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Abstract

We study the convergence rate of first-order methods for rectangular matrix factor-1

ization, which is a canonical nonconvex optimization problem. Specifically, given2

a rank-r matrix A ∈ Rm×n, we prove that gradient descent (GD) can find a pair3

of ϵ-optimal solutions XT ∈ Rm×d and YT ∈ Rn×d, where d ≥ r, satisfying4

∥XTY
⊤
T −A∥F ≤ ϵ∥A∥F in T = O(κ2 log 1

ϵ ) iterations with high probability,5

where κ denotes the condition number of A. Furthermore, we prove that Nesterov’s6

accelerated gradient (NAG) attains an iteration complexity of O(κ log 1
ϵ ), which is7

the best-known bound of first-order methods for rectangular matrix factorization.8

Different from small balanced random initialization in the existing literature, we9

adopt an unbalanced initialization, where X0 is large and Y0 is 0. Moreover,10

our initialization and analysis can be further extended to linear neural networks,11

where we prove that NAG can also attain an accelerated linear convergence rate. In12

particular, we only require the width of the network to be greater than or equal to13

the rank of the output label matrix. In contrast, previous results achieving the same14

rate require excessive widths that additionally depend on the condition number and15

the rank of the input data matrix.16

1 Introduction17

Nonconvex optimization is pervasive in the training of modern machine learning models. Despite the18

success of first-order methods in practice, theoretical understanding of their convergence properties19

is limited even for simple nonconvex problems. Take the rectangular low-rank matrix factorization20

problem as an example, which is a canonical nonconvex problem:21

min
X∈Rm×d,Y∈Rn×d

f(X,Y) =
1

2

∥∥A−XY⊤∥∥2
F
, (1)

where we solve for two small matrices X ∈ Rm×d and Y ∈ Rn×d to approximate a big rank-r target22

matrix A ∈ Rm×n with r ≪ min(m,n) and m,n not necessarily equal. Specifically, we consider23

the over-parameterized regime where d ≥ r, so that the global minimum of (1) is zero. While various24

direct methods exist for solving (1), we focus on understanding the global convergence behaviors of25

first-order methods applied to such a nonconvex problem, with the motivation of gathering insight26

into the training dynamics of neural networks.27

Most existing results study the simplest first-order method, gradient descent (GD), under different28

initialization schemes. Note that the initialization scheme matters to convergence analysis1, due to29

1There are some works [Wang et al., 2022, 2023] proving convergence of GD for general initialization under
large learning rate and similar objective functions, but nonasymptotic convergence analysis is very challenging
and highly dependent on initialization.
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the fact that (1) is a nonconvex and nonsmooth2 optimization problem. Thus, proper initialization30

is important for the fast convergence rates of first-order methods. Ye and Du [2021] show that31

with small Gaussian random initialization, GD can find XT and YT such that f(XT ,YT ) ≤ ϵ in32

T = O(d4(m+ n)2κ4 log 1
ϵ ) iterations with high probability, where κ denotes the condition number.33

Jiang et al. [2023] improve this result to O(κ3 log 1
ϵ ) which has no explicit dimensional dependence34

on m and n. These analyses rely on balanced initialization where entries of X0 and Y0 have the35

same variance so that the iterates are guaranteed to stay in a smooth region.36

Moreover, we remark that to the best of our knowledge, we are not aware of any existing theoretical37

results on rectangular matrix factorization analyzing the global convergence rate of more advanced38

first-order methods such as Nesterov’s accelerated gradient (NAG), which has been proved to achieve39

faster rates for smooth convex optimization problems [Nesterov, 2013].40

Recently, Ward and Kolda [2023] showed that by using an unbalanced random initialization where41

X0 is larger than Y0, alternating gradient descent (AltGD) that alternatingly optimizes Xt and Yt via42

gradient steps can achieve O(d2(d− r + 1)2κ2 log 1
ϵ ) iteration complexity. However, their analysis43

is specifically designed for AltGD and not applicable to GD, let alone more advanced methods such44

as NAG which are nevertheless widely used in machine learning practice. Two questions naturally45

arise here:46

Q1: Can GD achieve the same convergence rate as AltGD for (1)?47

Q2: Can more advanced first-order methods (e.g., NAG) achieve faster convergence rate for (1)?48

• Main Results. We answer the two questions above affirmatively by developing a new theory on49

first-order methods for (1). Specifically, we consider an unbalanced initialization scheme X0 = cAΦ50

and Y0 = 0, where c > 0 is a large constant and Φ is a Gaussian random matrix. Note that our51

initialization of X0 is the same as that in Ward and Kolda [2023], but they initialized Y0 using a small52

Gaussian random matrix. This modification is mainly for simpler analysis and makes little difference53

in practice. Under our new initialization scheme, we first prove an O(d2(d−r+1)2κ2 log 1
ϵ ) iteration54

complexity for GD (Theorem 1), matching that of AltGD in Ward and Kolda [2023]. Our analysis55

is based on a new theoretical framework different from Ward and Kolda [2023] and can be further56

extended to analyzing NAG. We then show that NAG can attain a provable acceleration with an57

O(d(d− r + 1)κ log 1
ϵ ) iteration complexity (Theorem 2). We discuss the tightness of our results58

(Remark 1) and conduct numerical experiments for validation (Section 5). Empirically, we observe59

that NAG exhibits a much faster rate than GD and our bounds are quite tight.60

Our analysis technique can also be applied to linear neural networks. We consider unbalanced61

initialization similar to the one for (1). We show that NAG can achieve an accelerated convergence rate62

for each overparameterization level (Corollaries 1 to 3), under the commonly adopted interpolation63

assumption (Assumption 1, see e.g. Du and Hu 2019). In particular, we only require the network64

width to be greater than the rank of the output matrix.65

• Additional Related Work. For matrix factorization, there is a large body of works focusing on the66

symmetric case, where A is positive semidefinite and A = XX⊤ [Bhojanapalli et al., 2016, Li et al.,67

2018, Zhou et al., 2020]. However, these analyses are difficult to generalize to the rectangular case (1)68

due to the additional unbalanced scaling issue3. To overcome this, additional balancing regularization69

is often required [Tu et al., 2016, Park et al., 2017], which changes the objective function in (1). Du70

et al. [2018] show that GD can automatically balance the two factors hence explicit regularization is71

not necessary, but they only establish linear convergence rate for rank-1 matrix and cannot generalize72

to rank-r case. Some other works remove this regularization for the general matrix sensing problem73

and show linear convergence rate for general ranks [Ma et al., 2021, Tong et al., 2021a,b]. These74

results do not directly apply to our setting as they require singular value decomposition (SVD) at75

initialization, which consumes roughly the same amount of computation as solving (1). Moreover,76

these works only consider exact parameterization (d = r), leaving out the overparameterization77

regime (d > r). Overparameterization may heavily slow down convergence due to the possible78

singularity of iterates, thus some works consider using preconditioning to get acceleration [Stöger79

and Soltanolkotabi, 2021, Zhang et al., 2023, Xu et al., 2023]. These preconditioned methods are80

specifically tailored to symmetric factorization and are not directly comparable with the first-order81

methods we consider, as their algorithms not only use the gradient.82

2Here, the nonsmoothness refers to the lack of uniform Lipschitz constant for the gradient in the full domain.
3In the symmetric case, the solution’s uniqueness is up to rotation, whereas in (1) it is also up to scaling.
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For linear neural networks, Du and Hu [2019] and Hu et al. [2020] show linear convergence of GD83

with Gaussian and orthogonal initialization respectively. Wang et al. [2021] show that Polyak’s heavy84

ball (HB) method [Polyak, 1964] attains accelerated convergence rate with orthogonal initialization.85

Liu et al. [2022] further investigate NAG and show a similar accelerated rate for Gaussian initialization.86

All these previous works consider sufficiently wide networks that depend on the output dimension,87

the rank, and the condition number of input. The results are summarized in Table 1.88

Table 1: Results for linear neural networks. All results in table are based on the assumption L = AD
for some A with cond(A) = O(1), where D denotes the input data, L denotes the output data,
dout denotes the output dimension, δ denote the failure probability, r = rank(D), r = rank(L),
r̃ = ∥D∥2F / ∥D∥2, κ = cond2(D), κ1 = O(κ2), κ2 = O(κ).

Algorithm Initialization Width Rate

GD [Du and Hu, 2019] Gaussian Ω
(
rκ3(dout + log r

δ )
)

(1− 3
4κ )

t

GD [Hu et al., 2020] Orthogonal Ω
(
r̃κ2(dout + log r

δ )
)

(1− 1
4κ )

t

HB [Wang et al., 2021] Orthogonal Ω
(

κ5

∥D∥2 (dout + log r
δ )
)

(1− 1
4
√
κ
)t

NAG [Liu et al., 2022] Gaussian Ω
(
rκ5(dout + log r

δ )
)

(1− 1
2
√
κ
)t

NAG (ours, Corollary 1) Unbalanced (12) ≥ r +Ω(log 1
δ ) (1− 1

2
√
κ1
)t

NAG (ours, Corollary 2) Unbalanced+Orth (13) ≥ r (1− 1
2
√
κ
)t

NAG (ours, Corollary 3) Unbalanced (14) ≥ dout +Ω(log 1
δ ) (1− 1

2
√
κ2
)t

• Notations. Throughout this paper, ∥·∥ denotes the Euclidean norm of a vector or the spectral89

norm of a matrix, and ∥·∥F denotes the Frobenius norm of a matrix. For any matrix, σi(·) denotes90

its i-th largest singular value. For a square matrix, λi(·) denotes its i-th largest eigenvalue. For a91

nonzero positive semidefinite matrix, λmax(·) and λmin(·) denote its largest and smallest nonzero92

eigenvalues respectively. For a matrix X, we use col(X) to denote its column space, ker(X) to denote93

its kernel space and define cond(X) := ∥X∥
∥∥X†

∥∥ as its condition number, where X† denotes the94

pseudoinverse of X. For any positive integer n, In denotes the identity matrix of size n. We use ⊗ to95

denote the Kronecker product between matrices, ⊕ to denote the direct sum of vector spaces, and96

vec(·) to denote the column-first vectorization of a matrix. We use N (µ, σ2) to denote Gaussian97

distribution with mean µ and variance σ2.98

2 Results for Matrix Factorization99

We start with formalizing our initialization scheme for matrix factorization problem (1). Let Φ ∈100

Rn×d be a Gaussian random matrix with i.i.d. entries [Φ]i,j ∼ N (0, 1/d). We initialize101

X0 = cAΦ, Y0 = 0, (2)

where c > 0 is a constant to be specified later. Typically, we require c to be larger than a certain102

threshold, which depends on the dimensions, the extreme singular values of A, and possibly the103

condition number of X0. We note that changing c would not affect cond(X0), hence there is no104

recursive definition. As we mentioned, (2) is a modified version of the initialization in Ward and Kolda105

[2023], where we replace the small random Gaussian matrix Y0 by 0 and choose c independently106

of the step size. We set Y0 = 0 mainly for simplicity, and our analysis can be extended to the case107

where Y0 is a sufficiently small Gaussian random matrix. While the initialization of X0 differs from108

standard Gaussian initialization, it has the following interpretation: Suppose we start from t = −1109

and let X−1 = c′Φ′ and Y−1 = c′′Φ for some 0 < c′ ≪ c′′ ≪ 1 and Gaussian random matrix Φ′,110

then by taking a gradient step with step size c/c′′ we get X0 ≈ cAΦ and Y0 ≈ 0. This initialization111

of X0 also coincides with the first step of randomized singular value decomposition, which is also112

referred to as sketching (see e.g. [Halko et al., 2011]).113

2.1 Gradient Descent114

With initialization (1), we can analyze the global convergence rates of various first-order methods.115

Consider gradient descent (GD) first. The gradient of the squared Frobenius error in (1) is given by116

∇Xf(X,Y) = (XY⊤ −A)Y, ∇Y f(X,Y) = (XY⊤ −A)⊤X.
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For t ≥ 0, the GD update with constant step size η > 0 is written as117 (
Xt+1

Yt+1

)
=

(
Xt − η(XtY

⊤
t −A)Yt

Yt − η(XtY
⊤
t −A)⊤Xt

)
. (3)

Let Rt := XtY
⊤
t − A denote the residual, then f(Xt,Yt) = 1

2 ∥Rt∥2F. We have the following118

convergence rate for GD.119

Theorem 1 (GD convergence rate). For 0 < τ < c1, denote δ = 3e−(d−r+1)·min{log 1
c1τ ,c2,

1
2},120

where c1 and c2 are universal constants. Denote L = σ2
1(X0), µ = σ2

r(X0). Let η = 2
L+µ ,121

c ≥ c :=
√
dσr(A)

12τ(
√
d−

√
r−1)

√
cond4(X0)∥A∥F

cond2(X0)−1
be a sufficiently large constant. Then with c plugged in122

initialization (2), GD returns Xt and Yt with probability at least 1− δ such that123

∥Rt∥F ≤ 3c2σ2
1(A)

64 ∥A∥F

(
1− µ

L

)t
∥A∥F .

In particular, if c = c, then GD finds ∥RT ∥F ≤ ϵ ∥A∥F in124

T = O

(
d2κ2

τ2(d− r + 1)2
· log C

ϵ

)
,

iterations, where C = 27τ2(d−r+1)2

16d2

cond4(X0)κ
2

cond2(X0)−1
.125

Theorem 1 shows that GD converges in O(d2(d − r + 1)−2κ2 log 1
ϵ ) iterations with initialization126

(2), and the constant prefactor does not have dependence on the ambient dimension m and n. This127

matches the convergence rate for AltGD derived in Ward and Kolda [2023]. The step size 2
L+µ is128

commonly used in optimization literature and leads to optimal convergence rate [Nesterov, 2013].129

2.2 Nesterov’s Accelerated Gradient130

We then consider Nesterov’s accelerated gradient (NAG) method [Nesterov, 2013] applied to (1). We131

take the form of NAG that is originally designed for smooth strongly convex loss function ℓ:132

zt+1 = z̃t − η∇ℓ(z̃t), z̃t+1 = zt+1 + β(zt+1 − xt),

where η is the step size, β is the momentum parameter, and z or z̃ in our case consists of both X and133

Y. If we focus on the {z̃t} sequence with z̃t = (Xt,Yt) and plug in the objective function in (1),134

then with X−1 = X0 and Y−1 = Y0, the NAG update is given by135 (
Xt+1

Yt+1

)
=

(
(1 + β)(Xt − ηRtYt)− β(Xt−1 − ηRt−1Yt−1)
(1 + β)(Yt − ηR⊤

t Xt)− β(Yt−1 − ηR⊤
t−1Xt−1)

)
. (4)

We have the following convergence rate for NAG.136

Theorem 2 (NAG convergence rate). For 0 < τ < c1, define δ as in Theorem 1. Denote L = σ2
1(X0),137

µ = σ2
r(X0). Let η = 1

L , β =
√
L−√

µ√
L+

√
µ

, c ≥ c := 29

√
d(2

√
d+

√
r)∥A∥F·κ

τ3(
√
d−

√
r−1)3σ2

r(A)
be a constant. Then with138

c plugged in initialization (2), NAG returns Xt and Yt with probability at least 1− δ such that139

∥Rt∥F ≤ c2σ2
1(A)

64 ∥A∥F cond(X0)

(
1−

√
µ

2
√
L

)t

∥A∥F .

In particular, if c = c then GD finds ∥RT ∥F ≤ ϵ ∥A∥F in140

T = O

(
dκ

τ(d− r + 1)
· log C

ϵ

)
,

iterations, where C = 841d(2
√
d+

√
r)

64τ3(
√
d−

√
r−1)3

· κ3

cond(X0)
.141

Theorem 2 shows that NAG can achieve O(d(d− r + 1)−1κ log 1
ϵ ) iteration complexity with high142

probability. The dependence on the condition number κ is improved from being quadratic to linear.143

Moreover, the dependence on the dimension is also improved. As shown in Theorem 1, the GD144

iteration number has an O(d2) dependence in the worst case (d = r). Here, NAG has at most145

O(d) dependence. The level of overparameterization d will affect both the convergence rate and the146

probability of success. To ensure a small fail probability δ, it requires d = r − 1 + Ω(log 1
δ ). Again,147

the step size 1
L and momentum

√
L−√

µ√
L+

√
µ

are commonly used in the literature [Nesterov, 2013].148
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3 Proof Sketch for Convergence Rates149

We now provide the proof sketch for Theorems 1 and 2. Our proof is based on induction. We start150

with the assumptions that Xt and Yt are not too far from X0 and Y0 respectively and the initial151

residual is bounded by some constant, which are guaranteed at time t = 0. Given the induction152

assumptions, we then track the dynamics of residual Rt and decompose it into linear and higher-order153

parts. We can show that the linear part is contracted and the higher-order part shrinks exponentially,154

together implying that ∥Rt+1∥F = O(θt) for some θ ∈ (0, 1) and Xt+1 and Yt+1 is still within a155

bounded region around initialization. This shows the induction assumptions for the next iterate, thus156

by invoking the induction we complete the proof.157

The key to our proof is to show the contraction and its rate. Firstly, the linear part of the dynamics is158

not a contraction over the whole space, thus we need to identify in which subspace it is a contraction.159

Secondly, we need to quantify the rate of contraction to get global convergence rates. These necessitate160

the following proposition about the properties of X0 with initialization (2).161

Proposition 1. For any τ, c > 0, A ∈ Rm×n being a rank-r matrix with condition number162

κ := cond(A), Φ ∈ Rn×d being a random matrix with i.i.d. entries from N (0, 1/d), the following163

holds for X0 = cAΦ with probability at least 1− δ:164

τ(
√
d−

√
r − 1)√

d
c · σr(A) ≤ σr(X0) ≤ σ1(X0) ≤

2
√
d+

√
r√

d
c · σ1(A),

where δ = 3e−min{(d−r+1) log 1
c1τ ,c2d,

d
2 }, c1 and c2 are universal constants. When it holds, the165

condition number of X0 is bounded:166

cond(X0) ≤
2
√
d+

√
r

τ(
√
d−

√
r − 1)

· κ ≤ 6d

τ(d− r + 1)
· κ.

By Proposition 1, the top singular value of X0 is bounded from above by σ1(A), and the r-th singular167

value of X0 is bounded from below by σr(A), hence we have cond(X0) = O(κ). Moreover, X0 has168

rank r with probability 1 and thus it preserves the column space of A, i.e., col(X0) = col(A). This169

subspace preservation property will be passed to subsequent iterations of first-order methods and is170

critical to our analysis. In particular, we will show this space corresponds to the contraction subspace.171

3.1 Proof Sketch for GD Convergence Rate (Theorem 1)172

As mentioned, we track the dynamics of Rt for GD to prove Theorem 1. Let rt = vec(Rt) denote173

the vectorized residual, then the GD update (3) corresponds to the following dynamics:174

Proposition 2 (GD dynamics). Let Pt = Xt+1 −Xt and Qt = Yt+1 −Yt denote the update steps175

for t ≥ 0. Then GD (3) admits the following dynamics:176

rt+1 = (Imn − ηH0)rt + ξt, (5)

where Ht = (YtY
⊤
t )⊗ Im + In ⊗ (XtX

⊤
t ) and ξt = η(H0 −Ht)rt + vec(PtQ

⊤
t ).177

The linear part at time t is (Imn − ηHt)rt, which is approximately (Imn − ηH0)rt when Xt and Yt178

are close to their initialization. The approximation error along with the higher-order term vec(PtQ
⊤
t )179

is contained in ξt. It follows immediately from Proposition 2 that180

rt+1 = (Imn − ηH0)
t+1r0 +

t∑
s=0

(Imn − ηH0)
t−sξs.

If TGD := Imn − ηH0 is a contraction map, i.e., it has top eigenvalue |λ1(TGD)| ≤ ρ for some181

ρ ∈ [0, 1), and the nonlinear error ξt shrinks exponentially at rate θ ∈ (ρ, 1), then we have ∥rt∥ =182

O(θt). However, for d < min(m,n)/2, TGD cannot be a contraction map for any η, as the rank of183

H0 is at most (m + n)d < mn. In fact, if X0 is initialized as in (2), then rank(H0) = nr < mn184

regardless of the choice of d. As H0 has no full rank, TGD must have a non-trivial eigensubspace185

corresponding to eigenvalue 1. In the following lemma, we show that rt and ξt are not in this “bad”186

subspace but rather in a contracted subspace as desired.187

Lemma 1 (Eigensubspace). Let H ⊆ Rmn denote the linear subspace containing all eigenvectors of188

H0 with positive eigenvalues. If X0 is initialized as in (2), then we have189

H = (col(A))n and {rt, ξt}t≥0 ⊂ H,

where H0, rt and ξt are defined as in Proposition 2.190
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Given that rt and ξt are in the contracted subspace H throughout all iterations, the convergence rate191

is determined by the contractivity of TGD over this subspace, which corresponds to the condition192

number of X0 with initialization (2).193

Lemma 2 (GD contractivity). Let L = σ2
1(X0), µ = σ2

r(X0), and H be defined as in Lemma 1. Let194

η ∈ (0, 2
L ), then for any v ∈ H,195

∥TGDv∥ ≤ max{|1− ηL| , |1− ηµ|} ∥v∥ .
In particular, if η = 2

L+µ , then ∥TGDv∥ ≤ L−µ
L+µ ∥v∥.196

By Lemmas 1 and 2, the linear part of GD dynamics contracts rt and ξt, and the rate of contraction197

is ρ = max{|1− ηL| , |1− ηµ|}. To complete the proof, it remains to bound the magnitude of error198

ξt and show induction conditions for the next iteration. This is guaranteed by the following lemma.199

Lemma 3 (Nonlinear error). If there exist θ ∈ (0, 1) and some constants C1 and C2 such that for200

any s ≤ t, the GD dynamics (5) yields ∥rs∥ ≤ C1θ
s ∥r0∥, ∥Xs −X0∥F ≤ C2, ∥Ys −Y0∥F ≤ C2,201

then we have202 ∥∥vec(PsQ
⊤
s )
∥∥ ≤ C3θ

2s ∥r0∥2 and ∥η(H0 −Hs)rs∥ ≤ C4θ
s ∥r0∥

for some constants C3 and C4 depending on C1 and C2. Moreover, if C1 and C2 satisfy203

(max(∥X0∥ , ∥Y0∥) + C2) ηC1 ∥r0∥ ≤ (1− θ)C2, (6)
then we have ∥Xt+1 −X0∥F ≤ C2 and ∥Yt+1 −Y0∥F ≤ C2.204

Lemma 3 shows that ∥ξt∥ = O(θt) if the residual shrinks exponentially and the iterates are not too205

far from initialization, which in turn implies that Xt+1 and Yt+1 are also within the C2-balls around206

their initialization. It turns out that there is a set of valid coefficients for the induction to go through as207

long as the c in (2) is sufficiently large. Therefore, by choosing c properly and plugging in ρ = L−µ
L+µ208

and θ = 1− µ
L , we prove Theorem 1 for GD. The complete proof is provided in Appendix B.6.209

3.2 Proof Sketch for NAG Convergence Rate (Theorem 2)210

We now turn to prove Theorem 2. Similar to GD, we track the residual dynamics of NAG.211

Proposition 3 (NAG dynamics). Let Pt = Xt+1 −Xt and Qt = Yt+1 −Yt denote the update212

steps for t ≥ 0. Then NAG (4) admits the following dynamics:213 (
rt+1

rt

)
=

(
(1 + β)(Imn − ηH0) −β(Imn − ηH0)

Imn 0

)(
rt

rt−1

)
+

(
ξt
0

)
, (7)

where Ht = (YtY
⊤
t )⊗ Im + In ⊗ (XtX

⊤
t ), ξt = ζt + ιt,214

ζt = vec(PtQ
⊤
t ) + β vec(Pt−1Q

⊤
t−1) + βη vec(Rt−1Yt−1Q

⊤
t−1 +Pt−1X

⊤
t−1Rt−1),

ιt = (1 + β)η(H0 −Ht)rt − βη(H0 −Ht−1)rt−1.

As Proposition 3 shows, NAG dynamics (7) has additional momentum terms involving Pt and Qt.215

When β = 0, it reduces to the GD dynamics (5). The introduction of momentum terms allows the216

linear part in (7) to contract rt and ξt faster. To be more explicit, let217

TNAG :=

(
(1 + β)(Imn − ηH0) −β(Imn − ηH0)

Imn 0

)
(8)

denote the linear part of the system. The next lemma shows NAG improves the rate of contraction.218

Lemma 4 (NAG contractivity). Let η = 1
L , β =

√
L−√

µ√
L+

√
µ

, then for all (u,v) ∈ H ×H,219 ∥∥∥∥TNAG

(
u
v

)∥∥∥∥ ≤
(
1−

√
µ

L

)∥∥∥∥(uv
)∥∥∥∥ .

The price to pay for the faster rate of contraction is the additional perturbations. The ιt term220

characterizes dynamics shift, which can be controlled as GD in Lemma 3. The ζt term characterizes221

higher-order terms in the dynamics (7), which can be controlled by the updates Pt and Qt. In GD,222

these terms correspond to the gradient so that they can be bounded if Rt shrinks and Xt and Yt are223

not too far away from X0 and Y0. In NAG, we have224

Pt = ηRtYt + η

t∑
s=1

βt−s+1RsYs

and a similar equation holds for Qt. If Rt shrinks at rate θ > θ2 ≥ β, then we have an O(θt) upper225

bound for ∥Pt∥F and ∥Qt∥F. We formalize the argument in the following induction lemma.226

6



Lemma 5. Suppose 0 < β ≤ θ2 < θ < 1. If there exist some constants C1 and C2 such that for227

any s ≤ t, the NAG dynamics (7) yields
∥∥∥∥( rs

rs−1

)∥∥∥∥ ≤ C1θ
s

∥∥∥∥( r0
r−1

)∥∥∥∥, ∥Xs −X0∥F ≤ C2, and228

∥Ys −Y0∥F ≤ C2, then we have229

∥ζt∥ ≤ C3θ
2t

∥∥∥∥( r0
r−1

)∥∥∥∥2 , and ∥ιt∥ ≤ C4θ
t

∥∥∥∥( r0
r−1

)∥∥∥∥
for some constants C3 and C4 depending on C1 and C2. Moreover, if C1 and C2 satisfy230

(max(∥X0∥ , ∥Y0∥) + C2) ηC1

∥∥∥∥( r0
r−1

)∥∥∥∥ ≤ (1− θ)2C2, (9)

then we have ∥Xt+1 −X0∥F ≤ C2 and ∥Yt+1 −Y0∥F ≤ C2.231

Lemma 5 is similar to Lemma 3. Again by choosing a sufficiently large c to initialize X0, we can find232

a set of feasible coefficients for the induction. In particular, we plug in ρ = 1−
√
µ√
L

, θ = 1−
√
µ

2
√
L

233

and β =
√
L−√

µ√
L+

√
µ

, then c defined in Theorem 2 ensures the success of induction, hence the accelerated234

convergence rate of NAG is proved. The complete proof is provided in Appendix C.4.235

Remark 1. Our analysis differs from that of Ward and Kolda [2023]. Their analysis is based on236

the Polyak-Łojasiewicz (PL) inequality [Łojasiewicz, 1963]: f(Xt,Y) is approximately µ-PL and237

L-smooth in Y, and the unbalanced initialization (large X0 small Y0) ensures that only Y matters238

to the convergence rate, as X is not changing by much. Since the objective function in (1) is quadratic239

in X, the problem has condition number κ̂ := L
µ = O(κ2). With these notations, the complexity in240

Ward and Kolda [2023] reads as O(κ̂ log 1
ϵ ), which is standard for PL functions.241

However, PL inequality cannot fully capture the properties of (1), and the analysis in Ward and242

Kolda [2023] does not apply to the case where Xt and Yt are updated simultaneously rather than243

alternatingly. In fact, if we fix X ≡ X0 and optimize Y only, then our initialization (2) makes the244

problem quasi-strongly convex (QSC), which is strictly stronger than PL [Necoara et al., 2019]. For245

QSC functions, NAG can achieve O(
√
κ̂ log 1

ϵ ) convergence rate Necoara et al. [2019], while for PL246

functions the rate can only be Ω(κ̂ log 1
ϵ ) [Yue et al., 2023].247

We note that simultaneously optimizing X and Y causes the nonconvexity issue and hence (1) does248

not fit in the framework for QSC functions as it requires convexity. Our results in Theorems 1 and 2249

match the ones for QSC functions and Theorem 2 further matches the lower bound for general smooth250

strongly convex functions [Nemirovski and Yudin, 1983], which generally exhibit more favorable251

properties than nonconvex optimization problems to which (1) belongs. Hence, we conjecture that252

our rate bounds are tight for both GD and NAG. However, rigorous theory is yet to be constructed to253

solidify our conjecture.254

4 Extension to Linear Neural Network255

Our analysis can be extended to the mean-square-loss training of two-layer linear neural networks,256

which is equivalent to the following optimization problem:257

min
X∈Rm×d,Y∈Rn×d

f(X,Y) =
1

2

∥∥L−XY⊤D
∥∥2
F
. (10)

Here, D ∈ Rn×N corresponds to all input data concatenated together, L ∈ Rm×N denotes the labels,258

N is the total number of training data samples, and d is the network width. We make the following259

interpolation assumption, which is commonly adopted in the study of the convergence rate of linear260

neural networks [Du and Hu, 2019, Hu et al., 2020, Wang et al., 2021].261

Assumption 1 (Interpolation). There is A with cond(A) = O(1) such that L = AD, rank(L) = r.262

Under Assumption 1, we can establish a linear convergence rate for NAG when the initialization is263

sufficiently unbalanced and X0 contains the column space of L.264

Theorem 3. Let L̃ = σ2
1(X0) · λmax(DD⊤), µ̃ = σ2

r(X0) · λmin(DD⊤). Suppose Y0 = 0, X0 is265

initialized such that col(X0) ⊇ col(L) and it satisfies266

µ̃p ≥ 4
√
2
∥∥LD⊤∥∥

F
(1 + p), (11)
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where p =
√
µ̃

144
√

L̃
does not depend on the scaling of X0. If we choose η = 1

L̃
and β =

√
L̃−

√
µ̃√

L̃+
√
µ̃

,267

then the t-th iterate of NAG (Xt and Yt) will correspond to residual Rt = XtY
⊤
t D− L satisfying268

∥Rt∥F ≤ σ2
r(X0)σmin(D)

576 ∥LD⊤∥F

(
1−

√
µ̃

2
√

L̃

)t ∥∥LD⊤∥∥
F
.

Equivalently, let C =
σ2
r(X0)σmin(D)
576∥LD⊤∥F

, then the iteration complexity for ϵ relative error is269

T = O

(
σ1(X0)

√
λmax(DD⊤)

σr(X0)
√

λmin(DD⊤)
log

(
C

ϵ

))
.

As Theorem 3 shows, if our initialization guarantees the column space of X0 contains columns of L,270

then the residual shrinks at a linear rate. In the worst case, the columns of L span the whole space of271

Rm, hence d should be at least m. However, when the data exhibits some low-dimensional properties,272

e.g., D is low-rank, then r can be much smaller than m and N . In this case, an initialization similar273

to (2) can meet the requirement of Theorem 3. Moreover, note that the convergence rate depends on274

both D and X0, hence by orthonormalization we can make cond(X0) = 1 for a faster rate. When275

r ≤ d ≪ min(m,N), such orthonormalization is affordable as it takes O(md2) time rather than276

O(mN2) in the worst case. We summarize these initialization options:277

d ≥ r, Φ ∈ RN×d, [Φ]i,j ∼ N (0, 1/d), X0 = c · LΦ, Y0 = 0; (12)

d ≥ r, Φ ∈ RN×d, [Φ]i,j ∼ N (0, 1/d), X0 = c · Orth(LΦ), Y0 = 0; (13)

d ≥ m, Φ ∈ Rm×d, [Φ]i,j ∼ N (0, 1/d), X0 = c ·Φ, Y0 = 0; (14)
Here, Orth(·) denotes the orthonormalization result whose columns are orthonormal. By applying278

singular value bounds and invoking Theorem 3, we obtain the following corollaries.279

Corollary 1. Suppose initialization (12) is applied with some sufficiently large c. For any 0 < τ < c1,280

0 < δ < 1, if d ≥ r − 1 + Ω(log 1
δ ), then with probability at least 1 − δ, NAG finds XT and YT281

such that f(XT ,YT ) ≤ ϵ
∥∥LD⊤

∥∥2
F

where282

T = O

(
d · cond(L)
τ(d− r + 1)

√
λmax(DD⊤)√
λmin(DD⊤)

log
1

ϵ

)
.

Corollary 2. Suppose initialization (13) is applied with some sufficiently large c. If d ≥ r, then with283

probability 1, NAG finds XT and YT such that f(XT ,YT ) ≤ ϵ
∥∥LD⊤

∥∥2
F

where284

T = O

(√
λmax(DD⊤)

λmin(DD⊤)
log

1

ϵ

)
.

Corollary 3. Suppose initialization (14) is applied with some sufficiently large c. For any 0 < τ < c1,285

0 < δ < 1, if d ≥ m− 1 + Ω(log 1
δ ), then with probability at least 1− δ, NAG finds XT and YT286

such that f(XT ,YT ) ≤ ϵ
∥∥LD⊤

∥∥2
F

where287

T = O

(
d

τ(d−m+ 1)

√
λmax(DD⊤)√
λmin(DD⊤)

log
1

ϵ

)
.

Remark 2. While we only consider NAG in this section, our analysis can be directly applied to GD288

and obtain O
(

σ2
1(X0)λmax(DD⊤)

σ2
r(X0)λmin(DD⊤)

log 1
ϵ

)
convergence rate with initializations (12) to (14).289

Corollaries 2 and 3 show accelerated convergence rate of NAG, as their dependence on the condition290

number κ := λmax(DD⊤)
λmin(DD⊤)

= cond2(D) is O(
√
κ) rather than O(κ), matching the results in Wang et al.291

[2021] for HB and Liu et al. [2022] for NAG. Meanwhile, Corollary 1 has an additional dependence292

on cond(L). Under Assumption 1, cond(L) = O(
√
κ) and hence the overall dependence is O(κ).293

Although this is slower than NAG with initialization (13) or (14), it still outperforms GD with294

initialization (12), which has O(κ2) dependence. Compared to previous results listed in Table 1, we295

only require the network width to be Ω(r+log 1
δ ) or Ω(m+log 1

δ ) depending on the initialization and296

there is no additional dependence on the input rank or condition number. When the data is low-rank,297

NAG with initialization (12) enables the sublinear-width (w.r.t. output dimension and sample size)298

network to converge linearly. It can be further accelerated if orthonormalization is adopted (13),299

which echos the orthogonal initialization in Hu et al. [2020], Wang et al. [2021]. In the general case,300

our analysis still provides a tighter result, as (14) only requires the width to be Ω(m+ log 1
δ ).301
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5 Numerical Experiment302

We validate our results via numerical experiments. For matrix factorization (1), we construct303

A = UΣV⊤ ∈ R100×80, where Σ ∈ R5×5 is diagonal with σ1(Σ) = 1 and σ5(Σ) = 0.2, and304

U and V are orthonormal matrices. We set different levels of overparameterization (d ≥ 5) and305

initialize X0 and Y0 according to (2) with c = 50
√
d. For linear neural network (10), we construct306

the input data matrix D = UΣV⊤ ∈ R80×120, where Σ ∈ R5×5 is diagonal with σ1(Σ) = 1 and307

σ5(Σ) = 0.5, U is orthonormal and V is Gaussian. We use a Gaussian matrix A ∈ R100×80 to308

construct the label matrix L = AD. We keep c = 50
√
d and initialize X0 and Y0 according to (12).309

We run all experiments with 10 different initialization seeds and take the average.310

0 100 200
iteration

10 9

10 6

10 3

100

103

lo
ss

matrix factorization

0 100 200
iteration

linear network

GD,d=5
AltGD,d=5
GD(1/L),d=5
GD,d=20
AltGD,d=20
GD(1/L),d=20
GD,d=80
AltGD,d=80
GD(1/L),d=80

Figure 1: GD and AltGD achieve similar performance.
The left plot is for (1), and the right plot is for (10).

We first compare GD and AltGD. For matrix311

factorization, We use the same initialization and312

the same step size η = 2/(L + µ), where L313

and µ are computed as defined in Theorems 1314

and 2. For linear neural networks, L and µ are315

replaced by L̃ and µ̃ in Theorem 3. As shown316

in Figure 1, they perform very similarly and the317

loss curves are overlapped. To better illustrate,318

we additionally use η = 1/L for GD, and it319

performs differently from GD/AltGD with η =320

2/(L+ µ).321

0 100 200
iteration

10 25

10 20

10 15

10 10

10 5

100

105

lo
ss

matrix factorization

0 100 200
iteration

linear network

GD,d=5
NAG,d=5
GD,d=20
NAG,d=20
GD,d=80
NAG,d=80

Figure 2: NAG converges faster than GD. The left plot
is for (1), and the right plot is for (10).

We then compare GD and NAG. For matrix fac-322

torization, we use η = 2/(L+µ) for GD and use323

η = 1/L and β = (
√
L−√

µ)/(
√
L+

√
µ) for324

NAG, where L and µ are computed as defined325

in Theorem 2. For linear neural networks, we re-326

place L and µ by L̃ and µ̃ defined in Theorem 3.327

The results are shown in Figure 2. As illustrated,328

NAG exhibits much faster convergence than GD.329

Moreover, a higher overparameterization level330

helps accelerate convergence, as predicted by331

the prefactor O(poly(d(d − r + 1)−1)) in our332

iteration complexity.333

0 1000 2000
iteration

10 24

10 20

10 16

10 12

10 8

10 4

100
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ss

=10

0 1000 2000
iteration

=100
GD,d=5
GD(T),d=5
NAG,d=5
NAG(T),d=5
GD,d=20
GD(T),d=20
NAG,d=20
NAG(T),d=20
GD,d=80
GD(T),d=80
NAG,d=80
NAG(T),d=80

Figure 3: Comparison of predicted loss and numerical
loss for matrix factorization. The left plot is for GD
where κ = 10, and the right plot is for GD and NAG
where κ = 100. (T) denotes theory prediction.

To further illustrate the tightness of our the-334

ory, we compare our theoretical predictions335

with the actual loss in matrix factorization, as336

shown in Figure 3. We set c = 200
√
d and337

σ5(Σ) ∈ 0.1, 0.01, keeping other settings un-338

changed. The theoretical prediction at step t is339

computed as (1 − µ/L)2t · f(X0,Y0) for GD340

and (1 −√
µ/(2

√
L))2t · f(X0,Y0) for NAG.341

We observe that the slope of the predicted loss342

closely matches the actual loss, supporting the343

tightness of our theory, especially for GD.344

6 Conclusion and Future Work345

We establish the convergence rate of GD and346

NAG for rectangular matrix factorization (1) under an unbalanced initialization and show the provable347

acceleration of NAG. We further extend our analysis to linear neural networks (10) and show the348

acceleration of NAG without excessive width requirements in previous work. Numerical experiments349

are provided to support our theory.350

We believe our analysis can be extended to initialization where X0 ≈ cAΦ and Y0 ≈ 0 rather351

than exactly equal. Relaxing the exact rank-r condition to approximately rank-r is also a possible352

generalization. The linear neural network model considered in this paper cannot fully capture the353

practical settings. We leave the extension to nonlinear activations for future work.354
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NeurIPS Paper Checklist427

The checklist is designed to encourage best practices for responsible machine learning research,428

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove429

the checklist: The papers not including the checklist will be desk rejected. The checklist should430

follow the references and precede the (optional) supplemental material. The checklist does NOT431

count towards the page limit.432

Please read the checklist guidelines carefully for information on how to answer these questions. For433

each question in the checklist:434

• You should answer [Yes] , [No] , or [NA] .435

• [NA] means either that the question is Not Applicable for that particular paper or the436

relevant information is Not Available.437

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).438

The checklist answers are an integral part of your paper submission. They are visible to the439

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it440

(after eventual revisions) with the final version of your paper, and its final version will be published441

with the paper.442

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.443

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a444

proper justification is given (e.g., "error bars are not reported because it would be too computationally445

expensive" or "we were unable to find the license for the dataset we used"). In general, answering446
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"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we447

acknowledge that the true answer is often more nuanced, so please just use your best judgment and448

write a justification to elaborate. All supporting evidence can appear either in the main paper or the449

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification450

please point to the section(s) where related material for the question can be found.451

IMPORTANT, please:452

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",453

• Keep the checklist subsection headings, questions/answers and guidelines below.454

• Do not modify the questions and only use the provided macros for your answers.455

1. Claims456

Question: Do the main claims made in the abstract and introduction accurately reflect the457

paper’s contributions and scope?458

Answer: [Yes]459

Justification: The main claims made in the abstract and introduction (Section 1) accurately460

reflect the paper’s contributions and scope.461

Guidelines:462

• The answer NA means that the abstract and introduction do not include the claims463

made in the paper.464

• The abstract and/or introduction should clearly state the claims made, including the465

contributions made in the paper and important assumptions and limitations. A No or466

NA answer to this question will not be perceived well by the reviewers.467

• The claims made should match theoretical and experimental results, and reflect how468

much the results can be expected to generalize to other settings.469

• It is fine to include aspirational goals as motivation as long as it is clear that these goals470

are not attained by the paper.471

2. Limitations472

Question: Does the paper discuss the limitations of the work performed by the authors?473

Answer: [Yes]474

Justification: We state all settings and assumptions required for our results and discuss475

limitations (e.g. exact rank-r A, Y0 = 0, etc.) in Sections 1, 2, 4 and 6.476

Guidelines:477

• The answer NA means that the paper has no limitation while the answer No means that478

the paper has limitations, but those are not discussed in the paper.479

• The authors are encouraged to create a separate "Limitations" section in their paper.480

• The paper should point out any strong assumptions and how robust the results are to481

violations of these assumptions (e.g., independence assumptions, noiseless settings,482

model well-specification, asymptotic approximations only holding locally). The authors483

should reflect on how these assumptions might be violated in practice and what the484

implications would be.485

• The authors should reflect on the scope of the claims made, e.g., if the approach was486

only tested on a few datasets or with a few runs. In general, empirical results often487

depend on implicit assumptions, which should be articulated.488

• The authors should reflect on the factors that influence the performance of the approach.489

For example, a facial recognition algorithm may perform poorly when image resolution490

is low or images are taken in low lighting. Or a speech-to-text system might not be491

used reliably to provide closed captions for online lectures because it fails to handle492

technical jargon.493

• The authors should discuss the computational efficiency of the proposed algorithms494

and how they scale with dataset size.495

• If applicable, the authors should discuss possible limitations of their approach to496

address problems of privacy and fairness.497
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• While the authors might fear that complete honesty about limitations might be used by498

reviewers as grounds for rejection, a worse outcome might be that reviewers discover499

limitations that aren’t acknowledged in the paper. The authors should use their best500

judgment and recognize that individual actions in favor of transparency play an impor-501

tant role in developing norms that preserve the integrity of the community. Reviewers502

will be specifically instructed to not penalize honesty concerning limitations.503

3. Theory Assumptions and Proofs504

Question: For each theoretical result, does the paper provide the full set of assumptions and505

a complete (and correct) proof?506

Answer: [Yes]507

Justification: We clearly state all sets of assumptions (Sections 1, 2 and 4) and proof sketches508

in the main part of the paper (Section 3), and provide complete and verified proof in the509

appendix (Appendix A to D). Theorems and Lemmas are properly referenced.510

Guidelines:511

• The answer NA means that the paper does not include theoretical results.512

• All the theorems, formulas, and proofs in the paper should be numbered and cross-513

referenced.514

• All assumptions should be clearly stated or referenced in the statement of any theorems.515

• The proofs can either appear in the main paper or the supplemental material, but if516

they appear in the supplemental material, the authors are encouraged to provide a short517

proof sketch to provide intuition.518

• Inversely, any informal proof provided in the core of the paper should be complemented519

by formal proofs provided in appendix or supplemental material.520

• Theorems and Lemmas that the proof relies upon should be properly referenced.521

4. Experimental Result Reproducibility522

Question: Does the paper fully disclose all the information needed to reproduce the main ex-523

perimental results of the paper to the extent that it affects the main claims and/or conclusions524

of the paper (regardless of whether the code and data are provided or not)?525

Answer: [Yes]526

Justification: We state all main configurations of our experiments in Section 5 that allows527

one to reproduce our results.528

Guidelines:529

• The answer NA means that the paper does not include experiments.530

• If the paper includes experiments, a No answer to this question will not be perceived531

well by the reviewers: Making the paper reproducible is important, regardless of532

whether the code and data are provided or not.533

• If the contribution is a dataset and/or model, the authors should describe the steps taken534

to make their results reproducible or verifiable.535

• Depending on the contribution, reproducibility can be accomplished in various ways.536

For example, if the contribution is a novel architecture, describing the architecture fully537

might suffice, or if the contribution is a specific model and empirical evaluation, it may538

be necessary to either make it possible for others to replicate the model with the same539

dataset, or provide access to the model. In general. releasing code and data is often540

one good way to accomplish this, but reproducibility can also be provided via detailed541

instructions for how to replicate the results, access to a hosted model (e.g., in the case542

of a large language model), releasing of a model checkpoint, or other means that are543

appropriate to the research performed.544

• While NeurIPS does not require releasing code, the conference does require all submis-545

sions to provide some reasonable avenue for reproducibility, which may depend on the546

nature of the contribution. For example547

(a) If the contribution is primarily a new algorithm, the paper should make it clear how548

to reproduce that algorithm.549

(b) If the contribution is primarily a new model architecture, the paper should describe550

the architecture clearly and fully.551
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(c) If the contribution is a new model (e.g., a large language model), then there should552

either be a way to access this model for reproducing the results or a way to reproduce553

the model (e.g., with an open-source dataset or instructions for how to construct554

the dataset).555

(d) We recognize that reproducibility may be tricky in some cases, in which case556

authors are welcome to describe the particular way they provide for reproducibility.557

In the case of closed-source models, it may be that access to the model is limited in558

some way (e.g., to registered users), but it should be possible for other researchers559

to have some path to reproducing or verifying the results.560

5. Open access to data and code561

Question: Does the paper provide open access to the data and code, with sufficient instruc-562

tions to faithfully reproduce the main experimental results, as described in supplemental563

material?564

Answer: [Yes]565

Justification: We provide anonymized code in the zip file for experiments in Section 5 as566

supplement materials.567

Guidelines:568

• The answer NA means that paper does not include experiments requiring code.569

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/570

public/guides/CodeSubmissionPolicy) for more details.571

• While we encourage the release of code and data, we understand that this might not be572

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not573

including code, unless this is central to the contribution (e.g., for a new open-source574

benchmark).575

• The instructions should contain the exact command and environment needed to run to576

reproduce the results. See the NeurIPS code and data submission guidelines (https:577

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.578

• The authors should provide instructions on data access and preparation, including how579

to access the raw data, preprocessed data, intermediate data, and generated data, etc.580

• The authors should provide scripts to reproduce all experimental results for the new581

proposed method and baselines. If only a subset of experiments are reproducible, they582

should state which ones are omitted from the script and why.583

• At submission time, to preserve anonymity, the authors should release anonymized584

versions (if applicable).585

• Providing as much information as possible in supplemental material (appended to the586

paper) is recommended, but including URLs to data and code is permitted.587

6. Experimental Setting/Details588

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-589

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the590

results?591

Answer: [Yes]592

Justification: We specify all important experiment details in Section 5.593

Guidelines:594

• The answer NA means that the paper does not include experiments.595

• The experimental setting should be presented in the core of the paper to a level of detail596

that is necessary to appreciate the results and make sense of them.597

• The full details can be provided either with the code, in appendix, or as supplemental598

material.599

7. Experiment Statistical Significance600

Question: Does the paper report error bars suitably and correctly defined or other appropriate601

information about the statistical significance of the experiments?602

Answer: [No]603
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Justification: Our experiments do not require error bars.604

Guidelines:605

• The answer NA means that the paper does not include experiments.606

• The authors should answer "Yes" if the results are accompanied by error bars, confi-607

dence intervals, or statistical significance tests, at least for the experiments that support608

the main claims of the paper.609

• The factors of variability that the error bars are capturing should be clearly stated (for610

example, train/test split, initialization, random drawing of some parameter, or overall611

run with given experimental conditions).612

• The method for calculating the error bars should be explained (closed form formula,613

call to a library function, bootstrap, etc.)614

• The assumptions made should be given (e.g., Normally distributed errors).615

• It should be clear whether the error bar is the standard deviation or the standard error616

of the mean.617

• It is OK to report 1-sigma error bars, but one should state it. The authors should618

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis619

of Normality of errors is not verified.620

• For asymmetric distributions, the authors should be careful not to show in tables or621

figures symmetric error bars that would yield results that are out of range (e.g. negative622

error rates).623

• If error bars are reported in tables or plots, The authors should explain in the text how624

they were calculated and reference the corresponding figures or tables in the text.625

8. Experiments Compute Resources626

Question: For each experiment, does the paper provide sufficient information on the com-627

puter resources (type of compute workers, memory, time of execution) needed to reproduce628

the experiments?629

Answer: [No]630

Justification: Our experiments have no special requirements on compute resources.631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,634

or cloud provider, including relevant memory and storage.635

• The paper should provide the amount of compute required for each of the individual636

experimental runs as well as estimate the total compute.637

• The paper should disclose whether the full research project required more compute638

than the experiments reported in the paper (e.g., preliminary or failed experiments that639

didn’t make it into the paper).640

9. Code Of Ethics641

Question: Does the research conducted in the paper conform, in every respect, with the642

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?643

Answer: [Yes]644

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.645

Guidelines:646

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.647

• If the authors answer No, they should explain the special circumstances that require a648

deviation from the Code of Ethics.649

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-650

eration due to laws or regulations in their jurisdiction).651

10. Broader Impacts652

Question: Does the paper discuss both potential positive societal impacts and negative653

societal impacts of the work performed?654
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Answer: [NA]655

Justification: There is no societal impact of the work performed.656

Guidelines:657

• The answer NA means that there is no societal impact of the work performed.658

• If the authors answer NA or No, they should explain why their work has no societal659

impact or why the paper does not address societal impact.660

• Examples of negative societal impacts include potential malicious or unintended uses661

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations662

(e.g., deployment of technologies that could make decisions that unfairly impact specific663

groups), privacy considerations, and security considerations.664

• The conference expects that many papers will be foundational research and not tied665

to particular applications, let alone deployments. However, if there is a direct path to666

any negative applications, the authors should point it out. For example, it is legitimate667

to point out that an improvement in the quality of generative models could be used to668

generate deepfakes for disinformation. On the other hand, it is not needed to point out669

that a generic algorithm for optimizing neural networks could enable people to train670

models that generate Deepfakes faster.671

• The authors should consider possible harms that could arise when the technology is672

being used as intended and functioning correctly, harms that could arise when the673

technology is being used as intended but gives incorrect results, and harms following674

from (intentional or unintentional) misuse of the technology.675

• If there are negative societal impacts, the authors could also discuss possible mitigation676

strategies (e.g., gated release of models, providing defenses in addition to attacks,677

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from678

feedback over time, improving the efficiency and accessibility of ML).679

11. Safeguards680

Question: Does the paper describe safeguards that have been put in place for responsible681

release of data or models that have a high risk for misuse (e.g., pretrained language models,682

image generators, or scraped datasets)?683

Answer: [NA]684

Justification: The paper poses no such risks.685

Guidelines:686

• The answer NA means that the paper poses no such risks.687

• Released models that have a high risk for misuse or dual-use should be released with688

necessary safeguards to allow for controlled use of the model, for example by requiring689

that users adhere to usage guidelines or restrictions to access the model or implementing690

safety filters.691

• Datasets that have been scraped from the Internet could pose safety risks. The authors692

should describe how they avoided releasing unsafe images.693

• We recognize that providing effective safeguards is challenging, and many papers do694

not require this, but we encourage authors to take this into account and make a best695

faith effort.696

12. Licenses for existing assets697

Question: Are the creators or original owners of assets (e.g., code, data, models), used in698

the paper, properly credited and are the license and terms of use explicitly mentioned and699

properly respected?700

Answer: [NA]701

Justification: The paper does not use existing assets.702

Guidelines:703

• The answer NA means that the paper does not use existing assets.704

• The authors should cite the original paper that produced the code package or dataset.705

• The authors should state which version of the asset is used and, if possible, include a706

URL.707
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.708

• For scraped data from a particular source (e.g., website), the copyright and terms of709

service of that source should be provided.710

• If assets are released, the license, copyright information, and terms of use in the711

package should be provided. For popular datasets, paperswithcode.com/datasets712

has curated licenses for some datasets. Their licensing guide can help determine the713

license of a dataset.714

• For existing datasets that are re-packaged, both the original license and the license of715

the derived asset (if it has changed) should be provided.716

• If this information is not available online, the authors are encouraged to reach out to717

the asset’s creators.718

13. New Assets719

Question: Are new assets introduced in the paper well documented and is the documentation720

provided alongside the assets?721

Answer: [NA]722

Justification: The paper does not release new assets.723

Guidelines:724

• The answer NA means that the paper does not release new assets.725

• Researchers should communicate the details of the dataset/code/model as part of their726

submissions via structured templates. This includes details about training, license,727

limitations, etc.728

• The paper should discuss whether and how consent was obtained from people whose729

asset is used.730

• At submission time, remember to anonymize your assets (if applicable). You can either731

create an anonymized URL or include an anonymized zip file.732

14. Crowdsourcing and Research with Human Subjects733

Question: For crowdsourcing experiments and research with human subjects, does the paper734

include the full text of instructions given to participants and screenshots, if applicable, as735

well as details about compensation (if any)?736

Answer: [NA]737

Justification: The paper does not involve crowdsourcing nor research with human subjects.738

Guidelines:739

• The answer NA means that the paper does not involve crowdsourcing nor research with740

human subjects.741

• Including this information in the supplemental material is fine, but if the main contribu-742

tion of the paper involves human subjects, then as much detail as possible should be743

included in the main paper.744

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,745

or other labor should be paid at least the minimum wage in the country of the data746

collector.747

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human748

Subjects749

Question: Does the paper describe potential risks incurred by study participants, whether750

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)751

approvals (or an equivalent approval/review based on the requirements of your country or752

institution) were obtained?753

Answer: [NA]754

Justification: The paper does not involve crowdsourcing nor research with human subjects.755

Guidelines:756

• The answer NA means that the paper does not involve crowdsourcing nor research with757

human subjects.758
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• Depending on the country in which research is conducted, IRB approval (or equivalent)759

may be required for any human subjects research. If you obtained IRB approval, you760

should clearly state this in the paper.761

• We recognize that the procedures for this may vary significantly between institutions762

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the763

guidelines for their institution.764

• For initial submissions, do not include any information that would break anonymity (if765

applicable), such as the institution conducting the review.766

A Singular Value Bounds767

A.1 Singular Value Bounds for Random Matrix768

Proposition 4 (Rudelson and Vershynin [2009]). Let A be an N × n random matrix, N ≥ n, whose769

elements are i.i.d. zero mean sub-Gaussian random variables with unit variance. Then for τ ≥ 0, we770

have771

P
(
σn(A) ≤ τ(

√
N −

√
n− 1)

)
≤ (c1τ)

N−n+1 + e−c2N

where c1, c2 > 0 depend (polynomially) only on the sub-Gaussian moment.772

Proposition 5 (Vershynin [2010]). Let A be an N × n random matrix, N ≥ n, whose elements are773

i.i.d. zero mean Gaussian random variables with unit variance. Then for t ≥ 0, we have774

P
(
σ1(A) ≥

√
N +

√
n+ t

)
≤ e−

t2

2 .

A.2 Proof of Proposition 1775

Proof of Proposition 1. Singular value decompose A as A = UΣV⊤, then X0 = cUΣV⊤Φ.776

Since V⊤V = Ir, the columns of V⊤Φ ∈ Rr×d are independent Gaussian vectors with distribution777

N (0, 1
dV

⊤V) = N (0, 1
dIr). By Proposition 4 in Appendix A, we have778

P
(
σr(V

⊤Φ) ≤ τ

(
1−

√
r − 1√
d

))
≤ e−(d−r+1) log 1

c1τ + e−c2d

for some universal constants c1 and c2 and any τ ≥ 0. On the other hand, by Proposition 5 in779

Appendix A, we have780

P
(
σ1(V

⊤Φ) ≥
√
d+

√
r +

√
s√

d

)
≤ e−

s
2 .

Plugging in s = d and applying the union bound yield781

P
(
τ(
√
d−

√
r − 1)√

d
≤ σr(V

⊤Φ) ≤ σ1(V
⊤Φ) ≤ 2

√
d+

√
r√

d

)
≥ 1− δ,

where δ = 3e−min{(d−r+1) log 1
c1τ ,c2d,

d
2 }. The proposition follows immediately from the fact that782

c · σr(V
⊤Φ)σr(A) ≤ σr(X0) ≤ σ1(X0) ≤ c · σ1(V

⊤Φ)σ1(A).

783

B Missing Proofs for GD784

B.1 Auxiliary Lemma785

Lemma 6. Suppose {at}t≥0 and {bt}t≥0 are two non-negative sequences satisfying786

at+1 ≤ ρ · at + bt, bt ≤ θt · c0,

where 0 ≤ ρ < θ < 1, c0 ≥ 0, then the following holds for all t ≥ 0:787

at ≤ θt ·
(
a0 +

c0
θ − ρ

)
.
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Proof. The inequality holds trivially for t = 0. For t ≥ 0, we have788

at+1 = ρt+1 · a0 +
t∑

s=0

ρt−sθs · c0

= ρt+1 · a0 +
θt+1 − ρt+1

θ − ρ
· c0

= θt+1 ·
(
a0 +

1

θ − ρ
· c0
)
.

789

B.2 Proof of Proposition 2790

Proof of Proposition 2. According to (3), we have791

Rt+1 = Xt+1Y
⊤
t+1 −A

= (Xt +Pt)(Yt +Qt)
⊤ −A

= Rt − η
(
RtYtY

⊤
t +XtX

⊤
t Rt

)
+PtQ

⊤
t .

Applying vectorization on both sides yields792

rt+1 = rt − ηHtrt + β(rt − rt−1) + vec(PtQ
⊤
t )

= (Imn − ηHt)rt + vec(PtQ
⊤
t ).

Hence we have the result.793

B.3 Proof of Lemma 1794

Proof of Lemma 1. By Proposition 1, the symmetric matrix H0 = In ⊗ (X0X
⊤
0 ) has nr positive795

eigenvalues, and the eigensubspace of these positive eigenvalues is796

H =

n∏
i=1

col(X0) =

n∏
i=1

col(A).

According to the GD update (3),797

col(Xt+1) ⊆ col(Xt) + col(XtY
⊤
t Yt) + col(AYt) ⊆ col(Xt) + col(A),

hence by induction we conclude col(Xt) ⊆ col(A) for all t ≥ 0. As a result, we have798

rt = vec(XtY
⊤
t −A) ∈ H.

For ξt, notice that799

col(RtYtY
⊤
t +XtX

⊤
t Rt) ⊆ col(Rt) + col(Xt) ⊆ col(A)

and800

col(PtQ
⊤
t ) = col((Xt+1 −Xt)(Yt+1 −Yt)

⊤) ⊆ col(Xt+1) + col(Xt) ⊆ col(A),

thus we have801

ξt = η · vec(RtY0Y
⊤
0 +X0X

⊤
0 Rt −RtYtY

⊤
t −XtX

⊤
t Rt) + vec(PtQ

⊤
t ) ∈ H.

802

B.4 Proof of Lemma 2803

Proof of Lemma 2. Since Imn commutes with symmetric matrix H0, we can simultaneously diago-804

nalize the two matrices and get805

λi(TGD) = 1− ηλmn−i(H0), ∀i = 1, 2, . . . ,mn.
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When η ∈ (0, 2
L ), λi(TGD) = 1 for i = 1, 2, . . . , (m− r)n. Let {vi}mn

i=1 be orthonormal eigenvec-806

tors, vi corresponds to λi(TGD). Then we have807

∥TGDv∥ =

∥∥∥∥∥TGD

(
mn∑
i=1

⟨v,vi⟩vi

)∥∥∥∥∥
=

√√√√ mn∑
i=(m−r)n+1

⟨v,vi⟩2 λ2
i (TGD)

≤ max
(m−r)n+1≤i≤mn

|λi(TGD)| ∥v∥

= max{|1− ηL| , |1− ηµ|} ∥v∥ .
Plugging in the step size yields the second result.808

B.5 Proof of Lemma 3809

Proof of Lemma 3. For all s ≤ t, by assumption we have810

∥Ps∥F = η ∥RsYs∥F
≤ η ∥Ys∥ ∥Rs∥F
≤ η(∥Y0∥+ ∥Ys −Y0∥) ∥Rs∥F
≤ η(∥Y0∥+ ∥Ys −Y0∥F) ∥Rs∥F
≤ η(∥Y0∥+ C2) ∥Rs∥F
≤ η(∥Y0∥+ C2)C1θ

s ∥r0∥ .
Similarly, we have811

∥Qs∥F ≤ η(∥X0∥+ C2)C1θ
s ∥r0∥ .

Combining the two bounds yields812 ∥∥vec(PsQ
⊤
s )
∥∥ =

∥∥PsQ
⊤
s

∥∥
F
≤ ∥Ps∥F ∥Qs∥F ≤ C3θ

2t ∥r0∥2 ,

where C3 = η2C2
1 (∥X0∥+ C2)(∥Y0∥+ C2).813

For the second part, we have814

∥(H0 −Hs)rs∥ =
∥∥Rs(Y0Y

⊤
0 −YsY

⊤
s ) + (X0X

⊤
0 −XsX

⊤
s )Rs

∥∥
F

≤
∥∥Rs(Y0Y

⊤
0 −YsY

⊤
s )
∥∥
F
+
∥∥(X0X

⊤
0 −XsX

⊤
s )Rs

∥∥
F

≤
∥∥Y0Y

⊤
0 −YsY

⊤
s

∥∥ ∥Rs∥F +
∥∥X0X

⊤
0 −XsX

⊤
s

∥∥ ∥Rs∥F
≤ (2 ∥Y0∥+ ∥Ys −Y0∥F) ∥Ys −Y0∥F ∥Rs∥F
+ (2 ∥X0∥+ ∥Xs −X0∥F) ∥Xs −X0∥F ∥Rs∥F

≤ 2(∥X0∥+ ∥Y0∥+ C2)C2 ∥Rs∥F
≤ C4θ

s ∥r0∥ ,
where C4 = 2η(∥X0∥+ ∥Y0∥+ C2)C1C2.815

Finally, when (6) holds, we have816

∥Xt+1 −X0∥F ≤
t∑

s=0

∥Ps∥F ≤ η(∥Y0∥+ C2)C1

1− θ
∥r0∥ ≤ C2.

Similarly, we have ∥Yt+1 −Y0∥F ≤ C2.817

B.6 Proof of Theorem 1818

Proof of Theorem 1. Let C1 to C4 be constants defined in Lemma 3. Define ρ = L−µ
L+µ , θ = 1− µ

L ,819

at = C1 ∥rt∥, and bt = C1 ∥ξt∥ for t ≥ 0. By Proposition 2 and lemmas 1 and 2 we have820

at+1 ≤ ρ · at + bt
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for all t ≥ 0. It remains to show that bt ≤ θt · c0. By initialization (2), a0 = C1 ∥r0∥ = C1 ∥A∥F,821

b0 = 0. Let C1 = µ(L+µ)p
2∥A∥FL(1+p) and C2 = p

√
L where p = µ(L−µ)

24L2 ∈ (0, 1). Plugging η = 2
L+µ ,822

∥X0∥ =
√
L and ∥Y0∥ = 0 into C3 and C4 yields823

C3 =
µ2p3

∥A∥2F L(1 + p)
, C4 =

2µp2

∥A∥F
.

Let824

c0 = C1(C3 ∥r0∥+ C4) ∥r0∥ ,
then we can show the following relations:825

a0 +
c0

θ − ρ
≤ C2

1 ∥A∥F , C1 ≥ 1. (15)

Indeed, by Proposition 1, with probability at least 1− δ, our choice of c guarantees826

µ ≥
144 cond4(X0) ∥A∥F
(cond2(X0)− 1)

=
144L2 ∥A∥F
µ(L− µ)

. (16)

Our goal is to show827

a0 +
c0

θ − ρ
= C1 ∥A∥F + C1(C3 ∥A∥F + C4) ∥A∥F · L(L+ µ)

µ(L− µ)
≤ C2

1 ∥A∥F ,

which is equivalent to828

∥A∥F +

(
µp3

L(1 + p)
+ 2p2

)
· L(L+ µ)

L− µ
≤ µ(L+ µ)p

2L(1 + p)
.

The above inequality holds when:829

∥A∥F ≤ µ(L+ µ)p

6L(1 + p)
, (17)

p2

L− µ
≤ 1

6L
, (18)

2pL

L− µ
≤ µ

6L(1 + p)
. (19)

Let p = µ(L−µ)
24L2 , then we have p < 1, pL < µ and830

p2

L− µ
≤ p

L− µ
=

µ

24L2
≤ 1

6L
,

2pL

L− µ
≤ µ

12L
≤ µ

6L(1 + p)
,

thus (18) and (19) hold. Finally, (17) holds in view of (16):831

µ(L+ µ)p

6L(1 + p)
≥ µp

6
=

µ2(L− µ)

144L2
≥ ∥A∥F .

Combining the results proves the (15).832

Now we can proceed with the induction in Lemma 3. Firstly, ∥r0∥ ≤ C1 ∥r0∥ as C1 ≥ 1 by (15),833

and ∥X0 −X0∥F = ∥Y0 −Y0∥F = 0 ≤ C2. Suppose the induction conditions in Lemma 2 holds834

for s ≤ t, then we have835

bs = C1 ∥ξs∥ ≤ C1(C3θ
2s ∥r0∥2 + C4θ

s ∥r0∥) ≤ c0 · θs.
Consequently, by Lemma 6 and (15) we have836

at+1 ≤ θt+1 ·
(
a0 +

c0
θ − ρ

)
≤ C2

1 · θt+1 ∥A∥F ,

thus ∥rt+1∥ ≤ C1θ
t+1 ∥r0∥. Moreover, by our construction of C1 and C2, (6) always holds, thus837

we also have ∥Xt+1 −X0∥F ≤ C2 and ∥Yt+1 −Y0∥F ≤ C2. All conditions for the t+ 1 step are838

satisfied, hence the proof is completed by induction. Plugging in C1 and the choice of c yields the839

results.840
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C Missing Proofs for NAG841

C.1 Proof of Lemma 3842

Proof of Proposition 3. According to the NAG update rule, we have843

Rt+1 = Xt+1Y
⊤
t+1 −A

= (Xt +Pt)(Yt +Qt)
⊤ −A

= Rt +PtY
⊤
t +XtQ

⊤
t +PtQ

⊤
t

= Rt + (β(Xt −Xt−1)− (1 + β)ηRtYt + βηRt−1Yt−1)Y
⊤
t

+Xt

(
β(Y⊤

t −Y⊤
t−1)− (1 + β)ηX⊤

t Rt + βηX⊤
t−1Rt−1

)
+PtQ

⊤
t

= Rt − (1 + β)η
(
RtYtY

⊤
t +XtX

⊤
t Rt

)
+ β(XtY

⊤
t −Xt−1Y

⊤
t−1)

+ βη
(
Rt−1Yt−1Y

⊤
t−1 +Xt−1X

⊤
t−1Rt−1

)
+ β(XtY

⊤
t +Xt−1Y

⊤
t−1)− β

(
Xt−1Y

⊤
t +XtY

⊤
t−1

)
+ βη

(
Rt−1Yt−1Y

⊤
t +XtX

⊤
t−1Rt−1 −Rt−1Yt−1Y

⊤
t−1 −Xt−1X

⊤
t−1Rt−1

)
+PtQ

⊤
t

= Rt − (1 + β)η
(
RtYtY

⊤
t +XtX

⊤
t Rt

)
+ β(Rt −Rt−1)

+ βη
(
Rt−1Yt−1Y

⊤
t−1 +Xt−1X

⊤
t−1Rt−1

)
+ β(XtY

⊤
t +Xt−1Y

⊤
t−1 −Xt−1Y

⊤
t −XtY

⊤
t−1)

+ βη
(
Rt−1Yt−1Y

⊤
t +XtX

⊤
t−1Rt−1 −Rt−1Yt−1Y

⊤
t−1 −Xt−1X

⊤
t−1Rt−1

)
+PtQ

⊤
t .

Applying vectorization on both sides yields844

rt+1 = rt − (1 + β)ηHtrt + β(rt − rt−1) + βηHt−1rt−1

+ β vec(XtY
⊤
t +Xt−1Y

⊤
t−1 −Xt−1Y

⊤
t −XtY

⊤
t−1)

+ βη vec(Rt−1Yt−1Y
⊤
t +XtX

⊤
t−1Rt−1 −Rt−1Yt−1Y

⊤
t−1 −Xt−1X

⊤
t−1Rt−1) + vec(PtQ

⊤
t )

= (1 + β)(Imn − ηHt)rt − β(Imn − ηHt−1)rt−1 +ψt + ϕt.

Hence we have845 (
rt+1

rt

)
=

(
(1 + β)(Imn − ηH0) −β(Imn − ηH0)

Imn 0

)(
rt

rt−1

)
+

(
ξt
0

)
.

846

C.2 Proof of Lemma 4847

Proof of Lemma 4. Suppose λ is an eigenvalue of TNAG, then we have848

det(TNAG − λI2mn) = det((β + λ2 − (1 + β)λ)Imn + (η(1 + β)λ− ηβ)H0).

Since H0 is symmetric, it can be simultaneously diagonalized with I, hence the above equation849

becomes850

λ2 − (1 + β)λ+ β + η(1 + β)λi(H0)λ− ηβλi(H0) = 0

for some 1 ≤ i ≤ mn. Solving the equation yields851

λ =
1

2

(
(1 + β)(1− ηλi(H0))±

√
(1− ηλi(H0)) (−4β + (1 + β)2(1− ηλi(H0)))

)
.

For i > nr, λi(H0) = 0, hence λ = 1 or λ = β. The corresponding eigen subspaces are852

H1 =
{
(u⊤,v⊤)⊤ | u = v ∈ ker(H0)

}
,

Hβ =
{
(u⊤,v⊤)⊤ | u = βv ∈ ker(H0)

}
.

The dimensions are dim(H1) = dim(Hβ) = (m− r)n. It is easy to verify that whenever 0 < β < 1,853

H1 ⊕Hβ = ker(H0)× ker(H0).

The complement space of H1 ⊕Hβ corresponds to the eigen subspace for non-trivial eigenvalues.854

By checking the dimension and orthogonality, we have855

(H1 ⊕Hβ)
⊥ = H×H.
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For i ≤ nr, the subspace is H×H and the contraction condition requires856

0 < η <
2(1 + β)

(1 + 2β)σ2
1(X0)

=
2(1 + β)

(1 + 2β)L
.

By checking the monotonicity of |λ| with respect to 1− ηλi(H0) ∈ [1− ηL, 1− ηµ], we have857

|λ| ≤ max

{
1

2

(
(1 + β)(1− ηµ) +

√
(1− ηµ) (−4β + (1 + β)2(1− ηµ)

)
,

1

2

(
−(1 + β)(1− ηL) +

√
(1− ηL) (−4β + (1 + β)2(1− ηL)

)}
.

If we choose step size η = 1
L , momentum β =

√
L−√

µ√
L+

√
µ

, then we have |λ| ≤ 1−
√

µ
L .858

C.3 Proof of Lemma 5859

Proof of Lemma 5. According to Lemma 3,860

ξt = ζt + ιt,

ζt = vec(PtQ
⊤
t ) + β vec(ηRt−1Yt−1Q

⊤
t−1 + ηPt−1X

⊤
t−1Rt−1 +Pt−1Q

⊤
t−1)

ιt = (1 + β)η(H0 −Ht)rt − βη(H0 −Ht−1)rt−1.

We first bound ∥Pt∥F and ∥Qt∥F. For every 0 ≤ s ≤ t, we have861

∥RsYs∥F ≤ ∥Ys∥ ∥Rs∥F
≤ (∥Y0∥+ ∥Ys −Y0∥) ∥Rs∥F
≤ (∥Y0∥+ ∥Ys −Y0∥F) ∥Rs∥F
≤ (∥Y0∥+ C2) ∥Rs∥F .

Similarly,862 ∥∥R⊤
s Xs

∥∥
F
≤ (∥X0∥+ C2) ∥Rs∥F .

By assumption, we have863

∥Rs∥F ≤
∥∥∥∥( rs

rs−1

)∥∥∥∥ ≤ C1θ
s

∥∥∥∥( r0
r−1

)∥∥∥∥ .
As a result, the momentum terms can be bounded:864

∥Pt∥F =

∥∥∥∥∥ηRtYt + η

t∑
s=1

βt−s+1RsYs

∥∥∥∥∥
F

≤ η ∥RtYt∥F + η

t∑
s=1

βt−s+1 ∥RsYs∥F

≤ η(∥Y0∥+ C2)

(
∥Rt∥F +

t∑
s=1

βt−s+1 ∥Rs∥F

)

≤ ηC1(∥Y0∥+ C2)

(
θt +

t∑
s=1

βt−s+1θs

)∥∥∥∥( r0
r−1

)∥∥∥∥
≤ ηC1(∥Y0∥+ C2)

1

1− θ
· θt
∥∥∥∥( r0

r−1

)∥∥∥∥ , (20)

and865

∥Qt∥F ≤ ηC1(∥X0∥+ C2)
1

1− θ
· θt
∥∥∥∥( r0

r−1

)∥∥∥∥ , (21)

where we use β ≤ θ2 < θ in the last steps.866

Next, we bound ∥ζt∥. Using the triangle inequality, we get867

∥ζt∥ ≤
∥∥PtQ

⊤
t

∥∥
F
+ β

∥∥ηRt−1Yt−1Q
⊤
t−1 + ηPt−1X

⊤
t−1Rt−1 +Pt−1Q

⊤
t−1

∥∥
F
.
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For the first term, we have868 ∥∥PtQ
⊤
t

∥∥
F
≤ ∥Pt∥F ∥Qt∥F ≤ η2C2

1 (∥X0∥+ C2)(∥Y0∥+ C2)

(1− θ)2
θ2t
∥∥∥∥( r0

r−1

)∥∥∥∥2 .
For the second term, we have869

β
∥∥ηRt−1Yt−1Q

⊤
t−1 + ηPt−1X

⊤
t−1Rt−1 +Pt−1Q

⊤
t−1

∥∥
F

≤β (η ∥Rt−1∥F (∥Yt−1∥ ∥Qt−1∥F + ∥Xt−1∥ ∥Pt−1∥F) + ∥Pt−1∥F ∥Qt−1∥F)

≤η2C2
1 (∥X0∥+ C2)(∥Y0∥+ C2)(3− 2θ)

(1− θ)2
θ2t
∥∥∥∥( r0

r−1

)∥∥∥∥2 .
As a result, we have870

∥ζt∥ ≤ C3θ
2t

∥∥∥∥( r0
r−1

)∥∥∥∥2 ,
where C3 =

η2C2
1 (∥X0∥+C2)(∥Y0∥+C2)(4−2θ)

(1−θ)2 .871

We then show upper bound for ∥ιt∥. Using the triangle inequality, we get872

∥ιt∥ ≤ (1 + β)η ∥(H0 −Ht)rt∥+ βη ∥(H0 −Ht−1)rt−1∥ . (22)
For any s ≤ t, we have873

∥(H0 −Hs)rs∥ =
∥∥Rs(Y0Y

⊤
0 −YsY

⊤
s ) + (X0X

⊤
0 −XsX

⊤
s )Rs

∥∥
F

≤
∥∥Rs(Y0Y

⊤
0 −YsY

⊤
s )
∥∥
F
+
∥∥(X0X

⊤
0 −XsX

⊤
s )Rs

∥∥
F

≤
∥∥Y0Y

⊤
0 −YsY

⊤
s

∥∥ ∥Rs∥F +
∥∥X0X

⊤
0 −XsX

⊤
s

∥∥ ∥Rs∥F
≤ (2 ∥Y0∥+ ∥Ys −Y0∥F) ∥Ys −Y0∥F ∥Rs∥F
+ (2 ∥X0∥+ ∥Xs −X0∥F) ∥Xs −X0∥F ∥Rs∥F

≤ 2(∥X0∥+ ∥Y0∥+ C2)C2 ∥Rs∥F

≤ 2(∥X0∥+ ∥Y0∥+ C2)C1C2θ
s

∥∥∥∥( r0
r−1

)∥∥∥∥ .
Plugging it into (22) yields874

∥ιt∥ ≤ 2(∥X0∥+ ∥Y0∥+ C2)C1C2((1 + β)ηθt + βηθt−1)

∥∥∥∥( r0
r−1

)∥∥∥∥
≤ C4θ

t

∥∥∥∥( r0
r−1

)∥∥∥∥ ,
where C4 = 2η(∥X0∥+ ∥Y0∥+ C2)C1C2(1 + 2θ).875

Finally, given (9) and (20), we have876

∥Xt+1 −X0∥F ≤
t∑

s=0

∥Ps∥F ≤ ηC1(∥Y0∥+ C2)

(1− θ)2

∥∥∥∥( r0
r−1

)∥∥∥∥ ≤ C2,

where the last inequality is from our assumption on C2. Similarly, by (21), we have877

∥Yt+1 −Y0∥F ≤
t∑

s=0

∥Qs∥F ≤ ηC1(∥X0∥+ C2)

(1− θ)2

∥∥∥∥( r0
r−1

)∥∥∥∥ ≤ C2.

878

C.4 Proof of Theorem 2879

Proof of Theorem 2. By initialization, we have ∥r0∥ = ∥r−1∥ = ∥A∥F. Let C1 to C4 be constants880

defined in Lemma 5. Define ρ = 1−
√
µ√
L

, θ = 1−
√
µ

2
√
L

, at =
√
2C1 ∥A∥F, and bt = C1 ∥ξt∥ for881

t ≥ 0. It is easy to verify that β ≤ θ2 < θ < 1 and ρ < θ < 1. By Proposition 3 and lemmas 1 and 4882

we have883

at+1 ≤ ρ · at + bt
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for all t ≥ 0. It remains to show that bt ≤ θt · c0. For the initial step, a0 =
√
2C1 ∥A∥F, b0 = 0. Let884

C1 = µp

4
√
2∥A∥F(1+p)

and C2 = p
√
L where p =

√
µ

144
√
L
≤ 1

144 < 1, then we have885

C3 =
µp3(2 +

√
µ
L )

8 ∥A∥2F (1 + p)
, C4 =

µp2(3−
√

µ
L )

2
√
2 ∥A∥F

.

Let c0 =
√
2C1(

√
2C3 ∥A∥F + C4) ∥A∥F, then we can show the following relations:886

a0 +
c0

θ − ρ
≤

√
2C2

1 ∥A∥F and C1 ≥ 1. (23)

Indeed, by Proposition 1, with probability at least 1− δ, our choice of c guarantees887

µ = σ2
r(X0) ≥

τ2(
√
d−

√
r − 1)2c2σ2

r(A)

d
≥

4
√
2 ∥A∥F (1 + p)

p
, (24)

thus C1 ≥ 1. Here, we use the bound p ≤ 1
144 < 1 to verify the numerical constant. It remains to888

show889

a0 +
c0

θ − ρ
≤

√
2C2

1 ∥A∥F ,

which is equivalent to890

∥A∥F +
p3
√
µL(2 +

√
µ
L )

2
√
2(1 + p)

+
p2
√
µL(3−

√
µ
L )√

2
≤ µp

4
√
2(1 + p)

,

Since we set p =
√
µ

144
√
L

< 1, each one of the three terms on the left hand side is upper bounded891

by µp

12
√
2(1+p)

, hence the inequality holds. The relations (23) guarantee the induction conditions in892

Lemma 5, thus we have893

∥rt+1∥ ≤
√
2C1θ

t+1 ∥A∥F ≤ c2σ2
1(A)

64 ∥A∥F cond(X0)
θt+1 ∥A∥F ,

where the last inequality uses p > 0 and Proposition 1.894

D Missing Proofs for NAG in Section 4895

Let r̃t = vec(R̃t), then we have the following dynamics.896

Lemma 7. Let Pt = Xt+1−Xt and Qt = Yt+1−Yt denote the momentum. Let Rt = XtY
⊤
t D−L897

denote the residual, R̃t = XtY
⊤
t DD⊤−LD⊤ denote the projected residual, r̃t = vec(R̃t) ∈ Rmn.898

Then NAG has the following dynamics:899 (
r̃t+1

r̃t

)
=

(
(1 + β)(Imn − ηH0) −β(Imn − ηH0)

Imn 0

)(
r̃t

r̃t−1

)
+

(
ξt
0

)
, (25)

where900

Ht = (DD⊤YtY
⊤
t )⊗ Im + (DD⊤)⊗ (XtX

⊤
t ),

ξt = ζt + ιt,

ζt = vec(PtQ
⊤
t DD⊤) + β vec(Pt−1Q

⊤
t−1DD⊤)

+ βη vec((R̃t−1Yt−1Q
⊤
t−1 +Pt−1X

⊤
t−1R̃t−1)DD⊤),

ιt = (1 + β)η(H0 −Ht)r̃t − βη(H0 −Ht−1)r̃t−1.

Proof of Lemma 7. We denote Rt = XtY
⊤
t D − L as the residual, R̃t = RtD

⊤ as the projected901

residual, then the NAG update for (10) can be written as902 (
Xt+1

Yt+1

)
=

(
(1 + β)(Xt − ηR̃tYt)− β(Xt−1 − ηR̃t−1Yt−1)

(1 + β)(Yt − ηR̃⊤
t Xt)− β(Yt−1 − ηR̃⊤

t−1Xt−1)

)
. (26)

The result follows from (26) by direct computation.903
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Lemma 8. Let H ⊆ Rmn denote the linear subspace containing all eigenvectors of H0 = (DD⊤)⊗904

(X0X
⊤
0 ) with positive eigenvalues. If col(X0) = col(L) and Y0 = 0, then we have905

H = col(D⊗ L) and {r̃t, ξt}t≥0 ⊂ H,

where H0, r̃t and ξt are defined as in Lemma 7.906

Proof. By Theorem 4.2.15 in Horn and Johnson [1994], we have the following eigenvalue decompo-907

sition for Kronecker product:908

H0 = (UD ⊗U0)(Σ
2
D ⊗Σ2

0)(UD ⊗U0)
⊤,

where D = UDΣDV⊤
D and X0 = U0Σ0V

⊤
0 are singular value decompositions of D and X0.909

Therefore, we have910

H = col(UD ⊗U0) = col(D⊗X0) = col(D⊗ L).

In particular, the eigenvalues (not ordered) are911

λ(i−1)m+j(H0) = λi(DD⊤)λj(X0X
⊤
0 ) = σ2

i (D)σ2
j (X0), i ∈ [n], j ∈ [m],

where σj(X0) > 0 for 1 ≤ j ≤ r, σj(X0) = 0 for r + 1 ≤ j ≤ d. By Assumption 1, L = AD,912

thus we have913

vec(LD⊤) = vec(LIND⊤) = (D⊗ L)IN ∈ col(D⊗ L) = H.

Meanwhile,914

vec(XtY
⊤
t DD⊤) = (D⊗Xt) vec(Y

⊤
t D) ∈ col(D⊗Xt) ⊆ col(D⊗X0) = H,

thus we have r̃t ∈ H. Similarly, we have ξt ∈ H.915

Lemma 9 (NAG contraction). If we choose step size η = 1
L̃

and momentum β =

√
L̃−

√
µ̃√

L̃+
√
µ̃

where916

L̃ = σ2
1(X0) · λmax(DD⊤), µ̃ = σ2

r(X0) · λmin(DD⊤), then for all (u,v) ∈ H×H, H defined in917

Lemma 8,918 ∥∥∥∥TNAG

(
u
v

)∥∥∥∥ ≤

(
1−

√
µ̃

L̃

)∥∥∥∥(uv
)∥∥∥∥ .

Proof. Following the same line of proof for Lemma 4 in Appendix C.2 and substituting the eigenval-919

ues in Lemma 8, we obtain the result.920

Lemma 10. Suppose 0 < β ≤ θ2 < θ < 1. If there exist some constants C1 and C2 such that for921

any s ≤ t, the NAG dynamics (7) yields
∥∥∥∥( r̃s

r̃s−1

)∥∥∥∥ ≤ C1θ
s

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥, ∥Xs −X0∥F ≤ C2, and922

∥Ys −Y0∥F ≤ C2, then we have923

∥ζt∥ ≤ C3θ
2t

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥2 , and ∥ιt∥ ≤ C4θ
t

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥
for some constants C3 and C4 depending on C1 and C2. Moreover, if C1 and C2 satisfy924

(max(∥X0∥ , ∥Y0∥) + C2) ηC1

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥ ≤ (1− θ)2C2,

then we have925

∥Xt+1 −X0∥F ≤ C2, ∥Yt+1 −Y0∥F ≤ C2.

Proof of Lemma 10. Following the same line of proof for Lemma 5 in Appendix C.3, we have926

∥Pt∥F ≤ ηC1(∥Y0∥+ C2)
1

1− θ
· θt
∥∥∥∥( r̃0

r̃−1

)∥∥∥∥ , (27)

and927

∥Qt∥F ≤ ηC1(∥X0∥+ C2)
1

1− θ
· θt
∥∥∥∥( r̃0

r̃−1

)∥∥∥∥ . (28)
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As a result, we have928 ∥∥PtQ
⊤
t DD⊤∥∥

F
≤ λ1(DD⊤) ∥Pt∥F ∥Qt∥F ≤ η2C2

1 (∥X0∥+ C2)(∥Y0∥+ C2)λ1(DD⊤)

(1− θ)2
θ2t
∥∥∥∥( r̃0

r̃−1

)∥∥∥∥2 ,
and929

β
∥∥∥(ηR̃t−1Yt−1Q

⊤
t−1 + ηPt−1X

⊤
t−1R̃t−1 +Pt−1Q

⊤
t−1)DD⊤

∥∥∥
F

≤βλ1(DD⊤)
(
η
∥∥∥R̃t−1

∥∥∥
F
(∥Yt−1∥ ∥Qt−1∥F + ∥Xt−1∥ ∥Pt−1∥F) + ∥Pt−1∥F ∥Qt−1∥F

)
≤η2C2

1 (∥X0∥+ C2)(∥Y0∥+ C2)(3− 2θ)λ1(DD⊤)

(1− θ)2
θ2t
∥∥∥∥( r̃0

r̃−1

)∥∥∥∥2 ,
Combining the inequalities, we get930

∥ζt∥ ≤ C3θ
2t

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥2 ,
where C3 =

η2C2
1 (∥X0∥+C2)(∥Y0∥+C2)(4−2θ)λ1(DD⊤)

(1−θ)2 .931

Similarly, we have932

∥ιt∥ ≤ 2(∥X0∥+ ∥Y0∥+ C2)C1C2λ1(DD⊤)((1 + β)ηθt + βηθt−1)

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥
≤ C4θ

t

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥ ,
where C4 = 2η(∥X0∥+ ∥Y0∥+ C2)C1C2(1 + 2θ)λ1(DD⊤).933

Finally, by (27), we have934

∥Xt+1 −X0∥F ≤
t∑

s=0

∥Ps∥F ≤ ηC1(∥Y0∥+ C2)

(1− θ)2

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥ ≤ C2,

where the last inequality is from our assumption on C2. Similarly, by (28), we have935

∥Yt+1 −Y0∥F ≤
t∑

s=0

∥Qs∥F ≤ ηC1(∥X0∥+ C2)

(1− θ)2

∥∥∥∥( r̃0
r̃−1

)∥∥∥∥ ≤ C2.

936

D.1 Proof of Theorem 3937

Proof of Theorem 3. By initialization, we have ∥r̃0∥ = ∥r̃−1∥ =
∥∥LD⊤

∥∥
F

. Let C1 to C4 be938

constants defined in Lemma 10. Define ρ = 1 −
√
µ̃√
L̃

, θ = 1 −
√
µ̃

2
√

L̃
, at =

√
2C1

∥∥LD⊤
∥∥
F

, and939

bt = C1 ∥ξt∥ for t ≥ 0. It is easy to verify that β ≤ θ2 < θ < 1 and ρ < θ < 1. By Lemmas 7 to 9940

we have941

at+1 ≤ ρ · at + bt

for all t ≥ 0. It remains to show that bt ≤ θt · c0. For the initial step, a0 =
√
2C1

∥∥LD⊤
∥∥
F

, b0 = 0.942

Let C1 = µ̃p

4
√
2∥LD⊤∥F(1+p)

and C2 = p
√
L where p =

√
µ̃

144
√

L̃
≤ 1

144 < 1, then we have943

C3 =
µ̃p3

8 ∥LD⊤∥2F (1 + p)

(
2 +

√
µ̃

L̃

)
, C4 =

µ̃p2

2
√
2 ∥LD⊤∥F

(
3−

√
µ̃

L̃

)
.

Let c0 =
√
2C1(

√
2C3

∥∥LD⊤
∥∥
F
+ C4)

∥∥LD⊤
∥∥
F

, then we can show the following relations: Given944

our choice of constants, there hold945

a0 +
c0

θ − ρ
≤

√
2C2

1 ∥A∥F and C1 ≥ 1. (29)
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Indeed, by (11), we have C1 ≥ 1. It remains to show946

a0 +
c0

θ − ρ
≤

√
2C2

1

∥∥LD⊤∥∥
F
,

which is equivalent to947

∥∥LD⊤∥∥
F
+

√
µ̃L̃p3

2
√
2(1 + p)

(
2 +

√
µ̃

L̃

)
+

√
µ̃L̃p2
√
2

(
3−

√
µ̃

L̃

)
≤ µ̃p

4
√
2(1 + p)

.

By (11) and p =
√
µ̃

144
√

L̃
< 1, each one of the three terms on the left hand side is upper bounded by948

µp

12
√
2(1+p)

, hence the inequality holds. (29) guarantees the induction conditions in Lemma 10, thus949

we have950

∥r̃t+1∥ ≤
√
2C1θ

t+1
∥∥LD⊤∥∥

F
≤ µ̃

576 ∥LD⊤∥F

(
1−

√
µ̃

2
√
L̃

)t+1 ∥∥LD⊤∥∥
F
.

By Assumption 1, we have row(L) ∈ row(D) = col(D⊤), thus we have951

∥Rt∥F =
∥∥XtY

⊤
t D− L

∥∥
F

≤ σ−1
min(D)

∥∥(XtY
⊤
t D− L)D⊤∥∥

F

≤ σ2
r(X0)σmin(D)

576

(
1− σr(X0)

√
λmin(DD⊤)

2σ1(X0)
√

λmax(DD⊤)

)t

.

952

D.2 Proof of Corollaries953

Proof of Corollary 1. By Proposition 1, cond(X0) = O( d·cond(L)
τ(d−r+1) ) with probability at least 1− δ,954

where δ = 3e−min{(d−r+1) log 1
c1τ ,c2d,

d
2 }. Plugging it in Theorem 3 yields the result.955

Proof of Corollary 2. After orthonormalization, we have cond(X0) = 1. The result follows immedi-956

ately from Theorem 3.957

Proof of Corollary 3. By Propositions 4 and 5, cond(X0) = O( d
τ(d−m+1) ) with probability at least958

1− δ, where δ = 3e−min{(d−m+1) log 1
c1τ ,c2d,

d
2 }. Plugging it in Theorem 3 yields the result.959
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