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Abstract

The learnware paradigm aims to enable users to leverage numerous existing well-
trained models instead of building machine learning models from scratch. In
this paradigm, developers worldwide can submit their well-trained models sponta-
neously into a learnware dock system, and the system helps developers generate
specification for each model to form a learnware. As the key component, a specifi-
cation should characterize the capabilities of the model, enabling it to be adequately
identified and reused, while preserving the developer’s original data. Recently, the
RKME (Reduced Kernel Mean Embedding) specification was proposed and most
commonly utilized. This paper provides a theoretical analysis of RKME specifi-
cation about its preservation ability for developer’s training data. By modeling it
as a geometric problem on manifolds and utilizing tools from geometric analysis,
we prove that the RKME specification is able to disclose none of the developer’s
original data and possesses robust defense against common inference attacks, while
preserving sufficient information for effective learnware identification.

1 Introduction

Various machine learning models have been applied into various aspects of modern life success-
fully [Butler et al., 2018, Jumper et al., 2021]. In conventional machine learning paradigm, developing
a high-quality model for a new task from scratch requires a substantial amount of labeled data, exper-
tise, and computational resources, while it is ideal if the solution of the new task can be built based on
reusing existing models. Generally, source data is crucial for transferring and reusing existing models,
however, concerns over data privacy and proprietary often hinder the sharing among developers.

The Learnware paradigm [Zhou, 2016, Zhou and Tan, 2024] offers a systematical way enabling users
to build a new machine learning solution by exploiting existing well-trained models, rather than
building a model from scratch. A learnware is a well-trained machine learning model facilitated with
a specification, which characterizes the ability and specialty of the model to some degree, enabling
the model to be adequately reused for new users without access to the original data used to train
the model by its developer. Developers all over the world can submit their trained models into
a learnware dock system spontaneously, and the system helps developers generate specifications,
without access to the developer’s training data. When a user wants to tackle her learning task, instead
of starting from scratch, she can submit her requirement to the learnware dock system, which will
then identify and return helpful learnware(s) to the user to reuse, such that the user can get a better
performance than using her own data to train a model from scratch. Note that developers generally
need to preserve their training data. To realize this attractive vision, the key challenge is: To solve new
tasks, how to identify and even reassemble a few helpful models from the huge amount of learnwares
accommodated in the dock system, without accessing each developer’s training data?
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The specification is pivotal in the paradigm design [Zhou and Tan, 2024]. Recently, based on the
RKME (reduced kernel mean embedding) specification [Zhou and Tan, 2024], many studies about
learnware identification and reuse have been reported [Liu et al., 2024, Tan et al., 2023, Xie et al.,
2023, Tan et al., 2024a, Wu et al., 2023]. Also, the Beimingwu learnware dock system has been
developed and released [Tan et al., 2024b].

It is worth noting that, there lacks a theoretical analysis of the preservation ability of RKME
specification for developer’s training data. The theoretical analysis faces some significant challenges.
Firstly, the RKME specification is generated by solving a non-convex optimization problem, whose
possible solutions adhere to a nonlinear system of equations and, inherently, do not have a closed-form
solution. This complexity makes direct analysis intractable. Moreover, the generation process of
RKME is deterministic, but the size of RKME is small, where adding noise during this process often
degrades its performance for learnware identification. Consequently, commonly used analytical tools
for data privacy, such as Differential Privacy (DP), become inapplicable. To the best of our knowledge,
there is little research analyzing whether and how synthetic data generated by deterministic algorithms
can protect original data from being vulnerable to privacy attacks, especially considering that brute-
force attacks often succeed against deterministic algorithms. In this paper, we prove that the RKME
specification is able to protect the developer’s original data from disclosure, and possess robust
defense against common inference attacks, while preserving sufficient information for learnware
identification. Our technique also provides a way to investigate the privacy preservation ability
of synthetic data generated by deterministic algorithms. The main contributions of this work are
summarized as follows:

• We prove that as the size of RKME specification decreases, the possibility that it discloses the
original training data decreases at an exponential rate. Meanwhile, the ability of learnware
identification is positively correlated with the size of RKME specification, and thus we also
need a sufficient size. We prove that within a certain range of sizes, the RKME specification
won’t disclose any original training data for almost all datasets, while it remains sufficient
information enabling effective learnware identification.

• We prove that RKME exhibits significant resistance to the two common types of data dis-
closure attacks: linkage and inference. We provide a method to measure data leakage of
RKME and illustrate that the risk of RKME specification data leakage diminishes as the size
of specification decreases. Within a certain range of sizes, the RKME can effectively resist
these two types of attacks, while maintaining sufficient information for learnware identi-
fication. Moreover, we analyze that the above two ranges of sizes are heavily overlapped,
implying that determining adequate sizes that enable learnware identification but preserving
developer’s data is practical.

2 Preliminary

In this paper, for the theoretical analysis of the preservation ability of RKME specification simplicity,
we consider the following simplified learnware paradigm based on RKME specification. The
learnware paradigm consists of two stages: submitting and deploying stages.

Submitting stage. In this stage, model developers submit their models to the learnware dock system.
To better characterize these models, developers also provide the specification R with each model to
the system, which is generated by the RKME mechanism from the dataset D used to train the model.
A model together with its corresponding specification forms a learnware.

Deploying stage. In this stage, the user has a learning task and an unlabeled dataset Du. To tackle the
task, the user submits the task requirementRu, which is generated by the RKME mechanism from the
dataset Du, and the system identifies helpful learnwares by comparing which learnware specifications
are "close" to Ru. Subsequently, the user can solve her task by reusing these learnwares.

It is evident that the design of specifications is of great importance. To make the learnware identifica-
tion (also called the search process) more precise, we hope the specification should contain some
information about the data of the developers (or users). On the other hand, since developers face
the challenge of uploading their specifications, it’s crucial that the specification should protect the
original data of the developer. The RKME generation process can be described as follows:

2



F (x1, · · · , xn;β1, · · · , βm; z1, · · · , zm) =

∥∥∥∥∥∥ 1n
n∑

i=1

k(xi, ·)−
m∑
j=1

βjk(zj , ·)

∥∥∥∥∥∥
H

. (1)

Here, {x1, · · · , xn} is the original dataset D of the developer sampling from a certain distribution P ,
with each data point xi = (x1i , · · · , xdi ) being d-dimensional. The RKME specification generated
from D is R = {β1, · · · , βm; z1, · · · , zm} that minimizes Eq. (1) given the number of synthetic data
m. We will focus on the set Z = {z1, · · · , zm}, which consists of synthetic data sharing the same
feature space with xi. The βi ∈ R are weights corresponding to each zi. Here k(·, ·) is a kernel
function, and ∥ · ∥H is the norm in the reproducing kernel Hilbert space induced by k(·, ·). In this
paper, we conduct our proofs using the Gaussian kernel k(x, x′) = exp(−γ∥x− x′∥22), where γ > 0,
which is currently employed for generating RKME specifications. The generalizability of our proofs
to other kernels will be discussed in the section 5.

The ability of RKME to search models can be characterized by its approximation of the Kernel
Mean Embedding (KME) [Smola et al., 2007] of the original data distribution, as this reflects how
well RKME characterizes the original data distribution. From Zhang et al. [2021], we arrive at the
following conclusion:
Lemma 2.1. Let the kernel k satisfies that k(x, x) ≤ 1 for all x ∈ X and any δ > 0, we have

∥µ̃− µ∥H ≤ 2

√
2

m
+ 2

√
1

n
+

√
2 log(1/δ)

n
, (2)

with probability at least 1− δ, where µ̃ is RKME of D and µ is KME of original data distribution P .

Existing experimental results have demonstrated that selecting m =
√
n allows RKME to effectively

search models, achieving success [Tan et al., 2023, Liu et al., 2024]. However, analysis of how
RKME protects the data of both developers and users from a theoretical perspective is still lacking.
Since the synthetic data Z shares the same feature space with X , it is essential to investigate whether
RKME contains any original data. Furthermore, whether the original data can be inferred from
RKME through specific attack methods remains unknown. The following sections of this paper will
explore these two perspectives to prove RKME’s data preservation ability. All proofs are provided in
the Appendix C.

3 Specification contains no original data

To analyze the RKME specification’s ability to preserve original data, we first need to determine
whether the specification contains original data. In this section, our objective is to quantify the
consistency of synthetic data in RKME with the original data, as with most studies considering
the privacy protection of synthetic data [Raghunathan, 2021, Abowd and Vilhuber, 2008]. Since
RKME is generated through a deterministic algorithm, the above issue becomes more pressing than
in randomized algorithms, where the output uncertainty can mitigate such concerns.

Quantifying approach. To quantify whether {z1, · · · , zm} in RKME contains any data from the
original dataset {x1, · · · , xn}, we analyze whether there exist i ∈ {1, · · · ,m} and j ∈ {1, · · · , n}
such that zi = xj , or more generally, ∥zi − xj∥ ≤ δ, which means that there are samples in RKME
that are very close to some original data. We propose the following quantitative metric:
Definition 3.1 (Consistency risk). We define the consistency risk of the RKME Z, generated from n
samples D drawn from the distribution P , containing original true data as:

RC(P) ≜ ED∼Pn

(
IZδ

⋂
Dδ ̸=∅

)
,

where I is the indicator function, and Zδ

⋂
Dδ ̸= ∅ indicates that, given δ, there exists i ∈

{1, · · · ,m} and j ∈ {1, · · · , n} such that ∥zi − xj∥ ≤ δ.

As can be seen, the defined risk function R represents the probability that the RKME generated from
n samples drawn from a potential distribution P may contain one of these n original samples. The
randomness here arises from the randomness of the sample set. It is evident that the value of RC(P)
ranges between [0, 1], with smaller values indicating a lower risk of RKME containing original
samples. In the following, we will analyze the consistency risk for RKME specification.
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Technical overview. To analyze the defined risk RC(P), the most natural approach would be to
find a closed-form solution for Z in relation to D, which would allow for a direct comparison of
the elements of Z and D. Unfortunately, solving the theoretical minimum of Eq. (1) is a nonlinear
equation that does not have a closed-form solution. Therefore, this paper employs geometric analysis
tools [Jost, 2008, Li, 2012], and analyzes the critical set of Eq. (1) to quantify the differences between
the data in the synthetic set and the original sample set without solving the equation. To the best of
our knowledge, we provide the first analysis based on geometric analysis tools to quantify privacy
risk, which sheds light on data preservation analysis.

3.1 Consistenc risk evaluation

We start our analysis with the case of the data dimension d = 1, and as we will see, the case for any
dimension d can be reduced to the analysis of this scenario d = 1. To facilitate the use of geometric
tools, we consider all data in the original datasetD and its corresponding RKME Z as wholes, namely
as points in spaces Rn and Rm, respectively. Let us denote them by D = (x1, · · · , xn) in Rn and
Z = (z1, · · · , zm) in Rm. The problem then translates into whether these two spaces have points
with identical coordinate components. The upper bound of RC(P) is ensured based on the fact that
in the space Rn where D resides, the set of D corresponding to Z in Rm with coordinate components
equal to D is of small measure. In the remainder of the section, we will prove this.

We begin our analysis with the case of δ = 0, focusing solely on whether any component of Z is
strictly identical to D. Our starting point is the correspondence between D and Z. From this, we
derive the following proposition:
Proposition 3.2. The set of D in Rn that satisfies the condition of having multiple distinct Z which
minimize Eq. (1) constitutes a set of measure zero.

Proposition 3.2 allows us to consider the remaining D in Rn after removing a set of zero measures.
These D correspond uniquely to a minimum value Z. If we fix Z, then, based on a similar idea as in
the Implicit Function Theorem, we arrive at the following conclusion.
Proposition 3.3. Given Z and {βi}ni=1, consider the setMZ defined as follows:

MZ =
{
(y1, · · · , yn) ∈ Rn

∣∣∣F (y1, · · · , yn;Z) ≤ F (x1, · · · , xn;Z),∀(x1, · · · , xn) ∈ Rn
}
.

This set forms a manifold of dimension n− 2m. The subsetM′
Z , defined as

M′
Z = {(y1, · · · , yn) ∈MZ | ∃i, j, zi = yj},

constitutes a submanifold ofMZ with a dimension not exceeding n− 2m− 1.

According to Proposition 3.2, we know that disregarding a set of zero measures, theMZ correspond-
ing to different Z are disjoint. In eachMZ, the D with components identical to Z form a submanifold
M′

Z of dimension not higher than n − 2m − 1. Consequently, we obtain a representation for all
possible points in Rn where D intersects with the generated Z: they constitute a subsetM =

⋃
Z

M′
Z.

Given that the dimension of Z is m, the Hausdorff dimension ofM(actuallyM is a manifold) is
not greater than n− 1, which makes it a zero measurement set in Rn. Thus, we conclude that for D,
which could possibly have the same coordinates as the generated Z, is of measure zero in Rn. From
this observation, together with Proposition 3.2, we have the following theorem:
Theorem 3.4. For any continuous original data distribution P , when the size of the RKME set
satisfies m < n

2 , we have that the consistency risk RC(P) = 0.

If P is a discrete distribution, then the above inference may not hold if the discrete values fall onM.
If P has very few possible values, Z will contain points from the original D when the number of
points in Z is large (due to the presence of many identical samples in D). In such cases, we find
that by limiting m to fewer than the possible values of P , we can still prove RC(P) = 0 using some
combinatorial techniques. Similar conclusions hold for mixed-type distributions.

In practical applications, it is desirable to ensure that RKME does not contain samples identical to
those in the original dataset D. Therefore, we further explore whether RKME may include samples
that are very close to those in the original data D, i.e., δ > 0. A crucial aspect of addressing this
issue involves the setting of δ, which is significantly influenced by the inherent scale of the data and

4



the spacing between the data points. We will adopt a commonly used approach, selecting δ as the
normalized value by the minimum spacing between different samples in the dataset.

Our idea of handling this scenario is fundamentally similar to that of δ = 0. Given Z, we similarly
defineMZ, andM′

Z, is now defined asM′
Z = {(y1, · · · , yn) ∈ M|∃i, j, |zi − yj | ≤ δ}. In this

case,M′
Z forms a measurable subset ofMZ with a dimension of n− 2m. Based on the selection

of δ as previously described, our objective is to estimate the ratio of the areas ofM′
Z andMZ. To

achieve this, we estimate the local curvature, perform local linearization, and use ideas similar to
isoperimetric inequalities for the estimation. We arrive at the following conclusion.
Theorem 3.5 (Bound of consistency risk). For any continuous original data distribution P , for
RKME with m synthetic data, we have

RC(P) < O

((
1

e

)n−2m
)
. (3)

Remark We believe that the privacy protection afforded by RKME results from the many-to-one
correspondence between the original sample set and the generated RKME. This is essentially a loss
of individual member information caused by compression. However, not all synthetic data generation
processes like this can achieve similar ideal effects. We have proved that if we choose the Laplacian
kernel (k(x, y) = exp (−γ∥x− y∥1)) instead of the Gaussian kernel in Appendix C.8, Theorem 3.4
would no longer hold. In fact, with the Laplacian kernel, we can prove that the synthetic data induced
by the corresponding RKME will definitely contain data identical to the original sample set. This
underscores the rationality of choosing the Gaussian kernel RKME as our specification.

For cases where the data dimension d > 1, we can similarly define D = {(∥x1∥, · · · , ∥xn∥) ∈ Rn}
and Z = {(∥z1∥, · · · , ∥zm∥) ∈ Rm}. Using the same approach, and based on Thm. 3.5 and the
inequality ∥x− y∥ ≤ |∥x∥ − ∥y∥|, we can derive conclusions for the d-dimensional case. The only
difference is a change in order, as given by the formula: RC(P) < O

((
1
e

)dn−2dm−m
)

.

3.2 Data preservation and search ability

As indicated in Thm. 3.5, we observe that the consistency risk decreases as the size of the RKME
specification decreases, which means that selecting a smaller number of synthetic data points m
can better ensure that RKME does not contain samples closely resembling the original data. If we
represent the data protection capability of RKME in terms of not containing original data using
1−RC(P), and the ability of RKME for search derived in Lemma 2.1, we can illustrate the resulting
trade-off, as shown in the following graph.
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Figure 1: Trade-off between data consistency preser-
vation and search ability.

In this Pareto frontier, it is challenging to
define the exact point of Pareto optimality.
This difficulty arises from the differing scales
of measuring data protection capabilities and
the gap in RKME’s approximation of the ac-
tual data distribution KME, which represents
search efficiency. It is hard to set a rule to
find the Pareto optimum due to these distinct
measurement scales. However, fortunately, in
existing works, we have observed that when
the size of the RKME specificationm is larger
than

√
n, the specification achieves satisfac-

tory results in the Learnware’s search tasks. In
this paper, we propose the following corollary:
Corollary 3.6. If we choose m ≤ k

√
n, where k ≥ d, for our defined RC(P), we obtain the

following equation:
RC(P) < 0.001. (4)

This implies that we are 99.9% confident that for any dataset D sampled from the distribution P , the
generated RKME will contain no synthetic data points that are close to the original samples in D.

The conclusion above offers a flexible approach to selecting the number of synthetic data points m
in RKME. As illustrated in Fig. 3.2, the shaded area encompasses the range that allows RKME to
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achieve efficient search capabilities and robust data protection, specifically in terms of not containing
data closely similar to the original dataset.

4 Specification defends data inference

Whether a learnware’s specification contains original data is not the only concern for its data protection
ability. Stadler et al. [2022] note that synthetic data may not withstand traditional data attacks
such as linkage [Elliot et al., 2018, Sweeney, 2002], and attribute disclosure [Elliot et al., 2018,
Machanavajjhala et al., 2007]. Common defenses against these attacks usually involve formal privacy
guarantees during the training process of the generative model to prevent breaches [Abowd and
Vilhuber, 2008, Bindschaedler et al., 2017], or the addition of noise to the synthetic data generation
process to satisfy differential privacy criteria [Xin et al., 2022, Jordon et al., 2018]. However, there
is still a lack of research on whether synthetic data generated by a deterministic mechanism can
naturally resist these attacks without extra noise.

RKME, in addition to potentially containing explicit original data, may also implicitly contain certain
information about the data, which could be inferred under these two types of attacks. We aim to
prove that RKME can protect against such inferences from the original data.

Quantifying approach. We suggest that the RKME mechanism, as a deterministic generation
mechanism, serves as a data anonymization solution [Kuppa et al., 2021]. To verify whether the
generation of the specification acts as an effective anonymization mechanism, our objective is to
quantify whether such a specification can address the data leakage risks that data anonymization
techniques are designed to mitigate. We quantified the data leakage risks associated with two types
of concerns: linkability and inference ability, which correspond to the defenses against the linkage
attack and the disclosure of attributes, respectively. For the risks of linkability and inference, we
model each privacy concern as an adversary tasked with determining whether, given the specification
or the original dataset, information about a component xt of a sample x in X , or its attributes, can
be inferred. For each adversary, we define a data leakage risk to measure the risk of the adversary
inferring the sample x or its attributes from X after the RKME Z of dataset D has been released.

4.1 Linkability risk evaluation

In considering data sharing with privacy protection characteristics, a primary concern is the risk of
linkability, which corresponds to an adversary conducting a linkage attack on the data. A linkage
attack aims to link a target record to a single record or a group of records in a sensitive dataset.
Specifically, we model the linkage attack as an adversary attempting to demonstrate whether a record
is present in a sensitive dataset.

Quantifying approach. We suggest that the RKME generation mechanism, as a deterministic
generation mechanism, serves as a data anonymization solution [Kuppa et al., 2021]. To verify
whether the generation of the specification acts as an effective anonymization mechanism, we aim
to quantify whether such a specification can address the data leakage risks that data anonymization
techniques were designed to mitigate. We quantified the data leakage risks associated with the
two types of leakage concerns: linkability and inference. These two are universally important de-
anonymization techniques. Additionally, the synthetic data generated by RKME and the original
data exist within the same feature space, making linkage attacks a potentially successful form of
attack within the learnware paradigm, and thus a focal point of our analysis. Moreover, an attacker
attempting to compromise the original data through RKME can only access a specific RKME,
rendering many attacks ineffective in the learnware paradigm (such as requiring multiple queries).

Linkability privacy game. Following the works of [Pyrgelis et al., 2017, Yeom et al., 2018, Stadler
et al., 2022], we model the risk of linkability as a membership privacy game between an adversary
A and a challenger C. In the learnware paradigm, learnware developers, who are also holders of
the original data D, are considered as the challengers in the membership privacy game, where Z
generated from D is visible to the adversary A. The objective of the adversary A is to infer whether
a target record xt, chosen by the adversary, is present in the original dataset D, based solely on the
knowledge of Z and some prior knowledge P .
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Algorithm 1 Linkability Privacy Game
1: A selects a target record xt from the data space X
2: A sends xt (or x̃t) to C
3: C samples a dataset D of size n− 1 from P
4: C randomly chooses a secret bit st from {0, 1}
5: if st = 0 then
6: C samples a random record x∗ from P\xt

7: C adds x∗ to D
8: else
9: C adds the target record xt to D

10: end if
11: C generates RKME Z with D
12: C randomly chooses a public bit b from {0, 1}
13: if b = 0 then
14: C sends D to A
15: else
16: C sends Z to A
17: end if
18: A receives either D or Z and the public bit b
19: A uses its linkability algorithm AL to guess ŝt
20: A makes a guess ŝt = AL(X, b, xt,P),X = D or Z
21: if ŝt = st then
22: Adversary A wins in the linkage attack
23: else
24: Adversary A fails to carry out a linkage attack
25: end if

The game 4.1 models a privacy game
to assess the potential linkage attack on
RKME synthetic data. Initially, A se-
lects a target record xt and sends it to
C. Then C independently and identically
draws a dataset D of size n − 1 from
the data distribution P , and chooses a
secret bit st ∼ {0, 1}. If st = 0, C
samples another record x∗ from the dis-
tribution, excluding the target record,
and adds it to D (simulating the sce-
nario where the original dataset does
not contain the target). If st = 1, C
adds the target record xt to D (sim-
ulating the scenario where the origi-
nal dataset contains the target). Sub-
sequently, C generates the correspond-
ing RKME Z using the RKME genera-
tion mechanism from D, and randomly
sends either the original dataset D or
its corresponding RKME Z to the ad-
versary. Upon receiving the dataset, the
adversary A guesses whether the target
xt is in the original dataset D through
ŝt ← AL (D, b, xt,P). If ŝt = st, it is
considered that the adversary has suc-
cessfully carried out a linkage attack.
Definition 4.1 (Linkage risk). We define the linkage risk of dataset X during the linkage privacy
game as

RL (X) ≜ sup
xt∈Rn

(
2P
[
AL (X, b, xt,P

)
= st

]
− 1
)

where X = D or Z, and the probability space is composed of the randomness of the target, the
randomness of the secret bit, and the adversary’s method of guessing.

Analyzing the linkage risk as defined above hinges on a critical examination ofAL (X, b, xt,P). This
expression reflects the potential strategies that an adversaryA might employ to guess whether a target
record exists in the original dataset D. The risk of linkage attacks on RKME can vary depending on
the strategy employed. Since the RKME generation mechanism is a deterministic algorithm, the most
formidable attack strategy an adversary could deploy can be brute-force attack.

Adversarial strategy. When the adversary receives the information X and b provided by the
challenger, the approach varies according to the value of b. If b = 0, the adversary has the original
dataset D and merely needs to check if the target xt is in D. When b = 1, the adversary receives the
RKME Z generated from D and knows the data’s prior distribution P . The adversary then employs
a brute-force attack to construct all possible datasets D′, collectively denoted as M , each of which
corresponds to RKME Z. The probability of these D′ being the actual dataset under P varies, and
the adversary can calculate the measure dP (D|P) for each D′ in M . They can assign a weight

dP (D|P)∫
M

dP (D|P)
to each D′ based on this measure, and then randomly select one D′ as the inferred true

dataset using this weight. The adversary checks if the target xt is in this D′ and makes a guess.

Risk evaluation. Similarly to the method used for analyzing the consistency risk in the previous
section, for a sample set D = {x1, · · · , xn} and its corresponding RKME Z = {z1, · · · , zm},
we map them to points in Rn and Rm respectively, as D = {(∥x1∥, · · · , ∥xn∥)} and Z =
{(∥z1∥, · · · , ∥zn∥)}. Similarly, we find that theM formed by Z constitutes a manifold.

For the linkage risk term 2P
[
AL (X, b, xt,P) = st

]
− 1, it can be interpreted as the difference

between the adversary A’s true positive rate and false positive rate, expressed as

P [ŝt = 1 | st = 1]− P [ŝt = 1 | st = 0]
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The first term P [ŝt = 1 | st = 1] corresponds to the probability of randomly selecting a D′ ∈ M
weighted on the manifoldM, where D′ contains coordinate components identical to Z. Expanding
this term, we have the following.

P [ŝt = 1 | st = 1] =

∫
M

dP (D|P)∫
M dP (D|P)

(
IZ ⋂

D ̸=∅
)

Similarly to the proof of Thm. 3.5, we can bound the first term. For the second term
P [ŝt = 1 | st = 0], we need to estimate the points in P that might generate Z but do not con-
tain the target record xt. We can provide an upper bound using the isoperimetric inequality. The
deductions made above can be summarized in the following theorem.
Theorem 4.2 (Bound of linkage risk). When the adversary employs a brute-force attack, the linkage
risk is bounded as follows:

RL (Z) < O

(
(2dm)!

(dn− 2dm)!

)
. (5)

Remark Our assessment of the risk of linkability is based on a worst-case evaluation, which is
applicable to any target. This approach differs from many previous studies that have focused more on
the average-case scenario. However, previous studies have shown that privacy risks associated with
data sharing are not uniformly distributed throughout the population [Kulynych et al., 2022, Long
et al., 2020, Rocher et al., 2019]. Our analysis of the worst-case scenario aligns more closely with
practical needs, as we aim to ensure sufficient privacy protection for each individual data point.

4.2 Inference risk evaluation

The risk of linkability is not the only concern about data leakage in data sharing processes. Data
anonymization mechanisms also protect individuals in the original data from attribute disclosure,
which corresponds to an inference attack. The risk of inference describes the concern that an adversary
might deduce the value of an attribute from the other attributes [El Emam and Alvarez, 2015].

Algorithm 2 Inference Privacy Game

1: A selects a partial target record x̃t from X̃ , where X̃
contains samples from X with some attributes removed.

2: A sends x̃t to C; C assigns a sensitive value xs to x̃t using
ϕ, forming xt = (x̃t, xs)

3: C samples a dataset D of size n− 1 from P
4: C randomly chooses a secret bit st from {0, 1}
5: if st = 0 then
6: C samples a random record x∗ from P\xt
7: C adds x∗ to D
8: else
9: C adds the complete target record xt to D

10: end if
11: C generates RKME Z from D
12: C randomly chooses a public bit b from {0, 1}
13: if b = 0 then
14: C sends D to A
15: else
16: C sends Z to A
17: end if
18: A receives either D or Z and the public bit b
19: A uses its inference algorithm AI to guess ŝt
20: A makes a guess ŝt = AI(X, b, xt,P),X = D or Z
21: if ŝt = st then
22: Adversary A wins in the inference attack
23: else
24: Adversary A fails to carry out an inference attack
25: end if

As illustrated in the Game 4.2, this
approach differs from the previous
linkability privacy game in that the
adversary only has access to a subset
of the attributes of the target record,
x1, · · · , xs−1, and attempts to infer
an unknown sensitive attribute value
xs. At the start of the game, the
adversary randomly selects a target
record from X̃ , which is a collec-
tion of samples from X with their
sensitive attributes removed. Upon
receiving partial information of this
target record, the challenger assigns
it a secret value xs ← ϕ(x̃t), where
ϕ denotes the projection of a partial
record from X̃ into the domain of the
sensitive attribute based on its distri-
bution. The challenger then merges
the partial attributes provided by the
adversary with the secret value as-
signed to form a complete sample
in X , following which the same pri-
vacy game as in the linkability case
is played. The adversary’s final infor-
mation comprises the dataset X and
a public bit b. Using this information,
the adversary makes a guess about
the target’s sensitive attribute value
x̂s. If the guess falls within our acceptable tolerance range, the adversary is considered to have won.
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Definition 4.3. We define the inference risk in the Inference Privacy Game as

RI (X)≜ sup
xs∈R

P [x̂s = xs |st = 1]− P [x̂s = xs |st = 0]

Adversarial strategy. To estimateRI , we need to consider the strategy of guessing of the adversary.
The adversary makes an estimate of the sensitive attribute value xs in xt based on the RKME Z
released by the Challenger, the public bit b, and the known partial attribute values x̃t. Let us first
consider the case where b = 0, where the Challenger releases the original dataset. In this scenario,
the adversary can deduce the missing attribute value through record linkage [Drechsler and Reiter,
2010, Machanavajjhala et al., 2007, Reiter and Mitra, 2009]. If the adversary can link the partial
information of the target with a unique sample in the original dataset (that is, there is only one sample
whose partial information matches that of the target), then the missing value can be successfully
reconstructed. In this case, P [AI (X, b, xt,P) = xs | st = 1] = 1.

When direct inference using linkage fails, the challenger must seek alternative methods to conjecture
the target record. Similarly, due to the deterministic mechanism of RKME, we still analyze the brute-
force attack. Specifically, like the previous linkage, the adversary first finds all possible sample sets
that correspond to RKME Z using a brute force attack. Among these sets, there may be some where
a subset of attributes of certain samples matches the target record. The adversary then selects the
original sample set from these subsets with partially matching information, using prior probabilities
similar to the brute-force attack for linkage. Through an analysis similar to our previous approach,
we have the following theorem.
Theorem 4.4 (Bound of inference risk). When the adversary employs a brute-force attack, the
inference risk is bounded as follows

RI(Z) < O

(
(2m)!

e(n−2m−1)(n− 1)!

)
(6)

4.3 Data preservation and search ability

Analogously to the analysis of the consistency risk, we hope that RKME can withstand linkage and
inference attacks while still providing effective search capabilities. Regarding search ability, we
continue to use the characterization of how the RKME generated from dataset D approximates its
original distribution P with varying numbers of synthetic data, as described in Lemma 2.1. We
represent the protective capacity of RKME for dataset D against the two types of attacks using
RL(D)−RL(Z) and RI(D)−RI(Z), respectively. These represent the reduction in linkage and
inference risks when publishing RKME instead of the original data. Based on Thm. 4.2 and Thm. 4.4,
we propose the following corollary:

Corollary 4.5. If we choose m ≤ n
2 , for RL(D) − RL(Z) and RI(D) − RI(Z), we obtain the

following equation:

RL(D)−RL(Z) ≥ 0.999 (7)
RI(D)−RI(Z) ≥ 0.999 (8)

This implies that we have 99.9% confidence that RKME can defend the linkage and inference attack.
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Figure 2: Trade-off between the ability of data
linkage (inference) protection and search ability.

To ensure that RKME maintains a risk level
below our tolerance threshold (i.e., 0.001%)
for consistency risk, as well as for linkage and
inference risks, and still achieves satisfactory
search efficiency, it suffices to select the number
of points within the range (

√
n,min(k

√
n, n2 )).

This range offers flexibility in adjusting the num-
ber of points m. When greater precision in
search is required, we can opt for a larger value
of m within this interval. In contrast, when a
higher degree of data protection is desired, a
smaller value of m can be chosen within the
same range.
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5 Discussion

In our work, we have provided proofs only for the Gaussian kernel; however, our method can be
extended to analyze a broad class of kernels and yield similar conclusions regarding their data
protection capabilities. For kernels that exhibit non-rationality and analyticity (such as the Sigmoid
kernelK(x, y) = tanh(γxT y+r) and the Cauchy kernel K(x, y) = 1

1+γ|x−y|2 ), they can be treated
similarly to the Gaussian kernel by considering samples as bundles of synthetic data within the sample
space. The difference lies in that, due to the specific forms of these kernels, the risk estimates we
calculate during our analysis will vary, and the derivative estimates in the proof process may require
re-evaluation. Although each kernel will still require its own specific analysis, the approach provided
in this paper is generally applicable. Extending this framework to prove more robust results for a
broader class of kernels will be part of our future work.

The optimization problems involving Gaussian kernels are non-convex and non-rational, making
theoretical analysis intractable under traditional tools. Analyses of optimization problems using
the Gaussian kernel often rely on numerical experiments for validation. For the first time, we have
made it possible to analyze the optimal solution using geometric analysis techniques to analyze the
data protection capability of the RKME specification. This approach not only applies to the privacy
analysis of RKME as a specific form of synthetic data, but it also provides insights for analyzing
similar nonlinear non-convex optimization problems involving Gaussian kernels. Applying this
technique to broader contexts will be part of our future work. The main limitation of this analytical
method is that the upper bound may not be optimal due to multiple steps of restrictions and relaxations.
However, pursuing a tighter upper bound remains theoretically significant.

In terms of relevant privacy theories, differential privacy [Dwork, 2006] (DP) is the most widely
used technique, with its privacy protection characteristics derived primarily from the randomness
introduced by additional noise. However, for the RKME specification in our study, due to its
size, the well-known privacy-utility trade-off in differential privacy [Alvim et al., 2012] particularly
pronounced after we add noise to the RKME mechanism, which can significantly degrade performance
in learnware identification. This means that applying existing DP techniques to analyze privacy in
RKME is quite challenging. On the other hand, due to the extensive data compression inherent in
the RKME generation process, we believe that it possesses the data protection capabilities necessary
within the learnware paradigm. Therefore, this paper also offers a perspective on how a compressive
deterministic algorithm can achieve privacy protection without relying on DP methods.

Another important perspective for future work is to establish sufficient criteria for when specifications
in learnware can provide strong protection for the developer’s original data. This paper evaluates
the risks associated with RKME containing original data, consistency risk, and the exposure risks
under two common types of attacks: linkage risk and inference risk. We prove the necessity of
protecting original data through the RKME specification induced by the Gaussian kernel. Due to the
deterministic nature of the RKME generation mechanism, some attacks relying on randomness, such
as multiple queries, are ineffective against RKME, and the evaluation criteria presented in this paper
are broadly applicable. However, seeking more general evaluation standards and investigating what
types of specifications can effectively protect the developer’s original data under these criteria will be
a key focus of our future work.

6 Concluding remarks

This paper presents a theoretical study about the ability of developer’s data preservation of the RKME
specification, which was recently proposed for building learnware specification [Zhou and Tan, 2024]
and used in the Beimingwu learware dock system [Tan et al., 2024b]. By leveraging geometric
analysis techniques, we prove that as the size of RKME specification decreases, the ability of the
developer to preserve data increases, that is, the possibility of exposing the developer’s original data
decreases, and the ability to defend against the two commonly encountered attacks, i.e., linkage attack
and inference attack, increases. Moreover, there exists a broad range of specification sizes that endow
the above properties and enable effective learnware identification. Note that this work also offers a
new perspective on the data preservation ability of reduced sets and the corresponding analysis of
deterministic algorithms.
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A Related work

A.1 Related work of Learnware

The learnware paradigm [Zhou, 2016, Zhou and Tan, 2024] offers a systematic approach to managing
well-trained models and leveraging their capabilities to assist users in solving their tasks, rather
than training a model from scratch. A learnware consists of a well-trained model accompanied by a
specification that describes its capabilities, with this specification being the central component of the
learnware. Based on the RKME specification, which uses a reduced set to sketch the distribution of the
task data, Wu et al. [2023] proposed to identify helpful learnwares by matching the task distribution.
Zhang et al. [2021] extended it to handle user tasks with unseen parts. To efficiently recommend
learnwares among numerous learnwares, Liu et al. [2024] suggested evolving the specification
with other learnwares for more accurate recommendations and construct the tree structure for
managing learnwares for efficient learnware identification, and Xie et al. [2023] proposed using
minor representative learnwares as anchor learnwares to speed up learnware identification without
traversing the whole system. For the models and user tasks share the different feature space, Tan
et al. [2024a] first considers the heterogeneous feature space scenario, but it assumes that the original
training data is accessible, and auxiliary data across the entire feature space is collected. To relax this
strong assumption of data accessibility, Tan et al. [2023] investigates the organization and utilization
of a heterogeneous learnware dock system without requiring access to the original data or auxiliary
data across the feature space.

Based on the above research, the first learnware docking system, Beimingwu [Tan et al., 2024b], was
recently released. This system streamlines the entire learnware process and offers a highly scalable
architecture, facilitating future algorithm implementation and experimental research. Given these
progresses, the RKME specification plays a crucial role within the learnware paradigm. However,
despite its effectiveness, a theoretical analysis of the preservation capability of the RKME specification
for the developer’s training data is still lacking. Proving that the specification can protect the
developer’s training data not only safeguards both developers and users of learnware but also ensures
the rationality of learnware specifications. This paper proves that the RKME specification can scarcely
contain any of the developer’s original data and provides robust defense against common inference
attacks, while preserving sufficient distribution information for effective learnware identification.

A.2 Related work of privacy

As the interaction of data becomes increasingly prevalent in various machine learning scenarios, the
issue of sharing data while safeguarding data privacy has emerged as a critical concern. An important
solution to this challenge is the release of synthetic data, generated through specific mechanisms.
This approach manages to achieve an effectiveness comparable to original data in certain aspects
(such as model training, data analysis, etc.), while simultaneously protecting the privacy of original
data [Drechsler and Reiter, 2010, Bellovin et al., 2019, Arnold and Neunhoeffer, 2020, Stadler et al.,
2020, England, 2022, Stadler et al., 2022, Xu et al., 2019].

Previously, it was commonly assumed that synthetic data, being ’artificial’, have no direct link to real
data. Therefore, in earlier work, it was believed that synthetic data generated by generative models,
such as GANs [Goodfellow et al., 2014, Frid-Adar et al., 2018, Arjovsky et al., 2017, Salimans
et al., 2016] and VAE [Kingma and Welling, 2014, Yan et al., 2016], have the capability to protect
the privacy of original data. Their effectiveness was typically demonstrated through experimental
similarity tests between real and synthetic records to assess the privacy risks associated with synthetic
datasets [Choi et al., 2017, Yale et al., 2019a,b].

Unfortunately, Chen et al. [2020] pointed out that the aforementioned generative models could expose
original data under certain privacy attacks. Stadler et al. [2022] further noted that not all synthetic
data can withstand traditional attacks on data, such as linkage [Elliot et al., 2018, Sweeney, 2002],
and attribute disclosure [Elliot et al., 2018, Machanavajjhala et al., 2007]. To counter this issue,
existing efforts [Xin et al., 2022, Jordon et al., 2018, Harder et al., 2021] have applied differential
privacy (DP) [Dwork et al., 2006] to develop differentially private data generators, as DP is the de
facto privacy standard which provides theoretical guarantees of privacy leakage. Data produced by
DP-generators can then be applied to various tasks, such as data analysis, visualization, training
privacy-preserving classifiers, etc.
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However, although DP appears to be a theoretically guaranteed privacy solution, Alvim et al. [2018],
Zhao et al. [2020] have pointed out that DP involves a tradeoff between privacy and utility, and in
some cases, this tradeoff can lead to a significant decrease in utility. Particularly, in the context of
learnware specification, due to the requirement for usability, we demand that the number of synthetic
data be much smaller than the number of original data, which results in a severe decrease in utility
when applying DP, making it unsuitable for our framework. We attempt to demonstrate that significant
data compression can also lead to data privacy, similar to the idea of dataset condensation (DC) [Loo
et al., 2023, Wang et al., 2018]. However, in the work on DC, the privacy protection properties of
synthetic data are primarily assessed through experimental validation. In our work, we aim to analyze
this aspect theoretically, brought about by reduced synthetic data by modeling it as a low-dimensional
submanifold of a high-dimensional manifold. This technique and perspective are proposed for the
first time, making the analysis of synthetic data from non-convex optimization become possible.

The risk of linkability has been theoretically and practically demonstrated for a wide range of data
types: tabular micro-level datasets [Narayanan and Shmatikov, 2008, Sweeney, 2002], social graph
data [Narayanan et al., 2011, Narayanan and Shmatikov, 2009], aggregate statistics [Pyrgelis et al.,
2017], statistical models [Shokri et al., 2017], and black-box attacks [Stadler et al., 2022]. Linkage
attacks on tabular microdata typically aim to match a target record (associated with an identity) to a
single record in a sensitive database, from which direct identifiers have been removed.

Regarding attribute inference attacks, existing research has established a fairly complete framework.
Most studies model this attack as the adversary using a machine learning model and incomplete
information about a data point to infer the missing information for that point [Fredrikson et al., 2014,
2015, Wu et al., 2016]. In our work, we characterize the advantage of an attribute inference adversary
as their ability to infer a target feature given an incomplete point from the training data, relative to
their ability to do so for points from the general population.

B Background

B.1 Reduced Kernel Mean Embedding

Kernel Mean Embedding. KME [Smola et al., 2007] is a technique in machine learning that maps
the mean of a probability distribution into a Reproducing Kernel Hilbert Space (RKHS). Given a
probability distribution P over a domain X , and a kernel function k : X ×X → R [Schölkopf and
Smola, 2002], the KME of P is defined as the following:

µ(P) =
∫
k(x, ·)dP(x)

where µ(P) represents the kernel mean embedding of the distribution P , x is an element of the
domain X , and ‘·’ denotes a placeholder for a second argument in the kernel function. Denote the
associated RKHS as Hk and ϕ : x ∈ X → k(x, ·) ∈ Hk the corresponding canonical feature map.
The kernel function k quantifies the similarity between pairs of data points and is required to be
positive definite to induce a valid RKHS.

Kernel Mean Embedding (KME) exhibits an array of beneficial properties, which contribute to its
appeal as a robust method for diverse machine learning endeavors, most notably in the realm of
specification. By the reproductiong property, ∀f ∈ Hk, ⟨f, µ(P)⟩ = EP [f(X)], which demonstrates
the notion of mean. By using characteristic kernels [Sriperumbudur et al., 2011], no information
about the distribution P would be lost during kernel embedding, i.e. ||µ(P)−µ(P ′)||Hk

= 0 implies
that P = P ′. One of the most commonly used samples is the Gaussian kernel

k(x, x′) = exp(−γ||x− x′||22), γ > 0

The reproducing property of the Gaussian kernel and its characteristic as a characteristic kernel make
it a widely used kernel in Kernel Mean Embedding (KME) [Gretton et al., 2012, Muandet and
Schölkopf, 2013, Doran, 2013]. In the learnware market, for tabular data, the RKME corresponding
to the Gaussian kernel is currently in use, while for image and text data, the RKME corresponding
to the Gaussian kernel can also be used after extracting embeddings [Tan et al., 2024a, 2023, Xie
et al., 2023]. In the privacy proofs that follow in this paper, we mainly consider the privacy protection
capabilities of the RKME induced by the Gaussian kernel.
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In learning tasks , we often have no accsee to the true distribution P , but we can use samples to
estimate it. The empirical kernel mean embedding is an approximation of the KME based on a finite
set of samples from a probability distribution. Given a probability distribution P over a domain X ,
a kernel function k : X × X → R, and a set of n independent and identically distributed (i.i.d.)
samples {x1, x2, . . . , xn} drawn from P , the empirical KME µ̂(P) of P is defined as:

µ̂(P) = 1

n

n∑
i=1

k(xi, ·)

The empirical KME µ̂ will converge to µ in the rate of O(1/
√
n) measured by RKHS norm || · ||H

under mild conditions [Smola et al., 2007].

Reduced Kernel Mean Embedding. Although the properties of KME are desirable, the computa-
tion of KME becomes challenging when there are many samples, and the calculation of KME requires
access to the original data. Therefore, KME is not a specfication for learnware.To address this issue,
[Wu et al., 2023] introduce RKME to approximate original KME via the reduced set method, which
is first used to speed up SVM prediction [Burges, 1996]and receives more comprehensive studies in
[Scholkopf et al., 1999].

The idea of RKME is to find a set (βj , zj)
m
j=1 and compute

∑m
j=1 βjk(zj , ·) to approximates the

KME of original data {xi}ni=1, i.e. we want to solve

min
β,x
|| 1
n

n∑
i=1

k(xi, ·)−
m∑
j=1

βjk(zj , ·)||H (9)

where βj ∈ R is the coefficient and xi ∈ X is the reduced sample. The above problem is known as
the reduced set construction [Scholkopf et al., 1999], when zj is newly constructed samples. Several
algorithms can be used for handling the above problem.

KME µ̃ enjoys a linear convergence rate O(e−m) to empirical KME µ̂ whenH is finite dimensional,
which makes it a good approximation of the distribution. Meanwhile, the raw data are inaccessible
to users. In this paper, we address the problem of utilizing RKME as the specification for the
learnware paradigm, aiming for the efficient retrieval and organization of learnware. Consequently,
both uploaders and users of learnware are required to submit the aforementioned RKME derived from
their datasets, that is, the corresponding (βj , zj)

m
j=1. Our goal is to demonstrate that by submitting

(βj , zj)
m
j=1, excessive information from the original dataset is not disclosed, ensuring that such a

specification can preserve the privacy of the original data.

B.2 Synthetic data

The issue of releasing synthetic data to enable data analysis and public availability while safeguarding
privacy has garnered widespread attention [Drechsler and Reiter, 2010, Bellovin et al., 2019, Arnold
and Neunhoeffer, 2020, Stadler et al., 2020, England, 2022, Stadler et al., 2022, Xu et al., 2019].
Synthetic datasets are designed to retain the statistical characteristics of the original data while
eliminating personal data, thereby protecting personally identifiable information [Stadler et al., 2020].
In research on synthetic data, it’s commonly held that synthetic data, being ’artificial’, have no direct
link to real data. This assumption leads to analyses focusing only on similarity tests between real
and synthetic records to assess the privacy risks of synthetic datasets [Choi et al., 2017, Yale et al.,
2019a,b].

However, Stadler et al. [2022] note that not all synthetic data can withstand traditional attacks on
data, such as linkage [Elliot et al., 2018, Sweeney, 2002], and attribute disclosure [Elliot et al., 2018,
Machanavajjhala et al., 2007]. Common defenses against such attacks usually rely on formal privacy
guarantees during the generative model training process to prevent privacy breaches [Abowd and
Vilhuber, 2008, Bindschaedler et al., 2017], or involve adding noise to the generation process of
synthetic data to meet differential privacy criteria [Xin et al., 2022, Jordon et al., 2018]. However,
research is still lacking on whether synthetic data produced by a deterministic generation mechanism
can naturally resist these two types of attacks without the addition of extra noise. In this paper, we
aim to demonstrate that the RKME specification’s deterministic generation mechanism, when using
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an appropriate number of synthetic points, can effectively defend against these two types of attacks,
while also performing well in learnware identification.

Many studies have explored similar issues, such as non-parametric models for image generation and
adversaries with white-box or query access to the model [Chen et al., 2020, Hayes et al., 2019, Reiter
et al., 2014], as well as considerations where the generating mechanism is treated as a complete black
box, with no allowance for querying the model [Stadler et al., 2022]. In this paper, we allow the
disclosure of the RKME generation mechanism and permit arbitrary queries to the RKME generation
process. It is important to note that our discussion is limited to the potential privacy leakage of
specifications as synthetic datasets in the learnware market. We assume that a learnware uploader’s
model is not subject to querying in our discussion, as this strays from the focus on the privacy of
learnware models and extends beyond the scope of privacy concerns in the learnware market.

B.3 Notations and technical overview

Notations Representation
X Sample space
D = {xi}ni=1 Raw data set
D = (x1, x2, · · · , xn) Raw data set’s coordinate
M Manifold composed of D
PD Distribution of Raw data
Z = argmin(β,z) F ((β, z), D) Generation of RKME
n Number of raw data
m Number of synthetic data
d Dimension of data
k(·, ·) (Gaussian) kernel function
∥ · ∥H RKHS iuduced by k(·, ·)

In our study, we equip Rn with the conventional Euclidean product and norm, represented by ⟨·, ·⟩
and ∥ · ∥, respectively. We define B(x, r) as the open ball within Rn, centered at x with radius
r. For any subspace H ⊂ Rn, the notation BH(x, r) signifies the intersection of H and B(x, r),
constituting the open ball in H for the induced norm.

This paper utilizes fundamental concepts of the geometry of submanifolds in Euclidean space Rn

for those not familiar with the subject. We consider C∞ Riemannian manifolds (M, g), informally
referred to as smooth, which encompass an abstract manifold M equipped with a C∞ atlas and a
C∞ metric g. Such manifolds can always be isometrically embedded into some Euclidean space,
implying that the pull-back of the canonical Euclidean metric aligns with the manifold’s metric. A
smooth submanifold M ⊂ Rn indicates that M is the image of an embedding of a smooth abstract
Riemannian manifold.

In the context of comparing the smoothness of manifolds across a range of models, we adopt a
canonical parametrization. Specifically, we utilize the exponential map; for any smooth submanifold
M ⊂ Rn and any point x ∈ M , this map defines a smooth parametrization of M around x. The
parameter ε is selected to be sufficiently small, and the maximal value of ε is termed the injectivity
radius at x, denoted as injM (x). For closed subsets M of Rn, exponential maps are defined for entire
tangent spaces, as per the Hopf-Rinow theorem.

The volume measure of a submanifold M of dimension d, denoted by µM , is the restriction of the
d-dimensional Hausdorff measureHd to M . This volume measure aligns with the standard definition
of volume measure in a Riemannian manifold. If ψ :M → R is a continuous function with support
within a certain range of x, the volume measure can be expressed as an integral involving the function
ψ, the metric tensor gx(v), and a chosen orthonormal basis of TxM . The volume of M , simply
denoted as vol M , is finite for compact submanifolds of Rn.

Technical Overview. The starting point of this paper regarding the data protection capability of
RKME is that the generation process of RKME compresses the data to a great extent, thereby losing a
significant amount of personal data information. Additionally, due to the irrationality and nonlinearity
of the chosen Gaussian kernel, the generated RKME almost contains no original individual data
information. We model this mathematically as follows: given the RKME Z, there are many possible
original datasets D that could generate it. After we establish a coordinate correspondence for the
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original dataset D as D, we consider the set MZ in Rn consisting of all points D that could generate
the RKME Z.

We first attempt to prove that MZ forms a manifold in Rn. This proof will allow us to use various
geometric tools for analysis, and demonstrating that such a set, constructed from the solutions to
nonlinear equations, is a manifold is not trivial. This represents one of the most challenging parts of
the upcoming proof.

After proving that MZ constitutes a manifold, we aim to show that the tangent space of this manifold
does not contain points aligned with the coordinate axes, indicating that these points form a null
measure set. This can be better understood through Ricci curvature: we are essentially proving that
at almost every point on this manifold, the Ricci curvature is non-zero. The significance of this
condition is that we consider those parts of the manifold MZ that expose the original data to be a
lower-dimensional submanifold, thus constituting a null measure set.

Finally, we need to analyze the measure of this null set if we take a neighborhood of radius δ
around each point. Since δ is relatively small, this is equivalent to determining the measure of the
lower-dimensional submanifold in the corresponding dimensional space relative to the measure of
MZ itself. This quantity can be interpreted as the risk level of RKME potentially exposing individual
privacy. In the subsequent proofs, we will follow this flow of reasoning.

C Proofs

C.1 Lemmas

Recall the generation mechanism of RKME

F (x1, · · · , xn;β1, · · · , βm; z1, · · · , zm) =

∥∥∥∥∥∥ 1n
n∑

i=1

k (xi, ·)−
m∑
j=1

βjk (zj , ·)

∥∥∥∥∥∥
H

(10)

Upon substituting k(·, ·) with the Gaussian kernel and conducting an expansion, we derive the
following expression,

F 2 =

∥∥∥∥∥∥ 1n
n∑

i=1

k (xi, ·)−
m∑
j=1

βjk (zj , ·)

∥∥∥∥∥∥
H

=

〈
1

n

n∑
i=1

k (xi, ·)−
m∑
j=1

βjk (zj , ·) ,
1

n

n∑
i=1

k (xi, ·)−
m∑
j=1

βjk (zj , ·)

〉
H

=

〈
1

n

n∑
i=1

k (xi, ·) ,
1

n

n∑
i=1

k (xi, ·)

〉
H

− 2

〈
1

n

n∑
i=1

k (xi, ·) ,
m∑
j=1

βjk (zj , ·)

〉
H

+

〈
m∑
j=1

βjk (zj , ·) ,
m∑
j=1

βjk (zj , ·)

〉
H

=
1

n2

n∑
i=1

n∑
j=1

k (xi, xj)−
2

n

n∑
i=1

m∑
j=1

βjk (xi, zj) +

m∑
i=1

m∑
j=1

βiβjk (zi, zj)

=
1

n2

n∑
i=1

n∑
j=1

e−γ(xi−xj)
2

− 2

n

n∑
i=1

m∑
j=1

βje
−γ(xi−zj)

2

+

m∑
i=1

m∑
j=1

βiβje
−γ(zi−zj)

2

(11)

To infer the properties of F by analyzing those of F 2, we consider this approach valid due to the
following reason: given a set of samples {xi}ni=1, treating F and F 2 as functions of (βj , zj), it can
be shown that F 2 and F share the same critical set, and the points where they attain their minimum
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values coincide. This conclusion is readily provable as F is generally considered to be non-zero in
our discussions.

Let us denote F 2 as G. Now, considering the first derivatives of G, we have:

∂G

∂βi
= − 2

n

n∑
k=1

e−γ(xk−zi)
2

+

m∑
k=1

βje
−γ(zk−zi)

2

+ βi

∂G

∂zi
= −2βi

n

n∑
k=1

2γ (xk − zi) e−γ(zi−xk)
2

+ βi

m∑
k=1

βj2γ (zi − zk) e−γ(zk−zi)
2

For the second derivatives, we obtain:

∂2G

∂βi∂βj
=

m∑
i=1

βje
−γ(zj−zi)

2

+ δij

∂2G

∂zi∂zj
= −2βiδij

n

n∑
k=1

(
4γ2 (xk − zi)2 − 2γ

)
e−γ(xk−zi)

2

+ (1− δij)βiβj
(
4γ2 (zi − zj)2 − 2γ

)
e−γ(zj−zi)

2

This analysis serves as a foundational step in understanding the underlying properties of the RKME
specification, particularly in the context of Gaussian kernels and their influence on the optimization
landscape of the RKME formulation.

Next, we consider the relationship between D and Z. We begin by the following lemmas:

Lemma C.1. The Reproducing kernel Hilbert space RKHS of Gaussian kernel is separable.

Proof. Since Rn is separable, we can take any countable dense subset S of Rn. Given that the
Gaussian kernel is continuous, the set {k(x, ·)|x ∈ S} forms a dense subset inH.

Lemma C.2. Given a fixed D, if the corresponding equation, Eq. 1, does not equal zero, i.e.,∥∥∥∥∥∥ 1n
n∑

i=1

k (xi, ·)−
m∑
j=1

βjk (zj , ·)

∥∥∥∥∥∥
H

> 0 (12)

then D has a unique corresponding Z.

Proof. Based on Lemma C.1, we understand thatH is isomorphic to l2. Once we fixm, if Eq. 1 is not
zero, it implies that 1

n

∑n
i=1 k (xi, ·) does not lie in any m-dimensional subspace ofH. Suppose the

optimal set of RKME solutions corresponding to it is Z = {z1, . . . , zm}. Next, we will demonstrate
its uniqueness. Let us denote R =

∥∥∥∑m
j=1 βjk (zj , ·)

∥∥∥
H

.

Step 1 In the first step, we prove that {z1, . . . , zm} are linearly independent and form a basis of
an m-dimensional subspace of H. Suppose, for the sake of contradiction, that they are linearly
dependent; then the subspace spanned by {z1, . . . , zm} is less than m-dimensional. Therefore, we
can select S = {s1, . . . , sm−1, sm, . . .} such that {k(si, ·)} forms a countable basis ofH. Since the
subspace spanned by {z1, . . . , zm} is at most (m− 1)-dimensional, without loss of generality, we let
the subspace spanned by {z1, . . . , zm} be a subspace of the space spanned by s1, . . . , sm−1.

Now, given D, we can rewrite the empirical KME of D, 1
n

∑n
i=1 k (xi, ·), in terms of the basis S:

1

n

n∑
i=1

k (xi, ·) =
∞∑
i=1

αik(si, ·) (13)

where
∑∞

i=1 |αi| <∞, and among the αi, only a number greater than m and less than n are nonzero.
Without loss of generality, we assume that the αi are arranged in decreasing order.
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At this point, the optimal projection of 1
n

∑n
i=1 k (xi, ·) onto the m − 1-dimensional subspace is∑m−1

i=1 αik(si, ·), because ∥∥∥∥∥ 1n
n∑

i=1

k (xi, ·)−
m∑
i=1

αik(si, ·)

∥∥∥∥∥
H

(14)

achieves the minimal value. We denote this optimal projection as R′. Now we estimate R−R′:

R−R′ ≥ ∥αmk(sm, ·)∥H > 0 (15)

This leads to a contradiction.

Step 2 Let’s consider the set S = {z1, . . . , zm, sm+1, sm+2, . . .}, ensuring that
{k(z1, ·), . . . , k(zm, ·), k(sm+1, ·), . . .} forms a countable basis in H. Suppose there exists an-
other set {y1, . . . , ym} that achieves the same value for Eq. 1 as {z1, . . . , zm} with respect to
1
n

∑n
i=1 k (xi, ·). In that case, we can expand {y1, . . . , ym} with the basis {sm+1, sm+2, . . .} to

form another basis ofH, denoted as S′ = {k(y1, ·), . . . , k(ym, ·), k(s′m+1, ·), . . .}.
Similar to the proof in Step 1, we know that the optimal m-dimensional projection subspaces of the
empirical KME 1

n

∑n
i=1 k (xi, ·) onto the two bases are generated by {z1, . . . , zm} and {y1, . . . , ym},

respectively. Next, we will prove that the elements in {z1, . . . , zm} and {y1, . . . , ym} correspond
to each other and are equal. Let us denote the optimal m-dimensional projection subspace of
1
n

∑n
i=1 k (xi, ·) onto both bases asH′.

To prove this, we first establish two auxiliary propositions:

Proposition C.3. The Gaussian kernel is a strictly positive-definite kernel.

Proof. Since the Fourier transform of a Gaussian function is also a Gaussian function and always
positive, the proposition holds.

Proposition C.4. For {x1, . . . , xn}, the following two statements are equivalent:

1. {k(x1, ·), . . . , k(xn, ·)} are linearly independent.

2. The points {x1, . . . , xn} are all distinct.

Proof. It is obvious that [1] implies [2]; we only need to prove that [2] implies [1]. Assume that the
points {x1, . . . , xn} are all distinct. Suppose there exist real numbers c1, c2, . . . , cn such that

n∑
i=1

cik (xi, ·) = 0.

Recall that in an RKHS, the inner product is defined as

⟨f, g⟩H =

m∑
i=1

l∑
j=1

αiβjk
(
xi, x

′
j

)
,

where f =

∞∑
i=1

αik (xi, ·) , g =

∞∑
j=1

βjk
(
x′j , ·

)
.

(16)

Based on our assumption, we compute〈
n∑

i=1

cik (xi, ·) ,
n∑

j=1

cjk (xj , ·)

〉
H

= 0.

Using the linearity of the inner product, we expand this as
n∑

i=1

n∑
j=1

cicjk (xi, xj) = 0.
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Let K be the n× n symmetric kernel matrix with elements

Kij = k (xi, xj) = exp

(
−∥xi − xj∥

2

2σ2

)
.

Then the above equation can be written as

c⊤Kc = 0.

Since the Gaussian kernel is strictly positive-definite, K is positive-definite, implying that c⊤Kc > 0
unless c = 0. Therefore, we must have c = 0, which contradicts the assumption that there exist
nonzero ci. Hence, the proposition is proved.

Using Proposition C.4, for the sets {z1, . . . , zm} and {y1, . . . , ym}, we know that the func-
tions {k(z1, ·), . . . , k(zm, ·), k(y1, ·), . . . , k(ym, ·)} are linearly dependent. Therefore, there exist
p, q ∈ {1, 2, . . . ,m} such that zp = yq . Without loss of generality, let zp = zm and yq = ym. The re-
maining elements {z1, . . . , zm−1} and {y1, . . . , ym−1} are still linearly dependent. By mathematical
induction, we thus complete the proof.

Lemma C.5. The set of all possible D that make the corresponding equation Eq. 1 equal to zero has
measure zero in Rn. That is,

µ

(x1, . . . , xn) ∈ Rn | ∃{β1, · · · , βm, z1, · · · , zm}, s.t.

∥∥∥∥∥ 1n
n∑

i=1

k(xi, ·)−
m∑

j=1

βjk(zj , ·)

∥∥∥∥∥
H

= 0

 = 0

(17)

Proof. We say that any f ∈ H can be represented by t elements in R via the kernel k(·, ·) if there
exist (s1, . . . , st) such that ∥∥∥∥∥∥f −

t∑
j=1

βjk(sj , ·)

∥∥∥∥∥∥
H

= 0. (18)

We define the representational dimension of f as the infimum of such t, denoted as tf .

Similar to the proof idea in Lemma C.2, we know that the representational dimension tk ≤ m for the
empirical KME 1

n

∑n
i=1 k(xi, ·).

For tk = c and the set {x1, . . . , xn}, from Proposition C.4, we easily obtain that there exist p, q ∈
{1, 2, . . . , n} such that xp = xq .

Therefore, all {x1, . . . , xn} with tk = c are formed by the union of at most
(
n
c

)
c-dimensional

subspaces; denote this union as H′
c. By dimensional considerations, it is easy to see that H′

c has
measure zero inH.

Since a countable union of measure zero sets is still a measure zero set, we thus obtain that
⋃∞

t=1H′
t

still has measure zero inH, hence the conclusion follows.

Lemma C.6. Let us fix Z. Denote C ⊂ Rn as the critical set of G(x, β, z), we have that the
Lebesgue measure of G(C) is 0 in R.

Proof. We delineate a general scenario where f : Rm → Rn manifests as a smooth mapping.
Without loss of generality, let M = Rm and N = Rn. We employ mathematical induction with
respect to m. The base case where m = 0 is trivially evident. Let C represent the entirety of critical
values of f , denoted as the critical set. It suffices to demonstrate that for any y ∈ C, there exists an
open neighborhood around y such that its intersection with C constitutes a null set. Define

Cs = {x ∈ Rn | f has all its k-th partial derivatives equal to zero at x, 1 ≤ k ≤ s.}

Clearly, C ⊃ C1 ⊃ C2 ⊃ · · · forms a sequence of closed sets. The objective is to ascertain that
f(Cs − Cs+1) are all null sets.
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1. f(C − C1) is a null set. Indeed, suppose x0 ∈ C, x0 /∈ C1, then f at x0 possesses non-
vanishing first-order partial derivatives, without loss of generality, let ∂f1

∂x1 ̸= 0. Consider the mapping
g0 : Rm → Rm, defined as

g0(x) =
(
f1(x), x

2, x3, · · · , xm
)
,

where g0 at the vicinity of x0 has a rank of m. By the inverse function theorem, open neighborhoods
U and V around x0 exist such that the restriction g0|U : U → V is a diffeomorphism, with its inverse
denoted as h0. Then,

f ◦ h0(x) =
(
x1, f2 ◦ h0(x), · · · , fm ◦ h(x)

)
,

and f(C ∩ h0(V )) = f ◦ h0(h−1
0 (C) ∩ V ). If we define

kt
(
x2, x3, · · · , xm

)
=
(
f2 ◦ h0

(
t, x2, · · · , xm

)
, · · · , fm ◦ h0

(
t, x2, · · · , xm

))
,

then,
h−1
0 (C) ∩ V =

⋃
t

{t} × Crit(kt),

where Crit(kt) signifies the critical points of kt. By the induction hypothesis, kt(Crit(kt)) are null
sets in Rm−1, hence,

f(C ∩ h0(V )) =
⋃
t

{t} × kt(Crit(kt))

is a null set in Rn.

2. f(Cs − Cs+1) is a null set. Let x0 ∈ Cs − Cs+1, and assume without loss of generality that
∂f ′

∂x1 (x0) ̸= 0, where

f ′ =
∂i1+···+imf

∂ (x1)
i1 · · · ∂ (xm)

im
, i1 + · · ·+ im = s.

Similarly as before, consider the mapping gs : Rm → Rm, defined by

gs(x) =
(
f ′(x), x2, · · · , xm

)
,

where gs near x0 functions as a diffeomorphism, with its inverse denoted as hs : V → Rm. Let
ks = f ◦ hs and denote

k′ = ks|{0}×Rm−1∩V .

It is evident that gs(Cs ∩ hs(V )) ⊂ {0} × Rm−1 ∩ V , and

f(Cs ∩ hs(V )) ⊂ k′(Crit(k′)),

from which, by the inductive assumption, f(Cs ∩ V ) is a null set.

3. For sufficiently large s, f(Cs) is a null set. Suppose x0 ∈ Cs with s > m
n − 1. Select a cube

I centered at x0 with side length δ. By the Taylor expansion of multivariate functions, a constant
M > 0 exists such that

∥f(x)− f(y)∥ ≤M∥x− y∥s+1, ∀x ∈ Cs ∩ I, y ∈ I.

Subdivide I into Nm smaller cubes with side length δ
N . If I ′ is one of the subdivided cubes, then the

aforementioned inequality implies that when I ′ ∩ Cs ̸= ∅, f(I ′) is contained within a cube of side
length not exceeding

2M
√
m

(
δ

N

)s+1

,

hence f(Cs ∩ I) is enveloped within a union of cubes whose total volume does not exceed

Nm ·

[
2M
√
m

(
δ

N

)s+1
]n

=
[
2M
√
mδs+1

]n ·Nm−n(s+1).

For s > m
n − 1, choosing N sufficiently large ensures that this volume becomes arbitrarily small.

Thus, f(Cs ∩ I) is a null set, and consequently, f(Cs) is a null set.

Therefore, we conclude that f(C) is a null set in Rn.
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Now we revisit the definition of G in Eq. 11. Our central idea in the proof is to fix {βi, zi}, i =
1, 2, . . . ,m, so that G(x1, . . . , xn) becomes a function on Rn. From Lemma C.1, we know that a
fixed set {x1, . . . , xn} usually corresponds to a set {β1, . . . , βn, z1, . . . , zn}. However, when we fix
a {β1, . . . , βn, z1, . . . , zn}, the possible {x1, . . . , xn} that can generate this RKME are not unique
and may even form a manifold in Rn.

Therefore, following the notation in the main text, we denote the {x1, . . . , xn} contained in a sample
set D as a point D = (x1, . . . , xn) in Rn. Next, we will prove that all such D = (x1, . . . , xn)
corresponding to a given {β1, . . . , βn, z1, . . . , zn} form a manifold. To this end, we define the
following mapping f from Rn to R2m:

f(x1, x2, · · · , xn) = ( ∂G
∂z1

, · · · , ∂G
∂zm

, ∂G
∂β1

, · · · , · · · , ∂G
∂βm

)

= (− 2
n

∑n
k=1 e

−γ(xk−z1)
2

+
∑m

k=1 βje
−γ(zk−z1)

2

+ β1, · · · ,
· · · ,− 2βi

n

∑n
k=1 2γ (xk − zm) e−γ(zm−xj)

2

+ βn
∑m

k=1 βj2γ (zm − zj) e−γ(zk−zm)2 .

(19)

We now consider the total differential df(x) of the function f defined in Eq. 19, which is the Jacobian
Jf(x). To do this, we first calculate the following equation:

∂f

∂xi
=(

4γ(xi − z1)
n

e−γ(xi−z1)
2

, · · · , 4γ(xi − zm)

n
e−γ(xi−zm)2 ,

8γβ1(xi − z1)2 − 4γβ1
n

n∑
k=1

e−γ(xi−z1)
2

, · · · , 8γβm(xi − zm)2 − 4γβm
n

n∑
k=1

e−γ(xi−zm)2),

and Jf(x) is


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂f2m
∂x1

· · · ∂f2m
∂xn

,and thus can be writen as
[

∂f
∂x1

· · · ∂f
∂xn

]
. Next, regard-

ing the analysis of the properties of Jf(x), we first prove a lemma in general case:

Lemma C.7. For the function f : Mn → Nn is Ck mapping and rankpf = n, then there exists
an open neighborhood U in Rn and an open neighborhood V of q = f(p) such that the restriction
f |U : U → V is a diffeomorphism.

Proof. By composing with an invertible linear map, we may also start from that the Jacobian of
f at the origin is the identity matrix, i.e., Jf(0) = In. In this case, near the origin, f is a small
perturbation of the identity mapping, which can be defined as the perturbation term

g : Rn → Rn, g(x) = f(x)− x, x ∈ Rn.

Since Jg(0) = 0, there exists ϵ > 0 such that

∥Jg(x)∥ ⩽ 1

2
, ∀x ∈ Bϵ(0).

From the mean value theorem for multivariate vector-valued functions, we have

∥g (x1)− g (x2)∥ ⩽ ∥Jg(ξ)∥ ∥x1 − x2∥ ⩽
1

2
∥x1 − x2∥ , ∀x1, x2 ∈ Bϵ(0).

Let y ∈ B ϵ
2
(0) and consider solving the equation

f(x) = y, x ∈ Bϵ(0).

This is equivalent to finding a fixed point in Bϵ(0) for gy(x) = x+ y− f(x). We use the contraction
mapping principle to find this fixed point. First, we have

∥gy(x)∥ ⩽ ∥y∥+ ∥g(x)∥ <
ϵ

2
+

1

2
∥x∥ ⩽ ϵ, ∀x ∈ Bϵ(0).
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This shows that gy(Bϵ(0)) ⊂ Bϵ(0). The mapping gy : Bϵ(0)→ Bϵ(0) ⊂ Bϵ(0) is a contraction:

∥gy (x1)− gy (x2)∥ = ∥g (x2)− g (x1)∥ ⩽
1

2
∥x1 − x2∥ , ∀x1, x2 ∈ Bϵ(0).

Therefore, the equation above has a unique solution in B̄ϵ(0), denoted as xy. And we know that
xy ∈ Bϵ(0). Let U = f−1

(
B ϵ

2
(0)
)
∩Bϵ(0), V = B ϵ

2
(0). Then the above discussion indicates that

f |U : U → V is a one-to-one Ck mapping, whose inverse h(y) = xy satisfies the equation

y − g(h(y)) = h(y).

We have: (1) h : V → U is continuous: when y1, y2 ∈ V ,

∥h (y1)− h (y2)∥ ⩽ ∥y1 − y2∥+ ∥g (h (y1))− g (h (y2))∥

⩽ ∥y1 − y2∥+
1

2
∥h (y1)− h (y2)∥ .

Therefore, we have ∥h (y1)− h (y2)∥ ⩽ 2 ∥y1 − y2∥, meaning that h is a Lipschitz continuous
mapping.

(2) h : V → U is a differentiable mapping: Let y0 ∈ V , then for y ∈ V , we have

h(y)− h (y0) = (y − y0)− [g(h(y))− g (h (y0))]
= (y − y0)− Jg (h (y0)) · (h(y)− h (y0)) + o (∥h(y)− h (y0)∥) .

From (1), we obtain

[In + Jg (h (y0))] · (h(y)− h (y0)) = (y − y0) + o (∥y − y0∥) ,

thus
h(y)− h (y0) = [In + Jg (h (y0))]

−1 · (y − y0) + o (∥y − y0∥) .

(3) h : V → U is a Ck mapping. In fact, from (2), we know

Jh(y) = [In + Jg (h (y0))]
−1

= [Jf(h(y))]−1, ∀y ∈ V.

Since f is a Ck mapping, and from the above formula, we can successively increase the differentia-
bility of h, ultimately concluding that h is a Ck mapping.

And the Lemma we proved above has a natural corollary:
Corollary C.8. For f we defined in Eq. 19, when Jf(x) is a.e. of full row rank, there exists
a neighborhood U around D such that F−1(F (p)) ∩ U forms a smooth submanifold of M with
dimension n− 2m.

This corollary provides us with a local conclusion, namely that when Jf(x) is of full row rank, fixing
RKME Z corresponds to a certain D that locally forms an n − 2m-dimensional manifold within
its neighborhood. To study the specific correspondences between Z and D, we still need a global
conclusion. Before using Lemma 7 to prove the global result, we need to explore Jf(x) further.
One of the initial questions to address is whether Jf(x) is of full row rank at all points. An obvious
observation is that when all xi are equal, the rank of Jf(x) is 1; however, such points are measure
zero in Rn. A natural question arises: Are the points where Jf(x) is not of full row rank also measure
zero in Rn? To answer this question, we prove the following proposition:
Proposition C.9. The Jacobian Jf(x) is a.e. of full row rank.

Proof. Our proof will be divided into the following three parts: we will partition Jf(x) into two
blocks consisting of the first m rows and the last m rows. First, we will prove that the m row vectors
in each of these two blocks are linearly independent, and then we will show that the vectors in these
two blocks are also linearly independent of each other.

Step 1: We first define
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g(x1, x2, · · · , xn) = ( ∂G
∂z1

, · · · , ∂G
∂zm

)

= (− 2
n

∑n
k=1 e

−γ(xk−z1)
2

+
∑m

j=1 βje
−γ(zj−z1)

2

+ β1, · · · ,
− 2

n

∑n
k=1 e

−γ(xk−zm)2 +
∑m

j=1 βje
−γ(zj−zm)2 + βm).

(20)

Thus, we have ∂g
∂xi

=
(

4γ(xi−z1)
n e−γ(xi−z1)

2

, · · · , 4γ(xi−zm)
n e−γ(xi−zm)2

)
and Jg1(x) =

∂g1
∂x1

· · · ∂g1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂gm
∂xn

. We aim to prove the following conclusion: the points where the rank

of Jg1(x) is less than m are measure zero in Rn. We note the fact that the rank of Jg1(x) being
less than m is equivalent to the determinant of any m-dimensional submatrix of Jg1(x) being zero.
This is evident because if the rank of Jg1(x) is less than m, then the first m rows of Jg1(x) must be
linearly dependent, thus any m-dimensional submatrix formed by the first m rows is also linearly
dependent, resulting in a determinant of zero. Conversely, the same reasoning applies.

Let us analyze an arbitrary m-dimensional submatrix. Without loss of generality, we can select the

first m column vectors. Thus, we have the matrix J =


∂g1
∂x1

· · · ∂g1
∂xm

...
. . .

...
∂gm
∂x1

· · · ∂gm
∂xm

 . Notice that det(J) is

a function defined from Rm to R. We want to prove that its preimage at the point 0 is a zero measure
set. According to Lemma C.6 and C.7, it suffices to show that the derivative of det(J) is almost
everywhere non-zero. If this is true, then the preimage at 0 will form a Rm−1-dimensional manifold
in Rm, and thus it will be a zero measure set. In fact, if we take the derivative of det(J), we have

∂ det(J)

xi
=

m∑
j=1

det



∂g1
∂x1

· · · ∂g1
∂xm

...
. . .

...
∂2gj
∂x1xi

· · · ∂2gj
∂xmxi

...
. . .

...
∂gm
∂x1

· · · ∂gm
∂xm


. (21)

and ddet(J) = (∂ det(J)
x1

, · · · , ∂ det(J)
xm

).

We only need to prove that the vector in ddet(J) will not be simultaneously zero. Since g is a smooth
function, and the determinant is also a smooth function, by Lemma C.7, we know that the preimage
of the case where the derivative vector is simultaneously zero is a zero-measure set.

For the last m rows, we can define the function

h(x1, x2, · · · , xn) =
(

∂G
∂β1

, ∂G
∂β2

, . . . , ∂G
∂βm

)
= ( 8γβ1(x1−z1)

2−4γβ1

n

∑n
k=1 e

−γ(x1−z1)
2

, · · · ,
8γβm(xn−zm)2−4γβm

n

∑n
k=1 e

−γ(xn−zm)2).

(22)

The function h we defined is still smooth, allowing us to draw the same conclusion. To combine the
first m rows and the last m rows, we simply define the function f = g × h, and this immediately
leads us to the conclusion.

With the above propositions and lemmas established, we can prove the following lemma:
Lemma C.10. Let f :Mm → Nn be a smooth map between differentiable manifolds. If there exists
a constant l such that rankp f = l for all p ∈M , then for each fixed q ∈ N ,

f−1(q) = {p ∈M | f(p) = q}
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is either empty or a regular submanifold of M with dimension m− l.

Proof. Let S = f−1(q) and assume S is not empty, so there exists p ∈ S. We will prove that there
exists a local coordinate system (U,φ) around p in M and a local coordinate system (V, ψ) around q
in N such that φ(p) = 0 ∈ Rm, ψ(q) = 0 ∈ Rn, f(U) ⊂ V , and the local representation of f is of
the form

ψ ◦ f ◦ φ−1(x1, x2, · · · , xm) =
(
x1, x2, · · · , xl, gl+1(x1, x2, · · · , xl), · · · , gn(x1, x2, · · · , xl)

)
.

The proof of this equality is similar to the standard form of immersion maps. We can assume
M = Rm, N = Rn, p = 0 ∈ Rm, and q = 0 ∈ Rn. The map f can be represented in components as

f(x1, x2, · · · , xm) =
(
f1(x

1, x2, · · · , xm), · · · , fn(x1, x2, · · · , xm)
)
.

By assumption, the matrix

(
∂fi
∂xj

)
1≤i≤n
1≤j≤m

has rank l. By rearranging the order of coordinates, we can assume that the matrix

(
∂fi
∂xj

)
1≤i≤l
1≤j≤l

is non-degenerate at the origin. We define the map g : Rm → Rm as

g(x1, x2, · · · , xm) =
(
f1, f2, · · · , fl, xl+1, · · · , xm

)
.

The Jacobian of g at the origin is of the form

[ (
∂fi
∂xj

)
l×l

∗
0 Im−l

]
.

Thus, it is non-degenerate at the origin. By the Lemma C.7, there exist open neighborhoods U
around 0 ∈ Rm and V such that gU : U → V is a diffeomorphism. We can assume V is a convex
neighborhood, and let g|U = φ; thus, φ is a local coordinate map around p = 0. In this local
coordinate map, the local representation of f is of the form

f ◦ φ−1(x1, x2, · · · , xm) =
(
x1, x2, · · · , xl, gl+1, · · · , gn

)
,

where gi for l + 1 ≤ i ≤ n are functions of (x1, x2, · · · , xl). Since rank J
(
f ◦ φ−1

)∣∣
V
≡ l, we

have

∂gi

∂xj
= 0, ∀l + 1 ≤ i ≤ n, l + 1 ≤ j ≤ m.

Since V is a convex domain, it follows that

gi = gi(x1, x2, · · · , xl), l + 1 ≤ i ≤ n.

Thus, we have
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S ∩ U ={s ∈ U | f(s) = 0}
=
{
s ∈ U | x1(s) = · · · = xl(s) = 0,

gl+1(x1(s), · · · , xl(s)) = · · · = gn(x1(s), · · · , xl(s)) = 0
}

=
{
s ∈ U | x1(s) = · · · = xl(s) = 0

}
.

Finally, by taking the subtopology on M and considering the local coordinates on M × U as the
first m components of the local coordinates on N over U , it is straightforward to verify that M is a
differentiable manifold, and the inclusion map from M to N is an embedding.

By Prop. C.9 and Lemma C.10, we immediately obtain the following corollary:
Corollary C.11. Given Z = (β1, . . . , βm, z1, . . . , zm), the points D in Rn corresponding to all
original datasets D that could generate Z form an n− 2m-dimensional manifold in Rn.

With Corollary C.11, we can establish the relationship between a fixed RKME Z and the points D in
Rn corresponding to the original dataset D that may generate this RKME. Now, we can consider
what we aim to prove: that the privacy of the RKME arises from data compression. Mathematically,
this means that a fixed RKME Z may correspond to multiple D, and these D form a manifold. The
significance of proving that D forms a manifold is that it is a set that is locally homeomorphic to
Euclidean space, allowing us to use geometric methods to analyze it.

In particular, our first concern is whether an RKME Z generated from a dataset D contains the
original points from D. However, based on Lemma C.2 and the fact that D forms a manifold, what
we actually need to assess is the volume of the intersection between the sections formed by the
coordinates in Z and this manifold. The points in the manifold M that contain RKME Z correspond
to the intersection points between these coordinate sections and the manifold, specifically where
some component coordinates are identical.

If this manifold happens to be a plane parallel to the coordinate axes in Rn, then the intersection with
M formed by sections from the coordinates in Z could potentially cover the entire M , indicating
that such a compression mechanism may not protect privacy (at least for certain datasets, it could
completely disclose privacy). To characterize this, we want to determine whether there are instances
on the entire manifold where a plane parallel to the coordinate axes in Rn exists, which can be
described in mathematics using the concept of tangent spaces. Let C∞(M) be the vector space
consisting of all smooth functions on the differentiable manifold M . For a point p ∈M , if a linear
map Xp : C∞(M)→ R satisfies the following condition

Xp(fg) = f(p)Xpg + g(p)Xpf, ∀f, g ∈ C∞(M),

then Xp is called the tangent vector at point p on M . The vector space formed by all tangent vectors
is referred to as the tangent space at p, denoted as TpM . Now we only need to study TpM . Note that
if we let x = φ(q) ∈ φ(U) and a = φ(p), then

f(q) = f ◦ φ−1(x) = f ◦ φ−1(a) +

∫ 1

0

[
d

dt
f ◦ φ−1(a+ t(x− a))

]
dt

= f ◦ φ−1(a) +

n∑
i=1

(
xi − ai

)
gi(x),

where

gi(x) =

∫ 1

0

∂f ◦ φ−1

∂xi
(a+ t(x− a))dt.

The function gi is still smooth, and

gi(a) =
∂f ◦ φ−1

∂xi
(a) =

∂

∂xi

∣∣∣∣
p

f.
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By the definition of a tangent vector, we have

Xpf = Xp

(
n∑

i=1

(
xi − ai

)
gi(x)

)
=

n∑
i=1

(
Xpx

i
)
gi(a) =

n∑
i=1

(
Xpx

i
) ∂

∂xi

∣∣∣∣∣
p

f,

thus we only need to study the derivatives of this manifold with respect to xi. Therefore, we have the
following lemma:

Lemma C.12. Given the RKME Z, for the manifold M formed by the points D that could generate
Z, the tangent space at any point p cannot be spanned by n− 2m coordinate axes in Rn.

Proof. Based on the equation we mentioned earlier,

Xpf = Xp

(
n∑

i=1

(
xi − ai

)
gi(x)

)
=

n∑
i=1

(
Xpx

i
)
gi(a) =

n∑
i=1

(
Xpx

i
) ∂

∂xi

∣∣∣∣∣
p

f,

we only need to prove that at any point D on the manifold M , the tangent space is spanned by at
least n− 2m+ 1 coordinate axes. This is equivalent to showing that the number of components with
a derivative of zero is less than or equal to 2m− 1.

First, we differentiate at any point D:

∂G

∂xi
= −4γ

n2

n∑
k=1,k ̸=i

(xi − xk)e−γ(xi−xk)
2

+
4γ

n2

m∑
k=1

βk(xi − zk)e−γ(xi−zk)
2

.

We can use a similar technique to that in Proposition C.9, but for this problem, there is an easier
method. We take the second derivative of ∂G

∂xi
along a specific direction xj at any point D, leading to

the following expression:

∂2G

∂xj∂xi
= −2γ

n2
e−γ(xi−xj)

2

+
4γ2

n2
(xi − xj)2 e−γ(xi−xj)

2

. (23)

Now we use proof by contradiction. We assume that there are 2m directions at D where the derivatives
are zero, and we will prove that such points are of measure zero. Without loss of generality, we
assume that the first 2m components ∂G

∂x1
, ∂G
∂x2

, . . . , ∂G
∂x2m

are all zero at D.

For the n− 2m components with non-zero derivatives, let the first non-zero derivative be ∂G
∂x2m+1

with a derivative value of d1. Since G is a smooth function, we can choose a neighborhood U1

of D such that for all p ∈ U1, the absolute value of the derivative ∂G
∂x2m+1

at p is greater than d1

2 .
Similarly, for x2m+2, let its derivative value be d2, and we can choose U2 such that for all p ∈ U2,
the absolute value of the derivative ∂G

∂x2m+2
is greater than d2

2 . Following this reasoning, we can

obtain neighborhoods for all n− 2m components, and we define U =
⋃n−2m

i=1 Ui. We know that at
any point in U , the derivatives of the last n− 2m components remain non-zero.

Now consider the first 2m components. Since the derivatives of the last n − 2m components are
non-zero in the neighborhood, if we require that the points on the manifold with 2m components
have zero derivatives, then the second derivatives of the first 2m components must also be zero.
Specifically, for x1, we need ∂2G

∂xj∂x1
= 0 for j = 1, 2, . . . , 2m. According to the expression in Eq. 23,

if ∂2G
∂xj∂x1

= 0, then xj can only take values at two points on either side of x1. Similarly, the same
conclusion applies to x2, x3, . . . , x2m. Therefore, it is easy to see that if the first 2m components can
only take two values, the derivatives of these components will always be non-zero on the manifold,
which is clearly a set of measure zero.

30



Using the above lemma, we can prove that, given an R, the sample set in D that can generate R and
contains samples identical to R is a zero-measure set among all possible sample sets. The next step is
to relax the condition of strict sample equality. In practical applications, we might consider that the
RKME Z includes samples that are very close to a particular sample in D. In this case, an attacker
could use this sample as an approximation for the corresponding sample in D, thereby exposing the
data in D to risks from Z. Therefore, we want to define a tolerance level δ to determine whether two
samples are sufficiently close. If the distance between two samples is less than δ, we consider them
close enough that privacy may be at risk. We aim to prove that, with high probability for a reasonable
δ, any point in RKME Z is more than δ away from any point in D.

Thus, the discussion of the selection and rationale for δ is a key issue. It is important to note that δ
must be a quantity related to the distribution, as the scale of the data will directly impact the choice
of δ. Larger-scale data can accommodate a larger δ, while using the same δ standard for data with
significantly different scales would be unreasonable. On the other hand, as the number of data points
increases, the data becomes denser in feature space. In an extreme case, if we assume there are
infinitely many data points, the data can be viewed as being present at every point in a continuous
distribution. Thus, regardless of the form of the RKME Z, there will inevitably be data points that
are identical to it. Therefore, our setting for δ should depend on the scale of the data and the amount
of data. Next, we will discuss our settings for δ under three types of risks, along with the rationale
behind these settings.

We will first discuss the choice of δ in the context of linkage and inference attacks, as these two types
have more geometric intuitions. In a linkage attack, after obtaining the RKME Z, an attacker will
use a brute-force attack to find all possible original sample sets D that could generate Z. We need to
consider that for a dataset D, if the minimum distance between two distinct data points is denoted as
dmin, then setting δ to dmin makes sense. This is because, in the original dataset, there are two data
points at a distance of dmin, and these two points are not the same. Therefore, we can consider that
points in the original dataset that are dmin apart are indeed different. A natural choice for δ is dmin.
However, this choice is dependent on the dataset itself, and when two data points are very close to
each other, this setting can easily weaken our conclusions. Starting from this perspective, we choose
a stronger δ = L

n , where L is a measure of the dataset’s scale, which we can take to be the range of
the dataset. A natural observation is that L

n > dmin. Therefore, if we can prove that this setting yields
stronger conclusions than simply choosing dmin, while also acknowledging the significance of dmin,
it follows that L

n is also meaningful.

For inference attacks, we can similarly choose Minfer
n , whereMinfer is the range of the attribute we want

to attack. It is important to note that our selection does not represent the maximum δ that satisfies
our conclusions. Our primary focus is not on how far the synthetic data Z generated by RKME can
deviate from the original data, but rather on exploring the potential for RKME’s false points, within
a distance of δ, to expose the privacy of the original data. We are concerned with the likelihood
of privacy exposure under these conditions. In fact, we could derive a conclusion regarding δ as a
variable, but this would affect the interpretability of our conclusions and is not what we require. The
chosen δ has general applicability (as it is greater than dmin), so we fix this δ to observe how the
effectiveness of privacy protection relates to variations in data points. Another noteworthy point is
that our conclusions regarding the validity of δ represent a worst-case scenario for all points in the
sample. In reality, most points are likely to be much farther from RKME than δ.

For consistency risk, since the definition of consistency risk is based on the distribution rather than
specific datasets or RKME, a natural idea is to extend the aforementioned δ to its distributional version.
We can achieve this extension using the range. Given a distribution with cumulative distribution
function (CDF) F (x), we know that the range can be defined as follows:

P (Mn ≤ x) = F (x)n

P (mn ≤ x) = 1− (1− F (x))n

For a distribution where all moments exist, the expected value of the range can be approximated
using the variance of the distribution. Thus, we select σ

n as the value for δ. In particular, if the
second moment of the distribution does not exist, we can choose a range corresponding to a higher
probability and then calculate the variance over the support of that region.

Before we present the lemma regarding the relaxation of δ, we need a proposition:
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Proposition C.13. We have the following inequality:∫
M

dµ∫
M dµ

(
IZ ⋂

D ̸=∅
)
≤ 1(

n
2m

)C(n− 2m)
Vol(Bδ)

Vol(BL)

1
n−2m

.

Proof. We start from the idea of [Pan and Xu, 2009]. Let γ be a C2 closed and strictly convex plane
curve with length L and enclosing an area A, then

L2 ≤ 4π(A+ |Ã|)

where Ã denotes the oriented area of the locus of its curvature centers if and only if γ is a circle.

Noticing that in the problem we are focusing on, we initially ignore the effect of δ. In fact, what
we aim to determine is the ratio of the perimeter of a lower-dimensional submanifold in its lower-
dimensional space to the area of the manifold itself in the ambient space. This allows us to utilize
ideas similar to the isoperimetric inequality mentioned earlier.

The first step is to perform local linearization at any given point. Based on our analysis in C.9 and
C.12, we assume the curvature at this point is C. We denote the 2M -dimensional linearization of the
manifoldM asM2M . Then, we have:

(

∫
M

dµ∫
M dµ

(
IZ ⋂

D ̸=∅
)
)2M

⋂
BD(δ′) ≤ 2m(n− 2m)

Vol(Bδ)

Vol(Bδ′)

1
n−2m

.

By continuity and bounded curvature, we first relax the local restriction, and we have:

(

∫
M

dµ∫
M dµ

(
IZ ⋂

D ̸=∅
)
)2M ≤ C2m(n− 2m)

Vol(Bδ)

Vol(BL)

1
n−2m

.

This represents the case of a 2m-dimensional linear subspace in an n-dimensional space. Distinguish-
ing all possible cases, we then have:∫

M

dµ∫
M dµ

(
IZ ⋂

D ̸=∅
)
≤ 1(

n
2m

)C(n− 2m)
Vol(Bδ)

Vol(BL)

1
n−2m

.

Lemma C.14. Given an RKME R, let the set of all possible datasets D that could generate this
RKME correspond to points D in Rn denoted as M . We define the subset of M where any component
coordinate falls within (zi − δ, zi + δ) for i = 1, 2, · · · ,m as MZ . Then the following inequality
holds:

Vol(MZ)

Vol(M)
≤ 1(

n
2m

)C0(n− 2m)
Vol(Bδ)

Vol(BL)

1
n−2m

. (24)

Proof. From Propositions C.9, C.12, and C.13, we obtain that given a connected component of a
manifold, we have

Vol(MZ)

Vol(M)
≤ (n− 2m)C0

Vol(Bδ)

Vol(BL)

1
n−2m

(25)

whereC0 is the ratio of Vol(M̃) to Vol(M) in Lemma C.13. Since there may be multiple disconnected
manifolds in the space, and the intervals (zi − δ, zi + δ) may not intersect with some of these
manifolds, the case where they do intersect corresponds to the number of m-dimensional subspaces
in n-dimensional space. Therefore, the overall conclusion is

Vol(MZ)

Vol(M)
≤ 1(

n
2m

)C0(n− 2m)
Vol(Bδ)

Vol(BL)

1
n−2m

. (26)
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In the context of this paper, we regard brute-force attacks as the most potent form of assault on
deterministic algorithms like RKME (Reduced Kernel Mean Embedding). Deterministic algorithms
are characterized by producing consistent outputs for the same input. This principle is applicable even
to common cryptographic methods such as elliptic curve encryption, where, under the assumption of
sufficient computational resources, it’s possible to decrypt the original message through exhaustive
enumeration. However, the distinctive aspect of the deterministic algorithm discussed in this paper,
particularly RKME, is its substantial data compression. This compression results in a scenario where
a single output corresponds to numerous distinct inputs, diverging from typical deterministic models
where one input maps to one output.

In Alg. 4.1 and Alg. 4.2, it is common practice to set the adversary’s strategy as either a black-box
or a white-box learning algorithm. Existing Membership Inference Attacks (MIAs) on generative
models primarily concentrate on non-parametric deep learning models used for synthetic image
generation. These studies largely explore the privacy risks associated with either model-specific
white-box attacks or set membership attacks, which presuppose the adversary’s access to the complete
set of training records. The findings suggest that black-box MIAs, targeting specific records, perform
only marginally better than random guessing. Regrettably, such prior attacks do not provide a reliable
foundation for evaluating the privacy benefits of publishing synthetic data. Non-parametric models
for non-tabular data represent a minimal range of use cases, and white-box attacks fail to accurately
mirror the data sharing context. Moreover, set inference attacks are not apt for assessing privacy
gains at an individual level.

For deterministic algorithms like the one we discuss, learning algorithms are unlikely to outperform
brute-force attacks. The reason lies in the nature of the Reduced Kernel Mean Embedding (RKME)
specification: for a single RKME specification, there could be infinitely many original datasets
corresponding to it. However, among these infinite datasets, the ones containing a specific target
record constitute only a set of measure zero. Calculating the area of such complex manifolds is
already an NP-hard problem, making our focus on brute-force attacks universally applicable and
a pragmatic choice for analysis. This approach acknowledges the inherent limitations of learning
algorithms in predicting the exact dataset from a given RKME specification, due to the overwhelming
diversity of potential original datasets.

C.2 Proof of Proposition 3.2

Proof. From Lemmas C.2 and C.5, we can conclude that, except for a measure-zero set, all other
sets D in Rn satisfy the inequality in Eq. 4.3 with a non-zero lower bound. Therefore, there exists a
unique Z corresponding to it.

C.3 Proof of Proposition 3.3

Proof. From Corollary C.11 and Lemma C.12, we immediately obtain that there exists a component
that is the same as Z and that D is an (n − 2m − 1)-dimensional submanifold of the n − 2m-
dimensional manifold.

C.4 Proof of Theorem 3.4

Proof. From Propositions 3.2 and 3.3, we immediately obtain that the set of points D in Rn where
the generated RKME Z satisfies ∃i, j such that zi = yj is Lebesgue null in Rn. Furthermore, any
continuous distribution is a continuous measure, and the null sets in composite spaces are also null
sets in probability.

C.5 Proof of Theorem 3.5 and Corollary 3.6

Proof. Through Lemma C.14, we immediately obtain three conclusions regarding risk: For consis-
tency risk, we only need to take the expectation of Eq. 26 with respect to the distribution and select
δ = σ

n and γ = 1
2σ2 . We immediately get

RC(P) <
C0π

1/2(n− 2m)

Γ
(
n
2 + 1

)
· Γ
(
n−1
2 + 1

)−1

1

n

1
n−2m

= O

((
1

e

)n−2m
)

(27)
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In particular, from the proof of Lemma C.10 and our choice of δ = σ
n and γ = 1

2σ2 , we have
C0 < 0.001. At this step, Lemma C.9 requires m ≤ k

√
n, where k = d! is a constant. At this point,

π1/2(n−2m)

Γ(n
2 +1)·Γ(n−1

2 +1)
−1

1
n

1
n−2m < 1 (which holds for almost all n > 5). Therefore, RC < 0.001.

C.6 Proof of Theorem 4.2 and Corollary 4.5(Part 1)

Proof. For RL(Z), we can directly apply Lemma C.14 to obtain:

RL(Z) < C0
dm!

(dn− dm− 2)!

1

n

1
dn−2dm

= O

((
1

e

)nd−2md−m
)

= O

(
dm!

(dn− dm)!

)
(28)

Likewise, by choosing δ = dL
n , we have RL(Z) < 0.001. The only requirement here is that when

using Lemma C.10, we require m ≤ n
2 .

C.7 Proof of Theorem 4.4 and Corollary 4.5(Part 2)

Proof. For RI(Z), the only difference from RL(Z) is that we are considering a one-dimensional
manifold. Using Lemma C.14 we have

RI(Z) < O

(
(2m)!

e(n−2m−1)(n− 1)!

)
(29)

By choosing δ = L
n , we have RI(Z) < 0.001. The only requirement here is that when using

Lemma C.10, we require m ≤ n
2 .

C.8 Proof of the Some Remarks

Now we prove several remarks mentioned in the text that need proof:
Proposition C.15. The Laplacian kernel k(x, y) = exp(−γ∥x− y∥1) cannot protect privacy like
the Gaussian kernel. Specifically, it does not satisfy Theorem 3.4.

Proof. The Laplacian kernel satisfies all the conclusions prior to Lemma C.12, and the analysis can
be conducted similarly, with differences arising primarily from the expressions used for the various
derivatives. However, the Laplacian kernel does not satisfy Lemma C.12, and its conclusions are in
fact completely contrary to those of Lemma C.12. Assume that at point p on the manifold M , the
derivatives of the firstm components are zero. Notably, when xi is determined, the derivative k(x, xi)
at xi is non-smooth for the Laplacian kernel, exhibiting jumps in different derivative directions. If
perturbations are allowed, as long as the perturbation does not exceed this range in its effect on the
derivatives, the first m components will still equal zero in a small neighborhood around point p. This
leads to the conclusion that the manifold still has dimensions of n − 2m after fixing components
and using the coordinate axis to slice through the manifold, which may not necessarily be a set of
measure zero on M .

The significance of this proposition lies in demonstrating that the privacy protection capability of
RKME is not solely a result of the reduction process, as not all kernels can ensure privacy protection
after generating RKME through the reduce set approach. On one hand, this supports the rationale for
our choice of the Gaussian kernel; on the other hand, it raises a future work question: what types
of kernels can protect privacy? Or, how should we select kernels? Comparing the Laplacian and
Gaussian kernels, both exhibit non-rationality, but they differ in terms of smoothness. Do all smooth
kernels have the potential to protect privacy? This will be further discussed in our future work.
Proposition C.16. For discrete distributions, we have the following conclusion: we represent a
discrete distribution with a probability measure greater than zero at k > m points using points in Rk.
Thus, Rk represents the family of all discrete distributions with a probability measure greater than
zero at k points. Almost all distributions in Rk satisfy Theorem 3.4.
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Proof. Based on Corollary C.11 and Lemma C.12, we immediately obtain this conclusion.

It’s important to note that the only difference with discrete distributions is that while the theorem
holds for any continuous distribution, it only applies to almost all distributions within the family
for discrete distributions. This is due to two reasons: first, since the measure at any single point of
a discrete distribution is always greater than zero, if the possible values of the discrete distribution
include a point in Rn that could expose privacy, then the possibility of privacy exposure is non-zero.
This characteristic prevents us from making the theorem universally applicable to all distributions.
However, if we consider a family of distributions, we can still demonstrate a useful conclusion: for
almost all distributions, Theorem 3.4 remains valid.

Secondly, when the number of points for a discrete distribution is less than m, any combination
of the discrete distribution can certainly be represented by RKME, which would inevitably lead to
privacy exposure. Specifically, if the discrete distribution is a binomial distribution with a size of
2 in RKME, then the RKME points will correspond to those two points of the discrete distribution,
and the coefficients β will reflect the counts of those two points in the dataset, since at this point the
difference between RKME and the empirical KME of the dataset is zero. Therefore, this necessitates
additional discussion regarding discrete distributions.

D A simple validation experiment

We have conducted validation experiments to further illustrate the tradeoff between data privacy and
search quality in our work. Below, we present the experimental setting and empirical results. It’s
important to note that this paper is a theoretical discussion on the privacy protection capabilities of
RKME specifications and does not propose any new algorithms. Instead, it validates the theories
presented in the paper using existing algorithms. The method for constructing the learnware market
comes from [Liu et al., 2024].

Datasets. We use six real-world datasets: Postures [Gardner et al., 2014], Bank [Moro et al.,
2014], Mushroom [Wagner et al., 2021], PPG-DaLiA [Reiss et al., 2019], PFS [Kaggle, 2018], and
M5 [Makridakis et al., 2022]. These datasets cover six real-world scenarios involving classification
and regression tasks. Postures involves hand postures, Bank relates to marketing campaigns of a
banking institution, and Mushroom contains different mushrooms. PPG-DaLiA focuses on heart
rate estimation, while PFS and M5 concern sales prediction. These datasets span various tasks and
scenarios, varying in scale from 550 thousand to 46 million instances.

Learnware market. We have developed a learnware market prototype comprising about 4000
models of various types. We naturally split each dataset into multiple parts with different data
distributions based on categorical attributes, and each part is then further subdivided into training
and test sets. For each training set, we train various models with different model types, including
linear models, LightGBM, neural networks with different hyperparameters, and other common
models. The number of models in each scenario ranges from 200 to 1500. For evaluation, we use
each test set as user testing data, which does not appear in any model’s training data. The various
scenarios, partitions, and models ensure that the market encompasses a wide array of tasks and
models, significantly enhancing the diversity in the prototype and the authenticity of experimental
settings.

Evaluation. We explored the tradeoff between data privacy and search ability in the six scenarios
mentioned above. For search ability, a natural metric is to evaluate the performance of the model
obtained through the search on the user’s dataset. Good performance indicates that we have found a
more suitable model. Therefore, we employ error rate and root-mean-square error (RMSE) as the loss
function for classification and regression scenarios, respectively, collectively referred to as Search
error. A smaller search error indicates stronger search ability.

For data privacy, we calculate the empirical risk for the three types of privacy risks proposed in
this paper. Consistency risk is defined as 1 − R̂C , where R̂C is the sample estimate of RC in the
paper, defined as the number of samples in the generated RKME synthetic data that are close to
the original samples in terms of the Euclidean norm. Linkage and Inference risks are defined as
R̂L(D) − R̂L(Z) and R̂I(D) − R̂I(Z), respectively, where R̂L(D), R̂I(D), R̂L(Z), and R̂I(Z)
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represent the confidence given by a brute force attack on the dataset D or RKME Z. Smaller privacy
risks indicates stronger data preservation ability.

Configuration. For the specification of RKME, we use a Gaussian kernel k (x1,x2) =

exp
(
−γ |x1 − x2|22

)
with γ = 0.1. For all user testing data, we set the number of synthetic

data points in RKME, m, to 0, 10, 50 , 100, 200, 500, and 1000 to explore the tradeoff between search
ability and data privacy (when m is 0 , a model is randomly selected). Our detailed experimental
results can be found in the accompanying PDF. We summarize some representative results in the
following table:

Posture Bank MR PPG PFS M5

Search error
m = 10 43.57% 15.58% 32.55% 31.98 2.41 2.33
m = 100 23.43% 14.13% 16.29% 20.62 2.18 2.19
m = 1000 21.15% 13.97% 15.36% 18.81 2.21 2.07

Consistency risk
m = 10 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%
m = 100 0.001% 0.000% 0.001% 0.003% 0.000% 0.002%
m = 1000 0.041% 0.038% 0.039% 0.040% 0.047% 0.036%

Linkage risk
m = 10 0.01% 0.02% 0.02% 0.03% 0.02% 0.02%
m = 100 0.16% 0.18% 0.15% 0.19% 0.14% 0.15%
m = 1000 0.30% 0.34% 0.31% 0.32% 0.33% 0.37%

Inference risk
m = 10 0.01% 0.01% 0.01% 0.02% 0.01% 0.02%
m = 100 0.11% 0.10% 0.18% 0.13% 0.12% 0.14%
m = 1000 0.42% 0.40% 0.46% 0.41% 0.39% 0.43%

It can be observed that as the number of synthetic data points m in RKME increases, the search error
decreases. This indicates that more synthetic data leads to better search ability. At the same time,
as m increases, all three privacy risks also increase, indicating that more synthetic data may lead to
greater privacy risks. It is noted that as the number of synthetic data points m in RKME increases,
the search error initially decreases rapidly, but the rate of decrease slows down after m = 100.
Conversely, the three privacy risks initially increase slowly but then rise more sharply after m = 100.
Given that the number of user test data points n we used ranges from 10,000 to 100,000, this aligns
with our theoretical expectations in the paper that m ∈ [

√
n, k
√
n].
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper we prove the RKME specification has a feasible range for the
number of synthetic data points, balancing the privacy preservation ability and usability.
More specifically we prove that as the number of synthetic data points in RKME decreases,
the confidence that the synthetic data will not closely resemble the original data increases.
We also prove that RKME exhibits significant resistance to the two common types of data
disclosure attacks considered for synthetic data. These reflect the paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to page limitations, we did not dedicate a separate section to discuss the
limitations of our work. However, we have addressed some shortcomings in the discussion
chapter. For instance, we talk about the limitation of our upper bound may be not optimal.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Most of the assumptions in our work are presented in the form of constants,
and all such constants are explicitly described in the main text and appendices. For all
theorems, lemmas, and propositions mentioned in the paper, we provide complete proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: Our work aims to theoretically establish whether the specifications within
learnware maintain privacy. Since the RKME generation process employs a deterministic
algorithm, our conclusions are non-random, thereby providing robust theoretical guarantees.
For this reason, additional experimental validation would not significantly enhance our
findings. Consequently, our paper does not include experimental sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: Our work aims to theoretically establish whether the specifications within
learnware maintain privacy. Since the RKME generation process employs a deterministic
algorithm, our conclusions are non-random, thereby providing robust theoretical guarantees.
For this reason, additional experimental validation would not significantly enhance our
findings. Consequently, our paper does not include experimental sections.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: Our work aims to theoretically establish whether the specifications within
learnware maintain privacy. Since the RKME generation process employs a deterministic
algorithm, our conclusions are non-random, thereby providing robust theoretical guarantees.
For this reason, additional experimental validation would not significantly enhance our
findings. Consequently, our paper does not include experimental sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our work aims to theoretically establish whether the specifications within
learnware maintain privacy. Since the RKME generation process employs a deterministic
algorithm, our conclusions are non-random, thereby providing robust theoretical guarantees.
For this reason, additional experimental validation would not significantly enhance our
findings. Consequently, our paper does not include experimental sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our work aims to theoretically establish whether the specifications within
learnware maintain privacy. Since the RKME generation process employs a deterministic
algorithm, our conclusions are non-random, thereby providing robust theoretical guarantees.
For this reason, additional experimental validation would not significantly enhance our
findings. Consequently, our paper does not include experimental sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: We confirm that our work complies with the NeurIPS Code of Ethics in all
respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Compared to existing model platforms, the statistical information contained in
the specification can enable users to better search and reuse numerous existing models for
their own tasks. By theoretically analyzing the privacy protection capabilities of learnware
specification, it would help in the secure establishment of learnware ecosystem while
protecting developer’s original data.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is a theoretical research about learnware data preservation. We
believe that there is no risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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