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Abstract

Medical time series (MedTS) data, such as Electroencephalography (EEG) and
Electrocardiography (ECG), play a crucial role in healthcare, such as diagnosing
brain and heart diseases. Existing methods for MedTS classification primarily
rely on handcrafted biomarkers extraction and CNN-based models, with limited
exploration of transformer-based models. In this paper, we introduce Medformer,
a multi-granularity patching transformer tailored specifically for MedTS classifi-
cation. Our method incorporates three novel mechanisms to leverage the unique
characteristics of MedTS: cross-channel patching to leverage inter-channel cor-
relations, multi-granularity embedding for capturing features at different scales,
and two-stage (intra- and inter-granularity) multi-granularity self-attention for
learning features and correlations within and among granularities. We conduct
extensive experiments on five public datasets under both subject-dependent and
challenging subject-independent setups. Results demonstrate Medformer’s su-
periority over 10 baselines, achieving top averaged ranking across five datasets
on all six evaluation metrics. These findings underscore the significant impact
of our method on healthcare applications, such as diagnosing Myocardial In-
farction, Alzheimer’s, and Parkinson’s disease. We release the source code at
https://github.com/DL4mHealth/Medformer.

1 Introduction

Medical time series refers to sequences of health-related data points recorded at successive times,
tracking various physiological signals over time [1, 2]. Effective classification of MedTS data enables
continuous monitoring and real-time analysis of a subject’s physiological state, supporting early ab-
normality detection, accurate diagnosis, timely intervention, and personalized treatment—ultimately
enhancing patient outcomes and healthcare efficiency [3, 4]. For instance, Electroencephalography
(EEG) provides insights into a subject’s neurological status [5, 6], while Electrocardiography (ECG)
aids in diagnosing heart conditions [7, 8, 9]. Most current MedTS classification approaches rely on
handcrafted biomarker extraction [10, 11, 12], convolutional neural networks (CNN)-based mod-
els [13, 14, 15, 16], graph convolutional networks (GNNs)-based models[17, 18], or combinations of
CNNs and self-attention modules[19, 20]. Notably, effective transformer-based models for MedTS
classification remain underexplored.

Transformers have demonstrated strong performance in time series representation learning across
tasks such as forecasting [21, 22, 23], classification [24, 25], and anomaly detection [26, 27], with
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a predominant focus on forecasting. While these methods are applicable to MedTS classification,
their design motivations and mechanisms may not fully align with the unique requirements of
this domain. For example, as shown in Figure 1, models like Autoformer [28] and Informer [29]
adopt the token embedding approach from the vanilla transformer [30], using a single cross-channel
timestamp as an input token. This strategy struggles to capture coarse-grained temporal features. In
contrast, iTransformer [31] encodes the entire series from one channel as an input token, which can
overlook fine-grained temporal features while focusing on multi-channel correlations. Additionally,
PatchTST [32] embeds a sequence of timestamps from one channel as a patch for self-attention,
limiting the model’s capacity to learn cross-channel relationships.

These existing methods fail to fully exploit the distinctive characteristics of MedTS data, such as
local temporal dynamics, inter-channel correlations, and multi-scale feature analysis. First, effective
capturing temporal dynamics demands multi-timestamp inputs to capture local temporal patterns, as
highlighted in approaches like PatchTST [32] and Crossformer [33]. Second, leveraging cross-channel
information is critical; for example, multi-channel EEG data recorded following the International
10–20 system [34] monitors the brain activities, with each electrode/channel corresponding to specific
brain regions. Since brain functions are integrated, inter-channel correlations (e.g., brain connectome)
are crucial in EEG analysis [35, 36, 37]. Third, representation learning across multiple temporal
scales and periods is vital to uncover a broad range of health patterns, as certain disease indicators
may only appear within specific frequency bands [10, 12].

Multi-Granularity Self-Attention

Multi-Timestamp
Cross-Channel
Multi-Granularity

Single-Timestamp
Cross-Channel

All-Timestamp
Single-Channel

Multi-Timestamp
Single-Channel

Figure 1: Token embedding methods. Vanilla transformer,
Autoformer, and Informer [30, 28, 29] employ a single cross-
channel timestamp as a token; iTransformer [31] utilizes
an entire channel as a token; and PatchTST and Cross-
former [32, 33] adopt a patch of timestamps from one channel
as a token. For MedTS classification, we propose Medformer
considering inter-channel dependencies (cross-channel), tem-
poral properties (multi-timestamp), and multifaceted scale of
temporal patterns (multi-granularity).

To bridge this gap, we propose Med-
former*, a multi-granularity patching
transformer designed explicitly for MedTS
classification. Our approach introduces
three mechanisms to enhance learning ca-
pacity. First, we propose a novel token
embedding method using cross-channel
patching, effectively capturing both multi-
timestamp and cross-channel features. To
the best of our knowledge, this is the
first application of cross-channel patch-
ing for transformer embedding in time
series analysis. Second, rather than us-
ing fixed-length patches, we employ multi-
granularity patching with a list of patch
lengths, enabling the model to capture
features in different scales. This multi-
granularity approach could simulate dif-
ferent frequency bands, capturing band-
specific features without relying on hand-
crafted up/downsampling and band filters.
Third, We introduce a two-stage (intra- and
inter-granularity) self-attention mechanism to capture features within individual granularities and
correlations across granularities, enabling complementary information integration across scales.

We conduct extensive experiments using ten baselines across five public datasets, including three EEG
datasets and two ECG datasets, focused on detecting diseases such as Alzheimer’s and cardiovascular
conditions under both subject-dependent and subject-independent setups (Figure 2). Results show that
Medformer achieves the highest average ranking across all six evaluation metrics and five datasets
(Figure 4), highlighting its superior effectiveness, stability, and potential for real-world applications.

2 Related Work

Medical Time Series. Medical time series refers to specialized time series data collected from the
human body, commonly used for disease diagnosis [3, 7], health monitoring [6, 1], and brain-computer
interfaces (BCIs) [39, 2]. Different MedTS modalities include EEG [40, 41, 42], ECG [7, 8, 9],
EMG [43, 44], and EOG [45, 46], each offering distinct capabilities for various medical applications.

*We note that this name has been previously used in other domains [38].

2



For example, EEG and ECG data are instrumental in assessing brain and heart health [40, 7]. Recent
BCI research explores using EEG to control objects, providing functional support to individuals with
disabilities [2, 47]. Unlike general time series research, which predominantly focuses on forecasting
tasks [48, 49], MedTS research is centered around signal decoding, which involves classifying hidden
information within MedTS sequences. Current approaches often rely on biomarker identification and
deep-learning models utilizing CNNs, GNNs, or hybrid models combining CNNs with self-attention
modules. For instance, band features such as relative band power and inter-band correlations [11, 50]
have proven effective in EEG-based Alzheimer’s disease diagnosis. Deep-learning models like
EEGNet [14], EEG-Conformer [20], and TCN [51, 13] have also shown strong performance across
various MedTS classification tasks.

Table 1: Existing methods do not fully utilize all poten-
tial characteristics in MedTS.

Models Multi-
Timestamp

Cross-
Channel

Multi-
Granularity

Granularity-
Interaction

Autoformer [28] ✓
Crossformer [33] ✓ ✓
FEDformer [52] ✓
Informer [29] ✓
iTransformer [31] ✓ ✓
MTST [53] ✓ ✓
Nonformer [54] ✓
PatchTST [32] ✓
Pathformer [55] ✓ ✓
Reformer [56] ✓
Transformer [30] ✓
Medformer(Ours) ✓ ✓ ✓ ✓

Transformers for Time Series. Transformer
has demonstrated its strong learning and
scaling-up ability in many domains, including
natural language processing [30, 57] and com-
puter vision [58, 59]. Existing transformer-
based methods for time series analysis can be
categorized into two main directions: mod-
ifying token embedding methods and self-
attention mechanisms, or both. For exam-
ple, PatchTST [32] uses a sequence of single-
channel timestamps as a patch for token em-
bedding. Methods like Autoformer [28],
Informer [29], Nonformer [54], and FED-
former [52] develop new self-attention mech-
anisms or replace the self-attention module to improve learning ability and reduce complexity.
Crossformer [33] and iTransformer [31] modify both token embedding methods and self-attention
mechanisms. Patching. Patch embedding has been widely used in time series transformers since the
proposal of PatchTST [32]. Existing methods of patching, such as Crossformer [33], CARD [23],
and MTST [53], inherit from PatchTST [32] and utilize a sequence of single-channel timestamps for
patching. This channel-independent patching might benefit learning ability in time series forecasting
but may not be as effective in MedTS classification. Multi-Granularity. Existing methods such
as Pyraformer [21], MTST [53], Pathformer [55], and Scaleformer [60], utilize multi-granularity
embedding to capture features at different scales, allowing models to learn both fine-grained and
coarse-grained patterns. We discuss the differences between our method and existing multi-granularity
approaches in Appendix G.1.

Medformer includes both novel token embedding and self-attention mechanisms. Figure 1 and Table 1
present a comparison of token embedding methods and feature utilization between our method and
existing methods. The components of our method can be easily incorporated into existing methods to
improve classification learning ability. For example, cross-channel multi-granularity patching can
be integrated with methods that modify self-attention mechanisms, such as Autoformer [28] and
Informer [29], for token embedding. Similarly, the two-stage multi-granularity self-attention can be
combined with existing multi-granularity methods, like MTST [53] and Pathformer [55], to enhance
the learning of inter-granularity features.

3 Preliminaries and Problem Formulation

Disease Diagnosis with MedTS. Medical time series data typically exhibit multiple hierarchical
levels, including subject, session, trial, and sample levels [13]. In disease diagnosis tasks using
MedTS, each subject is usually assigned a single label, such as indicating the presence or absence of
Alzheimer’s disease. However, multi-labeling may be necessary when a subject has co-occurring con-
ditions [61]. Notably, a subject’s medical or physiological state remains relatively stable over time (or
within short periods without significant change). For instance, a subject diagnosed with Alzheimer’s
disease is expected to retain that diagnosis for many years. If the subject also has Parkinson’s disease,
a multi-label learning approach is required, which essentially conducts classification tasks for each
disease independently if they are not mutually exclusive.

Since long sequences of time series data (e.g., trials or sessions) are often segmented into shorter
samples for deep learning training, all samples from a single subject should ideally retain the same
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medical condition label. Thus, each MedTS sample typically includes a class label indicating a
specific disease type and a subject ID indicating its original subject. Given the ultimate goal of
diagnosing whether a subject has a particular disease, experimental setups must be carefully designed
to reflect real-world clinical applications. Diverse setups can yield markedly different outcomes,
potentially leading to misleading conclusions. Here, we introduce two widely used setups in MedTS
classification and clarify their distinctions. Figure 2 provides a simple illustration of these two setups.

Subject-Dependent. In this setup, the division into training, validation, and test sets is based on
time series samples. All samples from various subjects are randomly shuffled and then allocated
into the respective sets. Consequently, samples with identical subject IDs may be present in the
training, validation, and test sets. This scenario potentially introduces “information leakage," wherein
the model could inadvertently learn the distribution specific to certain subjects during the training
phase. This setup is typically employed to assess whether a dataset exhibits cross-subject features and
has limited applications under real-world MedTS-based disease diagnosis scenarios. The reason is
simple: we cannot know the label of unseen subjects and their corresponding samples during training.
Generally, the results of the subject-dependent setup tend to be notably higher than those from the
subject-independent setup, often showing the upper limit of a dataset’s learning capability.

Training Testing

Subject-
Dependent

Subject-
Independent

Figure 2: Subject-dependent/independent setups (fig-
ure adopted from our previous work [13]). In the
subject-dependent setup, samples from the same subject
can appear in both the training and test sets, causing
information leakage. In a subject-independent setup,
samples from the same subject are exclusively in either
the training or test set, which is more challenging and
practically meaningful but less studied.

Subject-Independent. In this setup, the divi-
sion into training, validation, and test sets is
based on subjects. Each subject and their cor-
responding samples are exclusively distributed
into one of the training, validation, or test sets.
Consequently, samples with identical subject
IDs can only be present in one of these sets.
This setup holds significant importance in dis-
ease diagnosis tasks as it closely simulates
real-world scenarios. It enables us to train a
model on subjects with known labels and sub-
sequently evaluate its performance on unseen
subjects; in other words, evaluate if a subject
has a specific disease. However, this setup poses
significant challenges in MedTS classification
tasks. Due to the variability in data distribution
and the potential presence of unknown noise
within each subject’s data, capturing general
task-related features across subjects becomes
challenging [62, 13, 63, 64]. Even if subjects
share the same label, the personal noise inherent
in each subject’s data may obscure these com-
mon features. Developing a method that effectively captures common features among subjects while
disregarding individual noise remains an unsolved problem.

In this work, we evaluate our model mainly in the subject-independent setup to better align with
real-world applications, aiming to draw attention within the time series research community to the
substantial challenges posed by this setup. While our model is not specifically tailored to address
subject-independent problems, it integrates multi-timestamp, cross-channel, and multi-granularity
features in MedTS, enhancing its capacity to capture subject-invariant representations. Consequently,
our model is well-equipped to tackle the subject-independent challenge to a certain extent, and our
results (Section 5) confirm such capability of Medformer.

We next present the problem formulation for multivariate medical time series classification in the
context of disease diagnosis.

Problem (MedTS Classification). Consider an input MedTS sample xin ∈ RT×C , where T denotes
the number of timestamps and C represents the number of channels. Our objective is to learn an
encoder that can generate a representation h, which can be used to predict the corresponding label
y ∈ RK of the input sample. Here, K denotes the number of medically relevant classes, such as
various disease types or different stages of one disease.
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a) c)

b)

Figure 3: Overview of Medformer. a) Workflow. b) For the input sample xin, we apply n distinct patch
lengths in parallel to create patched features x(i)

p , where i ranges from 1 to n. Each patch length represents a
unique granularity. These patches are then projected into x

(i)
e and subsequently augmented to form x̃

(i)
e . c) We

obtain the final embedding x(i) by combining the augmented x̃
(i)
e with both the positional embedding Wpos

and the granularity embedding W
(i)
gr . Additionally, a granularity-specific router u(i) is designed to capture

integrated information for each respective granularity. We then perform intra-granularity self-attention, focusing
on individual granularities, and inter-granularity self-attention, using the routers to facilitate communication
across different granularities.

4 Method

In this section, we first describe the cross-channel multi-granularity patching mechanism for learning
spatial-temporal features in different scales. Next, we analyze the two-stage multi-granularity self-
attention mechanism, which leverages features within the same granularity and correlations among
different granularities. The architecture of the proposed Medformer is illustrated in Figure 3.

Cross-Channel Multi-Granularity Patch Embedding. From the medical perspective, the brain or
heart functions as a cohesive unit, suggesting a naive assumption that there are inherent correlations
among different channels in MedTS [35, 36, 37], as each channel represents the activities of distinct
brain or heart regions. Motivated by the above assumption, we reasonably propose multi-channel
patching for token embedding, which is different from existing patch embedding methods that
embed patches in a channel-independent manner and fail to capture inter-channel correlations [32,
33, 23]. Figure 1 provides an overview comparison of existing token embedding methods and ours.
Additionally, existing research on EEG biomarker extraction has shown that certain features are
linked to different frequency bands, such as α, β, and γ bands [10, 12]. This motivates us to embed
patch tokens in a multi-granularity way. Instead of using traditional methods like up/downsampling or
handcrafted band filtering, multi-granularity patching automatically corresponds to different sampling
frequencies, which can simulate different frequency bands and capture band-related features.
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Given the above rationales, we propose a novel token embedding approach: cross-channel multi-
granularity patching. Given an input multivariate MedTS sample xin ∈ RT×C , and a list of different
patch lengths {L1, L2, . . . , Ln}. For the i-th patch length Li denoting granularity i, we segment the
input sample into Ni cross-channel non-overlapping patches x(i)

p ∈ RNi×(Li·C). Zero padding is
applied to ensure that the number of timestamps T is divisible by Li, making Ni = ⌈T/Li⌉.

The patches are mapped into latent embeddings space using a linear projection: x(i)
e = x

(i)
p W (i),

where x
(i)
e ∈ RNi×D and W (i) ∈ R(Li·C)×D. Inspired by the augmented views contrasting in the

contrastive learning framework [65, 13, 66], we further apply data augmentations such as masking
and jittering on x

(i)
e to obtain augmented embeddings x̃(i)

e ∈ RNi×D. We assume the augmentation
can improve the learning ability in the following inter-granularity self-attention stage by forcing
different granularities to learn and complement information from each other.

A fixed positional embedding Wpos ∈ RG×D is generated for positional encoding [30], where G is a
very large number. We add Wpos[1 : Ni] ∈ RNi×D, the first Ni rows of the positional embedding
Wpos, and a learnable granularity embedding W

(i)
gr ∈ R1×D, to obtain the final patch embedding for

the i-th granularity with patch length Li:

x(i) = x̃(i)
e +Wpos[1 : Ni] +W (i)

gr , (1)

where x(i) ∈ RNi×D. Note that the granularity embedding W
(i)
gr aims to distinguish among

granularities and is broadcasted to all Ni embedding rows with D dimension during addition.

To reduce time and space complexity, we initialize a router to be used in the multi-granularity
self-attention (as described later) for each granularity:

u(i) = Wpos[Ni + 1] +W (i)
gr , (2)

where u(i),Wpos[Ni + 1],W
(i)
gr ∈ R1×D. Here, Wpos[Ni + 1] is not used for positional embedding

but to inform the router about the number of patches with the current Li granularity, and W
(i)
gr

contains the granularity information. Both components help distinguish the routers from one another.

Finally, we obtain a list of final patch embeddings
{
x(1),x(2), . . . ,x(n)

}
and router embeddings{

u(1),u(2), . . . ,u(n)
}

for different granularities with patch lengths {L1, L2, . . . , Ln}. We feed the
embeddings to the two-stage multi-granularity self-attention.

Multi-Granularity Self-Attention. Our goal is to learn multi-granularity features and granularity
interactions during self-attention. A naive approach to achieve this goal is to concatenate all the patch
embeddings

{
x(1),x(2), . . . ,x(n)

}
into a large patch embedding X ∈ R(N1+N2+...+Nn)×D and

perform self-attention on this new embedding, where n denotes the number of different granularities.
However, this results in a time complexity of O

(
(
∑n

i=1 Ni)
2
)

, which is impractical for a large n.

To reduce the time complexity, we propose a router mechanism and split the self-attention module
into two stages: a) intra-granularity self-attention and b) inter-granularity self-attention. The intra-
granularity stage performs self-attention within the same granularity to capture the distinctive features
of each granularity. The inter-granularity stage performs self-attention across different granularities
to capture their correlations.

a) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attentiona) Intra-Granularity Self-Attention. For the i-th patch length Li denoting granularity i, we verti-
cally concatenate the patch embedding x(i) ∈ RNi×D and router embedding u(i) ∈ R1×D to form
an intermediate sequence of embeddings z(i) ∈ R(Ni+1)×D:

z(i) =
[
x(i)∥u(i)

]
(3)

where [·∥·] denotes concatenation. We perform self-attention on the new z(i) for both the patch
embedding x(i) and the router embedding u(i):

x(i) ←AttnIntra
(
x(i), z(i), z(i)

)
u(i) ←AttnIntra

(
u(i), z(i), z(i)

) (4)
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where Attn (Q,K,V ) denotes the scaled dot-product self-attention mechanism in [30]. Note that the
router embedding u(i) is updated concurrently with the patch embedding x(i) to maintain consistency,
ensuring that the router effectively summarizes each granularity’s features in the current training step
and is ready for the subsequent inter-granularity self-attention. The intra-granularity self-attention
mechanism allows the model to capture temporal features within a single granularity, facilitating the
extraction of local features and correlations among timestamps at the same scale.

b) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attentionb) Inter-Granularity Self-Attention. We concatenate all router embeddings
{
u(1),u(2), . . . ,u(n)

}
to form a sequence of routers U ∈ Rn×D:

U =
[
u(1)∥u(2)∥ . . . ∥u(n)

]
(5)

where n is the number of different granularities. For granularity i with patch length Li, we apply
self-attention to the router embedding u(i) ∈ R1×D with all the routers U :

u(i) ←AttnInter
(
u(i),U ,U

)
(6)

Each router contains global information specific to one granularity by doing intra-granularity self-
attention. By performing self-attention among routers, information can be exchanged and learned
across different granularities, effectively capturing features across various scales. Additionally, the
use of the router mechanism successfully reduces the time complexity of the naive approach from
O
(
(
∑n

i=1 Ni)
2
)

to O
(∑n

i=1 N
2
i + n2

)
. Given that Ni ≤ T , the worst-case time complexity for

our self-attention mechanism is O
(
nT 2 + n2

)
. However, a reasonable choice of patch lengths as

a power series, i.e., Li = 2i, leads to a time complexity of O(T 2). To further reduce complexity
and memory consumption, we apply shared layer normalization and feed-forward layers across all
granularities. See appendix F for more details about complexity analysis.

Summary. Our method utilizes the standard transformer architecture shown in Figure 3. For given
sample xin, after M layers of self-attention learning, we obtain a list of updated patch embeddings{
x(1),x(2), . . . ,x(n)

}
, which we concatenate them to form a final representation h that can be used

to predict label y ∈ RK in a downstream classification task. Note that although we discuss multi-
granularity here, our method is flexible and can be easily adapted to variants such as single-granularity
or even repetitive same granularities. See Appendix D.2 for more details.

5 Experiments

We compare our Medformer with 10 baselines across 5 datasets, including 3 EEG datasets and
2 ECG datasets. Our method is evaluated under two setups (Section 3): subject-dependent and
subject-independent. In the subject-dependent setup, training, validation, and test sets are split based
on samples, while in the subject-independent setup, they are split based on subjects.

Table 2: The information of processed datasets. The table shows the number of subjects, samples, classes,
channels, sampling rate, sample timestamps, modality of MedTS, and file size. Here, #-Timestamps indicates
the number of timestamps per sample.

Datasets #-Subject #-Sample #-Class #-Channel #-Timestamps Sampling Rate Modality File Size

APAVA 23 5,967 2 16 256 256Hz EEG 186MB
ADFTD 88 69,752 3 19 256 256Hz EEG 2.52GB
TDBrain 72 6,240 2 33 256 256Hz EEG 571MB
PTB 198 64,356 2 15 300 250Hz ECG 2.15GB
PTB-XL 17,596 191,400 5 12 250 250Hz ECG 4.28GB

Datasets. (1) APAVA [67] is an EEG dataset where each sample is assigned a binary label indicating
whether the subject has Alzheimer’s disease. (2) TDBRAIN [68] is an EEG dataset with a binary label
assigned to each sample, indicating whether the subject has Parkinson’s disease. (3) ADFTD [69, 19]
is an EEG dataset with a three-class label for each sample, categorizing the subject as Healthy, having
Frontotemporal Dementia, or Alzheimer’s disease. (4) PTB [70] is an ECG dataset where each sample
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Table 3: Results of Subject-Dependent Setup. The training, validation, and test sets are split based on samples
according to a predetermined ratio. Results of the ADFTD dataset under this setup are presented here.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

ADFTD
(3-Classes)

Autoformer 87.83±1.62 87.63±1.66 87.22±1.97 87.38±1.79 96.59±0.88 93.82±1.64

Crossformer 89.35±1.32 89.00±1.44 88.79±1.37 88.88±1.40 97.52±0.58 95.45±1.03

FEDformer 77.63±2.37 76.76±2.17 76.68±2.48 76.60±2.46 91.67±1.34 84.94±2.11

Informer 90.93±0.90 90.74±0.71 90.50±1.14 90.60±0.94 98.19±0.27 96.51±0.49

iTransformer 64.90±0.25 62.53±0.27 62.21±0.26 62.25±0.33 81.52±0.29 68.87±0.49

MTST 65.08±0.69 63.85±0.80 62.71±0.64 63.03±0.58 81.36±0.56 69.34±0.89

Nonformer 96.12±0.47 95.94±0.56 95.99±0.38 95.96±0.47 99.59±0.09 99.08±0.16

PatchTST 66.26±0.40 65.08±0.41 64.97±0.51 64.95±0.42 83.07±0.45 71.70±0.61

Reformer 91.51±1.75 91.15±1.79 91.65±1.56 91.14±1.83 98.85±0.35 97.88±0.60

Transformer 97.00±0.43 96.87±0.53 96.86±0.36 96.86±0.44 99.75±0.04 99.42±0.07

Medformer (Ours) 97.62±0.34 97.53±0.33 97.48±0.40 97.50±0.36 99.83±0.05 99.62±0.12

is labeled with a binary indicator of Myocardial Infarction. (5) PTB-XL [71] is an ECG dataset with
a five-class label for each sample, representing various heart conditions. Table 2 provides information
on the processed datasets. For additional details on data characteristics, train-validation-test splits
under different setups, and data preprocessing, please see Appendix B.

Baselines. We compare with 10 state-of-the-art time series transformer methods: Autoformer [28],
Crossformer [33], FEDformer [52], Informer [29], iTransformer [31], MTST [53], Nonformer [54],
PatchTST [32], Reformer [56], and vanilla Transformer [30].

Implementation. We employ six evaluation metrics: accuracy, precision (macro-averaged), recall
(macro-averaged), F1 score (macro-averaged), AUROC (macro-averaged), and AUPRC (macro-
averaged). The training process is conducted with five random seeds (41-45) on fixed training,
validation, and test sets to compute the mean and standard deviation of the models. All experiments
are run on an NVIDIA RTX 4090 GPU and a server with 4 RTX A5000 GPUs.

For data augmentation methods, we provide six widely used methods in time series augmentation [72,
66, 73, 61]. For more details about these six methods, see Appendix A. For the parameter tuning in
our method and all baselines, we employ 6 layers for the encoder, set the dimension D to 128, and the
hidden dimension of feed-forward networks to 256. We utilize the Adam optimizer with a learning
rate of 1e-4. The batch size is set to {32,32,128,128,128} for datasets APAVA, TDBrain, ADFTD,
PTB, and PTB-XL, respectively. The training epoch is set to 100, with early stopping triggered after
10 epochs without improvement in the F1 score on the validation set. We save the model with the
best F1 score on the validation set and evaluate it on the test set. See Appendix C for any additional
implementation details of our method and all baselines.

5.1 Results of Subject-Dependent

Setup. In this setup, the training, validation, and test sets are split based on samples. All samples
from all subjects are randomly shuffled and distributed into the training, validation, and test sets
according to a predetermined ratio, allowing samples from the same subject to appear in three sets
simultaneously. As discussed in the Preliminaries section 3, this setup has limited applicability for
MedTS-based disease diagnosis in real-world scenarios. It is usually used to evaluate whether the
dataset exhibits cross-subject features quickly. The results obtained from this setup are typically much
higher than those from the subject-independent setup, showing a dataset’s upper limit of learnability.

Results. We evaluate the EEG dataset ADFTD using this setup to provide a direct comparison
of results with the subject-independent setup. The results are presented in Table 3. Our method
outperforms all the baselines, achieving the top-1 results in all six evaluations, with an impressive F1
score of 97.50%. Notably, baseline methods like Informer, Nonformer, Reformer, and Transformer
also demonstrate strong performance, achieving F1 scores exceeding 90%. The overall results indicate
the presence of discernible and learnable features related to Alzheimer’s Disease within this dataset.

5.2 Results of Subject-Independent

Setup. In this setup, the training, validation, and test sets are split based on subjects. All subjects and
their corresponding samples are distributed into the training, validation, and test sets according to a
predetermined ratio or subject IDs. Samples from the same subjects should exclusively appear in one
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Table 4: Results of Subject-Independent Setup. The training, validation, and test sets are distributed based on
subjects according to a predetermined ratio/IDs. Results of the APAVA, TDBrain, ADFTD, PTB, and PTB-XL
datasets under this setup are presented here.

Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

APAVA
(2-Classes)

Autoformer 68.64±1.82 68.48±2.10 68.77±2.27 68.06±1.94 75.94±3.61 74.38±4.05

Crossformer 73.77±1.95 79.29±4.36 68.86±1.70 68.93±1.85 72.39±3.33 72.05±3.65

FEDformer 74.94±2.15 74.59±1.50 73.56±3.55 73.51±3.39 83.72±1.97 82.94±2.37

Informer 73.11±4.40 75.17±6.06 69.17±4.56 69.47±5.06 70.46±4.91 70.75±5.27

iTransformer 74.55±1.66 74.77±2.10 71.76±1.72 72.30±1.79 85.59±1.55 84.39±1.57
MTST 71.14±1.59 79.30±0.97 65.27±2.28 64.01±3.16 68.87±2.34 71.06±1.60

Nonformer 71.89±3.81 71.80±4.58 69.44±3.56 69.74±3.84 70.55±2.96 70.78±4.08

PatchTST 67.03±1.65 78.76±1.28 59.91±2.02 55.97±3.10 65.65±0.28 67.99±0.76

Reformer 78.70±2.00 82.50±3.95 75.00±1.61 75.93±1.82 73.94±1.40 76.04±1.14

Transformer 76.30±4.72 77.64±5.95 73.09±5.01 73.75±5.38 72.50±6.60 73.23±7.60

Medformer (Ours) 78.74±0.64 81.11±0.84 75.40±0.66 76.31±0.71 83.20±0.91 83.66±0.92

TDBrain
(2-Classes)

Autoformer 87.33±3.79 88.06±3.56 87.33±3.79 87.26±3.84 93.81±2.26 93.32±2.42

Crossformer 81.56±2.19 81.97±2.25 81.56±2.19 81.50±2.20 91.20±1.78 91.51±1.71

FEDformer 78.13±1.98 78.52±1.91 78.13±1.98 78.04±2.01 86.56±1.86 86.48±1.99

Informer 89.02±2.50 89.43±2.14 89.02±2.50 88.98±2.54 96.64±0.68 96.75±0.63

iTransformer 74.67±1.06 74.71±1.06 74.67±1.06 74.65±1.06 83.37±1.14 83.73±1.27

MTST 76.96±3.76 77.24±3.59 76.96±3.76 76.88±3.83 85.27±4.46 82.81±5.64

Nonformer 87.88±2.48 88.86±1.84 87.88±2.48 87.78±2.56 97.05±0.68 96.99±0.68
PatchTST 79.25±3.79 79.60±4.09 79.25±3.79 79.20±3.77 87.95±4.96 86.36±6.67

Reformer 87.92±2.01 88.64±1.40 87.92±2.01 87.85±2.08 96.30±0.54 96.40±0.45

Transformer 87.17±1.67 87.99±1.68 87.17±1.67 87.10±1.68 96.28±0.92 96.34±0.81

Medformer (Ours) 89.62±0.81 89.68±0.78 89.62±0.81 89.62±0.81 96.41±0.35 96.51±0.33

ADFTD
(3-Classes)

Autoformer 45.25±1.48 43.67±1.94 42.96±2.03 42.59±1.85 61.02±1.82 43.10±2.30

Crossformer 50.45±2.31 45.57±1.63 45.88±1.82 45.50±1.70 66.45±2.03 48.33±2.05

FEDformer 46.30±0.59 46.05±0.76 44.22±1.38 43.91±1.37 62.62±1.75 46.11±1.44

Informer 48.45±1.96 46.54±1.68 46.06±1.84 45.74±1.38 65.87±1.27 47.60±1.30

iTransformer 52.60±1.59 46.79±1.27 47.28±1.29 46.79±1.13 67.26±1.16 49.53±1.21

MTST 45.60±2.03 44.70±1.33 45.05±1.30 44.31±1.74 62.50±0.81 45.16±0.85

Nonformer 49.95±1.05 47.71±0.97 47.46±1.50 46.96±1.35 66.23±1.37 47.33±1.78

PatchTST 44.37±0.95 42.40±1.13 42.06±1.48 41.97±1.37 60.08±1.50 42.49±1.79

Reformer 50.78±1.17 49.64±1.49 49.89±1.67 47.94±0.69 69.17±1.58 51.73±1.94
Transformer 50.47±2.14 49.13±1.83 48.01±1.53 48.09±1.59 67.93±1.59 48.93±2.02

Medformer (Ours) 53.27±1.54 51.02±1.57 50.71±1.55 50.65±1.51 70.93±1.19 51.21±1.32

PTB
(2-Classes)

Autoformer 73.35±2.10 72.11±2.89 63.24±3.17 63.69±3.84 78.54±3.48 74.25±3.53

Crossformer 80.17±3.79 85.04±1.83 71.25±6.29 72.75±7.19 88.55±3.45 87.31±3.25

FEDformer 76.05±2.54 77.58±3.61 66.10±3.55 67.14±4.37 85.93±4.31 82.59±5.42

Informer 78.69±1.68 82.87±1.02 69.19±2.90 70.84±3.47 92.09±0.53 90.02±0.60

iTransformer 83.89±0.71 88.25±1.18 76.39±1.01 79.06±1.06 91.18±1.16 90.93±0.98
MTST 76.59±1.90 79.88±1.90 66.31±2.95 67.38±3.71 86.86±2.75 83.75±2.84

Nonformer 78.66±0.49 82.77±0.86 69.12±0.87 70.90±1.00 89.37±2.51 86.67±2.38

PatchTST 74.74±1.62 76.94±1.51 63.89±2.71 64.36±3.38 88.79±0.91 83.39±0.96

Reformer 77.96±2.13 81.72±1.61 68.20±3.35 69.65±3.88 91.13±0.74 88.42±1.30

Transformer 77.37±1.02 81.84±0.66 67.14±1.80 68.47±2.19 90.08±1.76 87.22±1.68

Medformer (Ours) 83.50±2.01 85.19±0.94 77.11±3.39 79.18±3.31 92.81±1.48 90.32±1.54

PTB-XL
(5-Classes)

Autoformer 61.68±2.72 51.60±1.64 49.10±1.52 48.85±2.27 82.04±1.44 51.93±1.71

Crossformer 73.30±0.14 65.06±0.35 61.23±0.33 62.59±0.14 90.02±0.06 67.43±0.22
FEDformer 57.20±9.47 52.38±6.09 49.04±7.26 47.89±8.44 82.13±4.17 52.31±7.03

Informer 71.43±0.32 62.64±0.60 59.12±0.47 60.44±0.43 88.65±0.09 64.76±0.17

iTransformer 69.28±0.22 59.59±0.45 54.62±0.18 56.20±0.19 86.71±0.10 60.27±0.21

MTST 72.14±0.27 63.84±0.72 60.01±0.81 61.43±0.38 88.97±0.33 65.83±0.51

Nonformer 70.56±0.55 61.57±0.66 57.75±0.72 59.10±0.66 88.32±0.36 63.40±0.79

PatchTST 73.23±0.25 65.70±0.64 60.82±0.76 62.61±0.34 89.74±0.19 67.32±0.22

Reformer 71.72±0.43 63.12±1.02 59.20±0.75 60.69±0.18 88.80±0.24 64.72±0.47

Transformer 70.59±0.44 61.57±0.65 57.62±0.35 59.05±0.25 88.21±0.16 63.36±0.29

Medformer (Ours) 72.87±0.23 64.14±0.42 60.60±0.46 62.02±0.37 89.66±0.13 66.39±0.22
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of these three sets. This setup simulates real-world MedTS-based disease diagnosis, aiming to train a
model on subjects with known labels and then test it on unseen subjects to determine if they have a
specific disease. The challenges associated with this setup are discussed in section 3. All five datasets
are evaluated using this setup.
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Figure 4: Average Rank of Subject-Independent Setup.
The heatmap table shows the average rank of Medformer
and 10 baselines across 5 datasets using the subject-
independent setup. A lower number indicates better results.
The average rank is calculated across the 5 datasets to ob-
tain the overall average rank.

Results. Table 4 presents the results of
the subject-independent setup. Our method
achieves the top-1 F1 scores on 4 out of 5
datasets. Overall, our method achieves 15
top-1 and 30 top-3 rankings out of 30 eval-
uations conducted across 5 datasets and 10
baselines, considering 6 different metrics. Fig-
ure 4 provides an overview heatmap table
of average rank across 5 datasets on 6 met-
rics for all methods. Lower rank numbers
indicate better results, with rank 1 represent-
ing the best performance among all methods.
Our method demonstrates the best average
rank among all methods across the 6 met-
rics. Additionally, it is notable that the re-
sult for ADFTD is a 50.65% F1 score un-
der the subject-independent setup, which is
significantly lower than the 97.50% F1 score
achieved under the subject-dependent setup.
This comparison highlights the challenge of
the subject-independent setup.

5.3 Ablation Study and Additional Experiments

Ablation Study. 1) Module Study: We conduct a module study to evaluate each proposed mechanism
in our method (Appendix D.1). 2) Patch Length Study: We perform parameter tuning on the patch
lengths to evaluate the effectiveness of multi-granularities (Appendix D.2). Additional Experiments.
We also perform experiments on two human activities recognition datasets [74, 75] to demonstrate the
learning ability of our model on general time series with potential channel correlations (Appendix E).

6 Conclusion and Limitations

Conclusion This paper presents Medformer, a multi-granularity patching transformer tailored for
MedTS classification. We introduce three novel mechanisms that leverage the distinctive features of
MedTS. These mechanisms include cross-channel patching to capture multi-timestamp and cross-
channel features, multi-granularity embedding to learn features at various scales, and a two-stage
multi-granularity self-attention mechanism to extract features both within and across granularities. Ex-
perimental results across five datasets, evaluated against ten baselines under the subject-independent
setup, demonstrate the effectiveness of our method, showing its potential for real-world applications.

Limitations and Future Work The design of Medformer allows for inputting various patch lengths,
offering opportunities and challenges. While varying patch lengths have been shown to outperform
uniform lengths in many cases (see Appendix D.2 and Appendix C), not all patch length combi-
nations yield optimal results. Some combinations may perform worse than uniform patch lengths,
necessitating careful tuning of patch lengths. Future work could explore mechanisms for automat-
ically selecting patch lengths. Additionally, developing modules that decompose subject-specific
features from task-related features could further enhance learning under the subject-independent
setup, presenting an intriguing direction for future research.
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Appendix A Data Augmentation Banks

In the embedding stage, we apply data augmentation to the patch embeddings. We utilize a bank
of data augmentation techniques to enhance the model’s robustness and generalization. During the
forward pass in training, each patch will pick one augmentation from available augmentation options
with equal probability. The data augmentation methods include temporal flipping, channel shuffling,
temporal masking, frequency masking, jittering, and dropout, and can be further expanded to more
choices. We provide a detailed description of each technique below.

Temporal Flippling We reverse the MedTS data along the temporal dimension. The probability of
applying this augmentation is controlled by a parameter prob, with a default value of 0.5.

Channel Shuffling We randomly shuffle the order of MedTS channels. The probability of applying
channel shuffling is controlled by the parameter prob, also set by default to 0.5.

Temporal Masking We randomly mask some timestamps across all channels. The proportion of
timestamps masked is controlled by the parameter ratio, with a default value of 0.1.

Frequency Masking First introduced in [73] for contrastive learning, this method involves converting
the MedTS data into the frequency domain, randomly masking some frequency bands, and then
converting it back. The proportion of frequency bands masked is controlled by the parameter ratio,
with a default value of 0.1.

Jittering Random noise, ranging from 0 to 1, is added to the raw data. The intensity of the noise is
adjusted by the parameter scale, which is set by default to 0.1.

Dropout Similar to the dropout layer in neural networks, this method randomly drops some values.
The proportion of values dropped is controlled by the parameter ratio, with a default setting of 0.1.

Appendix B Data Preprocessing

B.1 APAVA Preprocessing

The Alzheimer’s Patients’ Relatives Association of Valladolid (APAVA) dataset*, referenced in
the paper [67], is a public EEG time series dataset with 2 classes and 23 subjects, including 12
Alzheimer’s disease patients and 11 healthy control subjects. On average, each subject has 30.0 ±
12.5 trials, with each trial being a 5-second time sequence consisting of 1280 timestamps across 16
channels. Before further preprocessing, each trial is scaled using the standard scaler. Subsequently,
we segment each trial into 9 half-overlapping samples, where each sample is a 1-second time sequence
comprising 256 timestamps. This process results in 5,967 samples. Each sample has a subject ID
to indicate its originating subject. For the training, validation, and test set splits, we employ the
subject-independent setup. Samples with subject IDs {15,16,19,20} and {1,2,17,18} are assigned to
the validation and test sets, respectively. The remaining samples are allocated to the training set.

B.2 TDBrain Preprocessing

The TDBrain dataset*, referenced in the paper [68], is a large permission-accessible EEG time series
dataset recording brain activities of 1274 subjects with 33 channels. Each subject has two trials:
one under eye open and one under eye closed setup. The dataset includes a total of 60 labels, with
each subject potentially having multiple labels indicating multiple diseases simultaneously. In this
paper, we utilize a subset of this dataset containing 25 subjects with Parkinson’s disease and 25
healthy controls, all under the eye-closed task condition. Each eye-closed trial is segmented into
non-overlapping 1-second samples with 256 timestamps, and any samples shorter than 1-second are
discarded. This process results in 6,240 samples. Each sample is assigned a subject ID to indicate its
originating subject. For the training, validation, and test set splits, we employ the subject-independent
setup. Samples with subject IDs {18,19,20,21,46,47,48,49} are assigned to the validation set, while
samples with subject IDs {22,23,24,25,50,51,52,53} are assigned to the test set. The remaining
samples are allocated to the training set.

*https://osf.io/jbysn/
*https://brainclinics.com/resources/
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B.3 ADFTD Preprocessing

The Alzheimer’s Disease and FronTotemporal Dementia (ADFTD) dataset*, referenced in the
papers [69, 19], is a public EEG time series dataset with 3 classes, including 36 Alzheimer’s disease
(AD) patients, 23 Frontotemporal Dementia (FTD) patients, and 29 healthy control (HC) subjects.
The dataset has 19 channels, and the raw sampling rate is 500Hz. Each subject has a trial, with trial
durations of approximately 13.5 minutes for AD subjects (min=5.1, max=21.3), 12 minutes for FD
subjects (min=7.9, max=16.9), and 13.8 minutes for HC subjects (min=12.5, max=16.5). A bandpass
filter between 0.5-45Hz is applied to each trial. We downsample each trial to 256Hz and segment
them into non-overlapping 1-second samples with 256 timestamps, discarding any samples shorter
than 1 second. This process results in 69,752 samples. For the training, validation, and test set splits,
we employ both the subject-dependent and subject-independent setups. For the subject-dependent
setup, we allocate 60%, 20%, and 20% of total samples into the training, validation, and test sets,
respectively. For the subject-independent setup, we allocate 60%, 20%, and 20% of total subjects
with their corresponding samples into the training, validation, and test sets, respectively.

B.4 PTB Preprocessing

The PTB dataset*, referenced in the paper [70], is a public ECG time series recording from 290
subjects, with 15 channels and a total of 8 labels representing 7 heart diseases and 1 health control.
The raw sampling rate is 1000Hz. For this paper, we utilize a subset of 198 subjects, including patients
with Myocardial infarction and healthy control subjects. We first downsample the sampling frequency
to 250Hz and normalize the ECG signals using standard scalers. Subsequently, we process the data
into single heartbeats through several steps. We identify the R-Peak intervals across all channels
and remove any outliers. Each heartbeat is then sampled from its R-Peak position, and we ensure
all samples have the same length by applying zero padding to shorter samples, with the maximum
duration across all channels serving as the reference. This process results in 64,356 samples. For the
training, validation, and test set splits, we employ the subject-independent setup. Specifically, we
allocate 60%, 20%, and 20% of the total subjects, along with their corresponding samples, into the
training, validation, and test sets, respectively.

B.5 PTB-XL Preprocessing

The PTB-XL dataset*, referenced in the paper [71], is a large public ECG time series dataset recorded
from 18,869 subjects, with 12 channels and 5 labels representing 4 heart diseases and 1 healthy
control category. Each subject may have one or more trials. To ensure consistency, we discard
subjects with varying diagnosis results across different trials, resulting in 17,596 subjects remaining.
The raw trials consist of 10-second time intervals, with sampling frequencies of 100Hz and 500Hz
versions. For our paper, we utilize the 500Hz version, then we downsample to 250Hz and normalize
using standard scalers. Subsequently, each trial is segmented into non-overlapping 1-second samples
with 250 timestamps, discarding any samples shorter than 1 second. This process results in 191,400
samples. For the training, validation, and test set splits, we employ the subject-independent setup.
Specifically, we allocate 60%, 20%, and 20% of the total subjects, along with their corresponding
samples, into the training, validation, and test sets, respectively.

Appendix C Implementation Details

We implement our method and all the baselines based on the Time-Series-Library project* from
Tsinghua University [76], which integrates all methods under the same framework and training
techniques to ensure a relatively fair comparison. The 10 baseline time series transformer methods are
Autoformer [28], Crossformer [33], FEDformer [52], Informer [29], iTransformer [31], MTST [53],
Nonformer [54], PatchTST [32], Reformer [56], and vanilla Transformer [30].

*https://openneuro.org/datasets/ds004504/versions/1.0.6
*https://physionet.org/content/ptbdb/1.0.0/
*https://physionet.org/content/ptb-xl/1.0.3/
*https://github.com/thuml/Time-Series-Library
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For all methods, we employ 6 layers for the encoder, with the self-attention dimension D set to 128
and the hidden dimension of the feed-forward networks set to 256. The optimizer used is Adam,
with a learning rate of 1e-4. The batch size is set to {32,32,128,128,128} for the datasets APAVA,
TDBrain, ADFD, PTB, and PTB-XL, respectively. Training is conducted for 100 epochs, with early
stopping triggered after 10 epochs without improvement in the F1 score on the validation set. We save
the model with the best F1 score on the validation set and evaluate it on the test set. We employ six
evaluation metrics: accuracy, precision (macro-averaged), recall (macro-averaged), F1 score (macro-
averaged), AUROC (macro-averaged), and AUPRC (macro-averaged). Both subject-dependent and
subject-independent setups are implemented for different datasets. Each experiment is run with 5
random seeds (41-45) and fixed training, validation, and test sets to compute the average results and
standard deviations.

Medformer (Our Method) We use a list of patch lengths in patch embedding to generate patches
with different granularities. Instead of flattening the patches and mapping them to dimension D
during patch embedding, we use a conv2d network to directly map patches into a 1-D representation
with dimension D. These patch lengths can vary, including different numbers of patch lengths
such as {2, 4, 8, 16}, repetitive numbers such as {8, 8, 8, 8}, or a mix of different and repetitive
lengths such as {8, 8, 8, 16, 16, 16}. It is also possible to use only one patch length, such as
{8}, which indicates a single granularity. The patch lists used for the datasets APAVA, TDBrain,
ADFD, PTB, and PTB-XL are {2, 2, 2, 4, 4, 4, 16, 16, 16, 16, 32, 32, 32, 32, 32}, {8, 8, 8, 16, 16, 16},
{2, 4, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32}, {2, 4, 8, 8, 16, 16, 16, 32, 32, 32, 32, 32},
and {2, 4, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 32, 32, 32}, respectively. The data augmentations
are randomly chosen from a list of four possible options: none, jitter, scale, and mask. The number
following each augmentation method indicates the degree of augmentation. Detailed descriptions of
these methods can be found in Appendix A. The augmentation methods used for the datasets APAVA,
TDBrain, ADFD, PTB, and PTB-XL are {none, drop0.35}, {none, drop0.25}, {drop0.5}, {drop0.5},
and {jitter0.2, scale0.2, drop0.5}, respectively.

Autoformer Autoformer [28] employs an auto-correlation mechanism to replace self-attention for
time series forecasting. Additionally, they use a time series decomposition block to separate the time
series into trend-cyclical and seasonal components for improved learning. The raw source code is
available at https://github.com/thuml/Autoformer.

Crossformer Crossformer [33] designs a single-channel patching approach for token embedding.
They utilize two-stage self-attention to leverage both temporal features and channel correlations. A
router mechanism is proposed to reduce time and space complexity during the cross-dimension stage.
The raw code is available at https://github.com/Thinklab-SJTU/Crossformer.

FEDformer FEDformer [52] leverages frequency domain information using the Fourier transform.
They introduce frequency-enhanced blocks and frequency-enhanced attention, which are computed
in the frequency domain. A novel time series decomposition method replaces the layer norm
module in the transformer architecture to improve learning. The raw code is available at https:
//github.com/MAZiqing/FEDformer.

Informer Informer [29] is the first paper to employ a one-forward procedure instead of an autoregres-
sive method in time series forecasting tasks. They introduce ProbSparse self-attention to reduce com-
plexity and memory usage. The raw code is available at https://github.com/zhouhaoyi/Informer2020.

iTransformer iTransformer [31] questions the conventional approach of embedding attention tokens
in time series forecasting tasks and proposes an inverted approach by embedding the whole series of
channels into a token. They also invert the dimension of other transformer modules, such as the layer
norm and feed-forward networks. The raw code is available at https://github.com/thuml/iTransformer.

MTST MTST [53] uses the same token embedding method as Crossformer and PatchTST. It high-
lights the importance of different patching lengths in forecasting tasks and designs a method that
can take different sizes of patch tokens as input simultaneously. The raw code is available at
https://github.com/networkslab/MTST.

Nonformer Nonformer [54] analyzes the impact of non-stationarity in time series forecasting tasks
and its significant effect on results. They design a de-stationary attention module and incorporate
normalization and denormalization steps before and after training to alleviate the over-stationarization
problem. The raw code is available at https://github.com/thuml/Nonstationary_Transformers.
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Table 5: Module Study.
Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

APAVA
No Inter-Attention 76.90±1.50 78.08±2.12 73.87±1.48 74.59±1.58 80.29±3.75 81.32±3.37

No Augmentation 75.21±2.94 76.69±3.41 71.72±3.22 72.30±3.46 77.05±5.22 78.15±5.42

Single-Channel Patching 73.08±1.34 76.43±1.46 68.6±1.93 68.68±2.37 69.54±0.64 69.43±1.36

Medformer 78.74±0.64 81.11±0.84 75.40±0.66 76.31±0.71 83.20±0.91 83.66±0.92

TDBrain
No Inter-Attention 88.17±0.72 88.27±0.72 88.17±0.72 88.16±0.72 96.06±0.40 96.18±0.39

No Augmentation 88.56±0.66 88.67±0.61 88.56±0.66 88.55±0.66 96.11±0.39 96.20±0.39

Single-Channel Patching 80.94±0.95 81.84±1.55 80.94±0.95 80.81±0.92 89.65±0.85 89.48±0.91

Medformer 89.62±0.81 89.68±0.78 89.62±0.81 89.62±0.81 96.41±0.35 96.51±0.33

ADFD
No Inter-Attention 52.14±1.11 51.13±2.57 46.15±0.86 45.59±1.18 67.99±1.77 49.68±2.05

No Augmentation 49.99±6.86 48.21±6.16 44.88±4.59 44.07±4.75 65.03±6.12 47.11±5.64

Single-Channel Patching 47.09±1.22 45.42±1.30 43.94±0.80 44.11±0.84 62.07±0.86 44.57±0.95

Medformer 53.27±1.54 51.02±1.57 50.71±1.55 50.65±1.51 70.93±1.19 51.21±1.32

PTB
No Inter-Attention 78.02±2.70 80.96±1.39 68.65±4.58 69.97±5.27 92.94±0.86 90.19±1.12

No Augmentation 77.64±1.65 81.03±1.60 67.88±2.61 69.31±3.22 92.19±0.71 89.37±0.96

Single-Channel Patching 79.02±1.62 81.14±1.59 70.43±2.47 72.24±2.76 85.74±1.59 82.23±1.48

Medformer 83.50±2.01 85.19±0.94 77.11±3.39 79.18±3.31 92.81±1.48 90.32±1.54

PTB-XL
No Inter-Attention 72.51±0.16 63.61±0.28 59.75±0.30 61.25±0.22 89.48±0.08 65.74±0.26

No Augmentation 72.68±0.19 63.99±0.62 59.73±0.41 61.26±0.34 89.49±0.05 66.00±0.22

Single-Channel Patching 72.79±0.35 64.80±0.51 59.57±0.44 61.43±0.38 88.97±0.19 65.91±0.34

Medformer 72.87±0.23 64.14±0.42 60.60±0.46 62.02±0.37 89.66±0.13 66.39±0.22

PatchTST PatchTST [32] embeds a sequence of single-channel timestamps as a patch token to
replace the attention token used in the vanilla transformer. This approach enlarges the receptive field
and enhances forecasting ability. The raw code is available at https://github.com/yuqinie98/PatchTST.

Reformer Reformer [56] replaces dot-product attention with locality-sensitive hashing. They also
use a reversible residual layer instead of standard residuals. The raw code is available at https:
//github.com/lucidrains/reformer-pytorch.

Transformer Transformer [30], commonly known as the vanilla transformer, is introduced in the
well-known paper "Attention is All You Need." It can also be applied to time series by embedding
each timestamp of all channels as an attention token. The PyTorch version of the code is available at
https://github.com/jadore801120/attention-is-all-you-need-pytorch.

Appendix D Ablation Study

D.1 Module Study

To assess the efficacy of our proposed mechanisms—inter-granularity self-attention, embedding
augmentation, and multi-channel patching—we conduct ablation studies on five datasets across
three distinct settings: without inter-granularity attention, without embedding augmentation, and
with single-channel patching. We maintain the other two modules intact in each setting and fix all
hyperparameters as described in the implementation details C. Table 5 presents a comparison between
our full Medformer model and these three variants. The complete Medformer model secures 28 top-1
and 30 top-2 rankings across 30 evaluations, demonstrating robust performance. We observe that
each module significantly enhances performance: on average, across the datasets, inter-granularity
attention contributes to a 3.64% improvement in F1 score, embedding augmentation leads to a
4.46% increase and multi-channel patching results in a 6.10% enhancement in F1 score. We find
multi-channel patching particularly beneficial for results, especially in EEG data. Overall, these
results underscore the critical role of each component in our design.

D.2 Patch Length Study

To investigate the effects of multi-granularity and computational complexity, we conduct an empirical
analysis using various patch lengths on the APAVA dataset. Table 6 presents the evaluation results for
different combinations of patch lengths. Initially, we compare the performance of models using a
single patch length against models using five identical patch lengths (e.g., {8} vs {8, 8, 8, 8, 8}). Our
findings indicate that using repetitive patch lengths generally enhances performance, except when
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Table 6: Patch Length Study
Datasets Models Accuracy Precision Recall F1 score AUROC AUPRC

APAVA

{2} 71.82 ±8.13 73.23 ±8.91 69.69 ±6.31 69.95 ±7.08 69.34 ±4.72 69.18 ±5.17

{4} 75.72 ±3.73 78.15 ±5.84 72.14 ±3.39 72.83 ±3.64 72.75 ±4.76 73.84 ±5.08

{8} 71.29 ±3.02 72.83 ±2.73 67.38 ±4.25 67.17 ±4.98 76.12 ±4.25 76.74 ±4.29

{12} 69.77 ±4.01 69.72 ±5.65 67.09 ±3.34 67.36 ±3.53 75.19 ±3.00 75.36 ±3.48

{16} 70.92 ±1.99 71.46 ±3.09 67.67 ±2.26 67.81 ±2.45 76.97 ±2.53 77.21 ±2.87

{24} 71.68 ±2.44 74.26 ±3.49 67.14 ±2.55 67.13 ±2.85 79.07 ±3.34 78.73 ±3.32

{32} 72.55 ±1.51 75.74 ±1.49 68.38 ±2.99 68.19 ±3.23 79.17 ±2.17 78.44 ±2.40

{2,2,2,2,2} 65.52 ±8.24 65.97 ±7.41 64.14 ±6.06 63.71 ±7.23 63.15 ±3.43 61.84 ±4.81

{4,4,4,4,4} 76.91 ±1.72 78.66 ±3.20 73.71 ±1.26 74.46 ±1.42 74.90 ±3.21 76.36 ±3.12

{8,8,8,8,8} 71.81 ±3.81 74.25 ±6.34 67.72 ±3.45 67.89 ±3.68 74.95 ±5.34 75.59 ±5.63

{12,12,12,12,12} 71.17 ±3.85 72.18 ±5.97 67.65 ±3.27 67.96 ±3.48 76.71 ±4.82 77.27 ±4.91

{16,16,16,16,16} 71.13 ±3.33 72.14 ±5.69 67.82 ±2.45 68.13 ±2.58 76.34 ±4.52 76.39 ±4.94

{24,24,24,24,24} 73.18 ±2.15 75.72 ±3.46 68.98 ±2.11 69.27 ±2.33 81.10 ±2.61 81.20 ±2.68

{32,32,32,32,32} 74.34 ±2.20 78.92 ±1.57 69.66 ±2.80 69.80 ±3.42 81.11 ±1.10 80.69 ±1.02

{2,2,4,16,32} 78.21 ±2.60 80.82 ±4.30 74.92 ±2.07 75.78 ±2.31 80.73 ±2.34 81.38 ±2.38

L = 2, suggesting that additional identical patch lengths can capture more information, analogous to
multi-head attention mechanisms.

Furthermore, we assess the performance of a manually selected combination of varying patch lengths,
specifically {2, 2, 4, 16, 32}. This configuration achieves the highest performance across all evaluated
metrics, underscoring the effectiveness of our designed attention module in accommodating multi-
granularity patches. However, it is worth noting that mixing different patch lengths does not guarantee
improved performance. See G for more detailed discussion.

Appendix E Additional Experiments

Table 7: Additional Datasets and Methods We selected three old baselines in the previous experiments that
showed strong performance: Crossformer, Reformer, and Transformer. Additionally, we introduce three new
baselines: TCN, ModernTCN, and Mamba. These six baselines are evaluated on one old dataset in the previous
experiments, TDBrain(6,240 samples, 2 classes), and two new HAR datasets: FLAAP (13,123 samples, 10
classes) and UCI-HAR (10,299 samples, 6 classes). The bold number denotes the best result, and the underlined
number denotes the second best.

Datasets TDBrain
(2 Classes)

FLAAP
(10 Classes)

UCI-HAR
(6 Classes)

Models
Metrics Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Crossformer 81.56±2.19 81.50±2.20 75.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.5275.84±0.52 75.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.6675.52±0.66 89.74±1.08 89.70±1.10

Reformer 87.92±2.01 87.85±2.08 71.65±1.27 71.14±1.45 88.44±2.02 88.34±1.98

Transformer 87.17±1.67 87.10±1.68 74.96±1.25 74.49±1.39 88.86±1.65 88.80±1.67

TCN 80.92±2.94 80.82±3.03 66.48±1.66 65.29±1.74 93.08±0.95 93.19±0.88
ModernTCN 81.96±2.12 81.79±2.23 74.80±0.96 74.35±0.85 91.44±1.01 91.47±0.98

Mamba 89.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.7489.58±0.74 89.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.7389.58±0.73 64.87±2.78 64.14±2.70 87.78±1.10 87.72±1.10

Medformer 89.62±0.81 89.62±0.81 76.44±0.64 76.25±0.65 91.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.7491.65±0.74 91.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.7591.61±0.75

To evaluate the performance of our method on general time series, we test it on two human activity
recognition (HAR) datasets: FLAAP [74] and UCI-HAR [75], which exhibit potential channel
correlations inherently. Additionally, we compare our method with three other approaches: TCN [51],
ModernTCN [16], and Mamba [77]. Our method achieves the highest top-1 accuracy and F1 score
on TDBrain and FLAAP, and ranks second-best on UCI-HAR.

Appendix F Complexity Analysis

Let the number of timestamps T , and patch list {L1, L2, . . . , Ln} be given, where the i-th patch
length Li produce Ni = ⌈T/Li⌉ number of patches. During intra-granularity attention, we perform
self-attention among the patch embeddings within the same granularity. The total complexity is
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One potentially useful patch list is the power series {21, 22, . . . 2n}, where 2n < T . In this case, the
complexity of intra-granularity attention reduces as follows:

O

(
n∑

i=1

N2
i

)
= O

(
n∑

i=1

⌈
T

2i

⌉2)
≤ O

(
n∑

i=1

(
T

2i
+ 1

)2
)

= O

(
n∑

i=1

(
T 2

22i
+ 2

T

2i
+ 1

))
= O

(
T 2

n∑
i=1

1

22i
+ 2T

n∑
i=1

1

2i
+ n

)

≤ O

(
1

3
T 2 + 2T + log T

)
= O(T 2)

The complexity of inter-granularity attention is O(n2) ≤ O(log2 T ). Therefore, the total time
complexity of the two-stage multi-granularity self-attention module is O(T 2), which is the same
complexity as the vanilla transformer. This analysis demonstrates our model’s ability to incorporate
different granularities without significantly increasing computational overhead.

Appendix G Discussion

G.1 Comparision with Other Multi-Granularity Methods

MTST [53] and Pathformer [55] differ from our Medformer in three significant aspects: (1) Patch-
ing & Embedding MTST and Pathformer utilize single-channel patching, presupposing channel
independence. In contrast, Medformer employs multi-channel patching to capture potential channel
correlations. (2) Granularity Interactions MTST assimilates multi-granularity information by
concatenating outputs from different branches, while Pathformer uses adaptive pathways for weighted
aggregation of these outputs without any inter-granularity interactions within the attention modules.
In contrast, Medformer introduces a novel inter-granularity attention mechanism specifically designed
for granularity interaction, thereby effectively integrating multi-granularity information.

Scaleformer [60] operates as a model-agnostic structural framework that employs variable down-
sampling and upsampling rates on embeddings outside of attention modules. Although it integrates
seamlessly with non-patching methods like Autoformer and FEDformer, its incorporation into
patching methods is not straightforward and may result in sub-optimal patch representations [53].
Consequently, the design objectives of Scaleformer are largely orthogonal to ours, which concentrate
on multi-granularity patching and attention mechanisms.

Appendix H Broader Impacts

Our proposed model demonstrates performance comparable to or surpassing state-of-the-art baselines
on medical time series classification tasks. The model’s design, which includes specialized patch-
ing and self-attention mechanisms, specifically targets channel correlations and multi-granularity
information. We anticipate our findings will encourage further research into effective strategies for
capturing multi-scale information in medical time series data. Additionally, this work could broaden
interest in medical time series classification, an area that remains less explored compared to time
series forecasting.

Besides, different experiment setups based on medical perspectives, such as subject-dependent and
subject-independent, are evaluated to simulate real-world applications. On a societal level, our model
has potential applications in healthcare, such as facilitating the diagnosis of diseases using medical
time series data. For instance, it could be employed to detect neurological disorders through EEG
data. However, practitioners should be cognizant of the model’s limitations.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in abstract and introduction are supported by the results in
Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include an anonymous link in the Abstract providing source codes with
full implementation details for our methods and all baselines. All five datasets used for
evaluation are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run experiments over five random seeds and report the average value with
the standard deviation. See Table 2-6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

9

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors follow the NeurIPS Code of Ethics during the conduct of this
research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not pose a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite baseline models and the code library used for implementation.
See Appendix C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not publish new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not include crowdsourcing experiments nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not include crowdsourcing experiments nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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