2x0x2x

6
3+3x0x2x

5
3−3x0x2x

4
3+

3x3
1x2 − 2x2

1x2x
3
3 + 3x2

1x2x
2
3 + x2

1x2x3 −
x2
1x2 + x4

3 − 3x3 − 1

g4 = x4
3 − 3x3 − 1

f5 = −x3
0x

3
1x3 + 3x3

0x
2
1x

4
3 − x3

0x
2
1x

3
3 +

2x3
0x

2
1x

2
3 − 2x3

0x
2
1x3 + 3x2

0x
2
1x2x

2
3 +

3x2
0x

2
1x3 − 3x2

0x
2
1 − 2x2

0x1x2x
5
3 +

3x2
0x1x2x

4
3 + x2

0x1x2x
3
3 − x2

0x1x2x
2
3 −

2x2
0x1x

4
3−2x2

0x1x
3
3−2x2

0x1x
2
3−2x2

0x1x3+
x2
0x1 + 2x0x

3
1 − 2x0x1x2x

2
3 − x0x2x

5
3 −

2x0x2x
4
3− 3x0x2x

3
3 +3x0x2x

2
3− 3x0x2−

2x0x
4
3+2x0x

3
3+x0x

2
3−x0x3−x0−2x3

1x3+
x1x

2
2x3−2x3

2−3x2
2x

4
3+x2

2x
2
3+2x2

2x3−2x2
2

f6 = −3x2
0x

3
1x2 − 2x2

0x
3
1 + 2x2

0x
2
1x2x

3
3 −

3x2
0x

2
1x2x

2
3 − x2

0x
2
1x2x3 + x2

0x
2
1x2 −

x2
0x

2
1x

3
3 − 2x2

0x
2
1x

2
3 − 3x2

0x
2
1x3 + 2x2

0x
2
1 +

3x2
0x1x

3
3 − x2

0x1x
2
3 + 2x2

0x1x3 − 2x2
0x1 +

3x2
0x2 − 2x2

0x
3
3 − x2

0x
2
3 + 3x2

0 + x0x
5
1x3 +

2x0x
2
1x

2
2x3 − x0x

2
1x2x3 + x0x1x

2
2x

4
3 +

2x0x1x
2
2x

3
3 + 3x0x1x

2
2x

2
3 − 3x0x1x

2
2x3 +

3x0x1x2x
4
3 − x0x1x2x

3
3 + 2x0x1x2x

2
3 −

2x0x1x2x3−3x0x
4
3+2x0x3−3x0−x5

1x
2
3−

x2
1x

2
2 + 3x1x

2
2x

3
3 − x1x

2
2x

2
3 + 2x1x

2
2x3 −

2x1x
2
2−x1x

3
3+3x6

3−x5
3+2x4

3−2x3
3−x3

3

f1 = 3x0x1x3 − x1x
2
3 + x1x3 + x2

3 g1 = x0 + 2x3 − 2
f2 = −2x3

0x1x3 + 3x2
0x1x

2
3 − 3x2

0x1x3 +
2x2

0x1 − 3x2
0x

2
3 + 3x2

0x3 − 3x0x
2
1x2x3 +

x2
1x2x

2
3 − x2

1x2x3 + 2x2
1x

2
3 − x1x2x

2
3 +

3x1x
3
3 + x2 − 2x3 − 3

g2 = x1 − 2x3

f3 = −2x2
0x

4
1 − 3x2

0x
3
1x3 + 3x2

0x1x2x3 +
x0x1x

2
2x3 − x0x1x2x

2
3 + x0x1x2x3 +

x0x2x
2
3 + x0 − 2x5

1x
2
3 − 3x4

1x
3
3 − x3

1x2 +
2x3

1x3+3x3
1+2x1x

2
2x

2
3−2x1x

2
2x3−2x2

2x
2
3+

2x3 − 2

g3 = x2 − 2x3 − 3

f4 =−x2
0x

2
1x2x3+2x2

0x1x2x
2
3+x2

0x1x2−
3x2

0x1x
3
3 + x2

0x1 − x2
0x

4
3 + 2x0x

3
1x2x3 +

2x0x1x2x3−2x0x1x2+2x0x1x3−x0x1−
x3
1x2x

3
3−3x3

1x2x
2
3+3x3

1x2x3+2x2
1x2x

4
3+

3x2
1x2x

2
3 − 3x2

1x
5
3 + 3x1x

2
2x3 + x1x2x

2
3 −

2x1x2x3 − x1x
6
3 + 2x1x3 − x1 + 2x2x

3
3 +

3x4
3 + x3

3 − 2x3

g4 = x2
3
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Table 14: Success examples from the D−
5 (F7) test set.

ID F G

0

f1 =−x0x
2
1+2x2

1x
2
4+x2

1x4+3x2
1+x1−3x4 g1 = x0 − 2x2

4 − x4 − 3
f2 = −x0x

2
1x

3
3 + 2x2

1x
3
3x

2
4 + x2

1x
3
3x4 +

3x2
1x

3
3+3x1x

2
2x3+x1x

3
3−2x2

2x3x4−3x3
3x4

g2 = x1 − 3x4

f3 = −3x2
0x

2
1x3 − 3x2

0x1x
2
2x

2
3 +

2x2
0x

2
2x

2
3x4 − x0x

2
1x3x

2
4 + 3x0x

2
1x3x4 +

2x0x
2
1x3 + 3x0x1x3 − 2x0x3x4 + x0 +

x1x
3
2x3x

2
4 − 3x3

2x3x
3
4 − 2x2

4 − x4 − 3

g3 = x2 − x4

f4 = −2x2
0x1x

2
2x3 − x2

0x
2
2x3x4 + x2

0x3 +
3x2

0x4 − 3x0x
3
1x2x4 − 3x0x

2
1x

3
2x3 +

2x0x1x
3
2x3x4 + 3x0x

2
2x4 − x3

1x2x
3
4 +

3x3
1x2x

2
4+2x3

1x2x4+3x2
1x2x4−2x1x2x

2
4+

x2
2x

3
4 − 3x2

2x
2
4 − 2x2

2x4 + x3
4 − x2

4 + 3x4

g4 = x3 + 3x4

f5 = 2x3
0x1x2x3 − x3

0x1x2x4 + x2
0x

3
3 +

3x2
0x

2
3x4 + 3x0x

2
1x3x4 + 2x0x1x2x3 +

2x0x1x2x
3
4 − 2x0x1x2x

2
4 − x0x1x2x4 +

x2
1x

3
2x

2
3−3x2

1x
2
2x3x4+x2

1x3x
3
4−3x2

1x3x
2
4−

2x2
1x3x4 − 3x1x

3
2x

2
3x4 + 2x1x

2
2x3x

2
4 +

3x1x2x3x
2
4 − 2x1x2x3x4 + x1x2x3 −

3x1x3x4+x2
3x

3
4−x2

3x
2
4+3x2

3x4+2x3x
2
4+

x3 + 3x4

g5 = x3
4 − x2

4 + 3x4

f6 = −x2
0x

2
1x3 − 2x2

0x
2
1x

2
4 − 3x2

0x
2
1x4 −

3x0x
2
1x2+3x0x

2
1x

2
3−3x0x

2
1x

4
4+2x0x

2
1x

3
4−

x0x
2
1x

2
4−x0x1x2x4+2x0x1x

2
4+3x0x2x

2
4−

x0x
3
4 + x2

1x
3
2x3 + x2

1x
2
3x

2
4 − 3x2

1x
2
3x4 −

2x2
1x

2
3 − x2

1x3 − x2
1x

3
4 + x2

1x
2
4 + x2

1x4 −
3x1x

3
2x3x4 − 3x1x

2
3 − 2x2x

4
4 − x2x

3
4 −

3x2x
2
4+x2+2x2

3x4−3x5
4+2x4

4−x3
4−x4

f7 = −2x4
0x2x3 + x4

0x2x4 + 2x3
0x

2
1x3 −

x3
0x1x3x4 − 3x3

0x1x
2
4 + 3x2

0x
2
1x3x

2
4 −

2x2
0x

2
1x3x4 + x2

0x
2
1x3 − 2x2

0x1x3 −
2x2

0x2x
3
4 + 2x2

0x2x
2
4 + x2

0x2x4 −
x2
0x3x4 − 2x0x

3
1x2x

2
3 − 3x0x

2
1x2x

2
3x4 −

x0x1x2x
2
3x

2
4 + x0x1x2x3 + 3x0x1x2x4 −

2x0x1x
2
3−x0x1x

4
4 +x0x1x

3
4− 3x0x1x

2
4−

x0x1x4− 2x0x3x
3
4 +2x0x3x

2
4 +x0x3x4−

3x3
1x

2
2x3x4 + 2x2

1x
2
2x3x

2
4 + 3x1x2x

2
3 −

3x1x
2
3x

2
4 − x1x

2
3x4 − x1x

2
3 + 2x1x

3
4 +

x1x
2
4 + 3x1x4

3

f1 = x2
4 g1 = x0 − 2x4

f2 = x0x2x
3
4 + x0 − 2x4 g2 = x1 + x4 − 3

f3 =−3x2
0x

2
3+3x2

0−x0x1x2x4−x0x
2
3x4+

x0x4 + 2x1x2x
2
4 + x3 − x5

4 − x4 + 1
g3 = x2 + x4

f4 = −2x3
0x

2
2x

2
3 + 2x3

0x
2
2 − 3x2

0x
2
1x

3
3 +

3x2
0x

2
1x3 − 3x2

0x
2
2x

2
3x4 + 3x2

0x
2
2x4 −

x0x
2
1x

3
3x4 + x0x

2
1x3x4 + 3x0x

2
2x3 −

3x0x
2
2x4 + 3x0x

2
2 + 3x0x2x

2
4 + x2

1x
2
3 −

x2
1x3x4 + x2

1x3 − 3x1x
2
2x

2
4 + x1 + x2x

3
4 +

x4 − 3

g4 = x3 − x4 + 1

f5 =−2x3
0x2x

2
3+2x3

0x2−x3
0−3x2

0x2x
2
3x4+

3x2
0x2x4 + 2x2

0x
2
4 + 2x2

0x4 + 3x0x1x
2
3 +

3x0x2x3− 3x0x2x4 +3x0x2 +3x0x
2
3x4−

2x0x
2
3 + 3x0x

3
4 − 3x1x

2
4 − 2x2x

3
4 + x2 −

3x3
4 + 2x2

4 + x4

g5 = x2
4
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Table 15: Success examples from the D−
2 (F31) test set.

ID F G

2
f1 = x0 + 8x1 g1 = x0 + 8x1

f2 = −8x3
0x1 − 2x2

0x
2
1 − 12x0x

5
1 − x0x

3
1 +

12x0x
2
1 − x4

1 − x3
1 + x1

g2 = x3
1 − 8x1

f3 = −7x4
0x

3
1 +6x3

0x
4
1 +6x3

0x
2
1− 15x3

0x1 +
5x3

0 +5x2
0x

7
1− 9x2

0x
5
1− 5x2

0x
4
1− 14x2

0x
3
1 +

4x2
0x

2
1 +9x2

0x1− 10x2
0 +9x0x

6
1 +3x0x

5
1−

10x0x
4
1 − 12x0x

3
1 + 13x0x1 − 7x4

1 + x3
1 +

7x2
1 − 8x1

4

f1 = 6x3
0x1 + 11x2

0x
4
1 + 6x2

0x
2
1 − 2x0x

3
1 −

11x6
1 − 2x4

1

g1 = x0 − 10x3
1 + x1

f2 = 3x3
0x

4
1 − 10x2

0x
7
1 + 3x2

0x
5
1 − x0x

6
1 +

3x0x
5
1 − 11x0x

3
1 + 15x0x

2
1 + 10x9

1 − x7
1 −

14x6
1 + 5x5

1 − 11x4
1 + 15x3

1

g2 = x4
1

f3 = 13x4
0x1 − 2x3

0x
4
1 + 13x3

0x
2
1 − 9x2

0x
5
1 +

8x2
0x

3
1 − 14x2

0x
2
1 − 11x2

0x1 − 6x0x
6
1 −

15x0x
5
1 + 12x0x

4
1 + 15x0x

3
1 − 11x0x

2
1 +

6x7
1 − 11x6

1 − 13x5
1 − x4

1

f4 =−7x4
0x

2
1−10x4

0x1+13x3
0x

5
1+6x3

0x
4
1−

7x3
0x

3
1−10x3

0x
2
1−3x3

0x1−2x2
0x

7
1−3x2

0x
5
1−

5x2
0x

4
1+14x2

0x
3
1−3x2

0x
2
1−x0x

8
1−6x0x

7
1+

12x0x
6
1+13x0x

5
1+3x0x

4
1+x0−10x3

1+x1

6
f1 = x0 − 15x1 g1 = x0 − 15x1

f2 = 4x3
0 + 2x2

0x1 − 10x0x
2
1 − 5x3

1 + x2
1 g2 = x2

1

f3 = 3x3
0x

3
1 − 14x2

0x
4
1 + 9x2

0x
3
1 + 3x2

0x
2
1 −

12x2
0x1 − 7x0x

3
1 − 6x0x

2
1 + 4x0 − 12x4

1 −
6x3

1 + 2x1

7
f1 = −6x3

0 − 10x2
0 + 4x0x

3
1 + 5x2

1 g1 = x0 + 12
f2 =−x3

0x
3
1−12x2

0x
3
1+11x0x

6
1+x0+6x5

1+
12

g2 = x1

f3 = −9x5
0 − 15x4

0 + 6x3
0x

3
1 + 13x2

0x
2
1 −

11x2
0x1 + 4x0x

2
1 + 3x0x1 + 9x1

14 f1 = 3x3
0 − x2

0x1 − 12x2
0 + x2

1 g1 = x0 + 10x1 − 4
f2 = 14x3

0x1−15x2
0x

2
1+6x2

0x1+x0+15x3
1+

10x1 − 4
g2 = x2

1

15
f1 = 4x2

0+7x0x
7
1+4x0x

6
1+2x0x

5
1+8x0x

4
1−

x0x
3
1 − 3x0x

2
1 − 11x0x1 + 9x0

g1 = x0 + 10

f2 = 6x4
0x1 − 5x3

0x
8
1 + 6x3

0x
7
1 + 3x3

0x
6
1 +

12x3
0x

5
1 + 14x3

0x
4
1 + 11x3

0x
3
1 − x3

0x
2
1 +

14x3
0x1 − 9x2

0x
2
1 + 5x2

0x1 + 13x0x
9
1 +

3x0x
8
1−14x0x

7
1+6x0x

6
1+7x0x

5
1−10x0x

4
1+

15x0x
3
1+3x0x

2
1+x5

1+5x4
1−9x3

1−x2
1−14x1

g2 = x5
1 + 5x4

1 − 9x3
1 − x2

1 − 14x1

f3 =−15x4
0x

3
1−12x3

0x
4
1+5x3

0x
3
1−7x3

0x
2
1+

11x2
0x

9
1 − 7x2

0x
8
1 + 12x2

0x
7
1 − 14x2

0x
6
1 −

6x2
0x

5
1−14x2

0x
4
1−4x2

0x
3
1−8x2

0x
2
1+10x2

0+
3x0x

7
1+15x0x

6
1−4x0x

5
1−12x0x

4
1−x0x

3
1+

8x0x
2
1 − 12x0x1 + 8x0 + 10

16
f1 = x0 + 14x1 + 5 g1 = x0 + 14x1 + 5
f2 = −11x3

0 − 8x2
0x

3
1 + x2

0x1 + 13x2
0 −

2x0x
2
1 − 9x0x1 − x0 + 7x4

1 + 3x3
1 − 10x2

1

g2 = x2
1

f3 =−x4
0x

3
1−7x4

0−8x3
0x

2
1−5x3

0x1−4x3
0−

3x2
0x

4
1 − 9x2

0x
2
1 +8x2

0 − 13x0x
3
1 − 3x0x

2
1 +

2x0x1 + 9x0 − x4
1 − 14x3

1 − 4x2
1 + 8x1
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Table 16: Success examples from the D−
3 (F31) test set.

ID F G

4

f1 = 11x2
0x2 + 8x0x1 − x0x

5
2 + 6x0x

4
2 +

15x0x
2
2 + 10x0x2 + 12x2

1x
2
2 + 15x2

1x2 −
15x1x

6
2 + 3x1x

5
2 − 10x1x

4
2 + 10x1x

3
2 −

8x1x
2
2+15x1x2− 4x1+x5

2+9x3
2+6x2

2−
12x2

g1 = x0 + 14x4
2 + 9x3

2 + 7x2 + 15

f2 = 5x3
0x1x2−4x3

0x1−2x2
0x

2
1+8x2

0x1x
5
2−

11x2
0x1x

4
2 − 5x2

0x1x
3
2 + 4x2

0x1x
2
2 −

15x2
0x1x2+2x2

0x1−3x0x
3
1x

2
2+4x0x

3
1x2−

4x0x
2
1x

6
2 + 7x0x

2
1x

5
2 − 13x0x

2
1x

4
2 +

13x0x
2
1x

3
2 +2x0x

2
1x

2
2 +4x0x

2
1x2 + x0x

2
1−

8x0x1x
5
2 − 10x0x1x

3
2 + 14x0x1x

2
2 +

3x0x1x2 − 3x0x2 − 3x1x
5
2 + 4x1x

3
2 +

13x1x
2
2+5x1x2−11x5

2+4x4
2+10x2

2−14x2

g2 = x1 − 9x4
2 − 4x3

2 − 11

f3 = 12x5
0x1 + 13x4

0x1x
4
2 + 15x4

0x1x
3
2 −

9x4
0x1x2 +7x4

0x1− 4x3
0x1x

4
2− 7x3

0x1x
3
2−

2x3
0x1x2 + 9x3

0x1 − x3
0x

3
2 + 9x3

0x2 +
9x2

0x1x
5
2 − 12x2

0x1x
3
2 + 11x2

0x1x
2
2 −

15x2
0x1x2 − 14x2

0x
7
2 − 9x2

0x
6
2 + 2x2

0x
5
2 +

12x2
0x

4
2 − 15x2

0x
3
2 + x2

0x
2
2 + 13x2

0x2 +
13x0x

2
1x

4
2 − 7x0x

2
1x

3
2 + 7x0x1x

8
2 +

11x0x1x
7
2 + 15x0x1x

6
2 − 13x0x1x

5
2 +

12x0x1x
4
2 + 11x0x1x

3
2 − 13x0x1x

2
2 +

7x0x1x2 + 14x0x
7
2 − x0x

5
2 + 9x0x

4
2 −

13x0x
3
2 + 14x0x

2
2 − x0x2 + x1 − 9x4

2 −
4x3

2 − 11

g3 = x5
2 + 9x3

2 + 6x2
2 − 12x2

f4 = 14x3
0x

3
1x2 + 10x2

0x
3
1x

5
2 + 2x2

0x
3
1x

4
2 +

5x2
0x

3
1x

2
2 − 7x2

0x
3
1x2 − 3x2

0x
2
1x

2
2 −

5x0x
3
1x2 − 11x0x

2
1x

6
2 + 4x0x

2
1x

5
2 +

10x0x
2
1x

3
2 + 12x0x

2
1x

2
2 + x0 + 8x4

1x
3
2 +

10x4
1x

2
2 − 10x3

1x
7
2 − 3x3

1x
6
2 + 14x3

1x
5
2 +

3x3
1x

4
2 + 6x3

1x
3
2 + 8x3

1x
2
2 + 13x3

1x2 + x3
1 +

3x2
1x

6
2 − 14x2

1x
4
2 − 4x2

1x
3
2 + 10x2

1x
2
2 −

7x2
1x2 − 11x2

1 + 14x4
2 + 9x3

2 + 7x2 + 15

5

f1 = 7x0x1 − 8x0 − 6x2
1x2 g1 = x0 + 10

f2 = −5x2
0x1 − 12x2

0 + 12x0x
2
1x

2
2 −

9x0x
2
1x2 + 4x0x1x

2
2 + x0 + 3x3

1x
3
2 + 10

g2 = x1 − 10

f3 = −12x0x1x
2
2 − x0x1x2 − 4x0x

2
2 −

3x2
1x

3
2 − 10x1x2 + x1 − 10

g3 = x2

f4 = −15x2
0x1 + 10x0x

2
1x2 + 12x0x

2
1 +

11x0x1x
2
2− 9x0x1x2 +5x0x1− 13x3

1x
2
2−

3x2
1x

2
2 − 4x2

1 − 15x1x
2
2 + 11x1x2 + x2

9

f1 = 0 g1 = x0 + 12x2
2 + 13x2 − 2

f2 = 12x0x1x
2
2 − 14x0x1x2 + 11x1x

4
2 −

12x1x
3
2 + 11x1x

2
2 − 3x1x2

g2 = x1 + 5x2
2 + 14x2 + 9

f3 = −9x2
0x1x

3
2 − 5x2

0x1x
2
2 + 15x0x1x

5
2 +

9x0x1x
4
2 + 15x0x1x

3
2 + 10x0x1x

2
2 + x0 +

12x2
2 + 13x2 − 2

g3 = x3
2

f4 = 12x3
0x1 − 2x3

0x2 − 14x2
0x

2
1x

2
2 +

6x2
0x

2
1x2 − 11x2

0x1x
2
2 + x2

0x1x2 + 7x2
0x1 +

7x2
0x

3
2 + 5x2

0x
2
2 + 4x2

0x2 + 13x0x
2
1x

4
2 +

14x0x
2
1x

3
2 + 13x0x

2
1x

2
2 − 12x0x

2
1x2 + x3

2

f5 = 8x2
0x

2
1x

3
2+x2

0x
2
1x

2
2+7x2

0x
2
1−10x2

0x
3
2−

3x0x
2
1x

5
2 − 8x0x

2
1x

4
2 − 3x0x

2
1x

3
2 −

11x0x
2
1x

2
2 − 2x0x

2
1x2 − 14x0x

2
1 −

13x0x1x
3
2 + 10x0x1x

2
2 + 11x0x

3
2 + x1x

5
2 +

13x1x
4
2 + x1x

3
2 + 11x1x

2
2 + x1 + 8x5

2 −
12x4

2 + 9x3
2 + 5x2

2 + 14x2 + 9
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Table 17: Success examples from the D−
4 (F31) test set.

ID F G

0

f1 = −12x0x3 g1 = x0 + 8
f2 = −5x3

0x3 + 3x0x3 + 6x2
1x

2
3 − x1x

2
3 +

x2 − 7x3 + 7
g2 = x1 + 5

f3 =−4x2
0x2x3−5x0x1x

2
2x3+7x0x

2
2x3−

10x3
1x

2
2x

2
3−5x2

1x
2
2x

2
3−12x1x

3
2+8x1x

2
2x

2
3−

9x1x
2
2x3+9x1x

2
2+x1−8x3

2−6x2
2x3+6x2

2+
5

g3 = x2 + 7

f4 = 15x3
0−4x2

0+5x0x
2
1x2x3−14x0x1x3−

10x0x2x
2
3 + 10x4

1x2x
2
3 − 12x3

1x2x
2
3 +

12x2
1x

2
2 + 9x2

1x2x3 − 9x2
1x2 − 2x1x2 +

12x1x3 − 10x2 + x3

g4 = x3

f5 = 6x5
0x1 − 14x4

0x1 + 13x3
0x

2
1x3 +

11x2
0x

2
1x3 − 12x2

0x1x3 + 13x0x1x
2
3 +

5x0x
2
2x

2
3 − 2x0x

2
3 + x0 + 8x4

1 − 5x3
1x

3
3 −

8x3
1x3+9x3

1+2x2
1x

3
3−9x2

1x3−6x1x2x3+
11x1x

3
3 + 11x1x

2
3 − 11x1x3 − 11x2x3 +

15x2
3 − 15x3 + 8

6

f1 = 4x0x1x3+11x0x
4
3+3x0x

3
3+10x0x

2
3+

10x0x3 + x4
3

g1 = x0 + 9x3
3 − 15

f2 = −4x2
0x

2
1x3 − 11x2

0x1x
4
3 − 3x2

0x1x
3
3 −

10x2
0x1x

2
3 − 10x2

0x1x3 − x0x1x
4
3 + x0 +

9x3
3 − 15

g2 = x1 − 5x3
3 − 7x2

3 − 13x3 − 13

f3 = −11x3
0x1x3 − 7x3

0x
4
3 + 15x3

0x
3
3 −

12x3
0x

2
3 − 12x3

0x3 − 9x2
0x1x

2
2x3 +

11x2
0x1x2 + 14x2

0x
2
2x

4
3 + x2

0x
2
2x

3
3 −

7x2
0x

2
2x

2
3−7x2

0x
2
2x3+5x2

0x
4
3+6x0x1x2x

3
3−

10x0x1x2 − 10x0x
2
2x

4
3 − 13x0x

2
2x3 + x1 +

7x2
2x

4
3 + 9x2

2x3 − 5x3
3 − 7x2

3 − 13x3 − 13

g3 = x2 − 8x3
3 + 3x3 − 9

f4 = −4x2
0x1x2 − 11x2

0x2x
3
3 − 3x2

0x2x
2
3 −

10x2
0x2x3−10x2

0x2+6x0x
3
1−14x0x

2
1x

2
3+

8x0x1x
5
3+5x0x1x

4
3−4x0x1x

3
3−4x0x1x

2
3−

8x3
1x

3
3 + 3x3

1 + 12x1x
5
3

g4 = x4
3

f5 = 2x3
0x3−13x2

0x
4
3+x2

0x3+5x0x1x2x
3
3−

15x0x1x
4
3 + 6x0x2x

6
3 − 4x0x2x

5
3 −

3x0x2x
4
3 − 3x0x2x

3
3 + 13x0x

7
3 + 12x0x

6
3 +

9x0x
5
3 + 9x0x

4
3 + 8x3

1x2 − 9x2
1x2x

3
3 +

6x2
1x2x

2
3 − 11x2

1x2x3 − 11x2
1x2 + 9x2x

6
3 +

x2 + 4x7
3 − 8x3

3 + 3x3 − 9
f6 = x2

0x
2
1x2x3+5x2

0x1x
2
2x3−5x2

0x1x2x
4
3−

7x2
0x1x2x

3
3−13x2

0x1x2x
2
3−13x2

0x1x2x3+
6x2

0x
2
2x

4
3−4x2

0x
2
2x

3
3−3x2

0x
2
2x

2
3−3x2

0x
2
2x3−

12x2
0x

2
2 + 3x2

0x2x
3
3 − 5x2

0x2x3 + 15x2
0x2 +

5x0x1x
3
2x3 + 10x0x1x2 + 13x0x1x

3
3 −

13x0x1x
2
3−15x0x1x3+3x0x1+6x0x

3
2x

4
3−

4x0x
3
2x

3
3−3x0x

3
2x

2
3−3x0x

3
2x3+9x0x

2
2x

4
3−

7x0x
2
2 + 3x0x

5
3 − 2x0x

4
3 + 14x0x

3
3 +

14x0x
2
3+11x3

1x2+5x3
1x

3
3+2x3

1x3−6x3
1−

15x1x
2
2x3 − 2x1x

4
3 + 15x1x

3
3 − 6x1x

2
3 −

7x1x3−12x3
2+13x2

2x
4
3+14x2

2x
3
3+9x2

2x
2
3+

4x2
2x3− 4x2

2+6x6
3− 13x5

3− 15x4
3+7x3

3−
15x2

3
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Table 18: Success examples from the D−
5 (F31) test set.

ID F G

0

f1 = 13x0x
3
1 + 4x3

1x4 + 9x3
1 + x2

4 g1 = x0 − 14x4 + 15
f2 = 12x0x

3
1x

3
2+5x0x

3
1x

2
3x4−13x3

1x
3
2x4−

6x3
1x

3
2− 8x3

1x
2
3x

2
4 +13x3

1x
2
3x4− 11x3

2x
2
4−

2x2
3x

3
4 + x3 + 8x4 − 4

g2 = x1 + 8x4

f3 =−6x0x
3
1x2−11x0x2x

2
3+5x0x2x3x4+

13x0x2x3−9x3
1x2x4+3x3

1x2+11x1x2x
2
3−

5x1x2x3x4−13x1x2x3+x1−10x2x
2
4+8x4

g3 = x2 − 14x4

f4 = −6x2
0x

3
1x3x4 − 9x0x

3
1x3x

2
4 +

3x0x
3
1x3x4 + 15x0x1x3 + 6x0x

2
3 −

10x0x3x
3
4 + 13x0x3x4 + 7x0x3 + x0 −

x1x2 + 5x1x
2
3 + 9x1x3x4 + 11x1x3 −

8x2x4 − 14x4 + 15

g4 = x3 + 8x4 − 4

f5 = 10x3
0x2 − 7x2

0x
3
1x3x4 + 15x2

0x2x4 −
5x2

0x2 − 3x0x
3
1x2x4 + 5x0x

3
1x3x

2
4 −

12x0x
3
1x3x4+x0x2x

2
3+9x0x3x

3
4+7x0x3−

6x0x4 + 3x0 + 11x3
1x2x

2
4 − 14x3

1x2x4 −
3x2

1 + 7x1x4 + 12x3
2x3 + 3x3

2x4 + 14x3
2 −

14x2x
2
3x4 + 15x2x

2
3 − 5x2x

3
4 + x2 − 14x4

g5 = x2
4

8

f1 = 7x2
1x3 − 12x2

1 − 12x1x
2
3 − 6x1x3 −

3x3
2x4 + 8x2

2x4

g1 = x0 − 12

f2 = 13x3
1x2x

2
3 − 9x3

1x2x3 − 9x2
1x2x

3
3 +

11x2
1x2x

2
3 + 8x2

1x2x3x
2
4 + 4x2

1x2x
2
4 −

10x1x
4
2x3x4 + 6x1x

3
2x3x4 + 4x1x2x

2
3x

2
4 +

2x1x2x3x
2
4 + x1 + x4

2x
3
4 − 13x3

2x
3
4 + 11

g2 = x1 + 11

f3 = −4x2
0x

2
1− 13x2

0x1 +8x2
1x

4
3 +4x2

1x
3
3 +

4x1x
5
3 + 2x1x

4
3 + 12x1x3x

2
4 + x3

2x
3
3x4 −

13x2
2x

3
3x4 + 8x3x

2
4 + x3 − 15

g3 = x2 − 13

f4 =−10x0x
2
1+5x0x

2
3−13x0x3+7x2

1x
3
3+

2x2
1x

2
3x

2
4 − 12x2

1x
2
3 + x2

1x3x
2
4 − 4x2

1 −
12x1x

4
3 + x1x

3
3x

2
4 − 6x1x

3
3 − 15x1x

2
3x

2
4 +

14x1x
2
3 − 12x1x3x4 − 6x1x4 − 3x3

2x
2
3x4 +

8x3
2x3x

3
4+8x2

2x
2
3x4−11x2

2x3x
3
4+x2−x2

3−
13

g4 = x3 − 15

f5 = 3x0x
2
1x2x4 + 5x0x

2
1x3 − 4x0x

2
1x

3
4 −

13x0x
2
1+7x0x2x

2
3−12x0x2x3+8x4

1x2x3+
4x4

1x2 + 4x3
1x2x

2
3 + 2x3

1x2x3 + x2
1x

4
2x4 −

13x2
1x

3
2x4−5x2

1x2x4−14x2
1x

3
4−13x1x

3
4+

9x2
2x4 − 12x2x

3
4 + 7x2x4 + 13x3

4 + x4

g5 = x4

f6 = 11x2
0x1x3 − 3x2

0x3 + 8x0x
5
1 +

10x0x
2
1x4 − 10x0x1x4 − 3x5

1 − 7x3
1x2 −

2x3
1 + 7x2

1x
3
2x3 − 12x2

1x
3
2 − 12x1x

3
2x

2
3 −

6x1x
3
2x3+15x1x2x3x4−3x6

2x4+8x5
2x4+

x2
2x3x4 − 15x2

2x4

f7 = 10x2
0x1x2x3 − 14x2

0x2x3 −
2x0x

3
1x3x4 + 2x0x

2
1x

2
3 + x0x

2
1x3 +

3x0x1x2x4 + x0x1x
3
3 − 15x0x1x

2
3 −

11x0x1x4 + 8x0x
3
2x3x4 − 11x0x

2
2x3x4 +

x0+11x4
1x

2
3−10x4

1x3−10x3
1x

3
3−5x3

1x
2
3−

7x3
1x3x4 + 13x2

1x
3
2x3x4 − 14x2

1x
2
2x3x4 +

14x2
1x3x4 + 11x1x

2
2x3x4 + 2x1x

2
2x3 +

x1x
2
2−6x1x2x3x4+13x1x2x

2
4−9x1x2x4+

15x1x3x4 − 12x2x
2
4 − 12
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Table 19: Failure examples from the D−
n (Q) test sets for n = 2, 3, 4, 5 (ground truth v.s. prediction).

ID G (Ground Truth) G′ (Transformer)

15 g1 = x0 − 1/4x4
1 − 5/4x3

1 + 2/3x1 − 5/4 g′1 = x0 + 1/4x4
1 + 2/3x1 − 5/4

g2 = x5
1 − 2/3x4

1 − 4/3x3
1 + 2 g′2 = x5

1 − 2/3x4
1 − x3

1 − x2
1 + 2

26 g1 = x0−1/2x4
1−1/5x3

1−1/2x2
1−x1+2/3 g′1 = x0−1/2x4

1−1/5x3
1+1/2x2

1−x1+2/3
g2 = x5

1 − 3/5x1 − 4/3 g′2 = x5
1 − 1/2x4

1 − 3/5x1 − 4/3

36 g1 = x0 − 2x1 g′1 = x0 − 2x1

g2 = x5
1 + 5/2x4

1 − 1/4x3
1 + 1/2x2

1 + 1/3 g′2 = x5
1 + 5/2x4

1 − 5/4x3
1 + 1/2x2

1 + 1/3

12
g1 = x0 + 4x4

2 − 1/5x2
2 + 5/4x2 + 1/2 g′1 = x0 + 4x4

2 − 1/5x2
2 + 5/4x2 + 1/2

g2 = x1−5/2x4
2+1/5x3

2−2/3x2
2−1/3x2+

3/2
g′2 = x1−5/2x4

2+1/5x3
2−2/3x2

2−1/3x2+
3/2

g3 = x5
2 − 1/4x3

2 − 3/2x2
2 − 1/5x2 − 5/3 g′3 = x5

2 − 2/3x3
2 − 3/2x2

2 − 1/5x2 − 5/3

15
g1 = x0 + 2/3x4

2 + x3
2 + 4x2

2 − 5/3x2 + 4 g′1 = x0 + 2/3x4
2 + x3

2 + 4x2
2 − 5/3x2 + 4

g2 = x1 + 2x3
2 + 5/3x2 + 2 g′2 = x1 + 5/3x2 + 2

g3 = x5
2 + 4x4

2 − x3
2 + x2

2 g′3 = x5
2 + 4x4

2 − x3
2 + x2

2

16
g1 = x0 + 2x2 g′1 = x0 + 2x2

g2 = x1 − 1/5 g′2 = x1 − 1/5
g3 = x3

2 − 2x2
2 + 1/5x2 + 1 g′3 = x3

2 + 1/5x2 + 1

6

g1 = x0 − 2/3x3
3 g′1 = x0 − 2/3x3

3

g2 = x1 − 4x2
3 + 1/4x3 g′2 = x1 + 1/4x3

g3 = x2 − x4
3 + x2

3 − 3/5 g′3 = x2 − x4
3 + x2

3 − 3/5
g4 = x5

3 − 5x4
3 + 4x2

3 + 4x3 g′4 = x5
3 − 5x4

3 + 4x2
3 + 4x3

7

g1 = x0 − 3 g′1 = x0 − 3
g2 = x1 − 1/5x2

3 g′2 = x1 − 1/5x2
3

g3 = x2 + 2/5x4
3 + 5/2x2

3 − 2/3x3 − 3/5 g′3 = x2 + 2/5x4
3 + 5/2x2

3 − 2/3x3 − 3/5
g4 = x5

3 − 4/5x4
3 − x3 − 1 g′4 = x5

3 − 4/5x4
3 − 3x3

3 − x3 − 1

16

g1 = x0 + 1/4x2
3 − 2 g′1 = x0 + 1/4x2

3 − 2
g2 = x1 + 2x3

3 g′2 = x1 + 2x3
3

g3 = x2 − 2x3
3 + 3/2 g′3 = x2 − 2x3

3 + 3/2
g4 = x5

3 − x4
3 − 5x3

3 − 1/2 g′4 = x5
3 − x4

3 − 5x3
3 − 1/4x2

3 + 3/2

1

g1 = x0 + 5x4
4 − 3/5x3

4 + 4x2
4 + 2 g′1 = x0 + 5x4

4 − 3/5x3
4 + 4x2

4 + 2
g2 = x1−2/5x4

4+1/3x3
4+x2

4−1/2x4+3/5 g′2 = x1−2/5x4
4+1/3x3

4+x2
4−1/2x4+3/5

g3 = x2 − 3/5x4 g′3 = x2 − 2/5x4

g4 = x3 + 4/5x4
4 + x3

4 − 3/5x4 g′4 = x3 + 4/5x4
4 + x3

4 − 3/5x4

g5 = x5
4 − 5x4

4 + 3/2x3
4 − x4 − 5 g′5 = x5

4 + 3/2x3
4 − x4 − 5

7

g1 = x0 − x2
4 + 4x4 − 5/3 g′1 = x0 − x2

4 + 4x4 − 5/3
g2 = x1 − x2

4 + 1 g′2 = x1 − x2
4 + 1

g3 = x2 − 1 g′3 = x2 − 1
g4 = x3 + 2x2

4 + 4/3x4 g′4 = x3 + 2x2
4 + 4/3x4

g5 = x3
4 g′5 = x3

4 + 2/3x2
4

8

g1 = x0 + x2
4 − 5 g′1 = x0 + x2

4 − 5
g2 = x1 + 1/3x4

4 + 4/3x3
4 + 5x4 + 3/4 g′2 = x1 + 1/3x4

4 + 4/3x3
4 + 5x4 + 3/4

g3 = x2 + 1/2x2
4 − x4 g′3 = x2 − x4

g4 = x3 − 5/4x4
4 − x3

4 + x2
4 g′4 = x3 − 5/4x4

4 − x3
4 + x2

4

g5 = x5
4 − 4/3x3

4 + x4 g′5 = x5
4 − 4/3x3

4 + x4
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Table 20: Failure examples from the D−
n (F7) test sets for n = 2, 3, 4, 5 (ground truth v.s. prediction).

ID G (Ground Truth) G′ (Transformer)

2 g1 = x0 − 3x2
1 + 1 g′1 = x0 − 3x2

1 + 1
g2 = x3

1 − 2 g′2 = x3
1 − 2x2

1 − 2

6 g1 = x0 − x4
1 + 3x3

1 + 3x1 g′1 = x0 − x4
1 + 3x3

1 + 3x1

g2 = x5
1 − 2x4

1 − x3
1 g′2 = x5

1 − x4
1 − x3

1

8 g1 = x0 + 3x4
1 + 2x3

1 + 2x1 g′1 = x0 + 3x4
1 + 2x3

1 + 2x1

g2 = x5
1 − 3x3

1 + 2x2
1 g′2 = x5

1 − 3x3
1 − x2

1

8
g1 = x0 − x2

2 g′1 = x0 − x2
2

g2 = x1 − 1 g′2 = x1 − 1
g3 = x5

2 − x4
2 + 2x3

2 − 3x2 g′3 = x5
2 − x4

2 + 2x3
2 − x2

2

12
g1 = x0 + 1 g′1 = x0 + 1
g2 = x1 − 3x2

2 − 2 g′2 = x1 − 3x2
2 + x2 + 3

g3 = x3
2 − 1 g′3 = x3

2 + 1

18
g1 = x0 − 3x4

2 − 2x3
2 − x2

2 + 1 g′1 = x0 − 3x4
2 − 2x3

2 − x2
2 + 1

g2 = x1 − x4
2 + 3x2 − 2 g′2 = x1 − x4

2 + 3x2 − 2
g3 = x5

2 − 3x4
2 + 3x3

2 + x2
2 g′3 = x5

2 − 3x4
2 + x2

2

0

g1 = x0 + 3x3
3 − 3x2

3 g′1 = x0 + 3x3
3 − 3x2

3

g2 = x1 + 2x3
3 + x2

3 − 3x3 g′2 = x1 + 2x3
3 + x2

3 − 3x3

g3 = x2 + 2x3
3 − 2 g′3 = x2 + 2x3

3 − 2
g4 = x4

3 − 3x3 g′4 = x4
3 − x3

4

g1 = x0 − 3 g′1 = x0 − 3
g2 = x1 + 3x4

3 + x3
3 − 3x2

3 + 3x3 − 3 g′2 = x1 + 3x4
3 + x3

3 + 3x2
3 + 3x3 − 3

g3 = x2 + 3x4
3 − 2 g′3 = x2 + 3x4

3 − 2
g4 = x5

3 + 2x3
3 − 3x2

3 − 2x3 g′4 = x5
3 + 2x3

3 − 3x2
3 − 2x3

5

g1 = x0 + 1 g′1 = x0 − 1
g2 = x1 + 1 g′2 = x1 + 1
g3 = x2 − 3 g′3 = x2 − 3
g4 = x3 − 3 g′4 = x3 − 3

1

g1 = x0 − 3x4 − 1 g′1 = x0 − 3x4 − 1
g2 = x1 + 1 g′2 = x1 + 1
g3 = x2 − 3 g′3 = x2 + 2
g4 = x3 + 3 g′4 = x3 + 3
g5 = x4

4 g′5 = x4
4

2

g1 = x0 − 3x4 g′1 = x0 − x4

g2 = x1 + 3x2
4 − 2x4 + 3 g′2 = x1 + 3x2

4 − 2x4 + 3
g3 = x2 − 3x2

4 − 3x4 g′3 = x2 − 3x2
4 − 3x4

g4 = x3 − 2 g′4 = x3 − 2
g5 = x3

4 − 3x4 g′5 = x3
4 − 3x4

14

g1 = x0 + 2 g′1 = x0 + 2
g2 = x1 + 2 g′2 = x1 + 2
g3 = x2 + x3

4 − 2x2
4 + 3x4 − 2 g′3 = x2 + x3

4 − 2x2
4 + 3x4 − 2

g4 = x3 − 3 g′4 = x3 − 3
g5 = x4

4 − x4 g′5 = x4
4 + x4
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Table 21: Failure examples from the Dn(F31) test sets for n = 2, 3, 4, 5 (ground truth v.s. prediction).

ID G (Ground Truth) G′ (Transformer)

0 g1 = x0− 14x4
1 +9x3

1 +12x2
1 +14x1 +15 g′1 = x0− 14x4

1 +9x3
1 +12x2

1 +14x1 +15
g2 = x5

1 + 15x4
1 − 5x3

1 − 7x2
1 g′2 = x5

1 − 11x4
1 − 11x3

1

1 g1 = x0 − 9 g′1 = x0 − 9
g2 = x1 g′2 = x1 − 7

3 g1 = x0 − 8x2
1 + 8x1 g′1 = x0 − 8x2

1 + 8x1

g2 = x5
1 − 14x3

1 + 10x2
1 + 2x1 + 5 g′2 = x5

1 − 3x4
1 + 10x2

1 + 2x1 + 5

0
g1 = x0 + 5 g′1 = x0 + 5
g2 = x1 − 8x4

2 + 15x2
2 − 5x2 + 11 g′2 = x1 − 8x4

2 − 12x2
2 − 8x2 − 13

g3 = x5
2 − 2x2

2 + 15x2 + 4 g′3 = x5
2 − 2x2

2 + 15x2 + 4

1
g1 = x0− 14x4

2 +13x3
2− 10x2

2− 6x2− 10 g′1 = x0 − 2x4
2 + x3

2 − 10x2
2 − 6x2 − 10

g2 = x1 − 14x4
2 − 4x3

2 − 5x2
2 + 8x2 + 3 g′2 = x1 − 14x4

2 − 4x3
2 − 5x2

2 + 8x2 + 3
g3 = x5

2 + 7x4
2 + 7x2

2 − 8 g′3 = x5
2 − 2x4

2 − 2x3
2 − 2x2

2 − 2

2
g1 = x0 +15x4

2 +12x3
2− 13x2

2− 10x2− 7 g′1 = x0 +15x4
2 +12x3

2− 13x2
2− 10x2− 7

g2 = x1 + 9x2
2 g′2 = x1 + 9x2

2

g3 = x5
2 − 15x3

2 + 5x2
2 g′3 = x5

2 + 14x4
2 + 14x3

2 + 14x2
2 + 6

1

g1 = x0 + 11x4
3 − 4x3

3 − 8x2
3 g′1 = x0 + 11x4

3 − 4x3
3 − 8x2

3
g2 = x1 − 7 g′2 = x1 − 7
g3 = x2 + 2 g′3 = x2 + 2
g4 = x5

3 + 5x4
3 − 6x2

3 g′4 = x5
3 + 5x4

3 − 11x2
3

3

g1 = x0 − 6x2
3 + 13x3 g′1 = x0 − 6x2

3 + 13x3

g2 = x1+12x4
3−11x3

3+10x2
3−15x3+10 g′2 = x1+12x4

3−11x3
3+10x2

3−15x3+10
g3 = x2 − 8x2

3 − 15x3 g′3 = x2 − 8x4
3 − 8x3

3 − 8x2
3 − 15x3

g4 = x5
3 − 2x4

3 − 2x2
3 − 5x3 g′4 = x5

3 − 2x4
3 − 2x2

3 − 5x3

5

g1 = x0 − 5x3 + 13 g′1 = x0 − 5x3 + 13
g2 = x1 + 11x3

3 − 13 g′2 = x1 + 11x3
3 − 13

g3 = x2 − 5x3 − 9 g′3 = x2 − 5x3 − 9
g4 = x5

3 − 2x4
3 − 11x3

3 − 6x3 − 4 g′4 = x5
3 − x4

3 − 11x3
3 − 10x3 − 4

1

g1 = x0 − 10x4
4 − 12x2

4 − 11x4 − 13 g′1 = x0 − 10x4
4 − 12x2

4 − 11x4 − 13
g2 = x1 + 2x4 g′2 = x1 + 2x4

g3 = x2 + 7x4
4 − 11x3

4 − 12x2
4 + 7x4 − 13 g′3 = x2 + 7x4

4 − 11x3
4 − 12x2

4 + 7x4 − 13
g4 = x3 + 5x4

4 − x3
4 − 15x2

4 + 4x4 − 5 g′4 = x3 + 5x4
4 − x3

4 − 15x2
4 − 2x4 − 5

g5 = x5
4 + 13x4

4 + 8 g′5 = x5
4 + 13x4

4 + 8

2

g1 = x0 + 7x4
4 + 3x3

4 + 15x2
4 + 3x4 + 9 g′1 = x0 − 2x4

4 + 3x3
4 + 15x2

4 + 3x4 + 9
g2 = x1 + 3x4

4 − 12x3
4 − 6x2

4 − x4 − 15 g′2 = x1 + 6x4
4 + 11x3

4 + 12x2
4 − 5x4 + 11

g3 = x2 + 6 g′3 = x2 + 6
g4 = x3 − 15x4

4 + 3x3
4 − 13x2

4 + 9x4 g′4 = x3 − 15x4
4 + 3x3

4 − 13x2
4 − 2x4

g5 = x5
4 − 7x3

4 − 5x2
4 − 13x4 g′5 = x5

4 − 7x3
4 − 5x2

4 − 13x4

3

g1 = x0 + 13x4
4 + 10x3

4 + 11x2
4 − 5x4 g′1 = x0 + 13x4

4 + 10x3
4 + 11x2

4 − 5x4

g2 = x1 + 10x4
4 − 13x3

4 + 12 g′2 = x1 + 10x4
4 − 13x3

4 + 12
g3 = x2 + 12x4

4 + 12x3
4 − 7 g′3 = x2 + 12x4

4 + 12x3
4 − 7

g4 = x3 + 4 g′4 = x3 − 15
g5 = x5

4 + 9x4
4 − 3x2

4 g′5 = x5
4 + 9x4

4 − 3x2
4
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Table 22: Runtime comparison (in seconds) of forward generation (F.) and Transformer on timeout
examples. Timeout limit: 100 seconds. Red cells indicate timeout. For each configuration, up to first
10 unique samples are shown. Transformer successfully predicted the correct Gröbner bases for these
examples.

Sample ID D−
n (Q) n = 4 (σ = 0.3)

F. (STD) F. (SLIMGB) F. (STDFGLM) Transformer
23 0.005 100.0 0.008 0.110
49 100.0 0.018 0.008 0.253
64 0.006 100.0 0.008 0.147
171 100.0 100.0 0.015 0.238
341 100.0 0.011 0.008 0.212
384 100.0 100.0 0.009 0.142
423 0.123 100.0 0.008 0.167
530 100.0 0.005 0.010 0.197
542 0.005 100.0 0.008 0.212
552 100.0 100.0 0.008 0.185

Sample ID D−
n (Q) n = 5 (σ = 0.2)

F. (STD) F. (SLIMGB) F. (STDFGLM) Transformer
61 0.005 100.0 0.009 0.170
76 0.004 100.0 0.008 0.292
130 100.0 0.014 0.008 0.227
153 100.0 19.384 0.009 0.220
175 100.0 34.825 0.192 0.390
208 100.0 0.013 0.008 0.223
269 100.0 0.006 0.069 0.320
295 0.005 100.0 0.008 0.282
320 0.005 100.0 0.008 0.309
333 0.135 100.0 0.008 0.296

Sample ID D−
n (F7) n = 4 (σ = 0.3)

F. (STD) F. (SLIMGB) F. (STDFGLM) Transformer
407 100.0 4.788 0.013 0.189
717 100.0 0.004 0.007 0.135
765 100.0 0.004 0.007 0.122
915 100.0 5.832 0.009 0.136
916 100.0 0.022 0.008 0.266

Sample ID D−
n (F7) n = 5 (σ = 0.2)

F. (STD) F. (SLIMGB) F. (STDFGLM) Transformer
74 100.0 100.0 0.045 0.314
121 100.0 100.0 0.011 0.285
256 100.0 100.0 0.008 0.144
267 100.0 0.005 0.008 0.284
274 100.0 0.006 0.007 0.209
433 100.0 38.895 0.013 0.285
438 0.432 100.0 0.011 0.270
492 100.0 0.020 0.007 0.144
568 100.0 0.008 0.007 0.223
766 100.0 100.0 0.009 0.144

Sample ID D−
n (F31) n = 4 (σ = 0.3)

F. (STD) F. (SLIMGB) F. (STDFGLM) Transformer
954 100.0 0.157 0.008 0.123

Sample ID D−
n (F31) n = 5 (σ = 0.2)

F. (STD) F. (SLIMGB) F. (STDFGLM) Transformer
196 100.0 0.051 0.007 0.267
715 100.0 26.161 0.008 0.160
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Table 23: Dataset profile comparison between Du(k) and D−
n (k). The standard deviation is shown in

the superscript.

Metric Du(Q) D−
n (Q) Du(F7) D−

n (F7) Du(F31) D−
n (F31)

Size of F 2.64(±0.73) 2.56(±0.71) 3.06(±0.82) 3.03(±0.81) 3.04(±0.79) 3.01(±0.81)

Max degree in F 4.97(±1.65) 7.44(±1.91) 5.46(±1.77) 7.91(±2.01) 5.56(±1.77) 8.18(±1.98)

Min degree in F 2.50(±1.50) 4.19(±1.91) 2.70(±1.61) 4.33(±2.04) 2.85(±1.63) 4.64(±2.06)

# of terms in F 10.56(±6.02) 15.64(±7.69) 13.46(±7.14) 20.02(±9.60) 13.73(±7.10) 20.79(±9.68)

Gröbner ratio 0(±0) 0(±0) 0.002(±0.045) 0.002(±0.045) 0(±0) 0(±0)

Size of G 2(±0) 2(±0) 2(±0) 2(±0) 2(±0) 2(±0)

Max degree in G 2.48(±1.32) 4.09(±1.31) 2.53(±1.33) 3.94(±1.30) 2.53(±1.38) 4.09(±1.30)

Min degree in G 1.21(±0.54) 2.56(±1.24) 1.20(±0.53) 2.37(±1.21) 1.21(±0.57) 2.60(±1.24)

# of terms in G 3.69(±1.65) 6.65(±2.32) 3.72(±1.64) 6.31(±2.27) 3.74(±1.73) 6.70(±2.32)

Gröbner ratio 1(±0) 1(±0) 1(±0) 1(±0) 1(±0) 1(±0)

Table 24: Accuracy and support accuracy of Transformers on out-distribution evaluation set D+
2 (k).

Metric D+
2 (Q) D+

2 (F7) D+
2 (F31)

accuracy 83.8 52.9 36.1
support acc. 86.7 62.0 54.4

Table 25: Katsura-n on Q[x1, . . . , xn]. Katsura-5 is not presented because of its complexity.

n F G

2 f1 = x0 + 2x1 − 1 g1 = x0 + 2x1 − 1
f2 = x2

0 − x0 + 2x2
1 g2 = x2

1 − 1
3x1

3
f1 = x0 + 2x1 + 2x2 − 1 g1 = x0 − 60x3

2 +
158
7 x2

2 +
8
7x2 − 1

f2 = x2
0 − x0 + 2x2

1 + 2x2
2 g2 = x1 + 30x3

2 − 79
7 x2

2 +
3
7x2

f3 = 2x0x1 + 2x1x2 − x1 g3 = x4
2 − 10

21x
3
2 +

1
84x

2
2 +

1
84x2

4

f1 = x0 + 2x1 + 2x2 + 2x3 − 1 g1 = x0 − 53230079232
1971025 x7

3 +
10415423232

1971025 x6
3 +

9146536848
1971025 x5

3− 2158574456
1971025 x4

3− 838935856
5913075 x3

3+
275119624
5913075 x2

3 +
4884038
5913075x3 − 1

f2 = x2
0 − x0 + 2x2

1 + 2x2
2 + 2x2

3 g2 = x1− 97197721632
1971025 x7

3 +
73975630752

1971025 x6
3−

12121915032
1971025 x5

3 − 2760941496
1971025 x4

3 +
814792828
1971025 x3

3 − 1678512
1971025x

2
3 − 9158924

1971025x3

f3 = 2x0x1 + 2x1x2 − x1 + 2x2x3 g3 = x2+
123812761248

1971025 x7
3− 79183342368

1971025 x6
3+

7548646608
1971025 x5

3 + 3840228724
1971025 x4

3 −
2024910556
5913075 x3

3 − 132524276
5913075 x2

3 +
30947828
5913075 x3

f4 = 2x0x2 + x2
1 + 2x1x3 − x2 g4 = x8

3− 8
11x

7
3+

4
33x

6
3+

131
5346x

5
3− 70

8019x
4
3+

1
3564x

3
3 +

5
42768x

2
3 − 1

128304x3
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction present the scope of the study and its contribu-
tions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We clarify the problem setting in this paper and potential future work in
Section 4.1. Besides, several open questions are discussed in detail in the Appendix H.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .
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Justification: All the assumptions and complete proofs are provided in Sections 4 and C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided detailed description of the experiment setups.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code to reproduce our experiments is released.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details to follow the results are provided in Sections 6
and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars were not measured due to computational costs. However, we
conducted experiments on various setups and provide their details in Sections 6 and F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information is given at the beginning of Section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have confirmed the present study meets the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This paper focuses on the learnability of a mathematical task, and we cannot
see any urgent social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This paper does not have an evident risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: This paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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