
This is the supplementary material for the paper CemiFace: Center-based Semi-hard Synthetic
Face Generation for Face Recognition.

A Addition to: Implementation details

A.1 Diffusion Details

We follow most of the settings of DCFace [24]. Specifically, the model is trained on CASIA-
WebFace [14] with 10 epochs. The maximum time step T for diffusion training is 1000. Then for
generating the synthetic face recognition dataset, the time step for DDIM [22] is 20. The optimizer
opted for is AdamW [44]. The batch size is 160 on 2 A100 GPUs. CemiFace training takes 8 hours,
the generation also takes 8 hours. As a comparison, DCFace takes 10 hours for Training and 9 hours
for Generation. Both DCFace and our method need around 6-7 hours to conduct FR training.

As for the diffusion UNet, we remove the identity feature in Residual Block, for more details of the
Diffusion UNet please refer to DCFace [24].

A.2 High Inter-class Variations and High Intra-class Variations

(1) High Inter-class Variations: Each inquiry face image is selected to be highly independent on
other inquiry images. Specifically, we follow DCFace to use a pre-trained FR model to keep samples
with a threshold of lower 0.3.

(2) High Intra-class Variations: high intra-class variations are ensured by (a) changing the similarity
condition m, as a small input similarity m results in the generated semi-hard images belonging to
the same identity having long distances to the identity center; and (b) the face images of the same
identity generated by CemiFace are distributed in all directions from the identity center, which can
be observed from supplementary material T-SNE Fig. 7. This is guaranteed by randomly sampled
Gaussian noises ϵ input to the diffusion model, which exhibits a large variation. As a result, both
properties would ensure the generated face images of the same identity are almost evenly distributed
in a sphere that has a relatively large radius, and thus they would have high intra-class variations.

A.3 Pseudo-code

The pseudo-code is provided below.

Algorithm 1 The training pipeline of our CemiFace

1: Initialization: Original Training Set Do, pretrained FR network Eid, Diffusion Unet σθ, Maxi-
mum time step T , Maximum iteration τ , iteration n← 0, similarity m ∈ [−1, 1]

2: repeat
3: n← n+ 1
4: Randomly sample a batch of facial images x0 from Do(also treated as inquiry data d), noise

images ϵ from normal distribution , similarity condition from range [-1,1], single time step t
5: construct ID & similarity condition Catt using Eq. 7.
6: add noise xt ← use Eq. 4, given x0&t
7: output estimated noise ϵ′ = σθ(xt, t,Catt)
8: Update σθn+1 ← σθn −∇σn

θ
Eq. 14

9: until converges or n = τ
Output: output model σθ

A.4 Dataset statistics

We have also calculated the number of face images belonging to different similarity groups for
CemiFace and DCFace in the Tab 7, indicating that our CemiFace tends to generate images showing
lower similarities to their identity centers (i.e. all samples are semi-hard), while DCFace containing
more easy samples.
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Algorithm 2 The pipeline of CemiFace-based face dataset generation

1: Initialization: Inquiry Data DI , pre trained Diffusion Unet σθ, Maximum time step T , fixed
similarity m, Maximum Number of samples in each identity K

2: n = 0 is the identity index, k = 0 is the sample index
3: repeat
4: n← n+ 1, k = 0
5: Sample a batch of inquiry data d, construct the ID & similarity condition Catt using Eq. 7
6: repeat
7: k ← k + 1, t = T
8: Generate noise image xt from normal distribution N(0, I)
9: repeat

10: output estimated noise ϵ′ = σθ(xt, t,Catt)
11: denoise the image using following DDIM [22]xt−1 ← denoise(xt, ϵ

′)
12: t← t− 1
13: until t=0
14: assign x0 the same label yd = n of the inquiry data, [x0, yd]
15: until k=K
16: until n = len(Di)
Output: output the generated dataset

Method avg sim std Number of identites

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 above 0.5

DCFace 36.24 9.14 14 231 2059 5899 1788 9
CemiFace 28.54 7.76 196 1043 3281 4539 930 7

Table 7: The statistics of the average similarity of each group. avg sim and std is the average/std
similarity to the inquiry images of the whole dataset. 0-0.1 means the number of identities has a
similarity of 0-0.1. CemiFace is distributed farther away from the inquiry center with less variation
than DCFace.

B Further Experiments

B.1 Impact of Identity Center and Random Center

The performance of CemiFace is highly affected by the characteristics of the inquiry samples. Herein
we examine how the model behaves when subjected to numerical identity conditions. Two kinds of
centers are considered:(a) identity centers derived from the CASIA-WebFace dataset, and (b) random
centers with a similarity range of [-0.1, 0.2] to (a). By observing from the Table 8, with random
center the model results in invalid results; On the other hand, when utilizing identity centers, the
model performs optimally when the similarity controlling condition m is set to 0 which aligns our
previous finding. However, it is noteworthy that with identity center the performance is worse than
the dataset inquired by 1-shot WebFace, exhibiting similar results to DCFace.

Inquiry source sim LFW CFP-FP AgeDB CALFW CPLFW AVG

Random Center 1.0 Not converge

Identity Center

1.0 96.80 71.81 86.13 89.52 71.72 83.20
0.7 97.22 75.03 86.90 89.93 74.47 84.71
0.5 97.50 78.96 87.12 90.38 77.62 86.32
0.2 98.17 86.29 89.07 91.40 83.03 89.59
0.1 98.25 87.30 89.98 91.35 83.23 90.02
0.0 98.23 87.49 89.53 91.47 83.73 90.09

1-shot DigiFace 0.0 98.28 90.04 89.68 91.23 84.12 90.67
1-shot WebFace 0.0 99.03 91.06 91.33 92.42 87.65 92.30
DCFace - 98.33 87.7 90.01 91.61 83.26 90.18

Table 8: Comparison of different inquiry centers. The results of DCFace run by our setting are copied
for reference.
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To provide deeper insights into this phenomenon, we visualize the samples generated by different
inquiry centers in Figure 6. Notably, with m=1 the random center produces images with different
identities which can simply be concluded by human observation. Conversely with the identity center,
given a similarity of 1.0, the generated samples appear highly similar, except for the samples circled in
red. Further investigation reveals that the number of images in that subject comprises approximately
16 images while the left subject provides approximately 50 images. Intuitively, A model trained
on this dataset will focus more on the subjects with a large number of images which explains the
suboptimal results obtained by identity center.
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Figure 6: Comparison of different inquiry center. From top to bottom are images inquired by Random
Center, CASIA Identity Center and 1-shot Real images. For Identity Center and 1-shot Real images,
images similarity of 1 and 0 are shown. Different columns represent given different noise. Two
examples are shown for each case. The inquiry images in the identity center are selected from the
dataset. The red circles contain samples that look extreme different from the inquiry center.

We further visualize the T-SNE of the feature embedding in Figure 7. As shown in the upper figure,
with higher similarity, the samples tend to cluster in the central region. Subsequently, by inspecting
the bottom figure, it becomes apparent that with a similarity of 1.0, each subject is located in a
different specific area. Consequently, a similarity of -1.0 results in each image being positioned close
to other subjects in the middle area.

B.2 Addition to the Inquiry Data: Image Quality

The above discussion validates how CemiFace is affected by different centers in the aspect of
numerical results. For a better understanding of the negative impact brought by challenge inquiry
data such as 1-shot Flickr, we visualize the images generated from different image quality in Figure 8.
Specifically, we present inquiry images subjected to blur, occlusion, extreme pose, painted and clear
conditions, with a similarity controlling condition m set to 0. By comparing the last block with the
rest of the blocks, one can conclude that extreme image quality fails to generate clean images. In
conclusion, unblurred, non-occluded, appropriately posed, and real-world data are essential for our
model to generate a highly clean synthetic face recognition dataset.

B.3 Further Ablation Studies

B.3.1 Impact of Different Pretrained loss

As DCFace hasn’t released its AdaFace-based SFR training code and details, we were not able to
reproduce it for our model training. Thus, in Tab 6 fairly compare ours with DCFace by adopting
the same pre-trained AdaFace model to train our diffusion generator, and then employing the same
CosFace loss for both ours and DCFace’s SFR models training. Results show that our CemiFace still
outperformed the SOTA DCFace. Additionally, we provide results achieved by using pre-trained
model trained by CosFace. Specifically, we apply a model pre-trained by CosFace to train both our
generator, and employ the same CosFace loss for their SFR models’ training. The experiment shows
that the model pretrained from CosFace performs better than that of AdaFace.
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Figure 7: T-SNE visualization. The bottom figure is the T-SNE generated by 1-shot data with
similarity of 1.0, 0.0 and -1.0 respectively. The upper figure is different inquiry centers with two
similarities 1.0 and -1.0, the random center is also given. Red circles are samples worth noticing,
with their order being green, red, and grey, positioned from center to outside

Method Pretrained FR SFR loss AVG

CASIA-WebFace - AdaFace 94.62
CASIA-WebFace - CosFace 94.26

CemiFace AdaFace CosFace 92.30

CemiFace CosFace CosFace 92.60

B.4 Upper/Lower Bound of Different Similarity Group in CASIA-WebFace dataset

The range of each similarity group in the Section 4.2.1 is given in the following Table 9

B.4.1 Impact of Different Training Backbone

Following previous works(DCFace [24], DigiFace [26], SynFace [25]), we use the IResnet-SE-50
modified by ArcFace [2] as the default backbone. Additionally, we provide the results achieved by
IResnet-18(R18), IResnet-SE-50(R50) and IResnet-SE-100(R100) in table 10 for reference.

B.4.2 Numercial Results for Different m

Here we provide the numerical results for the impact of different similarity levels in Tab 11, m = 0
provide the best performance.

17



Img Quality Inquiry Img Generated Imgs, m=0
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Figure 8: Examples of samples under challenging conditions, including Blur, Occlusion, Extreme
Pose, and Painted conditions, are presented. Samples generated by clear images are appended for
better comparison.

Avg Sim average largest sim average lowest sim AVG

0.85 0.887 0.831 89.48
0.81 0.831 0.794 91.01
0.76 0.794 0.747 91.78
0.70 0.747 0.676 91.55
0.53 0.767 0.277 82.36

Table 9: Average largest sim represents the mean value of the largest similarity values appeared in
every identity; and Average lowest sim represents the mean value of the lowest similarity values
appeared in every identity

B.4.3 FID Image Quality

We use Fréchet Inception Distance(FID) which measures the distribution similarity of the given two
datasets. Specifically, in Tab 12, FID is reported by comparing randomly selected 10k samples with
randomly selected CASIA. Need to note that our method doesn’t intend to generate images similar to
the distribution of CASIA-WebFace, but to construct a discriminative dataset that is conducive to
providing highly accurate FR performance

B.4.4 Euclidean Distance

As shown in Tab 13 using Euclidean distance leads to worse performance than cosine similarity,
which might be due to the FR training loss (CosFace [1]) being carried on cosine similarity.

B.4.5 Impact of λ

We present the results using different λ in the left part of the Tab 14. Performance is sensitive to λ,
and large λ results in performance degradation.
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Backbone R18 R50 R100

AVG 90.75 91.64 91.82
Table 10: Impact of different training backbone

Sim LFW CFP-FP AgeDB-30 CALFW CPLFW AVG

1 97 72.94 86.98 89.85 73.86 84.126
0.9 97.38 73.81 86.88 90.13 74.82 84.604
0.8 85.75 62.42 67.8 81.85 58.43 71.25
0.7 97.2 75.5 86.75 90.15 75.95 85.11
0.6 97.52 78.91 87.25 90.84 75.39 85.982
0.5 97.85 80.55 87.93 90.9 79.35 87.316
0.4 97.88 80.39 88.01 90.89 79.55 87.344
0.3 97.98 80.19 88.15 90.72 79.73 87.354
0.2 98.02 84.21 88.6 91.03 81.99 88.77
0.1 98.2 86.29 88.25 91.25 82.85 89.368

0 98.1 86.6 88.9 91.15 83.08 89.567

-0.1 97.65 84.9 86.42 89.47 80.1 87.708
-0.2 93.15 80.83 81.33 85.92 74.68 83.182
-0.3 92.77 74.13 78.15 81.58 69.72 79.27
-0.4 89.11 71.78 70.13 77.78 65.17 74.794
-0.5 85.18 65.16 63.42 69.58 63.68 69.404
-0.6 84.23 64.63 63.05 69.13 62.86 68.78
-0.7 83.65 63.98 62.53 68.78 61.26 68.04
-0.8 82.1 62.51 61.85 67.53 60.7 66.938
-0.9 84.23 62.38 65.13 73.85 60.08 69.134
-1 85.75 62.42 67.8 81.85 58.43 71.25

Table 11: Numercial results for the impact of different similarities

C Privacy Concerns

In this section, we are going to discuss the privacy issues that lie in developing synthetic face
generation for face recognition. The primary aim of synthetic face recognition is to mitigate concerns
associated with privacy. Large-scale face recognition data are usually collected from web scrappers
by searching name lists (usually celebrities), without obtaining user consent. Consequently, some of
the large-scale datasets [13, 15] are abandoned by their collector to avoid Legal Risk. In addition,
IDiff-Face [28] mentions European Union (EU) has come up with the General Data Protection
Regulation (GDPR) [17] to regulate the application of facial data, making it harder to use face
recognition data.

We notice that DCFace [24] incorporates a labelled dataset for training style transferring solution, and
when they generate the new dataset, they use samples provided by DDPM [21] trained on FFHQ [18].
However, a noteworthy concern arises as the FFHQ dataset, whose derivative model is used as
pretrained model in DCFace for sample generation, explicitly bans its application in face recognition.
Consequently, we are not sure whether the model and synthetic face images based on FFHQ are
allowed to be used. We try to avoid privacy concerns from the aspect of collecting Flickr which
contains diverse licenses with reduced privacy problems. Another potential solution to avoid privacy
concerns is to use samples like Digiface [26] which is rendered by 3DMM. However, DigiFace
is only allowed to be adopted for non-commercial applications, but one can render images from
3DMM following the DigiFace pipeline for commercial purposes. We append the result inquired
by 1-shot DigiFace in the bottom part of Table 8 for reference and example images generated by
1-shot DigiFace are shown in Figure 9. Results reveal that 1-shot DigiFace still can not surpass 1-shot
WebFace but still behave better than DCFace. Finally, although 1-shot Digiface samples sometimes
don’t appear to be like real humans, the generated samples exhibit similar patterns to real-world
images from human observation.

Our method CemiFace offers the advantage of not requiring labels during the training phase compared
to DCFace. Nonetheless, both our method and DCFace adopt a pre-trained face recognition model
which may counter legal issues. we hope further researchers bring steps forward to avoid using this
kind of pre-trained face recognition model to alleviate legal concerns in this domain.

19



Method Ours DCFace [24] DigiFace [26]

FID 18.72 15.82 65.39
Table 12: Fid score to the real dataset CASIA-WebFace.

Base Euclidean Interval 0.06

91.64 90.95 91.43
Table 13: Difference between Euclidean and larger similarity interval

D Discussion

D.1 Why Semi-hard samples work

We assume the benefits of the semi-hard training face images could be attributed to:

• easy training samples are typically images where the face is clear, well-lit, and faces the
camera directly, and thus training on such easy samples would not allow the trained FR
models to be able to generalize for face images with large pose/age/expression variations
and different lighting conditions/backgrounds that are frequently happened in real-world
applications. AdaFace [3] also mentioned that easy samples could be beneficial to
early-stage training, while hard sample mining is needed for achieving generalized and
effective FR models;

• Hard samples normally contain noise data. Specifically, FaceNet [29] demonstrates that
the hardest sample mining using a large batch size leads to hard convergence and produces
inferior performance. This is because training with very hard samples may not allow FR
models to learn effective features but focus on cues apart from facial identities;

• Semi-hard samples generated by CemiFace mostly contain large posed faces but fewer
face-unrelated noises. We also evaluate the training epochs needed to reach the highest AVG
performance for easy samples (m = 0.7), semi-hard samples(m = 0) and extreme hard
samples (m = −0.5). Easy samples take 10 epochs to reach the best AVG and 20 epochs to
produce the training loss of 0; Semi-hard samples take much longer (38 epochs) to provide
the highest AVG while the final training loss is around 3; and FR models training on extreme
hard samples could not converge.

Inquiry Img Generated Imgs, m=0

Figure 9: visualization of samples inquired by 1-shot DigiFace. Different rows are results inquired by
different images. Different columns are randomly selected generated samples.
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λ 0.01 0.05(default) 0.1 0.5

AVG 91.72 91.64 91.29 90.77
Table 14: Impact of different λ

The actual similarity to the inquiry center indicates that our CemiFace tends to generate images
showing lower similarities to their identity centers (i.e. all samples are semi-hard), while DCFace
contains more easy samples.

D.2 Different diffusion Loss

As there are some other variation diffusion losses such as Improved-DDPM [45] which has been
applied in Diffusion Transformer ( DIT) [46], Variational Diffusion Models (VDM)[47]. We follow
the previous SOTA SFR studies (DCFace [24] and IDiffFace [28]) to choose the same generic MSE
diffusion loss [21, 22] as our base model, ensuring the reproducibility of our approach and its fair
comparison with DCFace [24] and IDiffFace [28].

D.3 Difference between Dataset Distillation

Dataset distillation methods [48–50] are widely adopted to create a dataset that can produce high
performance when training a model on it. SRe2L [48] is a recent state-of-the-art method for dataset
distillation which trains the noise image through a pretrained backbone. Their main process contains
a forward process to get the classification label of the trainable noise inquiry image and train the noise
inquiry image to produce a specific class prediction with BN alignment. The distinctions between our
method with theirs are:

• Embedding vs Classification Layer: We aim to explore the feature embedding of the
backbone, not the classification layer.

• Consideration of Image Similarity: Our method explores the similarity of the given inquiry
image, which is not considered in recent dataset distillation methods.

• Pattern Distillation: Their approach focuses on distilling data from existing classes, while
our CemiFace distils patterns from the pretrained face recognition model. This learned
pattern can be applied to unseen subjects, as we utilize independent data that was not part of
the pretrained model’s training dataset.

• Extra Model: We incorporate a diffusion model to introduce parameters for producing
high-quality images.

D.4 Relationship to ID3PM

Recent work, i.e. ID3PM [51] proposes to invert the Black-Box model of face recognition to generate
a similar image to the inquiry image. However, our method differs from theirs in several aspects:

• Purpose: Their objective is to invert the black-box model without full access, whereas we
aim to generate a discriminative dataset.

• Image Similarity: They require the generated image to be like the original image, while
our goal is to ensure the generated images encompass diverse styles.

• Evaluation Approach: They evaluate by replacing the data of the evaluation dataset,
whereas our approach involves training a model on the generated dataset.

• Theoretical Degradation: When m is set to 1, our model theoretically degrades to their
model.

• Diffusion Model Structures: We use different diffusion model structures to conduct experi-
ments, specifically employing cross-attention and AdaGN [42] for inserting conditions.
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