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Abstract

As part of an ongoing worldwide effort to comprehend and monitor insect biodiver-
sity, this paper presents the BIOSCAN-5M Insect dataset to the machine learning
community and establish several benchmark tasks. BIOSCAN-5M is a comprehen-
sive dataset containing multi-modal information for over 5 million insect specimens,
and it significantly expands existing image-based biological datasets by including
taxonomic labels, raw nucleotide barcode sequences, assigned barcode index num-
bers, geographical, and size information. We propose three benchmark experiments
to demonstrate the impact of the multi-modal data types on the classification and
clustering accuracy. First, we pretrain a masked language model on the DNA bar-
code sequences of the BIOSCAN-5M dataset, and demonstrate the impact of using
this large reference library on species- and genus-level classification performance.
Second, we propose a zero-shot transfer learning task applied to images and DNA
barcodes to cluster feature embeddings obtained from self-supervised learning,
to investigate whether meaningful clusters can be derived from these representa-
tion embeddings. Third, we benchmark multi-modality by performing contrastive
learning on DNA barcodes, image data, and taxonomic information. This yields a
general shared embedding space enabling taxonomic classification using multiple
types of information and modalities. The code repository of the BIOSCAN-5M
Insect dataset is available at https://github.com/bioscan-ml/BIOSCAN-5M.

1 Introduction

Biodiversity plays a multifaceted role in sustaining ecosystems and supporting human well-being.
Primarily, it serves as a cornerstone for ecosystem stability and resilience, providing a natural defence
against disturbances such as climate change and invasive species (Cardinale et al., 2012). Additionally,
biodiversity serves as a vital resource for the economy, supplying essentials like food, medicine, and
genetic material (Sala et al., 2000). Understanding biodiversity is paramount for sustainable resource
management, ensuring the availability of these resources for future generations (Duraiappah et al.,
2005). To understand and monitor biodiversity, Gharaee et al. (2023) introduced the BIOSCAN-1M
Insect dataset, which pairs DNA with images, as a stepping stone to developing AI tools for automatic
classification of organisms.
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Biological Taxonomy
Phylum Arthropoda
Class Insecta
Order Hymenoptera
Family Formicidae
Subfamily Dolichoderinae
Genus Tapinoma
Species Tapinoma sessile
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Figure 1: The BIOSCAN-5M Dataset provides taxonomic labels, a DNA barcode sequence, barcode
index number, a high-resolution image along with its cropped and resized versions, as well as size
and geographic information for each sample.

However, that work only investigated image classification down to the family level, focusing on the
Diptera order, and did not fully utilize the multimodal nature of the dataset. In addition, BIOSCAN-
1M was limited to specimen collected from just 3 countries and the Insecta class. Expanding upon
BIOSCAN-1M, we introduce the BIOSCAN-5M dataset—a comprehensive repository of multi-modal
information (see Figure 1) on over 5 million arthropod specimens (98% insects), with 1.2 million
labelled to genus or species taxonomic ranks. Compared to its predecessor, the BIOSCAN-5M
dataset offers a significantly larger volume of high-resolution microscope images and DNA barcodes
along with critical annotations, including taxonomic ranks, size, and geographical information.
Additionally, we performed data cleaning to resolve inconsistencies and provide more reliable labels.

The multimodal characteristics of BIOSCAN-5M are not only essential for biodiversity studies, but
also facilitate further innovation in machine learning and AI. In this paper, we conduct experiments
that leverage the multimodal aspects of BIOSCAN-5M, extending its application beyond the image-
only modality used in Gharaee et al. (2023). Here, we train the masked language model (MLM)
proposed in BarcodeBERT (Millan Arias et al., 2023) on the DNA barcodes of the BIOSCAN-5M
dataset and demonstrate the impact of using this large reference library on species- and genus-level
classification. We achieve an accuracy higher than that of state-of-the-art models pretrained on more
general genomic datasets, especially in the 1NN-probing task of assigning samples from unseen
species to seen genera. Next, we perform a zero-shot transfer learning task (Lowe et al., 2024a)
through zero-shot clustering representation embeddings obtained from encoders trained with self-
supervised paradigms. This approach demonstrates the effectiveness of pretrained embeddings in
clustering data, even in the absence of ground-truth. Finally, as in CLIBD (Gong et al., 2024), we
learn a shared embedding space across three modalities in the dataset—high-quality RGB images,
textual taxonomic labels, and DNA barcodes—for fine-grained taxonomic classification.

2 Related work

2.1 Datasets for taxonomic classification

Biological datasets are essential for advancing our understanding of the natural world, with uses
in genomics (Network et al., 2013), proteomics (Kim et al., 2014), ecology (Kattge et al., 2011),
evolutionary biology (Flicek et al., 2014), medicine (Jensen et al., 2012), and agriculture (Lu &
Young, 2020; Xu et al., 2023; Galloway et al., 2017; He et al., 2024). Table 1 compares biological
datasets used for taxonomic classification. Many of these datasets feature fine-grained classes and
exhibit a long-tailed class distribution, making the recognition task challenging for machine learning
(ML) methods that do not account for these properties. While many datasets provide images, they
do not include other attributes such as DNA barcode, or geographical locations. Most relevant to
our work is BIOSCAN-1M Insect (Gharaee et al., 2023), which introduced a dataset of 1.1 M insect
images paired with DNA barcodes and taxonomic labels.

DNA barcodes are short, highly descriptive DNA fragments that encode sufficient information
for species-level identification. For example, a DNA barcode of an organism from Kingdom Ani-
malia (Hebert et al., 2003; Braukmann et al., 2019) is a specific 648 bp sequence of the cytochrome
c oxidase I (COI) gene from the mitochondrial genome, used to classify unknown individuals and
discover new species (Moritz & Cicero, 2004). DNA barcodes have been successfully applied to taxo-
nomic identification and classification, ecology, conservation, diet analysis, and food safety (Ruppert
et al., 2019; Stoeck et al., 2018), offering faster and more accurate results than traditional meth-
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Table 1: Summary of fine-grained and long-tailed biological datasets. The “Taxa” column
indicates the taxonomic scope of each dataset. The “IR” column is the class imbalance ratio,
computed as the ratio of the number of samples in the largest category to the smallest category.

Dataset Reference Year Images IR Taxa Rank Categories Taxon BIN DNA Geography Size

LeafSnap Kumar et al. (2012) 2012 31 k 8 Plants Species 184 ✗ ✗ ✗ ✗ ✗
NA Birds Van Horn et al. (2015) 2015 48 k 15 Birds Species 400 ✗ ✗ ✗ ✗ ✗
Urban Trees Wegner et al. (2016) 2016 80 k 7 Trees Species 18 ✗ ✗ ✗ ✗ ✗
DeepWeeds Olsen et al. (2019) 2019 17 k 9 Plants Species 9 ✗ ✗ ✗ ✓ ✗
IP102 Wu et al. (2019) 2019 75 k 14 Insects Species 102 ✓ ✗ ✗ ✗ ✗
Pest24 Wang et al. (2020) 2020 25 k 494 Insects Species 24 ✗ ✗ ✗ ✗ ✗
Pl@ntNet-300K Garcin et al. (2021) 2021 306 k 3,604 Plants Species 1,000 ✗ ✗ ✗ ✗ ✗
iNaturalist (2021) Van Horn et al. (2021) 2021 2,686 k 2 All Species 10,000 ✓ ✗ ✗ ✗ ✗
iNaturalist-Insect Van Horn et al. (2021) 2021 663 k 2 Insects Species 2,526 ✓ ✗ ✗ ✗ ✗
Species196-L He et al. (2024) 2023 19 k 351 Various Mixed 196 ✓ ✗ ✗ ✗ ✗
CWD30 Ilyas et al. (2023) 2023 219 k 61 Plants Species 30 ✓ ✗ ✗ ✗ ✗
BenthicNet Lowe et al. (2024b) 2024 1,429 k 22,394 Aquatic Mixed 791 ✓ ✗ ✗ ✓ ✗
Insect-1M Nguyen et al. (2024b) 2024 1,017 k N/A Arthropods Species 34,212 ✓ ✗ ✗ ✗ ✗
BIOSCAN-1M Gharaee et al. (2023) 2023 1,128 k 12,491 Insects BIN* 90,918 ✓ ✓ ✓ ✗ ✗

BIOSCAN-5M Ours 2024 5,150 k 35,458 Arthropods BIN* 324,411 ✓ ✓ ✓ ✓ ✓

* For datasets that include Barcode Index Numbers (BINs) annotations, we present BINs, which serve as a (sub)species proxy for organisms and
offer a viable alternative to Linnean taxonomy.

ods (Pawlowski et al., 2018). Barcodes can also be grouped together based on sequence similarity
into clusters called Operational Taxonomic Units (OTUs) (Sokal & Sneath, 1963; Blaxter et al.,
2005), each assigned a Barcode Index Number (BIN) (Ratnasingham & Hebert, 2013). In general,
biological datasets may also incorporate other data such as labels for multi-level taxonomic ranks,
which can offer valuable insights into the evolutionary relationships between organisms. However,
datasets with hierarchical taxonomic annotations (He et al., 2024; Ilyas et al., 2023; Liu et al., 2021;
Wu et al., 2019; Gharaee et al., 2023) are relatively scarce.

2.2 Self-supervised learning

Self-supervised learning (SSL) has recently gained significant attention for its ability to leverage vast
amounts of unlabelled data, producing versatile feature embeddings for various tasks (Balestriero
et al., 2023). This has driven the development of large-scale language models (Brown et al., 2020) and
computer vision systems trained on billions of images (Goyal et al., 2021). Advances in transformers
pretrained with SSL at scale, known as foundation models (Ji et al., 2021; Zhou et al., 2023; Dalla-
Torre et al., 2023; Zhou et al., 2024; Chia et al., 2022; Gu et al., 2021), have shown robust performance
across diverse tasks.

Recent work has leveraged these advances for taxonomic classification using DNA. Since the introduc-
tion of the first DNA language model, DNABERT (Ji et al., 2021), which mainly focused on human
data, multiple models with different architectures and tokenization strategies have emerged (Mock
et al., 2022; Zhou et al., 2023, 2024; Millan Arias et al., 2023; Nguyen et al., 2024a) with some incor-
porating data from multiple species during pretraining and allowing for species classification (Zhou
et al., 2023, 2024; Millan Arias et al., 2023). These models are pretrained to be task-agnostic, and
are expected to perform well after fine-tuning in downstream tasks. Yet, their potential application
for taxonomic identification of arbitrary DNA sequences or DNA barcodes has not been extensively
explored. One relevant approach, BERTax (Mock et al., 2022), pretrained a BERT (Dosovitskiy et al.,
2021b) model for hierarchical taxonomic classification on broader ranks such as kingdom, phylum,
and genus. For DNA barcodes specifically, BarcodeBERT (Millan Arias et al., 2023) was developed
for species-level classification of insects, with assignment to genus for unknown species.

Although embeddings from SSL-trained feature extractors exhibit strong performance on downstream
tasks post fine-tuning, their utility without fine-tuning remains underexplored. Previous studies (Vaze
et al., 2022; Zhou & Zhang, 2022) suggest that SSL feature encoders produce embeddings conducive
to clustering, albeit typically after fine-tuning. A recent study (Lowe et al., 2024a) has delved into
whether SSL-trained feature encoders without fine-tuning can serve as the foundation for clustering,
yielding informative clusters of embeddings on real-world datasets unseen during encoder training.

2.3 Multimodal Learning

There has been a growing interest in exploring multiple data modalities for biological tasks (Ikezogwo
et al., 2024; Lu et al., 2023; Zhang et al., 2023). Badirli et al. (2021) introduced a Bayesian zero-shot
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learning approach, leveraging DNA data to model priors for species classification based on images.
Those authors also employed Bayesian techniques (Badirli et al., 2023), combining image and DNA
embeddings in a unified space to predict the genus of unseen species.

Recent advances in machine learning allowed scalable integration of information across modalities.
For example, CLIP (Radford et al., 2021) used contrastive learning to encode text captions and
images into a unified space for zero-shot classification. BioCLIP (Stevens et al., 2024) used a similar
idea to align images of organisms with their common names and taxonomic descriptions across a
dataset of 10 M specimens encompassing plants, animals, and fungi. CLIBD (Gong et al., 2024)
used a contrastive loss to align the three modalities of RGB images, textual taxonomic labels, and
DNA barcodes. By aligning these modalities, CLIBD can use either images or DNA barcodes for
taxonomic classification and learn from incomplete taxonomic labels, making it more flexible than
BioCLIP (Stevens et al., 2024), which requires full taxonomic annotations for each specimen.

3 Dataset

The BIOSCAN-5M dataset is derived from Steinke et al. (2024) and comprises 5,150,850 arthropod
specimens, with insects accounting for about 98% of the total. The diverse features of this dataset are
described in this section. BIOSCAN-5M is a superset of the BIOSCAN-1M Insect dataset (Gharaee
et al., 2023), providing more samples and additional metadata such as geographical location.

Images. The BIOSCAN-5M dataset provides specimen images at 1024×768 pixels, captured using a
Keyence VHX-7000 microscope. Figure 2 showcases the diversity in organism morphology across
the dataset. The images are accessed via the processid field of the metadata as {processid}.jpg.
Following BIOSCAN-1M Insect (Gharaee et al., 2023), the images are cropped and resized to
341×256 pixels to facilitate model training. We fine-tuned DETR (End-to-End Object Detection with
Transformers) for image cropping. For BIOSCAN-1M Insect, the cropping model was trained using
2 k insect images. Building on the BIOSCAN-1M Insect cropping tool checkpoint, we fine-tuned
the model for BIOSCAN-5M using the same 2 k images and an additional 837 images that were not
well-cropped previously. This fine-tuning process followed the same training setup, including batch
size, learning rate, and other hyper parameter settings (see supplement for details). The bounding box
of the cropped region is provided as part of the dataset release.

Figure 2: Samples of original full-size images of distinct organisms in the BIOSCAN-5M dataset.

Genetic-based indexing. The genetic information of the BIOSCAN-5M dataset described in §2 is
represented as the raw nucleotide barcode sequence, under the dna_barcode field, and the Barcode
Index Number under dna_bin field. Independently, the field processid is a unique number assigned
by BOLD (International Barcode of Life Consortium, 2024) to each record, and sampleid is an
identifier given by the collector.

Biological taxonomic classification. Linnaean taxonomy is a hierarchical classification system
instigated by Linnaeus (1758) for organizing living organisms which has been developed over
several hundred years. It categorizes species based on shared characteristics and establishes a
standardized naming convention. The hierarchy includes several taxonomic ranks, such as domain,
kingdom, phylum, class, order, family, genus, and species, allowing for a structured approach
to studying biodiversity and understanding the relationships between different organisms.
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The dataset samples undergo taxonomic classification using a hybrid approach involving an AI-
assisted tool proposed by Gharaee et al. (2023) and human taxonomic experts. After DNA barcoding
and sequence alignment, the taxonomic levels derived from both the AI tool and DNA sequencing
are compared. Any discrepancies are then reviewed by human experts. Importantly, assignments
to deeper taxonomic levels, such as family or lower, rely entirely on human expertise. Labels at
seven taxonomic ranks are used to represent individual specimens, denoted by fields phylum, class,
order, family, subfamily, genus, and species.

Table 2: Summary statistics of dataset records by taxonomic rank.

BIOSCAN-5M (Ours) BIOSCAN-1M (Gharaee et al., 2023)
Attributes IR Categories Labelled Labelled (%) Categories Labelled Labelled (%)

phylum 1 1 5,150,850 100.0 1 1,128,313 100.0
class 719,831 10 5,146,837 99.9 1 1,128,313 100.0
order 3,675,317 55 5,134,987 99.7 16 1,128,313 100.0
family 938,928 934 4,932,774 95.8 491 1,112,968 98.6
subfamily 323,146 1,542 1,472,548 28.6 760 265,492 23.5
genus 200,268 7,605 1,226,765 23.8 3,441 254,096 22.5
species 7,694 22,622 473,094 9.2 8,355 84,397 7.5

dna_bin 35,458 324,411 5,137,441 99.7 91,918 1,128,313 100.0
dna_barcode 3,743 2,486,492 5,150,850 100.0 552,629 1,128,313 100.0

In the source data, we found identical DNA nucleotide sequences labelled differently at some
taxonomic levels, which was likely due to human error (e.g. typos) or disagreements in the taxonomic
labelling. To address this, we checked and cleaned the taxonomic labels to address typos and ensure
consistency across DNA barcodes (see supplement for details). We note that some of the noisy
species labels are placeholder labels that do not correspond to well-established scientific taxonomic
species names. In our data, the placeholder species labels are identified by species labels that
begin with a lowercase letter, contain a period, contain numerals, or contain “malaise”.

Statistics for BIOSCAN-5M are given in Table 2 for the seven taxonomic ranks along with the BIN
and DNA nucleotide barcode sequences. For each group, we report the number of categories, and the
count and fraction labelled. We compute the class imbalance ratio (IR) as the ratio of the number of
samples in the largest category to the smallest category, reflecting the class distribution within each
group. For more detailed statistical analysis, see the supplementary materials.

Figure 3: Geographical locations obtained from latitude and longitude coordinates of the regions
where the samples of the BIOSCAN-5M dataset were collected.
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Geographic location. The BIOSCAN-5M dataset includes geographic location information, detailing
the country and province or state where each specimen is collected, along with the latitude and
longitude coordinates of each collection site. This information is detailed in the fields country,
province_state, coord-lat and coord-lon. The distribution of specimen collection sites are
shown on a world map in Figure 3.

Challenges. The BIOSCAN-5M dataset faces two key challenges: First, there exists a sampling bias
as a result of the locations where and the methods through which specimens are collected. Second,
the number of labelled records sharply declines at deeper taxonomic levels, especially beyond the
family rank, which makes fine-grained classification tasks more challenging.

4 Benchmark experiments and results

In real-world insect biodiversity monitoring, it is common to encounter both species which are already
known to science, and samples whose species is novel. Thus, to excel in biodiversity monitoring,
a model must correctly categorize instances of known species, and identify novel species outside
the existing taxonomy, grouping together samples of the same new species. In our experiments, we
explore three methods which offer utility in these regards, evaluated in two settings: closed-world and
open-world. In the closed-world setting, the task is to accurately identify species from a predefined
set of existing labels. In the open-world setting, the task is to group together samples of novel species.

4.1 Data partitioning

Species sets. We first partition records based on their species label into one of four categories, with all
samples bearing the same species label being placed in the same species set. Seen: all samples whose
species label is an established scientific name of a species. Unseen: labelled with an established
scientific name for the genus, and a uniquely identifying placeholder name for the species. Heldout:
labelled with a placeholder genus and species name. Unknown: samples without a species label (note:
these may truly belong in any of the other three categories).

Table 3: Statistics and purpose of our data partitions.

Species set Split Purpose # Samples # Barcodes # Species

unknown pretrain self- and semi-sup. training 4,677,756 2,284,232 —
seen train supervision; retrieval keys 289,203 118,051 11,846

val model dev; retrieval queries 14,757 6,588 3,378
test final eval; retrieval queries 39,373 18,362 3,483

unseen key_unseen retrieval keys 36,465 12,166 914
val_unseen model dev; retrieval queries 8,819 2,442 903
test_unseen final eval; retrieval queries 7,887 3,401 880

heldout other_heldout novelty detector training 76,590 41,250 9,862

Splits. Using the above species sets, we establish partitions for our experiments (Table 3). The
unknown samples are all placed into a pretrain split for use in self-supervised pretraining and/or
semi-supervised learning. As some DNA barcodes are common to multiple samples, for seen and
unseen records we split the records by placing all samples with the same barcode in the same partition,
to ensure there is no repetition of barcodes across splits. For the closed-world setting, we use the
seen records to establish train, val, test splits. To ensure that the test set is not too imbalanced
in species distribution, we place samples in the test set with a flattened distribution. We sample
records from species with at least two unique barcodes and eight samples, and the number of samples
placed in the test set scales linearly with the total number of samples for the species, until reaching
a cap of 25 samples. We sample 5% of the remaining seen data to form the val partition, but in this
case match the imbalance of the overall dataset. The remaining samples then form the train split,
with a final split distribution of 84.2 : 4.3 : 11.5. Following standard practice, the val set is for model
evaluation during development and hyperparameter tuning, and the test set is for final evaluation.
In the retrieval setting, the train split should additionally be used as a database of keys to retrieve
over, and the val and test split as queries. For additional details on the partitioning method and
statistical comparisons between the partitions, please see the supplementary materials.
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For the open-world scenario, we use a similar procedure to establish val_unseen and test_unseen
over the unseen records. After creating test_unseen with the same methodology as test, we
sample 20% of remaining unseen species records to create val_unseen. The remaining unseen
species samples form the keys_unseen set. In the retrieval setting, keys_unseen is used to form
the database of keys to retrieve, and the val_unseen and test_unseen splits act as queries. The
heldout species samples form a final other_heldout partition. As these species are in neither seen
nor unseen, this split can be used to train a novelty detector without using any unseen species.

4.2 DNA-based taxonomic classification

In this section, we demonstrate the utility of the BIOSCAN-5M dataset for DNA-based taxonomic
classification. Due to their standardized length, DNA barcodes are ideal candidates as input to CNN-
and transformer-based architectures for supervised taxonomic classification. However, as noted
by Millan Arias et al. (2023), a limitation of this approach is the uncertainty in species-level labels
for a substantial portion of the data. This uncertainty, partly due to the lack of consensus among
researchers and the continuous discovery of new species, may render supervised learning suboptimal
for this task. We address this issue by adopting a semi-supervised learning approach. Specifically,
we train a model using self-supervision on unlabelled sequences from the pretrain split and the
other_heldout split, followed by fine-tuning on sequences from the train split, which includes
high-quality labels. The same pretrained model can be used to produce embeddings for sequences
from unseen taxa to address tasks in the open-world setting. Consequently, we use these embeddings
to perform non-parametric taxonomic classification at a higher (less specific) level in the taxonomic
hierarchy for evaluation.

Experimental setup. Although there has been a growing number of SSL DNA language models
proposed in the recent literature, the results obtained by the recently proposed BarcodeBERT (Mil-
lan Arias et al., 2023) model empirically demonstrate that training on a dataset of DNA barcodes can
outperform more sophisticated training schemes that use a diverse set of non-barcode DNA sequences,
such as DNABERT (Ji et al., 2021) and DNABERT-2 (Zhou et al., 2023). In this study, we selected
BarcodeBERT as our reference model upon which to investigate the impact of pretraining on the
larger and more diverse DNA barcode dataset BIOSCAN-5M. See Appendix A for pretraining details.

We compare our pretrained model against four pretrained transformer models: BarcodeBERT (Mil-
lan Arias et al., 2023), DNABERT-2 (Zhou et al., 2023), DNABERT-S (Zhou et al., 2024), and the
nucleotide transformer (NT) (Dalla-Torre et al., 2023); one state space model, HyenaDNA (Nguyen
et al., 2024a); and a CNN baseline following the architecture introduced by Badirli et al. (2021).

As an additional assessment of the impact of BIOSCAN-5M DNA data during pretraining, we use the
different pretrained models as feature extractors and evaluate the quality of the embeddings produced
by the models on two different SSL evaluation strategies (Balestriero et al., 2023). We first implement
genus-level 1-NN probing on sequences from unseen species, providing insights into the models’
abilities to generalize to new taxonomic groups. Finally, we perform species-level classification using
a linear classifier trained on embeddings from the pretrained models. Note that for both probing
tasks, all the embeddings produced by a single sequence are averaged across the token dimension to
generate a token embedding for the barcode.

Results. We leverage the different partitions of the data and make a distinction between the ex-
periments in the closed-world and open-world settings. In the closed-world setting, the task is
species-level identification of samples from species that have been seen during training (Fine-tuned
accuracy, Linear probing accuracy). For reference, BLAST (Altschul et al., 1990), an algorithmic
sequence alignment tool, achieves an accuracy of 99.78% in the task (not included in Table 4 as it is
not a machine learning model). In fine-tuning, our pretrained model with a 8-4-4 architecture achieves
the highest accuracy with 99.28%, while DNABERT-2 achieves 99.23%, showing competitive perfor-
mance. Overall, all models demonstrate strong performance in this task, showcasing the effectiveness
of DNA barcodes in species-level identification. For linear probing accuracy, DNABERT-S outper-
forms others with 95.50%, followed by our model (8-4-4) with 94.47%. BarcodeBERT (k=4) and
DNABERT-S also show strong performance with 91.93% and 91.59% respectively (see Table 4).

In the open-world setting, the task is to assign samples from unseen species to seen categories of a
coarser taxonomic ranking (1NN-genus probing). In this task, BLAST achieves an accuracy of 58.74%
(not in the table), and our model (8-4-4) performs notably well with an 47.03% accuracy, which is
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Table 4: Performance of DNA-based sequence models in closed- and open-world settings. For
the closed-world, we show the species-level accuracy (%) for predicting seen species (test), for
open-world the genus-level accuracy (%) for test_unseen species while using seen species to fit
the model. Bold indicates highest accuracy, underlined denotes second highest.

Seen: Species Unseen: Genus

Model Architecture SSL-Pretraining Tokens seen Fine-tuned Linear probe 1NN-Probe

CNN baseline CNN – – 97.70 – 29.88
NT Transformer Multi-Species 300 B 98.99 52.41 21.67
DNABERT-2 Transformer Multi-Species 512 B 99.23 67.81 17.99
DNABERT-S Transformer Multi-Species ∼1,000 B 98.99 95.50 17.70
HyenaDNA SSM Human DNA 5 B 98.71 54.82 19.26
BarcodeBERT Transformer DNA barcodes 5 B 98.52 91.93 23.15
Ours (8-4-4) Transformer DNA barcodes 7 B 99.28 94.47 47.03

significantly higher than the other transformer models. The CNN baseline and HyenaDNA show
lower accuracies of 29.88% and 19.26%, respectively. The use of DNA barcodes for pretraining in our
models and BarcodeBERT demonstrates effectiveness in both seen and unseen species classification
tasks. One limitation of the comparison is the difference in the dimension of the output space of the
different models (128 for HyenaDNA, vs. 512 for NT and 768 for the BERT-based models). The
selection of our model (8-4-4) as the best-performing configuration was done after performing a
hyperparameter search to determine the optimal value of k for tokenization, as well as the optimal
number of heads and layers in the transformer model. To do that, after pretraining, we fine-tuned the
model for species-level identification and performed linear- and 1NN- probing on the validation
split (see Table 6). We finally note that our pretrained model outperforms BarcodeBERT, the other
model trained exclusively trained on DNA barcodes, across all tasks.

4.3 Zero-shot transfer-learning

Recently, Lowe et al. (2024a) proposed the task of zero-shot clustering, investigating how well
unseen datasets can be clustered using embeddings from pretrained feature extractors. Lowe et al.
(2024a) found that BIOSCAN-1M images were best clustered taxonomically at the family rank while
retaining high clustering performance at species and BIN labels. We replicate this analysis using
BIOSCAN-5M and extend the modality space to include both image and DNA barcodes.

Experimental setup. We follow the experimental setup of Lowe et al. (2024a). (1) Take pretrained
encoders; (2) Extract feature vectors from the stimuli by passing them through an encoder; (3) Reduce
dimensions to 50 using UMAP (McInnes et al., 2018); (4) Cluster the reduced embeddings with
Agglomerative Clustering (L2, Ward’s method) (Everitt et al., 2011); (5) Evaluate against the ground-
truth annotations with Adjusted Mutual Information (AMI) score (Vinh et al., 2010), measuring the
percentage information explained relative to the entropy of the true labels.

For the image encoders, we consider ResNet-50 (He et al., 2016) and ViT-B (Dosovitskiy et al.,
2021a) models, each pretrained on ImageNet-1K (Russakovsky et al., 2015) using either cross-entropy
supervision (X-ent.), or SSL methods (MAE: He et al., 2022; VICReg: Bardes et al., 2022; DINO-v1:
Caron et al., 2021; MoCo-v3: Chen et al., 2021). We also considered the CLIP (Radford et al.,
2021) encoder, which was pretrained on an unspecified, large dataset of captioned images. To cluster
the DNA barcodes, we used recent pretrained models (see §4.2 and Appendix A.2), which feature
a variety of model architectures, pretraining datasets, and training methodologies: BarcodeBERT
(Millan Arias et al., 2023), DNABERT-2 (Zhou et al., 2023), DNABERT-S (Zhou et al., 2024), the
nucleotide transformer (NT) (Dalla-Torre et al., 2023), and HyenaDNA (Nguyen et al., 2024a).

We only cluster samples from the test and test_unseen splits. None of the image or DNA
pretraining datasets overlap with BIOSCAN-5M, so all samples are “unseen”. However, we note that
there is a greater domain shift from the image pretraining datasets than the DNA pretraining datasets.

Results. Similar to Lowe et al. (2024a), we find (Figure 4) image clusterings agree with the taxonomic
labels at coarse ranks (order: 88%), but agreement decreases progressively at finer-grained ranks
(species: 21%); the best-performing image encoder was DINO, followed by other SSL methods
VICReg and MoCo-v3, with (larger) ViT-B models outperforming ResNet-50 models. We found the
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Figure 4: Zero-shot clustering AMI (%) performance across taxonomic ranks. Left: Image
encoders. Right: DNA encoders.

performance of the DNA encoders exceeded that of the image encoders across all taxonomic levels,
with higher performance at coarse ranks (order: 97%) and much shallower decline as granularity
becomes finer (species: 91%). HyenaDNA provided the best performance, with 90% agreement
between its clusterings and both the GT species and DNA BIN annotations. These results suggest
that DNA barcodes are highly informative about species identity (which is unsurprising as it is the
reason this barcode is used), and unseen samples can be readily grouped together using off-the-shelf
DNA models.

We also considered the zero-shot clustering of the concatenated image and DNA representations,
detailed in Appendix B.3. Due to the high performance of the DNA features, adding image features
to the embeddings decreased the performance compared to using DNA embeddings alone. For
additional details and analysis, see Appendix B.

4.4 Multimodal retrieval learning

Lastly, we demonstrate the importance of a multimodal dataset through alignment of image, DNA, and
taxonomic label embeddings using CLIBD (Gong et al., 2024) to improve taxonomic classification.
By learning a shared embedding space across modalities, we can query between modalities and
leverage the information across them to achieve better performance in downstream tasks. We are
able to incorporate a diversity of samples into training toward taxonomic classification, even with
incomplete taxonomic labels.

Experimental setup. We follow the model architecture and experimental setup of CLIBD (Gong
et al., 2024). We start with pretrained encoders for each modality and perform full-tuning with
NT-Xent loss (Sohn, 2016). Our image encoder is a ViT-B (Dosovitskiy et al., 2021a) pretrained
on ImageNet-21k and fine-tuned on ImageNet-1k (Deng et al., 2009). For DNA barcodes, we use
BarcodeBERT (Millan Arias et al., 2023) with 5-mer tokenization, pretrained on 893 k DNA barcodes
from the Barcode of Life Data system (BOLD) (International Barcode of Life Consortium, 2024), and
for text, we use BERT-small (Turc et al., 2019). We train on our pretrain and train splits using the
Adam (Kingma & Ba, 2014) optimizer for 20 epochs until convergence with a learning rate of 1e-6,
batch size 2000. Training took 29 hours on four 80GB A100 GPUs. To evaluate the performance of
our models, we report micro (see Appendix C) and macro top-1 accuracy for taxonomic classification
at different levels. To determine the taxonomic labels for a new query, we encode the sample image
or DNA and find the closest matching embedding in a set of labelled samples (keys). For efficient
lookup, we use FAISS (Johnson et al., 2019) with exact search (IndexFlatIP).

We compared the performance for the initial pretrained (unimodal) encoders to our models fine-tuned
on either the full pretrain and train partitions from BIOSCAN-5M, or on a random 1 million
sample subset of these partitions. The 1M image subset contained 20% of the images, 27% of
the barcodes, and 47% of the BINs of the 5 M image training dataset. We evaluated these using
image-to-image, DNA-to-DNA, and image-to-DNA embeddings as queries and keys.
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Table 5: Top-1 macro accuracy (%) on the test set for using different amount of pre-training data (1
million vs 5 million records from BIOSCAN-5M) and different combinations of aligned embeddings
(image, DNA, text) during contrastive training. We show results for using image-to-image, DNA-
to-DNA, and image-to-DNA query and key combinations. As a baseline, we show the results prior
to contrastive learning (no alignment). We report the accuracy for seen and unseen species, and the
harmonic mean (H.M.) between these (bold: highest acc.).

Aligned embeddings DNA-to-DNA Image-to-Image Image-to-DNA

Taxon # Records Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order — ✗ ✗ ✗ 95.8 97.8 96.8 78.1 82.4 80.2 3.6 6.3 4.6
1M ✓ ✓ ✓ 100.0 100.0 100.0 93.5 95.6 94.5 86.5 95.4 90.7
5M ✓ ✓ ✗ 100.0 100.0 100.0 95.3 96.2 95.7 92.2 97.2 94.7
5M ✓ ✓ ✓ 100.0 100.0 100.0 95.1 98.5 96.8 91.2 98.0 94.4

Family — ✗ ✗ ✗ 90.2 92.1 91.2 52.3 55.5 53.8 0.3 1.0 0.4
1M ✓ ✓ ✓ 98.3 99.3 98.8 86.8 89.9 88.3 65.8 73.7 69.5
5M ✓ ✓ ✗ 99.4 100.0 99.7 91.0 92.7 91.8 80.5 83.6 82.0
5M ✓ ✓ ✓ 99.5 100.0 99.7 91.7 94.2 93.0 80.9 84.6 82.7

Genus — ✗ ✗ ✗ 86.8 85.7 86.2 34.0 31.9 32.9 0.0 0.0 0.0
1M ✓ ✓ ✓ 98.0 97.2 97.6 76.5 75.6 76.1 46.2 36.2 40.6
5M ✓ ✓ ✗ 99.0 99.3 99.2 83.3 85.5 84.4 64.4 50.4 56.6
5M ✓ ✓ ✓ 98.8 99.5 99.2 84.0 86.0 85.0 63.0 50.6 56.1

Species — ✗ ✗ ✗ 84.6 75.6 79.8 24.2 12.6 16.6 0.0 0.0 0.0
1M ✓ ✓ ✓ 96.7 91.7 94.1 66.6 49.6 56.8 34.9 6.8 11.3
5M ✓ ✓ ✗ 98.1 95.8 97.0 75.9 60.8 67.5 54.4 13.8 22.0
5M ✓ ✓ ✓ 98.0 95.9 97.0 76.0 60.1 67.1 51.1 12.7 20.3

Results. We compare CLIBD trained on the full BIOSCAN-5M training set against models trained on
a randomly selected subset of 1 million records and the initial pretrained encoders before multimodal
contrastive learning. Our results, shown in Table 5, demonstrate that our full model improves
classification accuracy for same-modality queries and enables cross-modality queries. By aligning
to DNA, our image embeddings are able to capture finer details. We likewise see improvements in
alignment among DNA embeddings. Additionally, we observe that increasing the training dataset
size from 1 million to 5 million records leads to better models with more accurate results across all
studied taxa for both image and DNA modalities, indicating there are still benefits from dataset scale
at this size. By including the text modality, we further improve accuracy at the higher taxa levels.
Interestingly, including the text modality results in slightly lower performance at the species level.
This is likely due to the sparse availability of species labels in the training data, as only 9% of records
having species labels. For additional details and analysis, see Appendix C.

5 Conclusion

We present the BIOSCAN-5M dataset, a valuable resource for the machine learning community
containing over 5 million arthropod specimens. To highlight the dataset’s multimodal capabilities, we
conducted three benchmark experiments that leverage images, DNA barcodes, and textual taxonomic
annotations for fine-grained taxonomic classification and zero-shot clustering.

An open problem for biodiversity monitoring systems is handling novel species. To facilitate research
in this space, our dataset includes partitions for both closed-world and open-world settings. Further-
more, we provide three distinct benchmark tasks, each evaluated down to species-level, demonstrating
the real-world applicability of BIOSCAN-5M’s multimodal features. These tasks include fine-grained
taxonomic classification using DNA sequences, multimodal classification combining DNA, images,
and taxonomic labels, and clustering of learned DNA and image embeddings.

We believe that the BIOSCAN-5M dataset will serve as a catalyst for further machine learning
research in biodiversity, fostering innovations that can enhance our understanding and preservation
of the natural world. By providing a curated multi-modal resource, we aim to support further
initiatives in the spirit of TreeOfLife-10M (Stevens et al., 2024) and contribute to the broader goal of
mapping and preserving global biodiversity. This dataset not only facilitates advanced computational
approaches but also underscores the crucial intersection between technology and conservation science,
driving forward efforts to protect our planet’s diverse ecosystems for future generations.
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Appendices

A DNA-based Taxonomic Classification — Additional Experiments

As described in the main text (§4.2), we leverage all data splits in the BIOSCAN-5M dataset by
adopting a semi-supervised learning approach. Specifically, we train a model using self-supervision
on the unlabelled partition of the data, followed by fine-tuning on the train split. Our experimental
setup is illustrated in Figure 5.
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Figure 5: DNA-based taxonomic classification methodology. Two stages of the proposed semi-
supervised learning set-up based on BarcodeBERT (Millan Arias et al., 2023). (1) Pretraining: DNA
sequences are tokenized using non-overlapping k-mers and 50% of the tokens are masked for the
MLM task. Tokens are encoded and fed into a transformer model. The output embeddings are
used for token-level classification. (2) Fine-tuning: All DNA sequences in a dataset are tokenized
using non-overlapping k-mer tokenization and all tokenized sequences, without masking, are passed
through the pretrained transformer model. Global mean-pooling is applied over the token-level
embeddings and the output is used for taxonomic classification.

A.1 Pretraining details

We pretrain the model on the 2,283,900 unique DNA sequences from the pretrained partition and
the 41,232 unique sequences from the other_heldout partition, totalling 2,325,132 pretraining
DNA samples. For all samples, trailing N characters are removed and all sequences are truncated at
660 nucleotides. Note that leading N characters are retained since they are likely to correspond to true
unknown nucleotides in the barcode. The model was pretrained using the same MLM loss function
and training configurations as in BarcodeBERT (Millan Arias et al., 2023). Specifically, we use a
non-overlapping k-mer-based tokenizer and a transformer model with 12 transformer layers, each
having 12 attention heads. However, we included a random offset of at most k nucleotides to each
sequence as a data augmentation technique to enhance the sample efficiency. We use a learning rate
of 2 × 10−4, a batch size of 128, a OneCycle scheduler (Smith & Topin, 2017), and the AdamW
optimizer (Loshchilov & Hutter, 2019), training the model for 35 epochs. In addition to using the
architecture reported in BarcodeBERT, we performed a parameter search to determine the optimal
k-mer tokenization length and model size, parameterized by the number of layers and heads in the
transformer model, in order to identify an optimal architecture configuration. After pretraining, we
fine-tuned the model with cross-entropy supervision for species-level classification. The pre-training
stage takes approximately 50 hours using four Nvidia A40 GPUs and the fine-tuning stage of the
4-12-12 models takes 2.5 hours in four Nvidia A40 GPUs.

A.2 Baseline Models

There has been a growing number of SSL DNA language models proposed in recent literature,
most of which are based on the transformer architecture and trained using the MLM objective (Ji
et al., 2021; Zhou et al., 2023, 2024). These models differ in the details of their model architecture,
tokenization strategies, and training data but the underlying principles remain somewhat constant. An
exception to this trend is the HyenaDNA (Nguyen et al., 2024a) model, which stands out by its use of
a state space model (SSM) based on the Hyena architecture (Poli et al., 2023) and trained for next
token prediction. For evaluation, we utilized the respective pre-trained models from Huggingface
ModelHub, specifically:
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• DNABERT-2: zhihan1996/DNABERT-2-117M

• DNABERT-S: zhihan1996/DNABERT-S

• NT: InstaDeepAI/nucleotide-transformer-v2-50m-multi-species

• HyenaDNA: LongSafari/hyenadna-tiny-1k-seqlen

The BarcodeBERT implementation was taken from https://github.com/Kari-Genomics-Lab/
BarcodeBERT. All the models, including our pretrained models, were fine-tuned for 35 epochs with a
batch size of 32 or 128 and a learning rate of 1× 10−4 per 64 samples in the batch with the OneCycle
LR schedule (Smith & Topin, 2017).

A.3 Linear probe training

A linear classifier is applied to the embeddings generated by all the pretrained models for species-level
classification. The parameters of the model are learned using stochastic gradient descent with a
constant learning rate of 0.01, momentum µ = 0.9 and weight λ = 1× 10−5.

For the hyperparameter search, shown in Table 6, our linear probe is performed using the same
methodology as the fine-tuning stage, except the encoder parameters are frozen.

Table 6: Search over the space of k-mer tokenization length and transformer architectures (number
of layers and heads). For fine-tuned and linear probe, we show the class-balanced accuracy (%) on
the closed-world val partition, and for 1-NN probe, we show the class-balanced accuracy on the
val_unseen partition. Bold: architecture with highest accuracy for the row. Underlined: second
highest accuracy.

4 layers, 4 heads 6 layers, 6 heads 12 layers, 12 heads

Evaluation k=2 k=4 k=6 k=8 k=2 k=4 k=6 k=8 k=2 k=4 k=6 k=8

Fine-tuned 93.8 97.8 98.7 98.9 92.4 97.9 49.4 98.7 93.8 98.1 0.0 0.0
Linear probe 32.2 79.8 76.4 97.1 34.3 58.9 8.9 79.7 16.4 3.2 0.0 0.0
1-NN 43.1 50.7 35.0 46.4 46.2 37.2 23.4 37.9 29.1 28.3 0.0 0.1

B Zero-Shot Clustering — Additional Experiments

As described in §4.3, we performed a series of zero-shot clustering experiments to establish how pre-
trained image and DNA models could handle the challenge of grouping together repeat observations
of novel/unseen species. Our methodology is illustrated in Figure 6.
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Figure 6: Zero-shot clustering methodology. Images and DNA are each passed through one of
several pretrained encoders. These representations are clustered with Agglomerative Clustering.

B.1 Experiment resources

All zero-shot clustering experiments were performed on a compute cluster with the job utilizing two
CPU cores (2x Intel Xeon Gold 6148 CPU @ 2.40GHz) and no more than 20 GB of RAM. The
typical runtime per experiment was around 4.5 hours.
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B.2 Accounting for Duplicated DNA Barcode Sequences

In our main experiments, we found that the performance of DNA-embedding clusterings greatly
outperformed that of image-embeddings. However, it is worth considering that there are fewer unique
DNA barcodes than images. The mean number of samples per barcode is around two. This provides
clustering methods using DNA with an immediate advantage as some stimuli compare as equal and
are trivially grouped together, irrespective of the encoder.
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Figure 7: Zero-shot clustering AMI (%) performance across taxonomic ranks on test and
test_unseen data, with one sample per barcode.

To account for this, we repeated our analysis with only one sample per barcode. Our results, shown
in Figure 7, indicate that both image- and DNA-based clusterings are reduced in performance when
the number of samples per barcode is reduced to one. This is explained in part by the fact that many
species will be reduced to a single observation, which is challenging for clusterers to handle. We
found that the performance of most DNA encoders fell by more than the image encoders when the
number of samples per barcode was reduced to one. However, the DNA embeddings still produce
clusterings in better agreement with the taxonomic labels than the image embeddings. In particular,
the best-performing DNA encoder, HyenaDNA, still attained 75% agreement with the ground truth
labels at the species-level clustering.

B.3 Cross-modal embedding clustering

We additionally considered the effect of clustering the embeddings from both modalities at once,
achieved by concatenating an image embedding and a DNA embedding to create a longer feature
vector per sample. As shown in Table 7, we find that combining image features with DNA features
results in a worse performance at species-level clustering.

In preliminary experiments (not shown) we found that the magnitude of the vectors greatly impacted
the performance, as large image embeddings would dominate DNA embeddings with a smaller
magnitude. We considered standardizing the embeddings before concatenation with several methods
(L2-norm, element-wise z-score, average z-score) and found element-wise z-score gave the best
performance, a step which we include in these results. Even with this, the performance falls when
we add image embeddings to the DNA embeddings. We note that the best DNA-only encoder,
HyenaDNA, has the largest drop in performance, which we hypothesize is because it has the shortest
embedding dimensions of 128-d compared with NT (512-d) and the BERT-based models (768-d).
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Table 7: Cross-modal zero-shot clustering AMI (%) performance, on test and test_unseen data,
with one sample per barcode.

DNA encoder

Architecture Image encoder Im
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— DNA-only – 47 52 63 81 36

ResNet-50 X-Ent. 5 30 26 32 9 12
MoCo-v3 8 29 23 27 11 11
DINO 11 31 28 31 15 14
VICReg 10 30 26 30 13 13
CLIP 6 25 21 25 9 9

ViT-B X-Ent. 7 33 35 42 13 14
MoCo-v3 13 38 43 49 21 20
DINO 15 38 45 51 23 21
MAE (CLS) 5 33 33 40 10 13
MAE (avg) 3 29 26 32 7 9
CLIP 7 34 37 44 14 16

C Multi-Modal Learning — Additional Experiments

As described in §4.4, we trained a multimodal model with an aligned embedding space across the
images, DNA, and taxonomic labels. Our methodology is illustrated in Figure 8.
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Figure 8: Multi-modal learning methodology. Our experiments using CLIBD (Gong et al., 2024)
are conducted in two steps. (1) Training: Multiple modalities, including RGB images, textual
taxonomy, and DNA sequences, are encoded separately, and trained using a contrastive loss function.
(2) Inference: Image vs DNA embedding is used as a query, and compared to the embeddings obtained
from a database of image, DNA and text (keys). The cosine similarity is used to find the closest key
embedding, and the corresponding taxonomic label is used to classify the query.

C.1 Model training and inference

We illustrate our model training and inference methodology in Figure 8. For our multimodal model,
we start with pretrained encoders for image, DNA, and taxonomic labels. We use contrastive learning
to fine-tune the image, DNA, and text encoders. During inference, we compare the embedding of the
query image or DNA input to a key database of embeddings from images, DNA, or taxonomy labels
using cosine similarity, and we predict the query’s taxonomy based on the taxonomy of the closest
retrieved key embeddings.

C.2 Additional experiments

In the main paper, we reported the macro accuracy of our models. In Table 8, we report the
micro accuracy to compare performance when averaged over individual samples rather than classes.
The results show similar trends to the macro accuracy (Figure 8), with the model trained on the
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Table 8: Top-1 micro accuracy (%) on the test set for using different amount of training data (1 million
vs 5 million records from BIOSCAN-5M) and different combinations of aligned embeddings (image,
DNA, text) during contrastive training. We show results for using image-to-image, DNA-to-DNA, and
image-to-DNA query and key combinations. As a baseline, we show the results prior to contrastive
learning (no alignment). We report the accuracy for seen and unseen species, and the harmonic mean
(H.M.) between these (bold: highest acc.).

Aligned embeddings DNA-to-DNA Image-to-Image Image-to-DNA

Taxon # Records Img DNA Txt Seen Unseen H.M. Seen Unseen H.M. Seen Unseen H.M.

Order — ✗ ✗ ✗ 98.9 99.3 99.1 94.2 97.0 95.6 18.3 14.7 16.3
1M ✓ ✓ ✓ 100.0 100.0 100.0 99.3 99.6 99.5 98.7 99.2 98.9
5M ✓ ✓ ✗ 100.0 100.0 100.0 99.5 99.7 99.6 99.4 99.5 99.5
5M ✓ ✓ ✓ 100.0 100.0 100.0 99.5 99.7 99.6 99.3 99.6 99.5

Family — ✗ ✗ ✗ 96.5 97.3 96.9 72.9 76.0 74.4 1.7 1.9 1.8
1M ✓ ✓ ✓ 99.8 99.8 99.8 95.5 96.8 96.2 90.6 89.1 89.9
5M ✓ ✓ ✗ 99.9 100.0 99.9 96.8 97.9 97.4 94.0 93.1 93.5
5M ✓ ✓ ✓ 99.9 100.0 100.0 97.0 98.3 97.7 94.6 94.4 94.5

Genus — ✗ ✗ ✗ 94.0 93.5 93.7 47.8 47.0 47.4 0.2 0.0 0.1
1M ✓ ✓ ✓ 99.3 98.8 99.0 86.0 85.9 86.0 68.1 52.3 59.2
5M ✓ ✓ ✗ 99.6 99.8 99.7 90.6 91.6 91.1 79.5 65.0 71.5
5M ✓ ✓ ✓ 99.6 99.8 99.7 91.0 92.1 91.5 79.3 66.3 72.2

Species — ✗ ✗ ✗ 91.6 84.8 88.1 31.9 19.1 23.9 0.0 0.0 0.0
1M ✓ ✓ ✓ 98.3 95.0 96.6 75.1 57.5 65.1 47.9 10.4 17.0
5M ✓ ✓ ✗ 98.9 97.4 98.2 82.7 68.3 74.8 64.2 18.7 29.0
5M ✓ ✓ ✓ 98.9 97.7 98.3 82.8 67.6 74.4 61.7 17.8 27.7
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DNA to DNA Image to Image Image to DNA
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Hydroptila
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Figure 9: Example query-key pairs. Top-3 nearest specimens from the unseen validation-key dataset
retrieved based on the cosine-similarity for DNA-to-DNA, image-to-image, and image-to-DNA
retrieval. Box colour indicates whether the retrieved samples had the same species (green), genus
(light-green), family (yellow), or order (orange) as the query.

BIOSCAN-5M dataset performing best for broader taxa, especially in image-to-image and image-to-
DNA inference setups. Results are more mixed at the species level due in part to the challenge of
species classification, highlighting the importance of further research at this fine-grained level.
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C.3 Retrieval examples

Figure 9 shows image retrieval examples using images as queries and DNA as keys. These demonstrate
the ability of the model to classify taxonomy based on retrieval and the visual similarities of the
retrieved images corresponding to the most closely matched DNA embeddings.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the major limitations of the work in §4: Benchmark experiments
and results. Additional information about the limitations of our work are detailed in the
supplemental material.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information needed to reproduce the main experimental results of our
paper to the extent that it affects the main claims and/or conclusions of the paper is included
in §4: Benchmark experiments and results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our paper provides open access to the data (see supplemental material) and
code (see our GitHub repo4, linked to in the abstract), with sufficient instructions to faithfully
reproduce the main experimental results described in §4 and our Appendices.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: §4 contains detailed information about all experiments conducted in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: No claims are made in this paper on the statistical significance of the results.
In particular, only single runs of experiments were performed and thus neither error bounds
nor statistical tests were performed. Our experiments were predominantly performed
by adapting pretrained models; since only one repetition of each pretrained model is
available, performing experiments with multiple seeds would provide a misleading indication
of the variability as it only reflects a minority of the variance between the architectures

4https://github.com/bioscan-ml/BIOSCAN-5M
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and training processes prescribed by each of the pretrained models. Nonetheless, efforts
were made regarding our validation strategy, utilizing a well thought out approach to the
train/validation/test split described in §3. All experiments are conducted with specified
experimental conditions, which are described in detail in §4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detailed information about the resources used to run experiments in §4.4,
Appendix A, and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

26

https://neurips.cc/public/EthicsGuidelines


• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
There is no direct societal impact of the work performed. This work specifically relates
to global biodiversity in arthropods. However, the hope for positive ecological impact is
discussed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: To the best of our knowledge, our paper and our published dataset pose no
such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: The original owners of code, dataset and model used in our paper are properly
cited and credited. The license and terms of use explicitly mentioned in the supplemental
material and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All new assets introduced in our paper including, data, code, and models are
well documented with documents included in the paper (the links of the dataset landing page
as well as the Github repository5) and supplemental material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

5https://github.com/bioscan-ml/BIOSCAN-5M
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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