
SpeedLoader: An I/O efficient scheme for
heterogeneous and distributed LLM operation

Yiqi Zhang
Institute of Data Science
yiqi.zhang@u.nus.edu

Yang You
School of Computing

youy@comp.nus.edu.sg

National University of Singapore
Singapore, 119077

Abstract

With the surging growth of model parameters, foundation models pose unprece-
dented challenges to traditional computational infrastructures. These large models
inherently require substantial accelerator memory to accommodate massive tensors
during pre-training, fine-tuning, and even inference stages, making it even more
challenging to deploy a model with restricted computational resources. Given
this challenge, distribution and offloading the model states are two major solu-
tions. Partitioning the required states to participating workers, and storing them
in lower speed media, such as host DRAM and block devices, largely alleviate
the accelerator memory pressure. However, the prohibitive costs of tensor com-
munication render it a theoretically plausible yet practically inefficient solution.
Previous efforts to improve efficiency include maximizing rematerialization and
employing chunk-based tensor management to reduce host-device communication.
Despite these efforts, the reported training throughput only achieves 36.54% of
model FLOPs utilization (MFUs), still not comparable to full on-device training.
In this work, we redesign the data flow of heterogeneous hardware and sharded
model training to minimize the excessive communication overhead. Our proposed
scheme significantly enhances training and inference throughput of large language
models under restrictive computational resources. We confirmed a large leap in
effective compute time by looking into the kernel-level runtime behavior of our
trials, where the MFUs can achieve up to 51%. Compared to the state-of-the-art
approach, our framework robustly achieves remarkable speedups from 3x to 30x in
multiple distributed heterogeneous training setups and inference speedups of 1.5x
to 2.35x without compromising arithmetic precision.

1 Introduction

The trend of increasing transformer-based model sizes marks a paradigm shift in natural language
processing deep neural networks. Research on model scales suggests that expanding transformer
sizes significantly benefits aspects such as performance, universality, and transferability [1, 2]. In
accordance with scaling laws[1], large language models (LLMs) have surged in recent years. For
instance, models have grown from the 175 billion parameters in GPT-3 to over 400 billion parameters
in LLaMA-3 [3, 4], the size of LLMs underwent a substantial leap. However, the continually growing
size of these models places mounting pressure on computational infrastructures. For example, training

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



GPT-3 175B requires approximately 3.14 × 1023 floating point operations (flops1), equivalent to
around 280,000 GPU hours on an NVIDIA A100 at its peak performance, which is not pragmatic
without large scale parallelism.

The scalability of LLMs heavily depends on parallelism and distribution, with a significant constraint
being the heavy memory footprint. Various techniques, such as tensor parallelism[5, 6], pipeline
parallelism[7, 8, 9], and quantization[10, 11], can help alleviate this pressure. Model parallelism,
in particular, involves sharding the model states (parameters, optimizer states, gradients) across
accelerators to overcome limitations imposed by finite on-device high-bandwidth memories (HBMs)
[12]. Unfortunately, HBMs remain scarce and costly, imposing significant infrastructural constraints
on training and using larger models. For example, a half-precision 1.8 trillion parameter model
demands over 180 units of 80GB GPUs to hold the model and optimizer states, not accounting for
the memory needed for essential activations. Relying solely on HBMs for state storage is becoming
impractical with current accelerator technology as models continue to scale.

Offloading has emerged as a flexible solution for both training and inference with LLMs across
various infrastructure scales. It allows model states to be stored on larger media like host DRAMs
and NVMe drives, loading them to the accelerator only when required for computation [13, 14, 15].
However, the merits of offloading come at the expense of even higher I/O overhead. Model weights
must frequently shuttle between accelerator and host memory during computation. Additionally,
during inference, large volumes of key value caches (KV Cache) [16], need to be moved to external
storage and subsequently brought back to the GPU for the next token. The overhead caused by data
movement often surpasses computation time due to bandwidth bottlenecks between accelerator, CPU,
and NVMe storage, resulting in high task latency.

To minimize redundant communication and maximize hardware utilization, we propose SpeedLoader,
an highly optimized scheme to eliminate I/O redundancies through computation rescheduling during
LLM operation with model sharding and offloading. By meticulously feeding and offloading acti-
vations, SpeedLoader computes multiple batches with only two full-model loading. We evaluated
SpeedLoader’s performance with LLaMA-2 and OPT [17, 18] at different sizes. Results showed that
SpeedLoader can robustly achieve a training speedup of 3.5x to 30x and over 50% model FLOPs
utilization (MFU) on multiple platforms compared to state-of-the-art approaches.

The major contributions of this work are: (1) We proposed a compute strategy that minimizes peer and
device-host I/O in heterogeneous and sharded LLM training; (2) We implemented a high-efficiency
tensor exchange manager that transparently shuttles tensors between device and host, minimizing
fragmentation and redundancy; (3) Our optimized tensor management enables higher inference
efficiency than previously state-of-the-art (SOTA) approaches.

2 Related Work

LLMs are resource-intensive and typically require specialized strategies to alleviate hardware stress.
One common approach is to optimize distribution and parallelism across multi-GPU clusters. For
instance, Megatron-LM [5] leverages advanced model parallelism techniques to achieve scalability,
and Zero Redundancy Optimizer (ZeRO) partitions and distributes all model states (i.e., parameters,
gradients, optimizer states) among GPUs, recollecting them only when the layer needs to be computed
[12]. Similarly, Fully Sharded Data Parallelism (FSDP) shards both model parameters and input data
across multiple GPUs[19]. These techniques usually gather full parameters only when needed and
reduce-scatter the newly computed gradients across peers, significantly alleviating memory pressure
on the accelerators while introducing considerable communication overhead.

While distribution frameworks still require substantial hardware, offloading approaches address
memory shortages in a different way. Work including ZeRO-Offload, Capuchin, and SuperNeurons
[13, 20, 21] enables large model training by offloading data and computation to host RAM, mitigating
the memory and computational demands of training large models with fewer GPUs. ZeRO-Infinity

1A list of abbreviations in this paper can be found in Tab. 3.

2



[14] extends this by offloading more data to high-speed block devices like NVMes, overlapping
computation and communication for higher bandwidth utilization. During inference, offloading can
significantly reduce the computing resources required for pre-trained models of unprecedented scale.
Unlike early works, PatrickStar[22] organizes the model data in memory chunks and dynamically
distributes them in the heterogeneous memory. FlexGen [15] offers a wider range of batch size
choices with an efficient offloading strategy, and thus significantly increases maximum throughput,
demonstrating that high-throughput generative inference of a 175 billion parameter LLM is feasible
with a single GPU. Current offloading solutions [13, 22] support prefetching parameters after the
initial forward/backward pass, and the granularity of overlapping can be precisely controlled[23]. As
an update, ZeRO++ implements a hierarchical weight partition, which maintains a full model copy
on each node to largely reduce inter-node tensor exchange [24].

In addition to these two primary solutions, other approaches have been explored. Rematerialization
techniques [25, 26, 27] recomputes activations on-the-fly during backpropagation rather than storing
all intermediate activations in memory. Model compression methods such as quantization are also
commonly used to reduce memory requirements[10, 11]. However, compression usually comes at
the cost of numerical inaccuracy and retraining of the model.

3 SpeedLoader

3.1 Overview

In canonical solutions (Fig. 1, left), each mini-batch is processed sequentially, requiring the full
model to be loaded twice per batch. In distributed settings, the accelerator must read local partitions
of model states from host DRAM and gather other partitions from peer ranks. Additionally, to
properly partition the accumulated gradients, reduce-scatter operations across all ranks are inevitable,
introducing communication equivalent to one copy of the model weight during each backward
propagation.

Inputs

Outputs

Inputs

Outputs

Used
Layer

Unused
Layer

①

②

①

②

G
PUHost

Figure 1: Mechanism comparison between canonical approach and SpeedLoader. Left, canonical
approach ➀ load the whole model every time ➁ loads a single batch; Right, SpeedLoader feed
every layer with multiple batches and exchange activations to and from host memory (➀). Therefore,
for one full model loading(➁), SpeedLoader can process multiple batches.

Here we propose SpeedLoader, which processes multiple sub-batches, collectively referred to as an
effective batch (i.e., number of sub-batches), with only two model loading and gradient synchroniza-
tion (Fig 1, right). For any incoming batches shaped (N, l), they are evenly split to sub-batches along
batch size axis (nsb, n, l), where N ,nsb,n, and l are effective batch size, number of sub-batches,
sub-batch size and sequence length, respectively. Each time a layer is loaded, new inputs are fed into
the model while the activations from the previous sub-batch are offloaded to a host buffer to prevent
memory spikes. After processing all sub-batches with the current layer, the accelerator releases
the current layer and proceeds to the next layer. Subsequently, the previously saved activations are
reloaded. This method achieves gradient accumulation with an altered computation graph, with

3



significantly reduced frequency of model state communication. A quantitative analysis is discussed
in Sec. A.3.

The backward propagation process also needs to be redesigned. By default, each sub-batch generates
an individual loss, and the automatic differentiation package conducts backward propagation on each
sub-batch sequentially. This process loads the model and partitions gradients once per sub-batch,
leaving the prefetching of associated gradients and activations out of our control.To address this issue,
SpeedLoader redesigned the computation graph. We re-route the computation graph by connecting
activations from the same layer with a no-op function. This modification allows backward propagation
to trace back in the same manner as forward propagation. Additionally, the connecting function
buffers and passes correct gradients when switching activations, ensuring scheme correctness. In this
way, each module computes and accumulates the gradient with respect to input and loss of every
individual sub-batch. This approach enables the automatic differentiation mechanism to function
correctly without causing excessive I/O.

3.2 Tensor Exchange Manager

The core mechanism of SpeedLoader lies in novel scheduling of tensor computation and exchange,
particularly in managing and minimizing communication overheads. Heavy data exchanges can
lead to memory fragmentation, resulting in memory waste and reduced hardware efficiency. To
address this, we carefully examine the details and propose a simple yet effective technique to optimize
performance.

a2 b2

b1

c2

c1

b2

b1 c1

a2 c2

a1

Compute

I/O
No-op

Device

Host

Activation (Layer 1)

Activation (Layer 2) ∇a1

∇a2 ∇b2

∇b1

∇c2c1

∇b2(∇)b1 (∇)c1∇a2 ∇c2(∇)a1

a1 b1

∇c1

Forward Propagation Backward Propagation

a1

Figure 2: Device-host communication breakdown of SpeedLoader.

Transparent data exchange. The implementation of SpeedLoader provides a plug-n-play function
wrapper. Users can wrap the forward function of each layer in the model to iteratively load and
compute multiple sub-batches in one explicit forward call. Taking a closer look at the wrapper
demonstrated in Fig. 2 and Algorithm 1, it performs the following activities before and after the
forward/backward calls:

Here, pinned_x is a pre-allocated host memory for activation and gradient storage. Before each
forward pass, the activation of previous sub-batch is offloaded while prefetching the input of the
next sub-batch simultaneously. This communication is also overlapped with the computation of
current sub-batch using two separate CUDA streams in our implementation. During each backward
propagation, the gradient of the previous sub-batch activation is offloaded, and the next required
activation and gradient are prefetched. Similar to the forward propagation, these two processes are
overlapped with the re-computation of checkpointing and computation of gradients. In inference
scenarios, the communication is much simpler: assuming KV caching is enabled, we exchange the
KV cache instead of the entire activation.

Fragmentation-free Memory Pool. Without prior information of the model, PyTorch can only adopt
an on-demand approach to allocate host memory for offloaded tensors[28]. However, allocating
extensive continuous memory in this manner is a lengthy and blocking operation. Meanwhile,
excessive memory allocations can result in significant memory fragmentation, and even highly
optimized LLM serving systems can suffer from heavy fragmentation[29]. Given the configuration
of a transformer-based LLM, it is possible to pre-allocate a reusable memory pool. In this study, we

4



allocate a minimal page-locked memory pool for caching offloaded activations or KV caches based
on the given hyperparameters of the model.

Figure 3: Reorganizing buffer memory to ensure continuity.

Algorithm 1 Pseudo-code for tensor exchange.
x← embedding(input_ids)
for i = 1 to len(batches) do

Offload x to pinned_x[lid][i− 1]
x← buffer
Register_hook(x)
Fetch pinned_x[lid− 1][i+ 1] to buffer
x← layer(x)

end for
output_logits← output_embeddings(x)

procedure BACKWARD_HOOK(x, i, lid)
Offload x.grad to pinned_x[lid− 1][i− 1]
x← act_buffer
x.grad← grad_buffer
Fetch pinned_x[lid−1][x−1] to act_buffer
Fetch pinned_x[lid][x− 1] to grad_buffer
backward(x)

end procedure

Additionally, this pinned memory pool is
highly optimized for sparse KV caching under
inference workloads. KV cache within the
same sub-batch is preserved for each layer
throughout the generative steps to maintain
computational consistency. In our approach,
only the KV state of the new token is written
to the host memory. To ensure the continu-
ity of the host pinned memory buffer, the
buffer pool is organized in the format of
(n_sub_batches, layer, sequence_length,
−1). Given the augmenting nature of se-
quence length through generation steps, it
is permuted to the third dimension from its
original position in the sixth dimension (Fig.3).
Therefore, a contiguous memory chunk is
available for asynchronous bulk copy for
all tokens in the sub-batch, eliminating the
need for blocking operations or additional loops.

3.3 Hyperparameter Tuning Strategies and Communication Analysis

Hyperparameter selection is a critical aspect of both the training and inference phases of LLMs. Our
proposed method expands the search space for hyperparameter tuning, highlighting the importance of
a swift tuning strategy. Based on observations in Section 5.1, we have developed a one-shot hyperpa-
rameter tuning strategy that not only addresses these new dimensions (i.e., sub-batch size, effective
batch size and number of on-device layers) but is also compatible with existing framework-provided
tuning tools. Details of those hyperparameters can be found in appendix A.2. Our observations show
that the performance of SpeedLoader significantly benefits from the exhaustive usage of available
memory, including accelerator HBM and host DRAM.

To achieve optimal training and inference throughput, we aim to minimize data movement and
maximizing arithmetic density iterating through the same amount of training data. In this context,
we will discuss scenarios with the assumption that gradient checkpointing is enabled for training.
Given P , A, N refering to parameter, activation size and number of sub-batches, SpeedLoader has
5NA + 3P and 3P local and remote communication, compared to both 3NP for ZeRO-Offload
method (see quantitative details in appendix A.3). As a result, the I/O advantage of SpeedLoader
over unmodified ZeRO-Offload can be asymptotically enhanced by increasing effective batch size of
SpeedLoader.

The one-shot hyperparameter tuning primarily aims to maximize the utilization of HBMs and host
memory. Given a target context length, the tuner runs two iterations of the training script with
different batch sizes, recording the maximum allocated host and device memory during these runs.
Since memory consumption is highly linear with respect to the number of input tokens (as discussed
in Section 5.1), the tuner calculates the memory increment per input entry. Using this information, it

5



determines the maximum sub-batch size and the number of sub-batches that can be accommodated
within the available device and host memory. This approach allows for efficient utilization of memory
resources, ensuring optimal performance.

4 Evaluation

Implementation. For any transformer-family model, we provide a wrapper function that iteratively
feeds the model with prefetched activations. This approach allows the model to compute and offload
activations of several sub-batches without exceeding device memory limits. The implementation
also includes utilities that automatically tune hyperparameters. Our current implementations support
both OPT and LLaMA-2 [17, 18]. Other transformer-based models can be integrated with minimal
effort. For stringent comparison, we benchmarked the LLaMA-2-7B, 13B, and 70B models. To
establish fair comparison with FlexGen[15], we also benchmarked OPT-6.7B, 30B, and 175B. For
optimal offloading and scalability, SpeedLoader is implemented based on DeepSpeed ZeRO++ with
hierarchical weight partitioning[24]. Additionally, 16-bit brain floating-point and half precisions are
employed to minimize memory pressure and maximally utilize tensor cores on NVIDIA GPUs.

Platform specifications. Our experiments were performed on VMs from an Infrastructure as a Service
(IaaS) provider and computing nodes from a high-performance cluster (HPC). Our benchmarks were
conducted on VMs with 16 NVIDIA A100-40GB GPUs with NVLink. Each VM is equipped with 96
cores of vCPU and 1360GB RAM. Functionality tests were conducted on HPC nodes with NVIDIA
A100-40GB GPUs and HPE Slingshot Interconnection in Dragonfly topology. Platform specifications
can be found in Tab. 1.

Table 1: Platform specifications for each experiment

Experiments Internode Connection Intranode Connection Accelerator
Functionality

NVLink,PCIe Gen 4

HPE Slingshot

NVIDIA A100-40GBBenchmark 100Gbps Ethernet
Profiling 100Gbps Ethernet
Scalability 100Gbps Ethernet

PCIe Gen 5
N/A

NVIDIA H100-96GB
Compatibility PCIe Gen 3 NVIDIA V100S-32GB

PCIe Gen 4 NVIDIA A6000

5 Results

5.1 Impacts of Hyperparameters

We first analyzed the impact of changing hyperparameters (Fig.4) with a model with LLaMA-2-7B
on single NVIDIA A100 GPU.

Linear resource usage. Our analysis indicates that both HBM and host DRAM usage exhibit a linear
pattern influenced by major hyperparameters. Using ordinary least squares regression, we found a
highly linear relationship (R2 > 0.999) between sub-batch size/number of on-device layers and peak
GPU memory usage, as well as total tokens and host residence memory usage, as shown in Fig. 4.
Intriguingly, the tensor exchange memory pool allocates more page-locked memory than expected.
This is rooted in the memory allocation behavior of PyTorch CPU tensors, which automatically
rounds up the reserved memory to the nearest power of 2. Despite this linearity and predictable host
memory allocation, predicting memory consumption on the accelerator remains challenging and
can vary significantly across different models. To maximize the generalizability of our proposed
approach, we decided to adaptively fit the linear resource model on the fly.

Asymptotic compute efficiency. We identified that the MFU is strongly affected by the hyperparam-
eters including sub-batch size, number of sub-batches, and number of on-device layers. Increasing

6



a b

c

Figure 4: Hyperparameter Analysis. a, the dynamics between throughput, GPU memory consumption
and hyperparameters, where FP and BP denotes forward and backward propagation, respectively;
Ratio in panel b refers to the ratio between sub-batch size and number of sub-batches; c, total tokens’
effect on host memory usage.

each hyperparameter can result in enhanced arithmetic intensity during computation. Aligned with
theoretical analysis, the increasing hyperparameters asymptotically saturates the computation to the
practical peak performance of the model operations. Considering the host DRAM as a bottleneck,
the maximum token capacity of a given system is fixed. Given this restriction, the tradeoff between
sub-batch size and the number of sub-batches becomes critical. Both hyperparameters are positively
correlated with throughput, however, they have different degrees of impact. We conducted a brief
test to examine the effects in action. The results (see Fig. 4b) show clearly that the model achieves
optimal performance when the sub-batch size is maximized to the limit allowed by HBM.

Performance degradation on long sequence. With the total token number saturating the HBM,
we adjusted the sequence length and sub-batch size ratio to test the trade-off between these two
HBM-bounded properties. The results show a decrease in total throughput with growing sequence
length and shrinking sub-batch size. However, the sequence length is usually determined by the
data and is not a tunable hyperparameter. This observation does not alter the objective of filling all
available HBM during hyperparameter selection.

5.2 Enhanced Arithmetic Intensity

Detailed profiling results further demonstrate that our approach substantially enhances the utilization
of the given hardware. By properly applying our scheme, the effective GPU kernel execution ratio
rises from 8.9% to 83.7%, as shown in Fig.5. The baseline approach spent nearly 80.6% of the time
exchanging tensors to and from host DRAM, while SpeedLoader controls the memory accessing
ratio to under 15%.

For distributed training with ZeRO stage 3 without offloading, the baseline approach spent 80% of
the time partitioning the gradients and 14% of the time gathering weights. In contrast, SpeedLoader
achieves 66% GPU time executing arithmetic operations.The model operation exhibits distinct
behaviors between saturated and unsaturated computations. When the sub-batch size is large enough,
kernel executions are seamlessly enqueued in series, typically lasting longer than the host-side
function calls of the active layers. Conversely, when the sub-batch size is not large enough to fill the
CUDA stream, the accelerator often waits for host-side function calls. The backward computation
follows a similar trend (Fig. 5b,c).

Additionally, DeepSpeed backward computation incurs a significant blocking communication load,
which offloads the gradients to pageable host memory. For every checkpointed segments of our model
in trial, this communication operation causes 2110 ms of hardware turnaround without any arithmetic

7



a b c d e

Figure 5: Profiling results. (a) Deepspeed (w/ offloading); (b) SpeedLoader (unsaturated-computing,
w/ offloading); (c) SpeedLoader (saturated-computing,w/ offloading); (d) Deepspeed (w/o offloading);
(e) SpeedLoader (w/o offloading)

operations. On the other hand, the corresponding backward propagation arithmetic operations take
6679 ms, indicating that nearly a quarter of the backward propagation time is spent waiting for
blocking gradient partitioning. In conclusion, the sub-batch size saturates computation, while the
number of sub-batches hinders the synchronization overhead in the computation of every effective
batch.

Another interesting observation is that the prefetching operation of DeepSpeed is module-wise
asynchronous. Instead of overlapping the communication with all operations before the target tensor
is called, only one module’s operation is allowed to be overlapped with a single I/O operation. This
behavior results in a bottleneck at the end of every active layer group, where parameters of current
layer group are released and prefetching kicks off.

5.3 Peak Performance Benchmarking

To demonstrate the pragmatic performance enhancements, we examined the peak performance of
different offloading and distribution schemes on the same nodes from an IaaS provider. The results
are shown in Fig. 6.

The first benchmark was conducted on a single device to evaluate SpeedLoader’s offloading perfor-
mance. Under the best configuration for both approaches, our method showed speedups of 3.29 and
6.49 for LLaMA-2-7B and LLaMA-2-13B, respectively. In both cases, SpeedLoader exhibited a
MFU of 51%. The second test examined performance in ZeRO distributed training combined with
offloading. We distributed the batches across 64 GPUs on 8 nodes interconnected with Ethernet. Our
approach attained speedups of 5.48, 5.49, and 30.33 for the 7B, 13B, and 70B LLaMA-2 models,
respectively. Notably, there was a MFU drop compared to the single device case, likely reflecting
inter-node bandwidth bottleneck, which can be significantly alleviated in clusters with more reliable
interconnections. The third test examined SpeedLoader’s effectiveness on peer communication.
In this trial, we disabled offloading compared to the previous test. Our approach increased the
performance gap between the baseline, with speedups of 5.34 and 12.28 on the 7B and 13B models,
respectively. This result highlights the potential of current sharded training paradigms, where the
MFU can be elevated to unprecedented levels.

Additionally, our optimized inference scheme outperforms previous state-of-the-art approaches (Fig.
7). On a single NVIDIA A100, the speedups compared to FlexGen were 1.52, 2.09, and 2.35 for
the OPT-6.7B, OPT-30B, and OPT-175B models, respectively. vllm showed consistently inferior
performance due to its simplistic handling of offloaded computing. Note that the OPT-175B was
tested with NVMe offloading and without KV caching due to excessive DRAM consumption. For
OPT-175B, the KV cache for each sample with 256 tokens can consume up to 1.125GB of host
memory, resulting in heavy I/O overhead and becoming a significant bottleneck in maximizing
effective batch size. In contrast, our strategy without KV caching benefits from a larger sub-batch
size and gains enhanced arithmetic intensity.

8



7B 13B
Model Size

0%

10%

20%

30%

40%

50%

M
od

el
 F

LO
Ps

 U
til

iza
tio

n 
(%

)

Single Device

7B 13B 70B
Model Size

Distributed

7B 13B
Model Size

No Offload

SpeedLoader DeepSpeed

Figure 6: Training MFU comparison. Left, Single device benchmark-
ing w/ offloading; middle, Distributed benchmarking w/ offloading;
right, Distributed benchmarking w/o offloading.

6.7B 30B 175B
Model Size

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

vLLM
DeepSpeed
FlexGen
SpeedLoader

Figure 7: Inference through-
put benchmarking on single
device.

5.4 Functionality Test and Scalability

Our methodology does not alter the model structure and numeric value. To show the performance of
our proposed approach in real-world scenario, we also examine the functionality of our approach
via pretraining experiment. We pretrained a 7B and a 13B model following the corresponding
configuration of LLaMA-2. The trials ran on Wikipedia, OpenWebText and C4 datasets for a cutoff
time. This cutoff was set before the full dataset was processed, establishing that training loss is a
valid metric for assessing convergence effectively.

The training results are shown in Tab. 2. These trials were conducted using 4x NVIDIA A100 GPUs,
distributed across four nodes interconnected by Slingshot Interconnection. They operated with an
effective batch size of 512 and a context length of 2048. Given the cutoff time, our approach robustly
processes more tokens than baseline implementation in 6 trials with three datasets and two model
sizes without compromising convergence. The average speedup for 7B and 13B model are 4.08 and
2.68 respectively.

Table 2: Pretraining results of DeepSpeed and SpeedLoader
DeepSpeed Ours

Dataset Model Size Loss Tokens (M) Loss Tokens (M)

Wikipedia 7B 2.896 26.2 2.507 113.2
13B 5.112 14.7 2.461 53.5

OpenWebText 7B 4.409 27.3 3.705 116.4
13B 5.008 18.9 4.813 34.6

C4 7B 2.517 35.7 2.199 131.1
13B 3.544 18.9 2.058 48.8

The stark difference in convergence efficiency highlight the practical advantages of our proposed
approach, especially when considering I/O operations. In this case, the standard approach required 32
gradient accumulation steps for a single parameter update, involving the model being loaded 64 times
from the host. Additionally, to synchronize gradients and parameters, the amount of reduce-scatter
and all-gather communications was equivalent to over 32 times the model size. Instead, our approach
achieves same amount of computing with only two instances of parameter loading, together with only
two full model all-gather and one reduce-scatter.

Our proposed scheme delivers excellent performance in distributed settings, especially for model
sharding strategies like FSDP and ZeRO, SpeedLoader significantly boosts performance by largely
reducing the parameter gathering cost with or without offloading. To examine the scalability of our
approach, we conducted tests on 64 NVIDIA A100 GPUs on aforementioned cloud platform. The
results are shown in Fig. 8.

9



In the weak scaling test, we scaled up the total number of accelerators with fixed workload per device
with offloading enabled. We observed a superliner scaling pattern, where the throughput per device
increased with the number of computing device. For LLaMA-2-70B, per device efficiency has over
3-fold speedup. This behavior is expected due to the bandwidth-centric design of ZeRO-Infinity[14].
With the engagement of more accelerators, the PCIe bandwidth bottleneck is largely alleviated.
Additionally, our scheme can further reduce the inter-device and inter-node communication overhead
for gathering weights and scattering gradients.

6 Limitations and Insights

4 16 64
Number of GPUs

2

3

4

Pe
r-D

ev
ice

 T
hr

ou
gh

pu
t

Weak Scaling (FP)

4 16 64
Number of GPUs

Weak Scaling (BP)

7B 13B 70B

Figure 8: Weak scaling of SpeedLoader. Showing per
device throughput.

SpeedLoader provides distributed deep
learning settings with an I/O efficient
option. By fully utilizing the available
host memory, SpeedLoader can signifi-
cantly reduce the redundant model state
exchange among the device, peer and
host memory. However, this approach
may make host memory a new bottle-
neck for efficient model operation. Ad-
ditionally, the implementation of mem-
ory allocation in PyTorch only allows
sizes that are powers of two, which can
lead to inefficient use of memory. For
example, if a tensor requires 33 GB, Py-
Torch allocates 64 GB, potentially leading to out-of-memory issues. Currently, there is no explicit
option to modify this behaviour for CPU memory allocation.

Furthermore, while SpeedLoader is theoretically compatible with other parallelism strategies like
tensor parallelism and pipeline parallelism, it has not yet been tested in conjunction with these
methods. The potential benefits of SpeedLoader in larger-scale hybrid parallel settings remain to
be explored. While data parallelisms like FSDP and ZeRO have low communication overhead
in exchanging activations, tensor parallelism has lower communication overhead in exchanging
parameters. Thus, exploring the dynamic trade-off with SpeedLoader between these parallelisms is a
valuable area for future research. Amidst an age of LLM blooming, we hope that, together with other
heterogeneous techniques, SpeedLoader can provide researchers with a new option to explore the
frontiers of heterogeneous and distributed computing.

7 Conclusion

SpeedLoader is a highly optimized computing scheme for I/O-bounded distributed and heterogeneous
LLM operations. By virtue of the layered nature of transformer models, our proposed approach retains
layers in-situ to process more batches. Through meticulously designed tensor exchange, SpeedLoader
enables efficient handling of multiple batches within a single forward-backward pass, significantly
reducing the amount of required I/O. This not only allows users to maintain computational accuracy
but also ensures time and energy efficiency by minimizing communication overhead. Consequently,
SpeedLoader provides a practical, high-performance solution for I/O-constrained distributed and
heterogeneous setups, where efficient large-scale model training and inference are key. Our results
showed that SpeedLoader exhibits substantially higher performance than previously SOTA approaches
during both the training and inference scenarios.

10



8 Acknowledgements

A special shout out to Dr. Huang Qirui, Dr. Wei Yuying, Ms. Nie Ying, and Dr. Wang Qinyi for
their invaluable insights into this project and their selfless assistance in the writing of this work.
The computational work for this article was partially performed using resources from the National
Supercomputing Centre, Singapore (https://www.nscc.sg).

Yang You’s research group is being sponsored by NUS startup grant (Presidential Young Professor-
ship), Singapore MOE Tier-1 grant, ByteDance grant, ARCTIC grant, SMI grant (WBS number:
A-8001104-00-00), Alibaba grant, and Google grant for TPU usage.

References
[1] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[2] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent
Sifre. Training compute-optimal large language models, 2022.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[4] AI@Meta. Introducing meta llama 3: The most capable openly available llm to date. https:
//ai.meta.com/blog/meta-llama-3/, 2024. Accessed:2024-4-18.

[5] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

[6] Qifan Xu and Yang You. An efficient 2d method for training super-large deep learning models.
In 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
222–232. IEEE, 2023.

[7] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[8] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM symposium on operating systems
principles, pages 1–15, 2019.

[9] Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. Hanayo: Harnessing wave-
like pipeline parallelism for enhanced large model training efficiency. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–13, 2023.

[10] Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad,
Yangyang Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantiza-
tion aware training for large language models. arXiv preprint arXiv:2305.17888, 2023.

[11] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

11

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
http://arxiv.org/abs/1909.08053


[12] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mization towards training A trillion parameter models. CoRR, abs/1910.02054, 2019. URL
http://arxiv.org/abs/1910.02054.

[13] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model
training. CoRR, abs/2101.06840, 2021. URL https://arxiv.org/abs/2101.06840.

[14] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He.
Zero-infinity: Breaking the GPU memory wall for extreme scale deep learning. CoRR,
abs/2104.07857, 2021. URL https://arxiv.org/abs/2104.07857.

[15] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang
Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica,
and Ce Zhang. Flexgen: High-throughput generative inference of large language models with a
single gpu, 2023.

[16] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

[17] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[18] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[19] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

[20] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang, and Xuehai
Qian. Capuchin: Tensor-based gpu memory management for deep learning. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 891–905, 2020.

[21] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,
and Tim Kraska. Superneurons: Dynamic gpu memory management for training deep neural
networks. In Proceedings of the 23rd ACM SIGPLAN symposium on principles and practice of
parallel programming, pages 41–53, 2018.

[22] Jiarui Fang, Yang Yu, Shenggui Li, Yang You, and Jie Zhou. Patrickstar: Parallel training of
pre-trained models via a chunk-based memory management. CoRR, abs/2108.05818, 2021.
URL https://arxiv.org/abs/2108.05818.

[23] Xiaoyang Sun, Wei Wang, Shenghao Qiu, Renyu Yang, Songfang Huang, Jie Xu, and Zheng
Wang. Stronghold: fast and affordable billion-scale deep learning model training. In SC22:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–17. IEEE, 2022.

[24] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes, Samyam Rajbhandari, Olatunji
Ruwase, Feng Yan, Lei Yang, and Yuxiong He. Zero++: Extremely efficient collective commu-
nication for giant model training. arXiv preprint arXiv:2306.10209, 2023.

[25] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. CoRR, abs/1604.06174, 2016. URL http://arxiv.org/abs/1604.06174.

12

http://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2101.06840
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/2108.05818
http://arxiv.org/abs/1604.06174


[26] Xunyi Zhao, Théotime Le Hellard, Lionel Eyraud-Dubois, Julia Gusak, and Olivier Beaumont.
Rockmate: an efficient, fast, automatic and generic tool for re-materialization in pytorch. In
International Conference on Machine Learning, pages 42018–42045. PMLR, 2023.

[27] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez,
Kurt Keutzer, and Ion Stoica. Checkmate: Breaking the memory wall with optimal tensor
rematerialization. Proceedings of Machine Learning and Systems, 2:497–511, 2020.

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[29] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[30] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Performance, design,
and autotuning of batched gemm for gpus. In High Performance Computing: 31st International
Conference, ISC High Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings,
pages 21–38. Springer, 2016.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[32] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[33] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

13



A Appendix / supplemental material

A.1 List of Abbreviations

Table 3: List of Abbreviations
Abbreviation Definition
flops floating-point operations
FLOPs floating-point operations per second
MFU Model FLOPs Utilization
LLM Large Language Model
HBM High-Bandwidth Memory
ZeRO Zero Redundancy Optimizer
FSDP Fully Sharded Data Parallel
FP Forward Propagation
BP Backward Propagation
GEMM General Matrix-Matrix Multiplication

A.2 Hyperparameters

Our approach introduces a few new dimensions of hyperparameters:

Sub-batch size. Due to the re-batching operation, the original batched data is parceled into smaller
chunks, with the sub-batch size referring to the size of individual chunks. The aligned sub-batch size
is a key hyperparameter that impacts computation. The major arithmetic pressure of transformers
lies in linear layers, where batched general matrix-matrix multiplication (GEMM) is heavily used.
Performance can greatly benefit from larger aligned batch sizes[30]. However, the total available
on-accelerator HBM is the limiting factor for sub-batch size. The HBM usage is mainly shared
by activation tensors, parameters in use, and exchange buffers, which is highly sensitive to other
hyperparameters such as the prefetch range. This indicates that tuning of sub-batch size must take its
interaction with other hyperparameters into account.

Number of sub-batches. As discussed in Section A.3, a larger effective batch size can result
in asymptotic I/O reduction. A lower communication-compute ratio allows easier overlapping
for optimal efficiency. However, offloading activations inevitably leads to significant page-locked
memory consumption. Since ZeRO-Offload also applies enormous pressure to host memory, the host
DRAM space becomes a major limiting factor for effective batch size.

Number of on-device layers. This hyperparameter specifies the number of model layers computed
together. Instead of loading the model layer by layer, we compute multiple layers in one iteration.
A larger number will result in more HBM consumption for buffering and storing active model
parameters. Although this hyperparameter does not significantly affect model training or inference
efficiency, it is essential for balancing host-device memory costs.

From our observations, we showed that the resource usage of our method has a linear relationship to
the hyperparameters. Therefore, we can estimate the best batch configurations within only 2 trials by
confirming the coefficient and intercepts.

A.3 Communication Analysis

Taking a closer look at the communication, we can quantitatively analyze the communication amount
in a single forward propagation and backward propagation. As listed in Tab. 4: In canonical approach,
for every batch with n tokens, the model must be loaded twice from host for forward pass and
re-computation, and one copy of gradient will be written back to host. In distributed settings, the
parameters and gradients are communicated with peer ranks. To sum it up, the amount of local and
peer tensor communications is both 3NP for every N batches.

We illustrate the data operations of SpeedLoader in Fig 2. Take sub-batch b as example. During
forward propagation, for each sub-batch at one layer, we prefetch the input of next mini-batch (c1) and

14



offload the output of previous mini-batch (a2). Meanwhile, we also prefetch the model parameters of
the next layer. This sums to 2NA+ P local and P peer communication.

For backward pass with gradient checkpointing, the input activation (a1) and the output gradient
(∇a2) are fetched. Meanwhile, previous activation gradient (∇c1) is offloaded to the pinned memory
that previously storing the activation (c1). Simultaneously, the model parameter of next layer is
also being fetched. Above results in 3NA+ 2P local and 2P remote communication. In total, our
proposed method has 5NA+3P and 3P local and remote communication, respectively.

Consider that a typical transformer model having a total size of 12Lh2 [31, 1], and checkpointed
activation sizes are nh, the local and remote I/O ratios between SpeedLoader and ZeRO-Offload
are 5n

36Lh + 1
N and 1

N , respectively. Based on the quantitative analysis, it is shown that the total
communication during offloading in SpeedLoader is asymptotically reduced with increasing the
number of sub batches.

Table 4: Communication during training, where P , A, N refer to parameter, activation size and
number of sub-batches respectively.

Collective Communication Ours ZeRO
Parameter Gathering (FP) P NP
Parameter Gathering (BP) P NP
Gradient Reduce-Scatter P NP

Total 3P 3NP

Local Communication Ours ZeRO
Parameter Loading(FP) P NP
Activation Loading(FP) NA -
Activation Offloading (FP) NA -
Parameter Loading (BP) P NP
Parameter Gradient Offloading P NP
Activation Gradient Loading NA -
Activation Gradient Offloading NA -
Activation Loading (BP) NA -

Total 5NA+ 3P 3NP

A.4 Enhanced Performance with FlashAttention-2

We explored the synergy between SpeedLoader and FlashAttention-2[32]. We conducted experiments
under identical hyperparameters with FlashAttention-2 enabled and disabled, ensuring maximum
hardware utilization. Results (Fig. 10) showed that in distributed offloading scenarios, FlashAttention-
2 provides 1.13x, 1.13x, and 1.05x speedups for LLaMA-7B, -13B, and -70B, respectively. In
distributed training without offloading, the speedups are 1.16x and 1.13x for 7B and 13B models. For
these tests, we used 1, 2, and 4 nodes with 16 NVIDIA A100-40GB GPUs each for 7B, 13B, and
70B trials, respectively. With this optimization and the upcoming FlashAttention-3, SpeedLoader can
achieve throughput very close to non-sharded and non-offloaded training.

A.5 Compatibility Test

SpeedLoader is designed to facilitate computing in I/O bounded settings. Therefore, link speeds
of benchmark platform have substantial impacts on the performance of our solution. To explore
SpeedLoader’s performance on devices with various I/O capabilities and architecture, we tested the
speedups of SpeedLoader on multiple distinct platforms. Details of benchmark platforms can be
found in Tab. 1.

15



Figure 9: Single device peak performance
test on devices with different bus speed.

7B 13B 70B
Model Size

0%

10%

20%

30%

40%

50%

60%

M
od

el
 F

LO
Ps

 U
til

iza
tio

n 
(%

)

Distributed

7B 13B
Model Size

No Offload

w/ FlashAttention w/o FlashAttention

Figure 10: Training MFU ablation study with
FlashAttention-2.

With speedups of 1.37x, 3.56x, and 3.01x on V100S, A6000, and H100 (Fig. 9), SpeedLoader
exhibited consistent gains on platforms with PCIe Gen 4 and over, and lower speedups on V100S
with PCIe Gen 3. Overall, the positive speedups showcase a robust compatibility on platforms
with mixed architectures and capabilities. Note that the MFU being lower on H100 than A100 is
expected behaviour. As reported by Dao et al.[33], without architecture-specific optimizations like
FlashAttention-3, transformers struggle to unleash the full potential of Hopper GPUs.

A.6 Reproducibility Statement

To facilitate reproduction of experimental results, we provide an public repository2. As an example
setting, we recommend readers reproduce part of aforementioned results with instances of A2 VMs
on Google Cloud. This SKU has similar specifications to the computational resources of this research.

2Access here

16

https://github.com/ExtremeViscent/SpeedLoader


NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions of our work are clearly stated in the abstract and introduction,
which are backed by solid experimental results.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: As mentioned in conclusion, our work is not yet tested with other parallelisms
like pipeline or tensor parallel. Apart from this aspect, the paper is not based on strong
assumptions and overall generalizable.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

17



Answer: [NA]

Justification: Our research does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We described the working mechanism of proposed method in the paper in
detail, together with clear pseudocode and schematics. All experiments are conducted on
open-source datasets and models.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code repository is publicly available. Users can follow the instructions in
Sec. A.6.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clarified the hyperparameter tuning strategies and disclosed static hyperpa-
rameters for the experiments.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiments are very computationally exhaustive, therefore impractical to
create enough data for meaningful statistical tests.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computing infrastructure specifications are clearly stated in Sec. 4.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We reviewed the NeurIPS Code of Ethics and this research conforms with the
guidelines.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

18

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]

Justification: Our work does not impose any foreseeable societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in this work are properly acquired and cited, in accordance
with the guidelines.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.

19


	Introduction
	Related Work
	SpeedLoader
	Overview
	Tensor Exchange Manager
	Hyperparameter Tuning Strategies and Communication Analysis

	Evaluation
	Results
	Impacts of Hyperparameters
	Enhanced Arithmetic Intensity
	Peak Performance Benchmarking
	Functionality Test and Scalability

	Limitations and Insights
	Conclusion
	Acknowledgements
	Appendix / supplemental material
	List of Abbreviations
	Hyperparameters
	Communication Analysis
	Enhanced Performance with FlashAttention-2
	Compatibility Test
	Reproducibility Statement


