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Abstract

A solar-powered weather-station, one day, detects anomalous power supply. Com-1

paring the data of the last hours to normal data, we notice, that the commanded2

orientation of the solar-panels normally – but no longer – affects available power.3

We go out and fix the pointing mechanism. Another time, same problem, same4

result from data, but the anomalous data is from during the night. Why do we draw5

a different conclusion? How can the distinction be formally captured and auto-6

matically detected? To this end, we define and explore the properties of graphical7

objects, arising from causal models for multi-context settings – settings where the8

underlying model varies in response to the value of a "context-indicator" variable –9

that capture qualitative relations and observational access. These not only describe10

relevant mechanisms within a specific context, but also capture where physical11

changes must have occurred compared to other observed contexts. We then focus12

on the identifiability of these objects from data, by connecting them to context-13

specific independences as well as joint-causal-inference- and transfer-arguments.14

Potential applications include improvements in the understanding of anomalies or15

extremes from a causal perspective.16

1 Introduction17

The combination of data from multiple datasets obtained from similar generating processes (contexts),18

e. g. the transfer of knowledge between contexts, is an important topic of study. Especially for –19

presumably robust [18; 19] – causal models [12; 9]. Data from multiple contexts has both shared20

(between contexts) and individual (per context) properties. In order to capture as much information21

about the underlying system(s) as possible, it seems natural to consider understanding qualitative22

aspects, for example causal graphs, of both the shared and the individual contexts [4]. We focus on23

representing qualitative information about the individual contexts, but enriched with information24

from the joint model. More precisely, we are interested in the following problem: One cannot25

infer properties of mechanisms outside the range of values that are actually observed, without26

prior knowledge about extrapolation. But when combining data from multiple contexts, the other27

contexts do provide knowledge about extrapolation for an individual context. Indeed it turns out,28

that combining support-properties and causal dependencies in a single graphical objects allows for29

qualitative statements (like the distinction in the abstract) by tracking few qualitative properties.30

This has interesting implications e. g. for understanding anomalies or extreme events. It provides a31

possible explanation why it seems to often be the case that (presumably robust) causal mechanisms32

apparently change under extreme conditions (§3.3). Intuitively, per-context information, from the33

SCM perspective, should be a qualitative change. For example Y = 1(R) × X + ηY . Such a34

structure induces a context-specific independence (CSI), e. g. X ⊥⊥ Y |Z,R = 0. Intriguingly, the35
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other direction from CSI-structure [13; 4; 8] to SCM-structure is more subtle, as the example below36

(extending on observations of [1]) illustrates1:37

Example 1.1. Context specific independence from non-observation:38

T

fY (T )p(T |R = 0)

p(T |R = 1)

Consider the following model with dependencies R → T →
Y , think e. g. of R = 0 as indicating samples taken in winter,
R = 1 samples taken in summer, T is the temperature and
Y depends on temperature but only if T > 0°C (above
freezing).

39

From this example we notice:40

(a) fY depends on T , but this dependence becomes within our observations invisible for R = 041

("system states" with T > 0 where also R = 0 are never reached).42

(b) fY itself does not actually change (it doesn’t even depend on R).43

(c) Given any sort of independence model represented by a graph (e. g. an LDAG [13]), does it44

agree with absence (a) or presence (b) of the edge T → Y for R = 0?45

The point of view (a) prefers a "simpler" model for regime R = 0, in an Occam’s razor sense for46

this regime, i. e. following the philosophy that a model for this regime should only be as complicated47

as it has to be to describe this regime relative to no prior knowledge. We will call this concept the48

"descriptive" graph, for the example above, it should not include the edge T → Y . For example there49

would be no reason to fit a regressor of Y to T in this regime.50

The point of view (b) prefers a "simpler" model for regime R = 0, in an Occam’s razor sense51

relative to all the data. It follows the philosophy that assuming causal models are robust, we should52

consider validity of transfer the norm and only claim a regime-specific model to be different from53

the union-model, if there is evidence for this difference. A model for this regime should only be as54

complicated as it has to be to describe this regime relative to knowledge of the union-model. We will55

call this concept the "transfer"2 or "physical" graph. For the example above, it should include the56

edge T → Y . The intuitive answer to the question from the abstract, takes this perspective as well:57

There is no evidence for a change of mechanism, so that alone cannot explain the distribution-shift.58

Finally, concerning point (c), which is intimately linked to the possibility of constraint-based discovery59

of these graphical objects – we discuss the identifiability of these structures from data in detail in §460

and §5 – we find that the SCM-centered perspective here includes slightly different information than61

many commonly used independence models (see §A.3).62

Contributions63

• We motivate, define and study graphical objects, in part encountered in [1], that capture64

qualitative information about the causal structure plus availability of observations, with65

particular interest in their differences.66

• We show, that these objects are empirical, i. e. can be identified from data at least in part. In67

doing so, we focus on the graphs’ skeleta (that is, on their adjacencies only).68

• We provide a mathematical framework based on solution-functions, that captures implica-69

tions of CSI in terms of SCM-properties. We focus on a single context-indicator and skeleta,70

but the framework should allow for the derivation of more general results.71

2 Related Literature72

Combining datasets for causal modeling, in particular using a context-indicator variable, has been73

studied extensively to gain insights (e. g. orientations) about the joint- / "union"-model [2; 12; 6; 9].74

E g. [2; 12] in particular discuss transportability between contexts, but concerning identifiability75

1We do not discuss finite-sample properties, but these effects also occur, e. g. if observational support becomes
narrow on the source compared to the derivative of the mechanism and noise on the target (Rmk. 3.5).

2If we "learn" the, in this example identifiable. fY on the pool and transfer it to the regime R = 0, the form
of fY together with the observational support supp(P (T |R = 0)) already explains the absence of the edge.
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(structure of hidden confounders), not available observational support. Per-context causal models76

have been considered e. g. by [20], but without the descriptive vs. physical distinction made here and77

without the connection to context-specific independence (CSI). Graphical models for CSI in turn78

have been studied e. g. by [10], or as labeled directed acyclic graphs (LDAGs) [13; 4], but from the79

independence-model perspective, i. e. without the connection to SCMs (and thus causal modeling).80

Our approach opens interesting possibilities of connecting the causal and the independence-model81

world (§A.3). We can treat certain types of cyclic models, much less general than [3], but by82

adding CSI-information, we show that for these specific cyclic models (away from R) the causal83

graph of the union-model can be recovered (lemma 5.1), not just its acyclification, causal discovery84

with cyclic union-graphs is also discussed e. g. in [7; 25]. The lack of observational support we85

study has certainly been noticed in effect-estimation, where statements can only be made where86

the fit has support – at least for single-step adjustment [22; 14], for multi-step procedures e. g. the87

ID-Algo [26; 23] or counter-factual queries like natural direct effects [22] the issue might be more88

subtle. For counter-factuals more generally similar issues have been observed [17, §5.1], but not89

treatment from the perspective given here seems to be available. There is also a close connection90

to minimality conditions affecting graph-definitions (§E), e. g. on parent-sets directly [3, Def. 2.6],91

"causally minimal" [15, §6.5.3] – replacing faithfulness by using the minimal edge-set for which a92

Markov-condition holds (see §4.2) – or asking for adjacency-faithfulness [16] only. Finally, lack93

of observational support may be seen as a missing data problem. The literature combining missing94

data with causal models typically considers latent variables [24; 30], missing datasets for certain95

interventions [29; 27], or robustness of causal models [18; 19], which are quite different from the96

problem we study. See also §A.97

Our novel contribution is, that we study multiple meaningful graphs associated to a single context,98

beyond [1] (see A.2), that can be distinguished from data. These capture qualitative and relevant99

aspects of the support problem, which seems important to make the problem tractable in practice.100

3 Causal Graphical Models101

3.1 Structural Causal Models (SCM)102

We work within the framework of "structural causal models" (SCM) [11; 15]: We fix a set of103

endogenous variables (observable) {Xi}i∈I , for some finite I , taking values in Xi, and exogenous104

noises (hidden) {ηi}i∈I , taking values in Ni. We write V := {Xi|i ∈ I} for the set of all endogenous105

variables, U := {ηi|i ∈ I} for the set of all exogenous noises, and for A ⊂ V , let XA :=
∏

j∈A Xj ,106

further X := XV and N := NU .107

Definition 3.1. A set of structural equations (mechanisms) F := {fi|i ∈ I} is an assignment of108

parent-sets Pa(i) ⊂ V together with mappings fi : XPa(i) × Ni → Xi for all i. An intervention109

Fdo(A=g) on a subset A ⊂ V is a replacement of fj 7→ gj for j ∈ A. We will only consider "hard"110

interventions gj ≡ xj = const.111

Given a distribution Pη of the noises U , if a set of random variables V solving the equations in F112

exists, we call their distribution PF,Pη (V ) an observable distribution. For the models we consider,113

solutions are always unique and are solutions in terms of the noise-values in the intuitive sense, §C.114

Definition 3.2. An SCM M is a triple M = (V,U,F), with V distributed according to an observable115

distribution PF,P (U)(V ). The intervened model Mdo(A=g) is an SCM with Mdo(A=g) = (V ′, U,116

Fdo(A=g)) i. e. U is distributed according to the same Pη as for M and the structural equations are117

replaced according to the intervention.118

3.2 Induced Graphical Objects119

An important concept in causal inference is to capture qualitative relations between variables as120

described by (suitably minimal, see next sections) parent-sets Pai ⊂ V in a causal graph, constructed121

with nodes V and a directed edge from each p ∈ Pai to Xi. In multi-context settings, there122

is additional qualitative information available "per context", but as explained in the introduction,123

multiple meaningful definitions of parent-sets (hence graphs) exist. The simplest way to describe124

qualitative properties of an SCM is via the mechanisms only:125
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Definition 3.3. Given mechanisms F , the mechanism-graph G[F ] is constructed with parent-sets Pa126

such that:127

X ∈ Pa(Y ) ⇔ fY is a non-constant (in X) function of X .

If one actually knows the underlying SCM, this is well-defined. However, in most applications,128

one has limited knowledge about the "real" SCM (approximating) a physical system and, thus, uses129

observed data generated by the SCM to draw conclusions. The choice of suitable (empirically130

accessible) graphical objects is intimately linked to minimality and faithfulness assumptions (§4.2,131

§E). To capture "accessible states" we need to build information about observational support into our132

graphical objects.133

Definition 3.4. Given a set of mechanisms F , and a (as of now arbitrary / unrelated to M or F)134

distribution Q(V ) of the observables V , the observable graph G[F , Q] is constructed by defining135

parent-sets Pa′ ⊂ Pa such that:136

X ∈ Pa′(Y ) ⇔ fY |supp(Q(Pa(Y ))) is non-constant (§B.2) in X .

Note, that this depends qualitatively on Q, in the sense that it only depends on the essential support137

supp(QA) of marginalizations of Q to A ⊂ V .138

Remark 3.5. One may replace the above definition by one that also includes a dependence-measure139

d (or rather its estimator) used to test independences, see §B.3. This seems to feature the same140

distinction of descriptive / "detectable" vs. physical changes. But it inherently depends on finite-141

sample-properties, putting it outside the scope of this paper. We focus on the support instead.142

This graph moves the problem of observational support from the faithfulness assumption into the143

graph-definition (§E) in the following sense: If the model M is not faithful to its "visible" graph:144

Definition 3.6. Given an SCM M = (V,U,F), with observable variables distributed by PM (V ),145

then the visible graph Gvisible[M ] is the observable graph G[F , PM ].146

Then this failure of faithfulness must arise from a property other than observational support. So147

Gvisible[M ] is what would commonly be defined as "the" causal graph. This is, in the single context148

case, the same as the mechanism graph after enforcing a suitable minimality condition (like [3, Def.149

2.6]) on F . The visible graph is explicitly constructed as a graph "G[M ]" associated to an SCM.150

Other than before (for G[F ] and G[F , Q]), there is more than one meaningful choice here! We fix a151

(finite, P (R = r) > 0) categorical context / "regime-indicator" variable R and want to understand152

qualitative changes in the model between different values of R (cf. also [10; 13]).153

Definition 3.7. Given an SCM M = (V,U,F) and R ∈ V , the regime graph (see [1]) is154

Ḡdescr
R=r[M ] := G[Fdo(R=r), PM (V |R = r)].

Fixing R to a value, removes dependencies involving R, so we add this information back in by155

defining Gdescr
R=r[M ] as Ḡdescr

R=r[M ] plus edges involving R in Gvisible[M ].156

This object describes the qualitative relations between variables of the regime-"enforced" model157

Mdo(R=r) that can be learned from the observed distribution PM (via conditioning) and contains the158

"descriptive" information about (in)dependences we want to learn (see §1, point (a)).159

Remark 3.8. This graph is very different from a "conditioned" model: For example there are no160

spurious links from selection-bias. This is, because this graph describes properties of the underlying161

SCM under constraints on observable "system-states", and makes no reference to e. g. independencies.162

It is however closely connected to independence properties (cf. §4).163

For edges not involving R, and thus for Ḡdescr
R=r[M ], we could replace Fdo(R=r) by F in definition 3.7,164

which underlines the idea of describing an object that can be inferred from observations, but contains165

information about the interventional model. To capture §1, point (b), we use:166

Definition 3.9. Given an SCM M = (V,U,F), and R ∈ V , the transfer / physical graph is167

Ḡphys
R=r[M ] := G[Fdo(R=r), PM (V )]. and again Gphys

R=r[M ] adds edges involving R.168

As illustrated in the introduction, this keeps links that vanish through changing state-accessibility169

of the system (it keeps information available on the pool), but deletes those that "explicitly" change170

via do(R = r), e. g. if Y = 1(R)×X + ηY (so it captures a very intuitive notion of "per-regime"171

changes). Finally interventional models – note, that Def. 3.2 keeps the exogenous noises in the172

definition of the intervened model, hence it has a "counter-factual" character (§A.4) – correspond to173
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Definition 3.10. Given an SCM M = (V,U,F), and R ∈ V , the counter-factual graph is174

GCF
R=r[M ] := G[Fdo(R=r), PM (V |do(R = r))] = Gvisible[Mdo(R=r)].175

See also §A.4, where it is quickly explained why GCF
R=r seems more relevant with experimental data,176

we focus on observational data here. Finally, some properties of these graphs (proofs are in §B):177

Lemma 3.11. Union Properties, for Gunion[M ] := Gvisible[M ]:178

(i) Gunion[M ] is the "union graph" in the sense of [20]179

(ii) Gunion[M ] = ∪rG
phys
R=r[M ]180

(iii) Gunion[M ] = ∪rG
descr
R=r[M ], if M is strongly R-faithful (Def. 4.6)181

Point (ii) is of course the motivation of (i) in [20], but here we can explicitly see that in this case (for182

the union), the specific choice of graph (Gphys
R=r vs. Gdescr

R=r) is (mostly) unimportant.183

Lemma 3.12. Relations of edge-sets:184

Gdescr
R=r[M ] ⊂ Gphys

R=r[M ] ⊂ Gunion[M ]

writing "G′ ⊂ G" if both G and G′ are defined on the same nodes, and the subset-relation holds for185

the edge-sets.186

Lemma 3.13. Physical changes are in regime-children:187

If Y ̸= R with R /∈ Paunion(Y ), then Paphys
R=r(Y ) = Paunion(Y ).188

3.3 Potential Applications189

Where are these graphs relevant? For applications like earth-sciences, the problem of restricted190

support seems to exist at least from a finite sample perspective. Further many important applications191

here involve the study of extreme events, where a restriction to small regions of the state-space192

is believed to occur [5; 28] – one possible intuition is, that extremes occur from the coincidence /193

synergy of different pathways, for example many time-steps with little precipitation followed by high194

temperatures putting drought extremes in a "corner" of the state-space. It is often somewhat unclear195

why (presumably robust) causal mechanisms seem to change under extreme conditions. Our approach196

provides a possible explanation, as causal discovery (e. g. with masking, rmk. D.10) should typically197

(see §4) recover Gdescr
R=r at best, thus is very sensitive to observational support. Extreme states (like198

droughts) are often endogenous, i. e. themselves driven by system-variables (e. g. by soil-moisture199

feed-backs).200

The setup also relates naturally to "technological" data like satellite-telemetry or IT-safety applications,201

where systems behave much more like state-machines (or actors) with many actions only available202

in certain states. Note, that here the state typically changes in response to sensory input, so when203

modeling data about system and environment (e. g. by including data for sensory input), the resulting204

contexts are typically endogenous. While our approach is still very far from systematically recovering205

a state-machine as a causal model, an understanding of the observations-support properties studied206

here seems to be an important building-block when approaching this problem. It seems noteworthy,207

that also a causal perspective on explainable AI (XAI), treating neural network (layers) and their208

inputs as SCMs, typically have such qualitative structure, e. g. from ReLU activation-functions.209

What are these graphs good for? A common problem in practice is, given two (or more) contexts210

– e. g. normal data and anomalous data – to "explain" (for some meaningful notion of "explain")211

the difference. If, between the two contexts, a mechanism fi changes its parents physically, then212

this change at fi probably should be part of the explanation for changed observations. If, on the213

other hand, the changes (addition, removal or combinations) of the parents in fi do not require any214

explanation beyond the change in support, i. e. if they are purely descriptive (non-physical), then the215

explanation for the changing observations should be found in the ancestors, not at fi. E. g. for example216

1.1 in the introduction, assuming we observe additional nodes that provide orientation-information217

(or if there is a mediator R → M → T ), we note, that T → Y cannot be a physical change because218

R /∈ Paunion(Y ) (see corollary 5.3 below). So, instead of claiming the two contexts to differ by a219

change in fY (which is indeed not the case), we should look further upstream in the graph, which, here,220
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leaves fT . Given R the only "real" remaining degree of freedom is P (T |R = 0) ̸= P (T |R = 1),221

which is a surprisingly accurate diagnosis.222

Further, also interventional and counterfactual queries happen in a different (non-union) context223

in terms of knowledge about mechanisms in certain value-ranges. We consider this to be a known224

problem and especially for counterfactuals it has been discussed from slightly different points of225

view (see §A.4). Our treatment certainly does not suffice to "solve" this problem, but we show, that226

including information about knowledge and observability into causal inference – for multi-context227

data – can (and by the motivations above, maybe should) be systematically approached.228

4 Context-Specific Independence229

Note, that while changes in Paphys(Y ) from mechanism-changes only occur if R ∈ Paunion(Y )230

(lemma 3.13), "state-access" induced changes can even (also if R is not on any cycle in Gunion),231

remove links in Gdescr between ancestors of R. This can be undetectable even from context-specific232

independencies, if the same link "should" be removed for a specific regime r – requiring us to233

conditioning on R = r – but gets "reinstated" by selection-bias – because we are conditioning234

on R. For a concrete example, see D.13 in the appendix. This section shows, that – up to this235

issue (links vanishing in ground-truth between ancestors of R due to state-access restrictions) – the236

descriptive graph Gdescr
R=r can be recovered from combining context-specific and non-context-specific237

independence-tests, if a suitable faithfulness property is is satisfied (§4.2).238

4.1 Markov Properties239

Here we study the following question: When can the absence of an edge in the graphical objects240

– in particular Gdescr
R=r – defined above, be detected directly from independence constraints? I. e. by241

Markov properties we refer to factorization properties of the joint probability density and the question242

of "completeness" of constraint-based causal discovery. For DAGs these properties coincide with243

the question "does d-separation in the graph imply independence?", and sometimes this is taken as244

the definition a "Markov property" (e. g. [3]). We are primarily interested in discovering properties245

of the SCM as described by the graphical objects defined above from data, while the "d-separation246

criterion", for cyclic models, only recovers "acyclifications" of such graphs.247

The Proof-Idea: A more detailed description and proofs can be found in §D. Here we only248

sketch the proof idea. Commonly one starts from the local Markov-property: The idea is that249

knowing Z containing the parents of Y renders Y independent of all noises other than ηY , because250

Y = fY (Pay = paY , ηY ). The subtle problem here is to (a) understand this not only for union-251

parents, but also for parents in Gdescr
R=r and (b) to then combine both. The issue is, that Gdescr

R=r is not252

a causal graph associated to a SCM in the standard sense3 (i. e. there need not exist an SCM M ′253

with Gvisible[M ′] = Gdescr
R=r), so the local Markov-property is not obvious anymore. We come back254

to this momentarily. Seemingly this problem (a) can be resolved by considering a "conditioned"255

SCM (replace P (η) by P (η|R = r) and keep F to obtain M ′, which confounds ancestors of R,256

see lemma D.2), but than point (b) becomes even harder – intuitively, since information in causal257

discovery is in the missing links, one wants to combine information of link-removals from CSI (the258

"conditional" graph) with link-removals from the union-model, so one is inclined to intersect the259

respective edge-sets. But problem (b) essentially asks about the connection of the resulting object to260

the underlying SCM (and the regime-specific SCM Mdo(R=r)). An important contribution of our261

proof is, that it shows, how this information ("intersect two graphs") is related to the SCM via Gdescr
R=r.262

This connection allows then for further inferences in §5 and §5.3.263

The way we approach the problem, is by first facing yet another subtlety: The "propagation" of the264

local information from the local Markov-property to obtain global statements about the graph is265

normally done via a separation-criterion, that analyzes individual paths in the graph. But what does266

blocking a path in Gdescr
R=r mean? The idea we propose is to go from graphical properties to conditional267

independencies not via a separation-criterion (when blocking Z) and paths as an intermediate step,268

3In [1], it is shown that there are meaningful "sufficiency" assumptions, s. t. Gdetect
R=r = Gphys

R=r = GCF
R=r =

Gvisible[Mdo(R=r)], in which case the problem (mostly) is reduced to (b). Here we are interested in the differences
between those graphical objects in particular, so we need identifiability-results that hold more generally.
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but via changes in the noise-distribution (when conditioning on Z) and the form of solution-functions.269

Here the "form of solution-functions" captures graphical properties, because the system of structural270

equations can be solved "downstream" starting from root-nodes, successively working down their271

descendants – as follows (see §C):272

Cor. C.5. Given a solvable, weakly regime-acyclic model, then, for any set of variables X:273

(a) FX depends only on noise-terms of ancestors of X in Gunion.274

(b) FR=r
X := FX |F−1

R ({r}) depends only on noise-terms of ancestors of X in Gdescr
R=r.275

As the reader may have noticed we phrased the local Markov-property above via dependence of noise-276

terms (rather than independence of non-descendants). Next, consider a conditioning set Z ⊃ Pa(Y ).277

The essential trick is, that since knowledge via Z of the parents of Y renders Y independent of278

all noises other than ηY , another variable X = FX(ηA) is independent of Y given Z as long as279

ηA ⊥⊥ ηY |Z. But again by the form of solution-functions, this time of FZ , we know which ηi will be280

"mixed" (become dependent, see lemma D.2) when conditioning on Z.281

Formulating the local Markov-property directly through "dependence on ηY only" works for our282

setup immediately. Further it makes problem (a) solvable since Cor. C.5b is applicable for Gdescr
R=r!283

Finally, these constraints obtained through solution-functions are uniform, in the sense that it does284

not matter if we used Cor. C.5a or Cor. C.5b to obtain an intermediate result. The obtained statements285

can thus be easily combined, which eventually allows to resolve problem (b).286

The Result: As illustrated in the introduction to this section, we will have to exclude relations287

between ancestors (beyond the union-graph) from our formal claims (see example D.13), as they are288

not generally accessible:289

Definition 4.1. Define the (identifiable) ancestor–ancestor correction Gident
R=r as follows: Start with290

Gident
R=r = Gdescr

R=r, then add all edges in Gunion, between any two ancestors in Gunion of R to Gident
R=r.291

Lemma 4.2. There are no physical ancestor–ancestor problems (proof in §B):292

Gdescr
R=r ⊂ Gident

R=r ⊂ Gunion and if M is strongly regime-acyclic, then Gident
R=r ⊂ Gphys

R=r.293

Finally, the Markov-property we obtain reads – note the restriction on where to search for Z, which294

is relevant for causal discovery in practice, is a bit subtle here (see cor. D.9, rmk. D.10):295

Proposition 4.3. Assume the model is strongly regime-acyclic and causally sufficient. If X and Y296

are non-adjacent in Gident
R=r and both X,Y ̸= R, then either297

(a) for Z = Paunion(X) or Z = Paunion(Y ) it holds X ⊥⊥ Y |Z, or298

(b) for Z = Padescr
R=r(X)− {R} or Z = Padescr

R=r(Y )− {R} it holds X ⊥⊥ Y |Z,R = r.299

Further, if either X /∈ Ancunion(R) or Y /∈ Ancunion(R), then (b) applies, otherwise (a) applies.300

Remark 4.4. If one of the variables is R then (for univariate R) no regime-specific tests are available301

and we have to fall back to the "standard" result (see e. g. [3]): Assume the model is causally sufficient.302

If R and Y are non-adjacent in Acycl(Gunion), then there is Z = Paunion(R) or Z = Paunion(Y ) with303

R ⊥⊥ Y |Z. If Y is an ancestor of R this does not change the result if the model is strongly regime304

acyclic. However, if Y is part of a directed cycle involving at least one child of R, then the edge305

R → Y in Acycl(Gunion) cannot be deleted from our independence-constraints, even if it is not in306

Gunion. By the above, together with prop. 4.3, this is the only such issue, that can occur.307

4.2 Faithfulness Properties308

As is shown in [1] (and repeated in E) standard faithfulness assumptions by a (short) argument justify309

the following310

Assumption 4.5. We assume the model to be R-adjacency-faithful in the sense that for all r:311

∃Z s. t.
{

X ⊥⊥ Y |Z or
X,Y ̸= R and X ⊥⊥ Y |Z,R = r

}
⇒ X and Y are not adjacent in Gdescr

R=r
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The from a theoretical point of view potentially more interesting observations is: The CSI-Markov-312

property (§4.1) guarantees independences for edges not in Gident
R=r, while the R-faithfulness argument313

only provides dependence-guarantees for edges in Gdescr
R=r. As the counter-example D.13 shows, the314

Markov-property in general cannot hold for Gdescr
R=r, but it might of course still hold for a graph315

GCSI "in-between" Gdescr
R=r ⊂ GCSI

R=r ⊂ Gident
R=r. It is unclear if such a GCSI

R=r for which both mean-316

ingful faithfulness- and Markov-properties hold exists (see §E, §D.4). For the moment, we are317

primarily interested in relating CSI-information to SCM-information, so we leave details on the CSI-318

independence-structure of distributions induced by (e. g. regime-acyclic) SCMs to future research.319

Further, to recover a union-graph, we will need (see §E.2, §B):320

Definition 4.6. We say M is strongly R-faithful, if it is R-faithful and the mechanisms of the321

union-model are non-deterministic, in the sense, that there is no set of mechanisms F ′ which almost322

always produces the same observations as F , but has different minimal parent-sets.323

5 Joint Causal Inference and Transfer324

The previous section explained, how (most of) the information of Gdescr
R=r[M ] can be recovered from325

(testable) independence-constraints (prop. 4.3 and ass. 4.5), leading to a graph (see §D.4) Gdetect
R=r with326

Gdescr
R=r ⊂ Gdetect

R=r ⊂ Gident
R=r. Here we study Gphys

R=r[M ] and Gunion[M ]. We do not know, if Gphys
R=r[M ] is327

fully identifiable in general, or if the set of rules we provide is complete. It demonstrates however, that328

these graphs contain empirically testable information (see also example F.1 and discussion thereafter).329

We refer to these rules (§5.2) as "JCI-like" as they resemble [12; 9]. (Proofs are in §F.)330

5.1 Inferring the Union-Graph331

Recall from remark 4.4, that edges from R into directed union-cycles containing a child of R cannot332

be deleted by our independences. We will hence mostly focus on edges elsewhere in the graph ("away333

from R"), using the "barred" notation (Ḡdescr
R=r etc.). Generally, a causal model is only Markov to the334

acyclification (see e. g. [3]) of its visible ("standard") graph Acycl(Gvisible[M ]) while, for strongly335

regime-acyclic models we here have:336

Lemma 5.1. Let M be a strongly R-regime-acyclic, strongly R-faithful, causally sufficient model,337

then338

Ḡvisible[M ] = Ḡunion[M ] = ∪rḠ
detect
R=r [M ]

is identifiable away from R by (R-context-specific) independences.339

For edges out of R no context-specific tests are available, so (see Rmk. 4.4): Gvisible[M ] =340

Gunion[M ] ⊂ Gunion
detect[M ] := ∪rG

detect
R=r [M ], where the difference Gunion

detect[M ] − Gunion[M ] consists341

of edges from R to nodes in union-cycles only.342

5.2 Interring the Physical Graph by JCI-like Rules343

Similarly, there are properties of Gphys
R=r that can be identified from data. We already know344

Ḡdetect
R=r [M ] ⊂ Ḡphys

R=r[M ] ⊂ Ḡunion[M ] by lemma 4.2, where the left-hand-side is, by construc-345

tion §D.4, identifiable (under our assumptions) from data via prop. 4.3 and lemma 4.5, and the346

right-hand-side is identifiable by lemma 5.1 above. So it will suffice, for understanding Ḡphys
R=r[M ], to347

study edges in Ḡunion
detect[M ]− Ḡident

R=r[M ] and decide if those should be in Ḡphys
R=r[M ] or not. As already348

noted in lemma 3.13, physical changes occur only in regime-children:349

Lemma 5.2. If R /∈ Ancunion(Y ), then Paphys
R=r(Y ) = Paunion(Y ), i. e. the change is non-physical (by350

observational non-accessibility).351

Corollary 5.3. If R /∈ Ancunion
detect(Y ), then Paphys

R=r(Y ) = Paunion
detect(Y ).352

If (conditioning on) R does not change the distribution of ancestors, no state-induced effects occur:353

Lemma 5.4. Assuming strong regime-acyclicity. If X ∈ Paunion(Y ) − Paident
R=r(Y ) and R ∈354

Paunion(Y ), and Ancunion(R) ∩ Ancunion(Paunion(Y ) − {R}) = ∅, then X /∈ Paphys(Y ) (i. e. the355

change is "physical" not just by state).356
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Corollary 5.5. Assuming strong regime-acyclicity. If R ̸= X ∈ Paunion
detect(Y ) − Paident

R=r(Y ) and357

R ∈ Paunion
detect(Y ), and Ancunion

detect(R) ∩Ancunion
detect(Pa

union
detect(Y )− {R}) = ∅, then358

(a) there is a link into the strongly connected component of Y that vanishes in Gphys, but not in359

Gunion
detect, i. e. there is a physical change.360

(b) if Y is not part of a directed union-cycle, then X /∈ Paphys(Y ), i. e. there is a physical361

change of this particular link.362

5.3 Validity of Transfer363

JCI-arguments (§5) can exclude the possibility of physical changes, but they can only provide direct364

evidence in rare cases (lemma 5.4). But variable can depend quantitatively on R:365

Example 5.6. If Y = g(X) + γR + ηY , with γ ̸= 0, and if g|suppP (X|R=r0) is constant, X ∈366

Paphys
R=r0

(Y ), even though X /∈ Padescr
R=r0(Y ) and R ∈ Paunion(Y ).367

We sketch a statistical test (see also §F.3), that approaches this problem in analogy to the philosophy368

of constraint-based causal discovery (CD): For CD, the idea is, that in an Occam’s razor sense,369

a link should be considered relevant to the causal model, if there is evidence for the link to be370

present, i. e. if independence can be rejected (see discussion of point (a) after example 1.1). For371

the multi-context case, from the perspective, that causal mechanisms are supposed to be robust, a372

reasonable null-hypothesis is, to assume, that g (in example 5.6) remains unchanged in the context373

R = r0. So a link should be removed relative to the union-model if there is evidence for its vanishing374

(see discussion of point (b) after example 1.1).375

In the example above, g is identifiable (in Gunion), so we can learn g from data. Now, if we can show,376

that the independence-test we used for CD (of Gdescr
R=r0

, see Rmk. D.10), would have (likely) rejected377

the independence X ⊥⊥ Y |R = r0 given the observational distributions (e. g. bootstrapping from the378

observational distributions) if g had remained valid in R = r0, then we have evidence for g vanishing379

in R = r0. This formally is captured by the difference of Gunion and Gphys
R=r0

in the sense of Rmk. 3.5.380

6 Conclusion381

The assumption of positivity, P > 0, is quite common and very useful. However, it is not popular382

for its realism – finite data never gives empirical evidence outside a bounded support, even more383

so in light of Rmk. 3.5 – but because it dramatically simplifies the problem, by neglecting "purely384

formal" details that supposedly would not actually affect the conclusions we draw. Generally, this385

is certainly often true, but as we point out, there are a range of difficulties, where our qualitative386

understanding relies on the the understanding of available observational support. We formally capture387

such qualitative properties through our descriptive and physical graphs – this includes the example388

from the abstract, where once a physical and once a descriptive change occurs. Further, as we389

demonstrate, in multi-context systems, these qualitative properties become accessible, at least in part,390

from observations. Finally, we hope that the connection between the structure of context-specific391

independences and SCMs that our objects provide may help to better connect both worlds.392

Future-Work: We focused on iid-data here, but time-series data seems like an interesting, even393

though potentially quite complicated, extension. For time-series, for example with persistent (slowly394

changing) regimes, the observable support of the stationary distribution should play an important and395

interesting role. What sounds very technical, captures some intuitive effects: As an example, consider396

a crossroads, where in one context (state of traffic-lights) the traffic flows in one direction, in the397

other context in the orthogonal direction. Now if states normally only accessible (by the stationary398

distribution) in one context (traffic in direction A) at a regime-boundary "lag" into the other context399

(traffic in direction B), then new phenomena arise.400

A more immediate generalization would be in (transfer of) orientations. One can of course use401

standard orientation-rules per-context, or JCI-rules on the union, but really one would want to402

combine information from both where possible.403
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A Details on Related Literature475

The topic presented here has connections to many fields, so we give a more structured overview476

below. Also the connection to CSI and independence models [10; 13; 4] seems interesting (§D.4),477

but since we expect most potential readers to come from the causal community, a detailed treatment478

in the main-text seems ill-placed. Similarly, further details on the connection to counter-factuals are479

in §A.4.480

A.1 Structured Overview481

Combining Datasets from different contexts in causal inference has been studied e. g. by [2; 12; 6;482

9]. The focus there is usually on gaining orientation-information or statistical power on finite data, i. e.483

gaining additional information about the union-model. The main technical ingredient is in adding the484

context-information (e. g. an index) to the pooled dataset as a "context-variable" and to then study the485

resulting system. We adopt this convention and call this (categorical) variable R ("regime"). [2; 12]486

in particular discuss transportability between contexts, but concerning identifiability (structure of487

hidden confounders), not available observational support. For example [20] also explicitly studies488

graphical models for mixtures, we will for example connect our results to their union-graph. Their489

focus is in defining graphs for the combined dataset, we focus on different graphs for a single context.490

The reason why there is not a unique (empirically accessible) graph is that we "enrich" this single491

context by our understanding of the other contexts. So our study also is inherently multi-context, but492

does not focus on the union-model (see 5.1 however).493
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Context Specific Independence (CSI) and Graphical Models have been combined from the494

perspective of encoding information about (the factorization of) a probability distribution, e. g. as495

stratified graphs [10], or labeled directed acyclic graphs (LDAGs) [13; 4]. The main distinction here496

is that we are interested primarily in causal properties and to this end study connections to SCMs,497

thereby e. g. to interventional properties. We also establish how one of the graphical models we define498

relates to CSI. The information our objects encode is subtly different from that encoded in LDAGs,499

or their induced "context-specific LDAGs" [13, Def. 8]. Both encode CSI properties however, and500

it should be possible via our results to leverage results about LDAGs for causal inference, and vice501

versa (for example the construction of counter-examples like D.13 seems much more accessible from502

an SCM perspective). See also §A.3.503

Cyclic Models and Solution Functions have gained increased attention recently. There are other504

approaches to study cyclic union-models e. g. [7; 25] – cyclic union-models are a possible use-case505

for context-specific graphs, but not the core content of this paper. The type of cyclicity we allow506

in our models is extremely simple compared to the general treatment [3], even though they are not507

simple in the sense defined there. Simple SCMs [3] are cyclic models defined such that their solution-508

properties (and simple-ness) is stable under interventions and marginalization. It seems to be the case,509

that the ensuing problems (in particular unsolvable intervened models), occur, if we intervene to a510

system-state outside of the observational support, so in our "support-aware" philosophy, we should511

capture the problem "beforehand": We recognize the intervention as involving a transfer-problem and512

are thus warned, that it may not have a unique or clear solution without further information. We do513

not study this connection in detail here, but we use solution-functions in §4.1.514

Interventions and Counterfactuals For interventions, e. g. by single-step adjustment [22; 14], a515

lack of support often becomes evident by a lack of training-data, and is comparatively easy to detect516

and simple to deal with (require expert-knowledge for extrapolation, there is not much to be done517

from data alone). For multi-step procedures (like the ID-Algo [26; 23]) and especially counterfactual518

quantities (like natural direct effects [22]) the situation becomes much more complicated. Here the519

question about which graphical properties even could be learned from data have been discussed, see520

e. g. [17, §5.1], even though the systematic connection to observational support does not seem to have521

been studied yet. See also §A.4.522

Minimality and Faithfulness are also strongly intertwined with how to pick "the correct" graphical523

models. The most direct approach is by a minimality-condition on parent-sets [3, Def. 2.6] (even524

though there is a faithfulness assumption about non-determinism implicit for minimal parent-sets to525

be well-define / unique). For skeleton-discovery, we are primarily interested in adjacency-faithfulness526

[16], but e. g. [15, §6.5.3] also formalize a "causally minimal" condition which is faithfulness in the527

sense of independences only occur where they are guaranteed by the Markov-property, which turns528

out to be quite non-trivial here (§4.2). The context-specific absence of edges itself can be understood529

as a violation of faithfulness to the union-graph (as noted e. g. by [9, §4.3.7].530

Missing Data in causal modeling in the literature usually concerns either latent variables [24; 30],531

or more abstractly missing data for certain interventions [29; 27] typically for the combination of532

datasets (see above) or robustness of causal models [18; 19]. The lack of overlap of observations and533

non-constant mechanism domain seems so far unexplored – certainly people are and have been aware534

of this issue, but the formal and systematic approach given here seem to be new (see also §3.3).535

A.2 Relation to Method-Paper536

The problem of an ambiguity in the definition of per-context graphs and its connection to observational537

access was encountered in [1] during the development of a constraint-based causal discovery method538

for this setting. There, the focus is on giving meaningful assumptions, under which this problem does539

not occur (i. e. assumptions under which Gdetect
R=r = Gphys

R=r = GCF
R=r), and when efficient (using few540

tests) causal discovery is possible. For the scenario with Gdetect
R=r = Gphys

R=r = GCF
R=r a Markov-property541

is shown with (modified) standard tools (path-blocking), plus some tricks involving counter-factuals542

(see also the footnote in §4.1). The main distinction here is, that we focus on the usefulness, and543

identification from data, of the difference between physical and descriptive changes. This also544

means, that a Markov-property that holds only under the assumption of Gdetect
R=r = Gphys

R=r = GCF
R=r is545
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insufficient. The more general case shown here, requires a completely different approach (§4.1, §D).546

The subsequent study of union and physical graph, is relative to a suitable proxy Gdetect
R=r of Gdescr

R=r547

(see §D.4), for which, in light of prop. 4.1 as presented here (see also [1, Rmk. 4.2 on Thm. 1]),548

efficient causal discovery algorithms as in [1] are suitable. Generally, [1] evolves around developing549

assumptions for a method (and a method), that is both efficient and interpretable in terms of SCMs550

despite the difficulties that arise from these observations. The present paper is about studying the551

emerging structure: How do the different per-context graphs relate to each other and to the union-552

graph, which intuition do they capture, and how can they – in particular also the physical graph and553

their differences – be identified?554

A.3 Connection to Independence Structures555

We briefly recall the concept of labeled acyclic directed graphs LDAGs [13]. The underlying system556

is considered to consist of categorical variables only. Traditionally, the graphical representation of557

the independence-structure represents dependencies with links, independencies with missing links, in558

a sparse sense, i. e. if X ⊥⊥ Y |Z the link from X to Y is also removed. The LDAG then labels these559

edges with a "stratum" [10] by the following idea (for simplicity we pretend we knew orientations):560

If X → Y then test for each combination of values of (other) parents Z = Pa(Y ) − {X} of561

Y if X ⊥⊥ Y |Z = z, in this case add Z = z as a label to the edge. In practice, some PC-like562

search-procedure can be used [8].563

This, in our language, essentially treats every variable as a regime-indicator, thus also contains the564

information of any specific choice of regime-indicator (called "context-specific LDAG" in [13, Def.565

8]). The full LDAG thus contains more information than only that of a context-specific LDAG566

corresponding to one choice of regime-indicator. The price for this additional generality is the567

restriction of the setup to categorical variables only, and for discovery from finite data, in cases where568

one is interested in a specific context-specific LDAG, the detour through the full LDAG is likely not569

sample-efficient. We think, it is also not to be underestimated, that LDAGs are hard to read, compared570

to the simpler (because less information-dense) context-specific ones.571

Generally, the information encoded in a context-specific LDAG is very similar to our graphical572

models, there are some things to note however: The context in LDAGs is local – only strata of parents573

(adjacencies) are encoded – while our graphs also capture non-local effects (e. g. insert a mediator574

R → M → T in example 1.1, then T → Y vanishes for specific R-contexts, even though R is not575

adjacent to either T or Y ), which is also accessible from observations e. g. through intersection-graphs576

(Rmk. D.10). We do not know if the authors of [10; 13; 4; 8], were aware of this specific problem,577

e. g. the formulation used by Corander et al. [4, Conjecture 1 (p. 985)] about the completeness of their578

CSI-separation rules relative to a hypothesis (as complete for information contained in) Iloc, which579

contains this "local" CSI-information only, i. e. they were clearly very careful in avoiding potentially580

false claims or conjectures about such non-local problems. They also use positivity of the distribution,581

via the semi-graphoid axioms (see also last line on [4, p. 983]).582

As Corander et al. [4, p. 983] (and others) point out, generally conclusions about information contained583

in a given CSI-structure (i. e. which other independencies can be derived) is a very hard problem584

(cf. [4, §2.3]). The results on this topic that [10; 13; 4; 8] and the "Bayesian network / independence-585

structure community" in general provide could be interesting to the causal community (e. g. for586

cross-validation of causal discovery results), and vice versa e. g. the construction of counter-examples587

like example D.13 that are "easy" in the SCM formalism might provide insights for the "Bayesian588

network community". Further the specific type of non-local CSI we encounter seems potentially589

interesting for understanding independence-structures as well. We hope our approach opens new590

connections between both perspectives.591

In [4], also a connection to support-properties is used to connect results to the abstract framework592

of "databases and team semantics". There the abstract model seems to describe the following593

observation: Given independence the joint distribution is a product, thus its support has certain594

symmetry-properties. What we study here is the overlap of observational supports and the support of595

mechanisms, thus a completely different concept.596
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A.4 Connection to Counter-Factuals597

If we are worried about selection-bias, the systematic machinery developed for such questions is the598

do-calculus. While the "mutilated" graph GR̄ defined graphically (does not see qualitative change599

of mechanisms such as for Y = 1(R)×X + ηY ) we may ask: What is the "correct" graph for the600

intervened model?601

This requires additional information about the exogenous noises we consider. The most consistent602

approach seems to be assuming that the exogenous noises are not affected by the intervention in the603

model. In this case this becomes the counter-factual model [11] describing the world that would have604

been observed (given the "circumstances" encoded in exogenous noises) if R had been intervened605

to be r. We will hence call this concept the "counter-factual" graph. This is mostly a matter of606

perspective and to avoid overloading the term intervened graph typically used in the sense of mutilated607

graph (see above) with the do-calculus. For the example above, the counter-factual graphs seems608

to be the "descriptive" graph, but this is a coincidence, and is generally only true if R is exogenous.609

Indeed the counter-factual graph can even have more edges than the union graph:610

Example A.1. The Counterfactual Graph can have more Edges than the Union:611

x

g(X)

p(R = 1)

Consider the following model with descriptive graph

X → R → Y ,

where fY (X,R) = 1(R) × g(X) + R + ηY . Values of
X > 0 and R = 1 together are never observed, so Y seems
to be independent of X .

612

Here, the shown graph is the "correct" one by the usual means, but note, that intervening on R can613

make the link X → Y visible! In fact, if we have interventional ("experimental") data, than this is614

potentially testable in a multi-context setup, and should be considered a meaningful object. See [17,615

§5.1] however, where related problems (in a single-context setting) are discussed, and a number of616

subtleties are pointed out. We will subsequently focus on purely observational data and leave the617

problem of experimental data to future work.618

Finally, we note, that this counter-factual model – under suitable assumptions – can be used as a619

mathematical trick to proof a (weaker version of) the Markov-property through "standard" path-620

blocking arguments [1] (because GCF
R=r[M ] = Gvisible[Mdo(R=r)] is a causal graph associated to a621

causal model in the standard sense).622

B Properties of Graphs623

B.1 Proofs of Statements in the Main Text624

In §3.2 we gave some properties of the studied graphical objects, here we give the corresponding625

proofs. We start – in slightly altered order compared to the main text – with626

Lemma B.1 (Lemma 3.12). Relations of edge-sets:627

Gdescr
R=r[M ] ⊂ Gphys

R=r[M ] ⊂ Gunion[M ]

writing "G′ ⊂ G" if both G and G′ are defined on the same nodes, and the subset-relation holds628

for the edge-sets. Generally (i. e. it can happen that) GCF
R=r[M ] ̸⊂ Gunion[M ] (see example A.1) and629

Gdescr[M ] ̸⊂ GCF
R=r[M ].630

Proof. This follows directly from the definitions, by supp(P (Pa(X)|R = r)) ⊂ P (P (Pa(X))).631

632

Lemma B.2 (Lemma 3.13). Physical changes are in regime-children:633

If X ∈ Paphys
R=r(Y ), and Y ̸= R with R /∈ Paunion(Y ), then Paphys

R=r(Y ) = Paunion(Y ).634

Proof. By definition, Gunion[M ] = Gvisible[M ] = G[F , PM ] and Gphys
R=r[M ] = G[Fdo(R=r), PM ].635

By definition, F and Fdo(R=r) differ only in fR and (by setting the parameter R = r) for fi636

with R ∈ Paunion(Xi). For Y , by hypothesis neither of these two applies, so the same fY is in637
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F and Fdo(R=r). Since both graph-definitions further use the same support (that of PM ), their638

parent-definitions for Y agree: Paphys
R=r(Y ) = Paunion(Y ).639

Lemma B.3 (Lemma 3.11). Union Properties, for Gunion[M ] := Gvisible[M ]:640

(i) Gunion[M ] is the "union graph" in the sense of [20]641

(ii) Gunion[M ] = ∪rG
phys
R=r[M ]642

(iii) Gunion[M ] = ∪rG
descr
R=r[M ], if M is strongly R-faithful (Def. 4.6)643

Proof. (i) Gvisible[M ] corresponds to the causal graph in the standard sense given a suitable644

minimality-condition on parent-sets (see §3.2), so it is the graph of the union-model in the sense of645

[20].646

(ii) "⊃": By lemma B.1 Gphys
R=r[M ] ⊂ Gunion[M ], so ∪rG

phys
R=r[M ] ⊂ Gunion[M ].647

"⊂": Let X ∈ Paunion(Y ) be arbitrary. By lemma B.2 we only have to consider links to regime-648

children Y . By definition X ∈ Paunion(Y ) means, there are values pa,pa′ ∈ supp(P (Paunion(Y )))649

which differ only in their X-coordinate (i. e. pa = (x, pa−), pa′ = (x′,pa−) with pa− the same650

value for Paunion(Y ) − {X}) such that fY (pa) ̸= fY (pa
′). Since R ∈ Paunion(Y ), the tuple651

pa− also contains a value r1 for R. For this r1 we have X ∈ Paphys
R=r1

(Y ), because Gphys
R=r1

=652

G[Fdo(R=r1), P (V )] uses the same support (that of P (V )) as Gunion = Gvisible = G[F , P (V )] and653

f ′
Y ∈ Fdo(R=r1) (forcing R = r1 in fY ) does agrees with the original fY ∈ F for pa and pa′ (as654

they contain R = r1), so f ′
Y (pa) = fY (pa) = fY (pa

′) = f ′
Y (pa

′).655

(iii) "⊃": By lemma B.1, as in (ii).656

"⊂": Let X ∈ Paunion(Y ) be arbitrary. Define Nr := F−1
R ({r}) (where FR is the solution-function657

for R in terms of noises, see §C), and note that, by FR being a well-define mapping, P (η⃗ ∈ ∪rNr) =658

1, using Vr := FPaunion(Y )(Nr) and FPaunion(Y )(∪rNr) = ∪rVr thus so P (pa ∈ ∪rVr) = 1.659

By contradiction: Assume it were X /∈ Padescr
R=r(Y ) for all r. Then, by definition, fY |Vr

is constant in660

X with probability 1. We can thus define grY (Pa
union(Y )−{X}) such that P (fY = grY |R = r) = 1.661

Finally construct f ′
Y (Pa

union(Y )− {X}, R) := gRY (Pa
union(Y )− {X}) (i. e. depending on the value662

r of R choose the corresponding gr). Then for F ′ defined as F with fY replaced by f ′
Y , the same663

observations are obtained with probability 1, but parent-sets differ for Y .664

During the discussion of the Markov-property (§4.1) the graph Gident
R=r is introduced, and the following665

property is claimed:666

Lemma 4.2. There are no physical ancestor–ancestor problems:667

Gdescr
R=r ⊂ Gident

R=r ⊂ Gunion and if M is strongly regime-acyclic, then Gident
R=r ⊂ Gphys

R=r.668

Proof. Using Gdescr
R=r ⊂ Gunion (lemma 3.12), by definition 4.1, Gident

R=r ⊂ Gunion. The first inclusions669

is also by definition.670

"Gident
R=r ⊂ Gphys

R=r": Let e = (X,Y ) and edge in Gident
R=r.671

Case 1 (X,Y ∈ Ancunion(R)): By Gident
R=r ⊂ Gunion (see above), e ∈ Gunion. By lemma 3.13, Gunion672

and Gphys
R=r differ only by edges pointing into a (union-)child of R. By strong regime-acyclicity,673

children of R are not union-ancestors of R, so e ∈ Gphys
R=r.674

Case 2 (otherwise): By definition e ∈ Gdescr
R=r in this case. So by lemma 3.12, e ∈ Gphys

R=r.675

B.2 Formalization of Non-Constant on Support676

In Def. 3.4, we require the restriction of fY to the support of a distribution Q(Pa(Y )) to be non-677

constant in X . Usually this can be thought of as: ∃pa−, values of Pa(Y )−{X}, and x, x′ values of X678

such that (pa−, x), (pa−, x′) ∈ supp(Q(Pa(Y ))) and P (fY (pa
−, x, ηY ) ̸= fY (pa

−, x′, ηY )) > 0.679

Formally this requires regularity-assumptions (e. g. there are continuous densities, and the fi are680

continuous) to exclude degenerate cases like:681
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Example B.4. Let Q(X) uniform over (R−Q) ∩ [0, 1], and fY (X, ηY ) = 1(X ∈ Q)×X + ηY .682

Then supp(Q(X)) = [0, 1] (it is defined as the closure, which includes the rationals), and fY is683

non-constant on [0, 1], but really fY would never "see" the dependence on X .684

The more relevant extension to our setting seems to be the finite-sample case §B.3. Nevertheless,685

the above problem could be fixed, e. g. by defining "non-constant on the support" as: ∃U,U ′ ⊂ XX686

and V ⊂ XPa(Y )−{X} such that U × V and U ′ × V are measurable (with respect to Q), and687

E[fY |pa ∈ U × V ] ̸= E[fY |pa ∈ U ′ × V ], so one can think of Def. 3.4 using this notion instead.688

Because measure-theoretic intricacies of the problem do not seem to aid the understanding of the689

main contents of this paper, we do not detail these problems in the main text.690

B.3 Finite-Sample Generalizations691

In practice, when only a finite number of samples is available, the distinctions (descriptive vs. physical692

changes) discussed in this paper also occur for reasons different from non-overlapping supports693

(of observations and mechanisms): Statistical power of independence tests often relies for example694

on sufficient width (compared to first derivative of the mechanism and noise on the target) of the695

observational distribution of the source. More generally, the specific choice of independence-test696

matters. In this section, we outline how our results generalize to the finite-sample case, how analogues697

of the previously introduced graphical objects lead to a very similar abstract structure, and why finite-698

sample properties are even more difficult: There is a "gap" (similar to §D.4) between never detectable699

(with probability less than a small p0 detectable) and confidently detectable (with probability larger700

1− ϵ detectable) that does not occur in the asymptotic case.701

One may replace the definition 3.4 of G[F , Q] by the following harder to formalize, but for some702

problems more practical idea: For an estimator d̂ of a dependence-measure d, let G[F , Q, d̂, N, p0, ϵ]703

be the graph defined via by parent-sets with X ∈ Pa(Y ) if, fixing a sample-count N and error-rate704

p0, the estimator d̂ has enough (up to ϵ) statistical power to find dependence in the sense of ∃d0:705

Q(d̂ ≥ d0) > 1− ϵ – with Pnull(d̂ ≥ d0) < p0 in the product / independent null-distribution – where706

Q(d̂) is the distribution of d̂ evaluated on (vX , fY (v)) on N samples v drawn from Q(V ). See §F.3.707

This does not seem to change the abstract structure (kinds of graphs and their relationships), except708

that an additional "gap" similar to §D.4 opens, because there are edges with effect-sizes that are709

detectable with probability between p0 and 1− ϵ.710

This captures not only the reality of what we see (the observational support), but also the reality of711

how we see it (the dependence-test). In practice the result of a causal discovery algorithm does depend712

on the independence test used, so this describes what is identifiable from data. Its interpretation in713

terms of causal inference (e. g. effect estimation) is harder, but this is not a failure of the approach, but714

rather a "real" problem: Given e. g. an SCM with linear effects and Gaussian noise-terms, such that715

all (non-trivial) effects are large enough for a suitable to this data test (e. g. partial correlation) to have716

power 1− ϵ, then the discovered graph is valid for effect estimation (up to error-rates bounded by p0717

and ϵ corrected for multiple-testing, we have G[F , Q, d̂, N, p0, ϵ] = Gxyz[M ], where "xyz" stands for718

a graph corresponding to a specific choice of Q, which will also has implications for N ). If the data719

is not suitable to the used test in this sense, we still discover G[F , Q, d̂, N, p0, ϵ], but it is no longer720

trivially suitable for effect estimation (but e. g. a correlation-based test might still capture causal721

effect mean-values, even though no longer higher moments). We leave this general problem to future722

research, but it seem interesting, that statistically precise statements about validity of certain types of723

effect-estimations appear to be formally accessible. For counter-factual properties, one additionally724

to d̂ needs an estimator for conditional densities.725

The choice of independence test seems to usually be seen as governed by properties of available data726

(which is even in theory only possible to a certain degree [21]), our point here is, that there is an727

associated graphical object, whose practical usefulness depends on the application additional to the728

data.729

C Solvability and Solution-Functions730

Our graphical objects no longer have a simple connection to an set of mechanisms alone, rather they731

depend on observational support. This means many of the usual proof-techniques (most notably732
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path-blocking) have no evident analogue when discovering these structures from data. A systematic733

treatment of "Markov"-properties needs a different approach. We show, that the problem can be734

studied via properties of solution-functions, hence we briefly study solvability of models.735

Using only "context insensitive" independence-tests on the "pooled" data, fails to be Markov to736

the visible graph (some links cannot be detected as absent – actually exactly those links in the737

acyclification [3].738

Some acyclicity-property is needed also with CSI. An easy to visualize property is the following739

"strong" regime-acyclicity (but we often only require the slightly weaker "solvable for R and weakly740

regime-acyclic", see lemma C.3):741

Definition C.1. We call a SCM M weakly (R-)regime-acyclic, if ∀r, the regime-graph Gdescr
R=r[M ] is742

acyclic.743

We call a model M strongly (R-)regime-acyclic, if it is weakly (R-)regime-acyclic and no cycle in744

Gunion[M ] involves any union-ancestor of R (including R itself).745

Easily usable models are typically "solvable" as systems of equations from the noise-terms (this is a746

notion often employed e. g. to study counterfactuals [11] and has been used to study cyclic models747

e. g. in [3], see §A):748

Definition C.2. A set of mechanisms F is (uniquely) solvable for Xi, on Ω ⊂ N if there is a (unique)749

mapping Fi : Ω → Xi such that Xi = Fi(η1, . . . , ηN ).750

F is (uniquely) solvable on Ω ⊂ N , if for all i it is (uniquely) solvable for Xi.751

A model M is (uniquely) solvable (for Xi), if its mechanisms F are (uniquely) solvable (for Xi) on752

supp(Pη).753

We would expect such models to have "good" solution properties. There is a small caveat however:754

Our graph-definitions (and hence acyclicity-definitions) require a "weak" solvability, namely the755

observable distribution PF,Pη
(V ) has to exist (with unique support). In practice, when given756

observations – presumably from an SCM – than this SCM is evidently "weakly solvable" in this757

sense. Here, "weakly solvable" in turn implies (unique) solvability in the intuitive sense.758

Lemma C.3. Let M be weakly regime-acyclic and the observable distribution PF,Pη
(V ) exists.759

Then:760

M is strongly regime-acyclic ⇒ M is uniquily solvable for R ⇔ M is uniquily solvable.

Proof. It is well-know, that acyclic SCMs are solvable. The idea is simply as follows: Let l(i) be the761

length of the longest incoming path to Xi, i. e. the count of ancestors in a path γ = [A1 → A2 →762

. . . → Xi] with all arrows pointing towards Xi. Then inductively (over l) show M is solvable for all763

Xi with l(i) = l. The inductive start l = 0 is trivial, as nodes with l(Xi) are roots (i. e. do not have764

parents), so l(i) = 0 ⇒ fi = fi(ηi), thus the solution Fi = fi works. For the inductive step, note,765

that l(i) = l + 1 ⇒ l(Pai) ≤ l, thus have solution functions FPai , the solution Fi = fi(FPai , ηi)766

works for Xi.767

Let M be strongly regime-acyclic. There are no cycles involving ancestors (in Gunion[M ] of R768

(including R). Thus the above inductive argument works restricted to ancestors of R (including R),769

because parents of ancestors of R are also ancestors of R and within the support Ω = supp(Pη) we770

only need union-parents. Therefore the model is solvable for ancestors (in Gunion[M ]) of R (including771

R).772

Next, knowing FR, we can "split" the space of noise-values into the disjoint union N =
∐

r F
−1
R ({r})773

and note, that for η⃗ ∈ F−1
R ({r}) we know R = FR(η⃗) = r. Knowing R = r, each node depends774

(for these η⃗) at most on its parents in the respective Gdescr
R=r[M ] (by definition of Gdescr

R=r[M ]). Hence775

we can repeat the argument above on the acyclic Gdescr
R=r[M ] to find Xi = FR=r

i (η⃗) for η⃗ ∈ F−1
R ({r})776

(this FR=r
i is of course the same one as in definition C.4 below, as is immediate for the definition of777

Fi in the next paragraph).778

Define Fi := F
R=FR(η⃗)
i (η⃗). By disjointness of the F−1

R ({r}) this is well-defined, because every η⃗ is779

mapped to some r by FR it is defined everywhere.780

Finally the backwards direction M is solvable for R ⇒M is solvable is trivial.781
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For solvable models (with almost everywhere continuous densities), conditioning can be understood782

as restriction of the sample-space:783

Definition C.4. If M is solvable, define,784

FZ=z
i := Fi|F−1

Z ({z}) : F
−1
Z ({z}) → Xi

(we allow Z to be multivariate).785

Corollary C.5. Given a solvable, weakly regime-acyclic model, then, for an arbitrary variable X:786

(a) FX depends only on noise-terms of ancestors of X in Gunion[M ], i. e. is constant in all other787

noise-terms an can thus be written as a function of ancestors’ noise-terms only.788

(b) FR=r
X depends only on noise-terms of ancestors of X in Gdescr

R=r[M ].789

Proof. This is apparent from the proof of lemma C.3:790

Fi was constructed inductively from parents and their noise, and from parents of parents and their791

noise etc. (in Gunion[M ]) thus from noises of ancestors in Gunion[M ] (with roots depending only on792

their own noise).793

FR=r
i was constructed in the same way from noises of ancestors in Gdescr

R=r[M ].794

Note that corollary C.5 encodes information about support and parental relations on a given support.795

We use this knowledge to replace path-blocking arguments for obtaining a "Markov"-property.796

D Markov-Property797

Here, the detailed proof of the Markov-property (Prop. 4.3) is presented. See §4 in the main-text for798

a high-level overview.799

We start from restrictions induced by the graphs on the form of solution-functions. Recall from §C,800

that because the system of structural equations can be solved "downstream" starting from root-nodes,801

successively working down their descendants, they depend only on noise-terms of ancestors within802

the respective graph:803

Cor. C.5. Given a solvable, weakly regime-acyclic model, then, for any set of variables X:804

(a) FX depends only on noise-terms of ancestors of X in Gunion.805

(b) FR=r
X := FX |F−1

R ({r}) depends only on noise-terms of ancestors of X in Gdescr
R=r.806

D.1 Graphical Properties Reflected in the Joint Distribution807

Next, recall that (generally) such restrictions on functional dependence translate to product-structures808

on distributions as follows:809

Lemma D.1. Given A ⊥⊥ B and a mapping f(A) of A only, then810

P (A,B|f(A)) = P (A|f(A))× P (B)

Proof. P (A,B|f(A)) = P (B,A|f(A)) = P (B|A, f(A)) × P (A|f(A)) = P (B|A) ×811

P (A|f(A)) = P (B)× P (A|f(A)), where the last equality is by A ⊥⊥ B ⇔ P (B|A) = P (B).812

We can use this, to see which part of the "noise-space" is affected by conditioning. Note that the real813

power of this approach is hidden in the knowledge about ancestral relations via Cor. C.5 combining814

information about the two different graphs Gunion and Gdescr
R=r. We write "P ({ηi})" for P (η1, . . . , ηN )815

for the N noise-terms of the N observables Xi. We then use set-notation to make restrictions more816

explicit (e. g. {ηi|i ∈ A} instead of ηA).817

Lemma D.2. Given a solvable, weakly regime-acyclic, causally sufficient model, and a set Z of818

variables, then,819
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(a) Using A := Ancunion(Z):820

P ({ηi}|Z) = P ({ηi|i ∈ A}|Z)×
∏
j /∈A

P (ηj)

In particular:821

k /∈ A ⇒ P (ηk|Z) = P (ηk)

(b) If R /∈ Z and fixing a value R = r, using Ar := Ancunion(R) ∪Ancdescr
R=r(Z):822

P ({ηi}|Z,R = r) = P ({ηi|i ∈ Ar}|Z,R = r)×
∏
j /∈Ar

P (ηj)

In particular:823

k /∈ Ar ⇒ P (ηk|Z,R = r) = P (ηk)

Proof. (a) By corollary C.5a, FZ depends only on noise-terms of ancestors A of Z in Gunion. In824

particular we can write Z = FZ({ηi|i ∈ A}). Using this and lemma D.1, which applies by causal825

sufficiency:826

P ({ηi}|Z = z)

= P
(
{ηi|i ∈ A}, {ηj |j /∈ A} | FZ({ηi|i ∈ A}) = z

)
= P

(
{ηi|i ∈ A} | FZ({ηi|i ∈ A}) = z

)
× P

(
{ηj |j /∈ A}

)
The first term is indeed just P ({ηi|i ∈ A}|Z = z), while the second term is a product by causal827

sufficiency. The second claim (of part a) follows by marginalizing this.828

(b) By corollary C.5a, FR depends only on noise-terms of ancestors of R in Gunion. In particular we829

can write R = FR({ηi|i ∈ Ar}) (with trivial dependence on elements in Ar not in Ancunion(R)).830

By corollary C.5b, FR=r
Z = FZ |F−1

R ({r}) depends only on noise-terms of ancestors of Z in Gdescr
R=r.831

In particular we can write Z = FZ({ηi|i ∈ Ar}) (with trivial dependence on elements in Ar not in832

Ancdescr
R=r(Z)). Using this and lemma D.1, which applies by causal sufficiency:833

P ({ηi}|Z = z,R = r)

= P
(
{ηi|i ∈ Ar}, {ηj |j /∈ Ar} | FR({ηi|i ∈ Ar}) = r, FZ({ηi|i ∈ Ar}) = z

)
= P

(
{ηi|i ∈ Ar}, {ηj |j /∈ Ar} | FR({ηi|i ∈ Ar}) = r, FR=r

Z ({ηi|i ∈ Ar}) = z
)

= P
(
{ηi|i ∈ Ar} | FR({ηi|i ∈ Ar}) = r, FR=r

Z ({ηi|i ∈ Ar}) = z
)
× P

(
{ηj |j /∈ Ar}

)
Again, the first term is just P ({ηi|i ∈ Ar}|R = r, Z = z), while the second term is a product by834

causal sufficiency. The second claim (of part b) follows by marginalizing this.835

I. e. on the "noise-space", selection-bias from conditioning is confined to "sources" ηi from A (or836

Ar respectively). The idea is now, to separate two variables, not by explicitly blocking all paths,837

but by building a "barrier" B to divide the system (by conditioning) into two regions of noise-terms838

affecting one variable vs. those affecting the other, and using the observation above (lemma D.2), to839

choose B such that selection-bias also does not mix those two regions.840

Many ideas of the "standard" setup carry over, for example the "local Markov-Property" formalizes841

the observation, that, given its parents, a variable Xk, depends only on its "own" noise-term ηk.842

Hence the parents separate the "region" containing only ηk from all other noises (thus from upstream843

variables) and if Xk is not included in a directed cycle conditioning on the parents will not induce844

selection-bias (ηk ⊥⊥ ηi|Pak). Here this can be formulated as a "barrier" against all other noise-terms845

(lemma D.5).846

D.2 Definitions and their Properties847

Immediately from the solution-properties Cor. C.5, we can relate variables to the sources of their848

randomness:849

Definition D.3. Noise-sources of observations:850
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(a) The source of a set of variables X is Source(X) = Ancunion(X).851

(b) The r-source is Sourcer(X) = Ancdescr
R=r(X).852

If we do not block paths, we need some other notion of separation, following the idea of studying the853

changes to the noise-space:854

Definition D.4. Separation from noise-sources:855

(a) A barrier B separating a set of variables Y from the noise-sources of another set of variables856

C is a set of variables disjoint from Y (i. e. B ∩ Y = ∅; but not necessarily from C) such857

that Y ⊥⊥ ηC |B.858

(b) An r-barrier B separating Y from the noise-sources of C is a set of variables disjoint from859

Y with R ∈ B such that Y ⊥⊥ ηC |B′, R = r (where B′ = B − {R}).860

Such "barriers" exist: The "local" Markov property, essentially says, that parent-sets (from a suitable861

graph), block out all other (exogenous) noise-terms, it can be formulated in this language as:862

Lemma D.5. Local Markov Property for Barriers (assuming causal sufficiency):863

(a) For any variable Y which is not part of a directed cycle in Gunion, the set B = Paunion(Y ) is864

a barrier separating Y from the noise-sources of any set C not containing Y .865

(b) For any variable Y with R ̸= Y , which is not part of a directed cycle in Gdescr
R=r, and with866

Y /∈ Ancunion(R), the set B = Padescr
R=r(Y ) ∪ {R} is an r-barrier separating Y from the867

noise-sources of any set C not containing Y .868

Proof. (a) Let B = Paunion(Y ), then Y = fY (B = b, ηy), we write (for fixed b) fY (b,−) for the869

mapping nY 7→ fY (b, nY ) in particular for measurable UY and almost all b870

P (y ∈ UY |B = b) = P (nY ∈ fY (b,−)−1(UY )|B = b),

or written as a pushforward P (Y |B = b) = fY (b,−)∗P (ηY |B = b), which is determined by871

P (ηY |B). Since, by hypothesis, Y is not part of a directed cycle Y /∈ Ancunion(B), thus by lemma872

D.2a (second part), P (ηY |B) = P (ηY ). By causal sufficiency thus Y ⊥⊥ ηC |B if Y /∈ C.873

(b) Let B = Padescr
R=r(Y )∪ {R}, B′ = B −{R}, then if R = r we have almost surely Y = fY (B

′ =874

b′, ηy): By definition of Gdescr
R=r, if R = r then fY almost surely depends only on B (potentially875

trivially on R) and ηY . Thus again, for measurable UY almost always (with b = (b′, r))876

P (y ∈ UY |B′ = b′, R = r) = P (nY ∈ fY (b,−)−1(UY )|B′ = b′, R = r),

or written as a pushforward P (Y |B′ = b′, R = r) = fY (b,−)∗P (ηY |B = b), which is determined877

by P (ηY |B). Since, by hypothesis, Y is not part of a directed cycle Y /∈ Ancdescr
R=r(B). Further,878

by hypothesis, Y /∈ Ancunion(R), thus by lemma D.2b (second part), P (ηY |B = b) = P (ηY ). By879

causal sufficiency thus Y ⊥⊥ ηC |B′, R = r if Y /∈ C.880

Most importantly, "any set C not containing Y " in the previous lemma includes Source(X) if881

Y /∈ Ancunion(X) (similarly for (b)), so we will be able to relate noise-space properties back to882

properties of observables.883

Definition D.6. Separation of observables:884

(a) A barrier B separating two sets of variables X from Y is a barrier separating Y from the885

noise-sources of Source(X), with B ∩X = ∅. (Thus B ∩ (X ∪ Y ) = ∅, by def. D.4.)886

(b) A r-barrier B separating two sets of variables X from Y is a r-barrier separating Y from887

the noise-sources of Sourcer(X), with B ∩X = ∅. (Thus B ∩ (X ∪ Y ) = ∅, by def. D.4.)888

Note, that the noise-barriers provided by the local Markov condition automatically "qualify" to889

separate X ̸= R and Y if X is not a (direct) parent (in the respective graph) of Y . Further, these (def.890

D.6) indeed relate to independences on the observables:891

Lemma D.7. Separation implies independence:892
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(a) If B is a barrier separating X from Y , then X ⊥⊥ Y |B.893

(b) If B is a r-barrier separating X from Y , then X ⊥⊥ Y |B′, R = r, with B′ = B − {R}.894

Proof. (a) By definition, a barrier B between X and Y is a barrier separating Y from noise of895

Source(X) = Ancunion(X). I. e. Y ⊥⊥ ηAncunion(X)|B, but by corollary C.5a, FX depends only896

on noise-terms of ancestors of X in Gunion, so that also Y ⊥⊥ FX(ηAncunion(X))|B, with X =897

FX(ηAncunion(X)) this proves claim (a).898

(b) By definition, a r-barrier B between X and Y is an r-barrier separating Y from the noise of899

Sourcer(X) = Ancdescr
R=r(X). I. e. Y ⊥⊥ ηAncdescr

R=r(X)|B′, R = r (where B′ = B − {R}), but by900

corollary C.5b, FR=r
X depends only on noise-terms of ancestors of X in Gdescr

R=r. By conditioning901

on R = r we restrict ourselves to noise-terms in F−1
R ({r}), thereby considering the restriction902

FR=r
X = FX |F−1

R ({r}) suffices. Thus Y ⊥⊥ FR=r
X (ηAncdescr

R=r(X))|B′, R = r. Again the claim follows903

by X = FR=r
X (ηAncdescr

R=r(X)) (whenever defined, i. e. whenever R = r).904

Now, that we have a framework for replacing path-blocking arguments in a way suitable to the905

problem at hand, we can return to the Markov-properties of our systems.906

D.3 The Markov-Property907

As illustrated in the main text §4.1 (see also example D.13), we will have to exclude relations between908

ancestors (beyond the union-graph) from our formal claims, as they are not generally accessible (see909

also §D.4 however):910

Definition 4.1. Define the (identifiable) ancestor–ancestor correction Gident
R=r as follows: Start with911

Gident
R=r = Gdescr

R=r, then add all edges in Gunion, between any two ancestors in Gunion of R to Gident
R=r.912

Remark D.8. Gunion and Gphys
R=r differ only by edges pointing into a (union-)child of R (lemma913

3.13), so "Gunion" in the definition above may be replaced by "Gphys
R=r" as these always agree on edges914

between ancestors. In particular the "ancestor–ancestor" problem will never be an issue if we are915

interested in Gphys
R=r (see §5).916

Knowing, what separating barriers may look like (by the "local" Markov property lemma D.5), and917

how to use them to obtain independence-relations on observables (def. D.6, lemma D.7), we finally918

obtain:919

Proposition 4.3. Assume the model is strongly regime-acyclic and causally sufficient. If X and Y920

are non-adjacent in Gident
R=r and both X,Y ̸= R, then either921

(a) for Z = Paunion(X) or Z = Paunion(Y ) it holds X ⊥⊥ Y |Z, or922

(b) for Z = Padescr
R=r(X)− {R} or Z = Padescr

R=r(Y )− {R} it holds X ⊥⊥ Y |Z,R = r.923

Further, if either X /∈ Ancunion(R) or Y /∈ Ancunion(R), then (b) applies, otherwise (a) applies.924

Proof. Case 1 (both X and Y are (union-)ancestors of R): By strong regime-acyclically w. l. o. g.925

Y /∈ Ancunion(X). In this case, by construction of Gident
R=r, X and Y are (non-)adjacent in Gident

R=r926

if and only if they are (non-)adjacent in Gunion, thus X /∈ Paunion(Y ). By the local Markov-927

property lemma D.5a – which applies, because Y is not part of any union-cycle by strong regime-928

acyclicity – Z = Paunion(Y ) is a barrier separating Y from the noise of Ancunion(X). As noted929

above X /∈ Paunion(Y ) = Z, so this is a barrier separating X from Y . Therefore, by lemma D.7a,930

X ⊥⊥ Y |Z as claimed.931

Case 2 (w. l. o. g. Y /∈ Ancunion(R)): Note, that we can further assume w. l. o. g. Y /∈ Ancdescr
R=r(X),932

because, if we had Y ∈ Ancdescr
R=r(X):933

Case 2a (X ∈ Ancunion(R)): Then if it were Y ∈ Ancdescr
R=r(X) ⊂ Ancunion(X) (by lemma 3.12),934

this would imply Y ∈ Ancunion(R) in contradiction to the hypothesis of the case 2.935
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Case 2b (X /∈ Ancunion(R)), then by weak regime-acyclicity, X /∈ Ancdescr
R=r(Y ) and we can swap936

the roles of X and Y to satisfy the w. l. o. g. assumption of the case and Y /∈ Ancdescr
R=r(X).937

Thus by lemma D.5b – which applies, because by weak regime-acyclicity Y is not part of any cycle in938

Gdescr
R=r and Y /∈ Ancunion(R) by hypothesis of the case – using Z = Padescr

R=r(Y ), we find Z ∪ {R} is939

a r-barrier separating Y from the noise of X . Again X /∈ Paunion(Y ) and X ̸= R, so X /∈ Z ∪ {R},940

and this is a barrier separating X from Y . By lemma D.7a, X ⊥⊥ Y |Z,R = r as claimed.941

Remark 4.4. If one of the variables is R then (for univariate R) no regime-specific tests are available942

and we have to fall back to the "standard" result (see e. g. [3]): Assume the model is causally sufficient.943

If R and Y are non-adjacent in Acycl(Gunion), then there is Z = Paunion(R) or Z = Paunion(Y ) with944

R ⊥⊥ Y |Z. If Y is an ancestor of R this does not change the result if the model is strongly regime945

acyclic. However, if Y is part of a directed cycle involving at least one child of R, then the edge946

R → Y in Acycl(Gunion) cannot be deleted from our independence-constraints, even if it is not in947

Gunion. By the above, together with prop. 4.3, this is the only such issue, that can occur.948

The restriction on where to search for Z is relevant for causal discovery algorithms in practice, and949

the following reformulation is helpful to that end:950

Corollary D.9. Given a strongly regime-acyclic, causally sufficient model, X , Y not adjacent in951

Gident
R=r and both X,Y ̸= R, then either952

(a) it exists Z ⊂ Adjident
R=r(X) or Z ⊂ Adjident

R=r(Y ) with X ⊥⊥ Y |Z, or953

(b) it exists Z ⊂ Adjident
R=r(X)− {R} or Z ⊂ Adjident

R=r(Y )− {R} with X ⊥⊥ Y |Z,R = r.954

Proof. We have to show, that the conditioning sets in proposition 4.3 are in the adjacencies of Gident
R=r.955

If (b) applies, then either Z ⊂ Padescr
R=r(X) ⊂ Paident

R=r(X) ⊂ Adjident
R=r(X) or Z ⊂ Padescr

R=r(Y ) ⊂956

Paident
R=r(Y ) ⊂ Adjident

R=r(Y ) and there is nothing to show. If either X /∈ Ancunion(R) or Y /∈957

Ancunion(R), then (b) applies. So the only remaining case is where both X and Y are in Ancunion(R).958

In this case, since parents of ancestors of R are again ancestors of R, and edges between nodes in959

Ancunion(R) are in Gunion if and only if they are in Gident
R=r we have (from part (a)) Z ⊂ Paunion(X) =960

Paident
R=r(X) ⊂ Adjident

R=r(X) or Z ⊂ Paunion(Y ) = Paident
R=r(Y ) ⊂ Adjident

R=r(Y ).961

Remark D.10. There is still a subtle difficulty left: Generally, there is no reason why a model – even962

if it is faithful to Gdescr
R=r – would be faithful to Gident

R=r. We cannot guarantee links as in example D.13963

will be deleted, but they might be nevertheless (see also §D.4). So generally by causal discovery964

using the proposition, one finds a graph Gdetect
R=r , with Gdescr

R=r ⊂ Gdetect
R=r ⊂ Gident

R=r, but for rule (a) one965

has to test all conditioning-sets contained in the parents in Gident
R=r.966

An "easy" fix would be to first discover the (acyclification of) the union graph with standard methods,967

and restrict the search for separating-sets by Gident
R=r ⊂ Gunion ⊂ Acycl(Gunion) to Acycl(Gunion). This968

will do more tests than actually required however.969

In practice it might be preferable to either:970

(i) Learn Acycl(Gunion), then Gmask
R=r by masking on R = r (only using rule (b), avoiding971

the problem discussed above) and then consider "intersection graphs" (Gdetect)′R=r :=972

Acycl(Gunion) ∩Gmask
R=r, which in the end also deletes all edges that can be deleted either by973

(a) or by (b).974

(ii) Find suitable assumptions, that allow for more efficient (requiring fewer test, on the pooled975

data when consistent) algorithms [1].976

While the first option sounds simpler and theoretically elegant, the issue of state-access induced van-977

ishing of links between ancestors of R precluding required tests (by searching the wrong adjacencies)978

in the indicated way seems a bit esoteric for most potential applications, with stability on finite data979

being a major concern for causal discovery, the second option certainly mandates closer investigation.980
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D.4 Detectable Graph981

As briefly discussed in §4.2, there is a gap between links that always can be removed Gident
R=r (prop.982

4.3) and those that never will be removed Gdescr
R=r (by faithfulness, ass. 4.5). In part, this gap is genuine983

– counterexamples exist (example D.13) – but in cases where X and Y are ancestors of R, but not984

both direct parents of R, there might be more generally applicable result than prop. 4.3: From a985

path-separation perspective, a path containing R as collider being opened by conditioning on R could986

still be blocked "elsewhere" along the path.987

We do not know, if single graph encoding all independence constraints while also being consistent988

for conclusions drawn via paths exists. However, there is a practical approach via directly encoding989

independence structure (slightly different from LDAGs, see §A.3) with the connection to SCMs given990

by prop. 4.3 and assumption 4.5 encoded in lemma D.12:991

Definition D.11. Define the "detectable" (independence-)graph Gdetect
R=r as the "causally minimal"992

representation [15, §6.5.3]: There is an edge between X and Y if there is no Z with X,Y /∈ Z for993

which at least one of the independence X ⊥⊥ Y |Z or (if X,Y ̸= R) the CSI X ⊥⊥ Y |Z,R = r994

holds. Orient edges not involving R as in Gunion (this is well-defined, by lemma D.12 and lemma 4.2995

showing Ḡdetect
R=r ⊂ Ḡunion) and edges out of R not in Gunion, see rmk. 4.4, are oriented out of R, all996

other edges involving R are also oriented as in Gunion.997

Lemma D.12. : Connection of Gdetect
R=r to SCM:998

999

Ḡdescr
R=r ⊂ Ḡdetect

R=r ⊂ Ḡident
R=r

For edges involving R, Gdetect
R=r contains at least the edges in Gunion, but may additionally contain1000

edges in Acycl(Gunion) out of R.1001

Proof. The first inclusion is by ass. 4.5, the second one by prop. 4.3. The last statement follows from1002

rmk. 4.4. By strong regime-acyclicity, there are no additionally edges in Acycl(Gunion) into R.1003

This provides a tight enough connection between CSI-structure and SCMs for the arguments in §5.1004

In practice the results in §5 work for1005

Ḡdescr
R=r ⊂ Ḡdetect

R=r ⊂ Ḡphys
R=r

which has the advantage of physical changes being restricted to regime-children (lemma 3.13), which1006

reduces the search-space for CSI-testing and allows for more efficient methods [1].1007

D.5 Counter-Example to General Case1008

The following example illustrates the problem of links between ancestors, vanishing by observational1009

access, becoming invisible due to selection bias. See start of §4.1010

Example D.13. "Selection-bias between ancestors can lead to violations of the Markov-property":1011

Let X,Y ∈ U := {a0, a1, b0, b1} categorical variables. Let X = ηX (with P (ηX) > 0), fix1012

A := {a0, a1} ⊂ U , and B := {b0, b1} ⊂ U and the "letter" l and "index" i indicators on U as1013

follows1014

l : U → {a, b},
{
a0, a1 7→ a

b0, b1 7→ b

i : U → {0, 1},
{
a0, b0 7→ 0

a1, b1 7→ 1

Then, define for ηY ∈ {0, 1} (with P (ηY ) > 0):1015

Y = fY (X, ηY ) :=

{
ai(X) xor ηY

if X ∈ A

bηY
if X ∈ B

(On binary variables, the natural choice of binary operators are those of boolean algebra, i. e. of the1016

field Z/2Z, so that "xor = +" and "and = ∗". If the reader feels confused by the xor notation, they1017

may think "+" (formally mod 2) instead.)1018
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Note, that l(X) = l(Y ), and Y clearly depends on X in general. However, for X ∈ B, Y does not1019

further depend on the value within B taken by X , i. e. fY |B is independent of X .1020

Finally, the "regime-indicator" R ∈ U for ηR ∈ {0, 1} (with P (ηR) > 0 and P (ηR = 1) = p ̸= 1/2):1021

R = l(X)ηR xor i(X) xor i(Y )

This construction has the following interesting properties: l(R) = l(X), hence l(R) = b ⇔1022

l(X) = b, therefore suppP (X|R = b0) = B. But fY |B is independent of X (see above), so1023

X ̸∈ PaGR=b0
(Y ).1024

However, due to selection bias, this non-adjacency is never detectable: Given R = b0, we know1025

l(X) = l(R) = b. Thus also l(Y ) = b. Further, knowing 0 = i(R) = ηR xor i(X) xor i(Y ), we1026

can use information about X to infer the following. If i(X) = 0, then the equation above becomes1027

0 = i(R) = ηR xor i(Y ) xor 0 with P (ηR = 1) = p, thus P (i(Y ) = 1|R = b0, X = b0) = 1 − p.1028

On the other hand if i(X) = 1, then the equation above becomes 0 = i(R) = ηR xor i(Y ) xor 1 with1029

P (ηR = 1) = p, thus P (i(Y ) = 1|R = b0, X = b1) = p.1030

If it were X ⊥⊥ Y |R = b0, then P (i(Y )|R = b0, X) = P (i(Y )|R = b0) would hold, thus also p =1031

P (i(Y ) = 1|R = b0, X = b1) = P (i(Y ) = 1|R = b0) = P (i(Y ) = 1|R = b0, X = b0) = 1− p.1032

But we assumed p ̸= 1/2.´ So X ⊥̸⊥ Y |R = b0 must hold, and we will always fail to delete this link1033

from conditional independences alone.1034

E Faithfulness1035

There are multiple ways in which faithfulness can fail to hold: Finetuning (cancelations) between1036

paths might be the most discussed one, but also deterministic relations between variables lead to non-1037

unique parent-sets and thus non-well-defined graphs. But also regime-specific changes of mechanism1038

(as for Y = 1(R)×X + ηY ) can be understood as a faithfulness violation (the intervened model1039

Fdo(R=r) is not faithful to G[F ]), as has also been observed e. g. by [9].1040

One may thus take a more general perspective: We can think of faithfulness as an assumption1041

"bridging" the gap between observations and a graphical object associated to the model. The "width"1042

of this gap depends on what aspects of the above mentioned problems are encoded in this graphical1043

object! E. g. for a regime-specific change of mechanism (as above), instead of saying "Fdo(R=r)1044

is not faithful to G[F ]" and giving up, we clearly want to learn and understand a "regime-specific1045

graph", which captures the difference and for which the context-specific independence is "expected"1046

rather than a violation of assumptions.1047

The additional inclusion of the support into the definition of the graphical object is, from this1048

perspective, just the logical next step. For example looking at the discussion around the definition 3.61049

of the "visible" graph, the reader will notice, that we moved the support-related aspects of faithfulness1050

into the graph, while all other aspects (including minimality of the parent-sets) are left in the "gap"1051

that is bridged by assuming "M is faithful to Gvisible[M ]".1052

Clearly the abstract argument is in no way specific to support aspects of faithfulness, similarly one1053

could e. g. weaken determinism-assumptions encapsulated in the faithfulness assumption by changing1054

the graphical objects etc., however, a thorough and systematic treatment of faithfulness from this1055

perspective turned out to be quite complex, so we will leave this issue to future research for now.1056

Another faithfulness-related problem is discussed in §D.4.1057

E.1 Justification of Assumptions in the Main Text1058

We briefly repeat the argument given in [1], to justify assumption 4.5.1059

Generally, a probability distribution P is faithful to a DAG G if independence X ⊥⊥P Y |Z with1060

respect to P implies d-separation X ⊥⊥G Y |Z with respect to G. As discussed in [1], this means if1061

G′ ⊂ G is (strictly) sparser, then faithfulness to G′ is (strictly) weaker than faithfulness to G. Now,1062

Gdescr
R=r ⊂ Gunion = Gvisible, so "PM (. . .) is faithful to Gdescr

R=r" is weaker than the standard assumption1063

"PM (. . .) is faithful to Gvisible", and similarly (excluding links involving R), Ḡdescr
R=r is sparser than1064

what one would expect for a "graph of the conditional model" (there is no selection-bias induced1065

edges in Ḡdescr
R=r) so "PM (. . . |R = r) is faithful to Ḡdescr

R=r" is also weaker than what one would1066
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expect to assume. One can thus give an adjacency-faithfulness result that essentially corresponds to1067

standard-assumptions as explained above:1068

Lemma E.1. Given r, assume both PM is faithful to Gdescr
R=r and PM (. . . |R = r) is faithful to Ḡdescr

R=r1069

(we will refer to this condition as r-faithfulness, or R-faithfulness if it holds for all r). Then:1070

∃Z s. t.
{

X ⊥⊥ Y |Z or
X,Y ̸= R and X ⊥⊥ Y |Z,R = r

}
⇒ X and Y are not adjacent in Gdescr

R=r

Proof. The statement is symmetric under exchange of X and Y , so it is enough to show X /∈1071

Padescr
R=r(Y ). We do so by contradiction: Assume X ∈ Padescr

R=r(Y ) and let Z be arbitrary. Z can never1072

block the direct path X → Y , so they are never d-separated X ⊥̸⊥ Gdescr
R=r

Y |Z. By (the contra-position1073

of) the faithfulness assumptions, thus X ⊥̸⊥ PY |Z and if X,Y ̸= R also X ⊥̸⊥ PY |Z,R = r (the1074

second statement is by definition the same as X ⊥̸⊥ P (...|R=r)Y |Z).1075

E.2 An Example that is not Strongly Faithful1076

Below are an example and discussion to shed some light on why the union-property (lemma 3.11)1077

required an additional faithfulness assumption.1078

Example E.2. Not strongly R-faithful:1079

x

fY (x)
p(X|R = 0)

p(X|R = 1)

For the functional relationships on the left, Y
is a function of X and X ∈ Paunion(Y ), but
X /∈ Padescr

R=r(Y ) for both r = 0 and r = 1.
1080

This is a non-determinism issue (we could write fY as a function of R only in the observational1081

support of the union), and is supposed to be excluded by faithfulness (of the union-model). There1082

should be Z = Paunion(Y ) with X ⊥̸⊥ GunionY |Z,R (because the direct path cannot be blocked), but1083

X ⊥⊥ Y |Z,R (because of the deterministic relation R explains away X). For cyclic models there is1084

a subtle problem however: If Y is part of a directed cycle where X is a parent of another node Z1085

in that cycle, then possibly X ⊥̸⊥ Y |Z,R, i. e. faithfulness may not be violated (formally), because1086

there is a link in the acyclification [3], that "saves" us.1087

The problem formally also reveals itself as follows: Faithfulness of the union-model implies, that for1088

every Z (again because the direct path cannot be d- or σ-blocked) X ⊥̸⊥ Y |Z,R, which is equivalent1089

(as can be seen e. g. by the characterization of independence as factorization of the joint) to ∃r with1090

X ⊥̸⊥ Y |Z,R = r, which suggests, that there is a context with this link. But there could e. g. be1091

Z ̸= Z ′ with X ⊥̸⊥ Y |Z,R = 0 and X ⊥̸⊥ Y |Z ′, R = 1, which in the cyclic case can (non-trivially)1092

happen by union-parents potentially not being valid separating-sets.1093

This cannot easily be solved by a minimality-condition [3, Def. 2.6] on parents either: In the example1094

above both possible parent-sets of Y , which are {X} or {R} are of cardinality 1 so no unique1095

minimal parent-set exists, and e. g. the choice via [3, Def. 2.6] is not well-defined (which is not a1096

problem, because normally a suitable faithfulness assumption excludes deterministic relation- ships;1097

this is really a determinism issue, not a minimality issue).1098

F Details on Connections to JCI- and Transfer-Arguments1099

This section contains proofs of the statements in §5 and examples.1100

F.1 Inferring the Union-Graph1101

Recall from remark 4.4, that edges from R into directed union-cycles containing a child of R cannot1102

be deleted by our independences. We will hence mostly focus on edges elsewhere in the graph, using1103

the "barred" notation (Ḡdescr
R=r etc.). Generally, a causal model is only Markov to the acyclification of1104

its visible ("standard") graph Acycl(Gvisible[M ]) while, for strongly regime-acyclic models we here1105

have:1106

25



Lemma 5.1. Let M be a strongly R-regime-acyclic, strongly R-faithful, causally sufficient model,1107

then1108

Ḡvisible[M ] = Ḡunion[M ] = ∪rḠ
detect
R=r [M ]

is identifiable away from R by (R-context-specific) independences.1109

Proof. By lemma 3.11, Gunion = ∪rG
descr
R=r, thus (a) Ḡunion = ∪rḠ

descr
R=r. While Gdetect

R=r ̸= Gdescr
R=r in1110

general, by prop. 4.3 and ass. 4.5 (see §D.4), Gdescr
R=r ⊂ Gdetect

R=r ⊂ Gident
R=r thus (b) Ḡdescr

R=r ⊂ Ḡdetect
R=r ⊂1111

Ḡident
R=r.1112

Combining (a) with (b), thus1113

∪rḠ
detect
R=r

(b)
⊃ ∪rḠ

descr
R=r

(a)
= Ḡunion.

On the other hand, by lemma 4.2, Gident
R=r ⊂ Gunion and thus (c) Ḡident

R=r ⊂ Ḡunion, so that1114

∪rḠ
detect
R=r

(d)
⊂ ∪rḠ

ident
R=r

(b)
⊂ Ḡunion.

1115

F.2 Interring the Transfer-Graph1116

Lemma 5.2. If R /∈ Ancunion(Y ), then Paphys
R=r(Y ) = Paunion(Y ), i. e. the change is non-physical (by1117

observational non-accessibility).1118

Proof. This follows directly from lemma 3.13.1119

Cor. 5.3. If R /∈ Ancunion
detect(Y ), then Paphys

R=r(Y ) = Paunion
detect(Y ).1120

Proof. This follows directly from lemma 5.2 and rmk. 4.4 (see also lemma D.12).1121

If R (or conditioning on R) does not change the distribution of ancestors, no state-induced effects1122

occur:1123

Lemma 5.4. Assuming strong regime-acyclicity. If X ∈ Paunion(Y ) − Paident
R=r(Y ) and R ∈1124

Paunion(Y ), and Ancunion(R) ∩ Ancunion(Paunion(Y ) − {R}) = ∅, then X /∈ Paphys(Y ) (i. e. the1125

change is "physical" not just by state).1126

Proof. By lemma D.2, the noise-terms of nodes in Ancunion(Y ) are unchanged by conditioning on1127

R i. e. P (ηAncunion(Y )|R) = P (ηAncunion(Y )) and by corollary C.5a applied to R ̸= W ∈ Paunion(Y )1128

shows W = FW (ηAncunion(W )), with Ancunion(W ) ⊂ Ancunion(Y ) thus P (XPaunion(Y )−{R}|R) =1129

P (XPaunion(Y )−{R}). Therefore the support on parents did not change and the change must be1130

physical.1131

Cor. 5.5. Assuming strong regime-acyclicity. If R ̸= X ∈ Paunion
detect(Y ) − Paident

R=r(Y ) and R ∈1132

Paunion
detect(Y ), and Ancunion

detect(R) ∩Ancunion
detect(Pa

union
detect(Y )− {R}) = ∅, then1133

(a) there is a link into the strongly connected component of Y that vanishes in Gphys, but not in1134

Gunion
detect, i. e. there is a physical change.1135

(b) if Y is not part of a directed union-cycle, then X /∈ Paphys(Y ), i. e. there is a physical1136

change of this particular link.1137

Proof. Excluding R, X ∈ Paunion
detect(Y ) ⇒ X ∈ Paunion(Y ). Similarly both Ancunion

detect(R) and1138

Ancunion
detect(Pa

union
detect(Y )− {R}) exclude R, so we can replace them by Ancunion. Since Gunion ⊂ Gunion

detect,1139

also R ∈ Paunion
detect(Y ) ⇒ R ∈ Paunion(Y ).1140

Thus the lemma applies. the vanishing link starts at X ̸= R (thus is away from R) and ends at1141

an element of the strongly-connected component of Y . If Y is not part of a directed cycle, the1142

strongly-connected component of Y is simply {Y }, and there is only a unique choice.1143
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F.3 Validity of Transfer1144

One can also use a transfer-argument to construct a test which deletes edges from the union-graph1145

only if there is evidence that the mechanism did in fact change. See also §B.3.1146

Fix dependency measure d and estimator d̂. Assume, using d̂ (and some null-distribution and p-value1147

threshold), we found a link X → Y with identifiable (e. g. by adjusting for Z) controlled direct effect1148

of X on Y and such that this link vanishes in one context r0. We want to distinguish between:1149

• The nullhypothesis: The change in P (X) suffices to explain the failure to reject indepen-1150

dence on finite-data.1151

• The alternative: The mechanism (or the noise on Y ) have changed.1152

On the d̂-dependent context, learn an estimator P̂X of P (X,Z|R = r0) and P̂Y |X of P (Y |X,Z)1153

(i. e. of the kernel x 7→ fY (x,−)∗ηY containing the observable information about fY and ηY )41154

by some conditional-density learning method. For a total of K datasets of size N each, draw1155

((x1, z1), . . . , (xN , zN )) from P̂X , then draw yi from P̂Y |X(Y |X = xi, Z = zi). On these datasets,1156

generate dependence-measures (or test for independence) using d̂ leading to a distribution P̂d. If the1157

result for d̂ on the original data in the d̂-independent regime is plausible under P̂d (or the test results1158

on the K many datasets are 1− α often "independent"), then the changed support of X is sufficient1159

to explain the "independence" (or rather the failure of d̂ to detect any dependence) in this regime –1160

assuming P̂Y |X approximates the true P (Y |X,Z) sufficiently well (see below). Otherwise we can1161

reject the null-hypothesis that the change in support of X alone could explain the absence of this link.1162

The reliance on sufficiently fast convergence of P̂Y |X is conceptually similar to the convergence of1163

regressors in conditional independence testing with regressing out. I. e. when using a parametric1164

model, for evaluating p-values, one has to take into account the additional number of degrees of1165

freedom, for non-parametric models, e. g. bootstrapping approaches could be used. We acknowledge1166

that this is in practice a very difficult problem. We leave it to future research, our present intent is to1167

illustrate, that this seems – in principle – to also be a testable hypothesis.1168

F.4 Limiting (Extreme) Cases1169

The following "extreme" case is formally trivial, but provides some insights:1170

Example F.1. Given P (R = r0) = 1 (which we typically exclude by the way we define regime-1171

indicators, but which we can think of as a limiting case in practice), we observe: P (. . . |R = r0) =1172

P (. . .), so also the supports agree and Gunion = Gdescr
R=r0

= Gphys
R=r0

. I. e., in this case our results1173

collapse to the standard results for Gunion.1174

From the perspective that, for the single-context case, the question about what is happening outside1175

the support should probably be considered purely philosophical, this is a good sign: If our objects1176

capture empirically accessible information, then they should not make claims about the single-context1177

case.1178

4Under the null-hypothesis, learning g from the pooled data is ok, so even though in the alternative hypothesis
g changes, for rejecting the null, learning g from the pooled data is fine, even though learning from a single or
all other contexts might improve power.
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