
A Appendix1

A.1 General Information2

A.1.1 Links3

The FlexMol code is available at our public repository: https://github.com/Steven51516/4

FlexMol. The code to reproduce the experiments described in this paper can be found in the5

experiments directory of the repository. The FlexMol experiment split used in our experiment are6

adapted from MolTrans: https://github.com/kexinhuang12345/MolTrans.7

A.1.2 Licenses8

FlexMol is under the BSD 3-Clause License. We, the authors, bear all responsibility in case of9

violation of rights.10

A.2 Drug Encoders Implemented in FlexMol11

A.2.1 Sequence and Fingerprint-based Encoders12

Morgan: Generates a 1024-length bit vector encoding circular radius-2 substructures, processed with13

an MLP. [28]14

Daylight: Produces a 2048-length vector encoding path-based substructures, processed with an MLP.15

[28]16

ErG: Creates a 315-dimensional 2D pharmacophore description for scaffold hopping, processed with17

an MLP. [32]18

PubChem: Generates an 881-length bit vector where each bit corresponds to a significant substructure,19

processed using an MLP. [16]20

ChemBERTa: Generates embeddings from SMILES strings using the pretrained ChemBERTa model,21

processed with a linear layer or MLP. [23]22

ESPF: Produces a 2586-length sub-structure partition vector, processed with an MLP. [14]23

CNN: One-hot encodes SMILES strings and processes them through a multi-layer 1D convolutional24

neural network, followed by a global max pooling layer. [14]25

Transformer: Generates sub-structure partition fingerprints from SMILES strings and encodes them26

using a self-attention-based transformer model. [14]27

A.2.2 2D Graph-based Encoders28

Preprocessing involves creating 2D molecular graphs from SMILES strings using RDKit. These29

graphs are then encoded using various graph neural network models implemented with DGL:30

GCN, GAT, GIN: Standard graph neural networks to capture relational and topological features in31

2D drug graphs. [17, 34, 37]32

AttentiveFP: Utilizes attention mechanisms to prioritize significant molecular substructures. [36]33

NeuralFP: Employs neural fingerprinting methods to capture detailed molecular features. [8]34

MPNN: Uses message-passing neural networks to transmit information among atoms and bonds in35

the graph.[10]36

A.2.3 3D Graph-based Encoders37

Preprocessing involves creating 3D molecular graphs from SMILES strings using RDKit, considering38

spatial conformation. These graphs are then encoded using:39
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SchNet: SchNet models to capture 3D spatial relationships. [29]40

MGCN: Multi-level graph convolutional networks to learn spatial features. [20]41

A.3 Protein Encoders Implemented in FlexMol42

A.3.1 Sequence-based Encoders43

CNN: One-hot encodes the amino acid sequences and processes them through a multi-layer 1D44

convolutional neural network, followed by a global max pooling layer. [14]45

Transformer: Generates sub-structure partition fingerprints from amino acid sequences and encodes46

them using a self-attention-based transformer model. [14]47

AAC: Generates an 8,420-length vector representing amino acid k-mers, processed with an MLP.48

[26]49

ESPF: Produces a 4,114-length sub-structure partition vector, processed with an MLP. [14]50

PseudoAAC: Generates a 30-length vector considering protein hydrophobicity and hydrophilicity51

patterns, processed with an MLP. [4]52

Quasi-seq: Generates a 100-length quasi-sequence order descriptor using sequence-order-coupling53

numbers, processed with an MLP. [3]54

Conjoint triad: Produces a 343-length vector based on the frequency distribution of three continuous55

amino acids, processed with an MLP. [30]56

Auto correlation: Generates a 720-length vector based on the autocorrelation of physicochemical57

properties along the sequence, processed with an MLP. [12]58

CTD: Produces a 147-length vector by calculating composition, transition, and distribution descrip-59

tors, processed with an MLP. [7]60

ESM: Directly generates embeddings using a pretrained ESM model, processed with a linear layer or61

MLP. [27]62

ProtTrans-t5, ProtTrans-bert, ProtTrans-albert: Directly generates embeddings using pretrained63

models (T5, BERT, ALBERT respectively), processed with a linear layer or MLP. [9]64

A.3.2 3D Graph-based Encoders65

Preprocessing involves creating 3D graphs from protein PDB structures. These graphs are then66

encoded using various graph neural network models:67

GCN, GAT, GIN: Standard graph neural networks to capture spatial features in 3D protein structures.68

[17, 34, 37]69

GCN_ESM, GAT_ESM, GIN_ESM: Combines standard GNNs with additional ESM features for70

enhanced node representations. [35]71

PocketDC: Identifies and constructs graphs from binding pockets using DeepChem, encoded with72

GCN. [39]73

GVP: Utilizes Geometric Vector Perceptrons (GVP) to capture geometric and vectorial features. [15]74

GearNet: Employs pretrained GearNet layers with relational message passing to capture geometric75

properties and spatial features. [40]76

A.4 Interaction Layers Implemented in FlexMol77

Bilinear Attention: The Bilinear Attention Network (BAN) layer captures interactions between78

2D feature sets by computing bilinear transformations, followed by attention pooling and batch79

normalization. [1]80
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Bilinear Fusion: Combines 1D features from two sources using a bilinear transformation and ReLU81

activation, capturing multiplicative interactions for enhanced feature representation. [19]82

Bidirectional Cross Attention: Combines 2D embeddings from two sources using bidirectional83

attention and max pooling, creating a unified representation. [25]84

Highway: Combines 1D features using multiple highway layers with gated mechanisms to regulate85

information flow. [41]86

Gated Fusion: Combines 1D features from two sources using gated mechanisms and transformations,87

producing a fused representation. [22]88

Multi-Head Attention: Applies attention mechanisms to 2D features using multiple heads, with89

optional residual connections and layer normalization. [33]90

Concatenation: Concatenation is the simplest form of combining multiple feature embeddings by91

joining them end-to-end.92

A.5 Example Usage of FlexMol93

This section provides a simple example to using FlexMol for drug-target interaction prediction. A94

more detailed set of tutorials can be found in the tutorials directory of our repository.95
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Figure 1: The example model constructed using FlexMol involves several stages. First, drug and
protein sequences/structures are encoded using selected encoders: GCN for drug encoding, PocketDC
for protein structure encoding, and AAC for protein sequence encoding. These encoded features are
then stacked and passed through a self-attention interaction layer to capture complex relationships.
The output of the interaction layer is flattened and processed through a Multi-Layer Perceptron (MLP)
with specified hidden layers.

A.5.1 Loading the Dataset96

First, we import the necessary modules from FlexMol and load the DAVIS dataset.97

98
1 # Import necessary modules from FlexMol99
2 from FlexMol.dataset.loader import load_DTI100
3 from FlexMol.encoder import FlexMol101
4 from FlexMol.task import BinaryTrainer102
5103
6 # Load the DAVIS dataset from the specified directory104
7 dir = "data/DAVIS/"105
8 train_df = load_DTI(dir + "train.txt")106
9 val_df = load_DTI(dir + "val.txt")107
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10 test_df = load_DTI(dir + "test.txt")108109

The load_DTI function is a general-purpose utility that loads drug-target interaction data from the110

specified directory into DataFrames for training, validation, and testing. The loaded DataFrame111

contains four columns: drug sequence, protein sequence, protein PDB ID, and interaction label.112

A.5.2 Initializing Encoders113

Next, we initialize the drug and protein encoders.114

115
1 # Initialize drug and protein encoders116
2 # Graph Convolutional Network for drug encoding117
3 # PocketDC encoder for protein structures118
4 # Amino Acid Composition encoder for protein sequences119
5 FM = FlexMol ()120
6 de = FM.init_drug_encoder("GCN")121
7 pe1 = FM.init_prot_encoder("PocketDC", pdb=True , pocket_num =3)122
8 pe2 = FM.init_prot_encoder("AAC")123124

Here, we use a Graph Convolutional Network (GCN) for drug encoding, PocketDC for protein125

structure encoding, and Amino Acid Composition (AAC) for protein sequence encoding.126

A.5.3 Stacking Features and Setting Interaction Layers127

We then stack the features from the different encoders and set the interaction layer to self-attention.128

129
1 # Stack the features from different encoders130
2 # Set interaction layer to self -attention131
3 # Flatten the attention outputs for MLP input132
4 # Apply a Multi -Layer Perceptron (MLP) with specified hidden layers133
5 features_stack = FM.stack([de, pe1 , pe2])134
6 attention = FM.set_interaction(features_stack , "self -attention")135
7 features_flatten = FM.flatten(attention)136
8 output = FM.apply_mlp(features_flatten , hidden_layers =[512, 512, 256], head137

=1)138139

The stack method combines the outputs of the encoders, and the set_interaction method applies140

a self-attention mechanism to these combined features. The flatten method prepares the attention141

layer outputs for the MLP, and the apply_mlp method sets up the MLP with specified hidden layers.142

A.5.4 Building and Training the Model143

Finally, we initialize the BinaryTrainer and train/test the model.144

145
1 # Build the FlexMol model146
2 # Initialize the BinaryTrainer for training the model147
3 FM.build_model ()148
4 trainer = BinaryTrainer(149
5 FM , early_stopping="roc -auc", test_metrics =["roc -auc", "pr -auc"],150
6 device="cuda:0", epochs =50, patience =10, lr=0.0001 , batch_size =64,151

metrics_dir = "metrics/example_run"152
7 )153154

The BinaryTrainer is configured for training binary classification tasks with early stopping based155

on the ROC-AUC metric and evaluates the model using both ROC-AUC and PR-AUC metrics. After156

testing, the metrics are saved to the user-specified directory.157

The code provided in this section serves as a practical example of how FlexMol can be utilized for158

molecular relational learning tasks, showcasing its flexibility and ease of use.159
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A.6 Additional Experiments for DDI160

A.6.1 Experiment Setup161

Dataset: We used DrugBank, downloaded using the TDC Python library [13], for the evaluation162

of FlexMol-baselines. DrugBank contains 191,808 DDI tuples with 1,706 drugs. Each drug is163

represented in SMILES format, from which molecular graphical representations are generated using164

the Python library RDKit. There are 86 interaction types describing how one drug affects the165

metabolism of another. Each DDI pair is considered a positive sample, from which a negative sample166

was generated using the method described in the GMPNN-CS framework [24].167

Evaluation Method: We performed a stratified split of the dataset to maintain the same interaction168

type proportions in the training (60%), validation (20%), and test (20%) sets. This was repeated three169

times, resulting in three stratified randomized folds.170

We constructed six FlexMol baselines as detailed in Table 1. The models were trained in mini-171

batches of 512 with a learning rate of 0.0001. Five state-of-the-art(SOTA) methods were selected172

for comparison: MHCADDI [6], GMPNN-CS [24], GAT-DDI [24], GMPNN-U [24], and MR-GNN173

[38].174

Table 1: FlexMol Experimental Settings on the DrugBank dataset

Experiment No. Drug Encoder 1 Drug Encoder 2 Interaction Input Feature

1 CNN CNN - ds
2 CNN GCN - ds + dg
3 CNN+PubChem GCN+PubChem - ds + dg
4 PubChem PubChem - ds
5 Transformer Transformer - ds
6 Transformer Transformer Cross Attention ds

Note: ds = drug sequence, dg = drug graph, ’-’ denotes concatenation for combining
embeddings.

A.6.2 DDI Experiment Results175

Table 2: Comparison of Model Performance on the DrugBank dataset.

Experiment No. / Method Accuracy ROC-AUC PR-AUC Precision Recall

MR-GNN 96.04 ± 0.05 98.87 ± 0.04 98.57 ± 0.06 94.48 ± 0.08 97.78 ± 0.03
MHCADDI 83.80 ± 0.27 91.16 ± 0.31 89.26 ± 0.37 78.90 ± 0.06 92.26 ± 0.63

SSI-DDI 96.33 ± 0.09 98.95 ± 0.08 98.57 ± 0.14 95.09 ± 0.08 97.70 ± 0.14
GAT-DDI 89.81 ± 1.00 95.21 ± 0.70 93.56 ± 0.90 87.04 ± 1.11 93.56 ± 0.52

GMPNN-CS 95.30 ± 0.05 98.46 ± 0.01 97.94 ± 0.02 93.60 ± 0.07 97.22 ± 0.1

1 83.39 ± 0.08 90.01 ± 0.10 86.35 ± 0.13 81.40 ± 0.10 86.20 ± 0.06
2 80.42 ± 0.20 87.70 ± 0.60 83.92 ± 1.52 78.22 ± 2.20 84.41 ± 0.94
3 83.40 ± 0.26 89.68 ± 0.10 85.73 ± 0.20 80.83 ± 0.06 85.60 ± 0.47
4 82.12 ± 0.15 89.20 ± 0.30 85.54 ± 0.44 80.67 ± 0.30 84.57 ± 0.40
5 87.03 ± 0.19 92.33 ± 0.12 89.13 ± 0.16 83.42 ± 0.10 92.34 ± 0.35
6 87.27 ± 0.24 92.49 ± 0.09 89.37 ± 0.12 83.71 ± 0.20 92.92 ± 0.83

Table 2 shows that while simple combinations using FlexMol generally perform slightly lower than176

SOTA methods, they remain closely competitive. Experiment #2, in particular, demonstrates that177

using different encoders for the two drugs tends to decrease performance. Additionally, the interaction178

layers added in experiment #6 improve model performance compared to experiment #5, highlighting179

the importance of interaction layers in enhancing the predictive capabilities of the model.180
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A.7 Additional Experiments for PPI181

A.7.1 Experiment Setup182

Dataset: We used the Guo yeast dataset [11], which includes 11,188 PPI pairs, with 5,594183

positive and 5,594 negative interactions. The data was collected from the Saccharomyces184

cerevisiae core subset of the Database of Interacting Proteins (DIP), version DIP_20070219.185

The dataset is available at https://github.com/aidantee/xCAPT5/tree/master/data/186

Golden-standard-datasets/Guo-2008187

Evaluation Method: We tested using 5-fold cross-validation with a random split following the188

xCAPT5 framework [5].189

We constructed six FlexMol baselines as detailed in Table 3. The models were trained in mini-190

batches of 128 with a learning rate of 0.001. Five state-of-the-art(SOTA) methods were selected for191

comparison: PIPR [2], FSNN-LGBM [21], MARPPI [18], TAGPPI[31], and xCAPT5[5].192

Table 3: FlexMol Experimental Settings on the Guo dataset

Experiment No. Protein Encoder 1 Protein Encoder 2 Interaction Input Feature

1 CNN CNN - ps
2 CNN GCN - ps + pg
3 AAC AAC - ps
4 AAC+CNN AAC+GCN - ps + pg
5 Transformer Transformer - ps
6 Transformer Transformer Cross Attention ps

Note: ps = protein sequence, pg = protein graph, ’-’ denotes concatenation for combining
embeddings.

A.7.2 PPI Experiment Results193

Table 4: Comparison of Model Performance on the Guo dataset.

Experiment No. / Method Accuracy Precision Recall F1-Score

PIPR 96.47 ± 0.21 96.31 ± 0.23 96.67 ± 0.22 96.48 ± 0.20
FSNN-LGBM 98.46 ± 0.20 98.73 ± 0.25 98.18 ± 0.18 98.45 ± 0.20

MARPPI 96.03 ± 0.76 98.12 ± 0.98 93.51 ± 1.22 NA
TAGPPI 97.81 98.10 98.26 97.80
HNSPPI 98.57 ± 0.11 98.30 ± 0.22 98.85 ± 0.13 98.57 ± 0.11
xCAPT5 99.76 ± 0.05 99.76 ± 0.04 99.75 ± 0.07 99.37 ± 0.27

1 77.07 ± 0.87 85.52 ± 0.69 66.81 ± 2.43 71.81 ± 1.59
2 88.12 ± 1.93 89.61 ± 0.64 86.32 ± 4.47 87.91 ± 2.53
3 89.71 ± 2.04 89.31 ± 1.32 86.34 ± 0.34 89.72 ± 2.25
4 90.02 ± 1.52 91.96 ± 1.80 87.92 ± 4.83 89.73 ± 2.22
5 90.26 ± 0.23 90.24 ± 2.25 90.42 ± 2.32 90.31 ± 1.03
6 89.18 ± 1.09 90.22 ± 2.28 89.10 ± 0.93 89.51 ± 1.02

Note: NA indicates that data is not available in the reference literature. The TAGPPI
method does not include standard deviation values in the literature, and thus no standard
deviations are reported here.

Form table 4, we observed that all results from FlexMol baselines are significantly lower than SOTA194

methods. This suggests that the PPI task is more challenging and requires more specialized modeling195

methods rather than simple encoder combinations. However, some trends were noted. For instance,196

the combination of encoders in Experiment #4 improves performance compared to Experiments197
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#2 and #3. Interestingly, we found that the cross-attention in Experiment #6 does not improve198

performance, indicating that the influence of interaction layers can vary depending on the specific199

dataset and task.200
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