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Abstract

Dynamical systems (DS) theory is fundamental for many areas of science and
engineering. It can provide deep insights into the behavior of systems evolving
in time, as typically described by differential or recursive equations. A common
approach to facilitate mathematical tractability and interpretability of DS models
involves decomposing nonlinear DS into multiple linear DS separated by switching
manifolds, i.e. piecewise linear (PWL) systems. PWL models are popular in
engineering and a frequent choice in mathematics for analyzing the topological
properties of DS. However, hand-crafting such models is tedious and only possible
for very low-dimensional scenarios, while inferring them from data usually gives
rise to unnecessarily complex representations with very many linear subregions.
Here we introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which
automatically and robustly produce most parsimonious PWL representations of DS
from time series data, using as few PWL nonlinearities as possible. AL-RNNs can
be efficiently trained with any SOTA algorithm for dynamical systems reconstruc-
tion (DSR), and naturally give rise to a symbolic encoding of the underlying DS that
provably preserves important topological properties. We show that for the Lorenz
and Rössler systems, AL-RNNs discover, in a purely data-driven way, the known
topologically minimal PWL representations of the corresponding chaotic attrac-
tors. We further illustrate on two challenging empirical datasets that interpretable
symbolic encodings of the dynamics can be achieved, tremendously facilitating
mathematical and computational analysis of the underlying systems.

1 Introduction

Dynamical systems (DS) underlie many real-world phenomena of scientific and practical relevance.
Complex chaotic DS are believed to govern market dynamics [65], the rhythms of the brain [16],
climate systems [100], or ecosystems [71]. A by now rapidly growing field in scientific ML is
dynamical systems reconstruction (DSR), where the goal is to learn a DS model directly from data
that constitutes a generative surrogate model of the data-generating DS. DSR increasingly relies
on deep learning, especially in contexts where dynamics are too complex to be captured by simple
equations or where the underlying processes are not fully understood.

One way of making DSR models mathematically accessible is piecewise linear (PWL) designs, popu-
lar among engineers for decades [8, 17, 43, 81, 91]. In the mathematical theory of DS, PWL models
also play a special role and simplify many types of analysis [3, 54], such as the characterization of
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bifurcations [27, 10, 42, 40, 77, 70]. This is because linear DS are well-understood and straightfor-
ward to analyze, while nonlinear DS lack an equally simple description [78, 94, 13]. RNNs based
on PWL activation functions, like rectified-linear units (ReLUs), have been proposed recently for
learning mathematically tractable DSR models. Such piecewise-linear RNNs (PLRNNs), combined
with effective training techniques for controlling gradient flows [67, 39], achieve state-of-the-art
(SOTA) performance across a wide range of DSR tasks, including challenging (high-dimensional,
noisy, chaotic, partially observed ...) empirical time series [25, 11, 39, 12]. However, while featuring
a PWL design, the resulting constructions are often complex, with a large number of linear subregions
required to capture the data properly, hence still impeding effective analysis. On the other hand, a class
of switching linear DS has been proposed to decompose nonlinear DS into linear regions combined
with switching states that determine the transitions between these regions [1, 31, 28, 58, 56, 57, 2].
However, the underlying assumptions of these models and the complexity of the inference mecha-
nisms these entail, often make their training challenging and impede their efficient application to
DSR problems, especially when moving to real-world scenarios and higher-dimensional systems.

Here we propose almost-linear RNNs (AL-RNNs) which combine linear units and ReLUs, but
can use as few of the latter as necessary to achieve a most parsimonious representation in terms
of linear subregions. AL-RNNs are easy and effective to train by any SOTA algorithm for DSR.
Through this, they are able to robustly identify topologically or geometrically minimal representations
of well-known chaotic systems. Their structure translates naturally into a symbolic coding that
preserves important topological properties. These features make AL-RNNs highly interpretable and
mathematically tractable, enabling to harvest tools from symbolic dynamics [74, 55], including the
representation of empirically observed DS via minimal topological and computational graphs.

2 Related Work

Dynamical systems reconstruction The field of data-driven DSR has been rapidly expanding in
recent years. On the one hand there are approaches based on function libraries for approximating
unknown vector fields, which have become particularly popular in some areas like physics [53, 64].
Among these, Sparse Identification of Nonlinear Dynamics (SINDy) and its variants [14, 60, 45,
21, 66, 44] is probably the most popular. Since in these models sets of differential equations are
directly formulated in terms of known, predefined function libraries, instead of using NN black-box
approximators, they have some level of interpretability in the sense that they are human-readable and
can easily be related to established mathematical building blocks in physical or biological theories
[37, 83]. This does not necessarily make them mathematically tractable, however, since systems of
nonlinear differential equations are in themselves usually hard to analyze (in fact, their behavior is
much of the core topic of DS theory [78]). They also have other limitations, including a difficulty
in capturing complex and noisy empirical data [11, 39], as they usually require considerable prior
knowledge about the system’s underlying structure (i.e., which terms to include in the function library).
This somewhat limits their applicability for discovering novel phenomena. On the other hand, many
recent powerful DSR methods rely on universal approximators, in particular the fact that sufficiently
large RNNs can approximate any underlying DS [29, 47, 34]. Such methods may be grouped into
several broad classes, including reservoir computers [76, 79, 80], neural ODEs/PDEs [20, 46, 4, 48],
neural/ Koopman operators [15, 63, 75, 6, 73, 30, 104], and RNNs [99, 25, 101, 19, 11, 84, 39]. The
latter are commonly trained by variants of backpropagation through time (BPTT, [101, 102, 11]),
combined with specific control techniques [67] to remedy the exploding/ vanishing gradients problem
[9, 67, 11, 39]. While DSR algorithms based on universal approximators achieve SOTA performance
on DSR tasks, and often work particularly well on empirical time series [11, 39], they commonly
deliver a complex model structure that is difficult to interpret and parse mathematically.

Nonlinear dynamics via linear DS The idea of approaching nonlinear DS through our good grasp
of linear DS has been around for quite a long time, reflected in important theoretical results like
the Hartman-Grobman theorem [36]1 or Koopman operator theory [49, 15]. While linear DS are
easy to analyze and well understood [78, 94], however, they cannot properly capture most real-world
systems, as they cannot produce many important DS phenomena such as limit cycles, chaos, or
multistability. This has motivated the modeling of complex dynamics in terms of compositions

1The Hartman-Grobman theorem states that nonlinear hyperbolic DS are topologically conjugate to a linear
DS in some neighborhood of the system’s equilibrium points.
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of locally linear dynamics, as the next best alternative, i.e. piecewise-linear (PWL) maps or ODE
systems [18, 41, 22]. PWL models have been popular in engineering and mathematics for several
decades for these reasons, including earlier attempts for learning such models directly from data
[93, 24]. Switching linear DS are one particular brand of PWL models with a long tradition in DS and
control theory [23, 95, 1, 31, 28]. These systems model nonlinear dynamics through a set of linear
(or affine) DS combined with a switching rule which decides which linear DS is currently active.
Likewise, in mathematics PWL models served well for investigating generic properties of nonlinear
systems, e.g. the tent map which is topologically conjugate to the logistic map [3]. PWL models
often lend themselves to particularly convenient symbolic representations [54, 3], based on which
important topological properties of the underlying system, e.g. the nature and number of unstable
periodic orbits embedded within a chaotic attractor, can be analyzed [69, 74, 98].

More recently, various modern approaches for inferring PWL models from data have been formulated.
For instance, switching state space models combine hidden Markov models with linear DS, jointly
inferring the state of a switching (random) variable with the linear DS parameters conditioned on
these states [31]. Various extensions of this basic setup like recurrent and hierarchical switching linear
DS and fully Bayesian inference methods have been advanced in recent years [92, 58, 56]. However,
inference in these models is often complex and not necessarily optimized for DSR, limiting their
applicability to mainly low-dimensional scenarios with comparatively simple dynamics. Most of these
models are also discontinuous in their dynamics across switches, while most commonly we would
require the state variables to evolve continuously across the whole of state space. Piecewise-linear
RNNs (PLRNNs), and, relatedly, threshold-linear networks [33, 105, 109], on the other hand, are
based on familiar ReLUs and hence change continuously across their switching manifolds [25, 51, 88].
They also have some biological justification [33, 25]. Commonly they are trained by variants of
BPTT backed up by specific control-theoretic approaches like sparse [67] or generalized [39] teacher
forcing which make them SOTA on many DSR tasks. Different PLRNN architectures have been
proposed to enhance expressivity or reduce the dimensionality of trained models [11, 39]. Yet, while
these advances may yield comparatively low-dimensional state spaces, the number of different linear
subregions that need to be allocated usually remains very high, hampering efficient mathematical
analysis.

3 Methodological and Theoretical Prerequisites

3.1 AL-RNN Model

Consider a piecewise linear recurrent neural network (PLRNN, [25]):

zt = Fθ(zt−1) = Azt−1 +Wϕ(zt−1) + h, (1)

where diagonal A ∈ RM×M contains linear self-connections, W ∈ RM×M are nonlinear con-
nections between units, h ∈ RM is a bias term, and ϕ(z) = max[0, z] is an element-wise ReLU
nonlinearity. To expose the piecewise linear structure of this model more clearly, by noting that the
slope of the ReLU is either 0 or 1 depending on the sign of zm,t, one can reformulate this as

zt = (A+WDΩ(t−1))zt−1 + h =: WΩ(t−1) zt−1 + h, (2)

where DΩ(t) := diag(dΩ(t)) is a diagonal matrix and dΩ(t) = (d1, d2, · · · , dM ) an indicator vector
with dm(zm,t) = 1 whenever zm,t > 0 and zero otherwise [26]. For the 2M different configurations
of DΩ(t), DΩk , k ∈ {1, 2, · · · , 2M}, the phase space of system eq. 2 is divided into 2M subregions
with linear dynamics

zt+1 = WΩk zt + h, WΩk := A+WDΩk . (3)

Empirically, M often needs to be quite large (at least on the order of the number of observations)
for achieving good reconstructions of observed DS. Since the number of subregions grows as 2M ,
analyzing inferred models in terms of the subregions can thus become very challenging. We therefore
introduce a novel variant of the PLRNN in which only a subset of P << M units are equipped with
a ReLU nonlinearity, yielding

zt = Azt−1 +WΦ∗(zt−1) + h (4)
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where
Φ∗(zt) = [z1,t, · · · , zM−P,t,max(0, zM−P+1,t), · · · ,max(0, zM,t)]

T
. (5)

In this formulation, we thus only have 2P different linear subregions, while still accommodating
a sufficiently large number of latent states for capturing unobserved dimensions in the data and
disentangling trajectories sufficiently [96, 86].2

The model is trained on the N -dimensional observations {xt}, t = 1 . . . T,xt ∈ RN , by a variant of
sparse teacher forcing called identity teacher forcing [67, 11]. In identity teacher forcing, the first N
latent states (‘readout neurons’) are replaced by the N -dimensional observations every τ time steps,
where τ is chosen such as to optimally control trajectory and gradient flows, avoiding exploding
gradients while providing the model sufficient opportunity to unroll into the future to capture the
underlying DS’ long-term behavior (see [67, 39] for details); see Appx. A.2 for details on training.
We emphasize that sparse teacher forcing is only used for training the model, and is turned off at test
time where the model generates new trajectories completely independent from the data.

Figure 1: Illustration of the AL-RNN architecture.

3.2 Theoretical Background: Symbolic Dynamics and Symbolic Coding of AL-RNN

The mathematical field of symbolic dynamics formulates conditions under which a DS has a unique
symbolic representation and discusses how to harvest this symbolic representation to prove certain
properties of the underlying system, which otherwise may be more difficult to address [74, 55]. In
fact, symbolic dynamics has led to many powerful insights and formal results in DS theory, e.g. about
the properties of chaos or type and number of periodic orbits [32, 106]. An appealing feature of
symbolic dynamics for the field of ML/AI is that it links concepts in DS theory to computational
concepts like finite state automata or formal languages, as well as graph theory [55, 35]. It can thus
facilitate the computational interpretation of natural or trained dynamical systems, like RNNs.

Assume we have an alphabet of n symbols A = {0, . . . , n − 1}, from which we form infinite
sequences (bidirectionally or only in forward-time) a = . . . a−2a−1.a0a1a2 . . . with ak ∈ A, and
the dot separating past from future (i.e., indices k < 0 indicate backward time, and k ≥ 0 present
and forward time). Then the space of all possible sequences, together with the so-called (left) shift
operator given by

σ(a) = σ(. . . a−2a−1.a0a1a2 . . . ) = . . . a−1a0.a1a2a3 . . . (6)

defines the full shift space AZ. We denote by σk = σ ◦ σ ◦ · · · ◦ σ the k-times iteration of the shift.
Now consider a DS (S, ϕ) consisting of a metric (state) space S and a recursive (flow) map ϕ. The
flow map ϕ∆t(x) advances the system’s current state x by ∆t and may be thought of as the solution
operator of the underlying DS ẋ = f(x) [78]. When training RNNs zt = Fθ(zt−1) on time series of
observations {g(xk∆t)}, k = 1 . . . T , from the underlying DS, where g is the observation function,
we are trying to approximate this flow map. Assume the whole state space S can be partitioned into a
finite set U = {U0 . . . Un−1} of disjoint open sets Ue, such that S =

⋃n−1
e=0 Ue, i.e. S is covered by

the union of the closures of these sets. We call this a topological partition of S [55].

The central idea now is to assign a unique symbol ae ∈ A to each set Ue ∈ U , with n = |U| = |A|.
As a trajectory x(t) of the underlying DS travels through the system’s state space S, observed at times

2Strictly, in this formulation, for the linear units the diagonal entries in W are redundant to those in A and
could be omitted, but we found in practice this hardly makes a difference.
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k∆t as it passes through different subregions Ue, it gives rise to a specific symbolic sequence ax,ϕ

(with a unique symbol assigned at each time step via h : S → A,xk∆t 7→ ak). We may thus think of
the shift operator σ as moving along a trajectory in correspondence with the flow map ϕ∆t(x). If
the symbolic coding of each trajectory is unique, U may constitute a Markov partition (see Appx. B
for a formal definition). We denote by (AS,ϕ, σ) the shift of finite type induced by the flow ϕ which
picks out from the full shift space AZ only those admissible symbolic sequences that correspond
to valid trajectories of (S, ϕ) (we will use the term ‘induced by’ to refer to this property). The set
of admissible blocks constitutes the language of (AS,ϕ, σ). Every shift of finite type has a graph
representation G = {V, E} (Fig. 2), with either the edges eij ∈ E or vertices vi ∈ V of the graph
encoding the permitted transitions among symbols ak ∈ A of admissible sequences a ∈ A [55].

The finite collection U = {U0 . . . Un−1}, n = 2P , of linear subregions of an AL-RNN defined
in eq. 4, separated by the switching manifolds Σi,j = Ui ∩ Uj between every pair of neighboring
subregions Ui and Uj , forms a topological partition. Here we use this partition as the basis of our
symbolic coding and the respective symbolic dynamics (AU,Fθ

, σ) induced by the AL-RNN, where
we assign to each state zt ∈ S (i.e., at each time point) the unique symbol at ∈ A such that at = ai
iff zt ∈ Ui (Fig. 2).3 In the corresponding symbolic graphs, we identify vertices vi with symbols
ai ∈ A and draw a directed edge eij from vi to vj whenever Fθ(Ui ∩B) ∩ Uj ̸= ∅, where B is the
attracting set of interest (see Appx. A.1 for details). As we will show further below, this particular
partition has useful theoretical properties that makes the symbolic coding topologically interpretable
w.r.t. the AL-RNN map Fθ . In fact, a large literature in symbolic dynamics has dealt with the relation
between the dynamics in a finite shift space and that of a PWL map, like, e.g., the tent map, with a
partition of S into the map’s different linear subregions as we use here for the AL-RNN [55, 3, 68].

Figure 2: Illustration of symbolic approach (3 panels on the left) and geometrical graphs (right).

4 Theoretical Results

Recall that within each subregion Ue the map Fθ is monotonic and the dynamics are linear (ruling
out certain possibilities, like chaos or isolated cycles occurring within just one subregion). We
furthermore assume that the dynamics are globally non-diverging (this could be strictly enforced
through ‘state-clipping’ and constraints on matrix A in eq. 4, see Hess et al. [39], but will also be
the case for a well-trained AL-RNN). Here we claim that for hyperbolic AL-RNNs Fθ

4, we have
1:1 relations between important topological objects in the AL-RNN’s state space and those of the
symbolic coding formed from the linear subregions Ue of the AL-RNN, as expressed in the following
theoretical results.

Consider a hyperbolic, non-globally-diverging AL-RNN Fθ, eq. 4, and a topological partition U
of the state space into its linear subregions Ue ⊆ S, e = 0 . . . 2P − 1. Denote by (AU,Fθ

, σ) the
finite shift induced by (S, Fθ), with each ae ∈ A of its alphabet A associated with exactly one
linear subregion Ue ∈ U , and let us consider the system’s evolution only in forward time. Then the
following holds:
Theorem 1. An orbit ΩS = {z1, . . . ,zn, . . .} of the AL-RNN Fθ is asymptotically fixed
(i.e., converges to a fixed point) if and only if the corresponding symbolic sequence a =

3For simplicity we will ignore here and in the following the borders between subregions, on which the coding
is ambiguous.

4By hyperbolic AL-RNN we mean the AL-RNN is hyperbolic in each of its linear subregions, i.e. none of its
Jacobians A+WDΩk has eigenvalues of absolute magnitude 1. The chances that this condition is not met in
practice in trained AL-RNNs, i.e. the non-hyperbolic case, are close to zero numerically.
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(a1a2a3 . . . aN−1)(a
∗)∞ ∈ AU,Fθ

is an eventually fixed point of the shift map σ (where by ‘eventu-
ally’ we mean it exactly lands on the point in the limit, see Appx. B for a precise definition).

Proof. See Appx. B.

Theorem 2. An orbit ΩS = {z1, . . . ,zn, . . .} of the AL-RNN Fθ is asymptotically p-periodic if and
only if the corresponding symbolic sequence

a = (a1a2 . . . aN−1)(a
∗
1a

∗
2 . . . a

∗
p)

∞ ∈ AU,Fθ

is an eventually p-periodic orbit of the shift map σ.

Proof. See Appx. B.

Theorem 3. An orbit ΩS = {z1, . . . ,zn, . . .} is an asymptotically aperiodic (irregular) orbit of the
AL-RNN Fθ if and only if the corresponding symbolic sequence (a1, . . . , an, . . .) is aperiodic.

Proof. See Appx. B.

Loosely speaking, these results confirm that fixed points of our symbolic coding correspond to fixed
points of the AL-RNN, cycles to cycles, and chaos to chaos, thus preserving important topological
properties in the symbolic representation.

5 Experimental Results

To assess the quality of DSR, we employed established performance criteria based on long-term,
invariant topological, geometrical, and temporal features of DS [51, 11, 39]. Due to exponential
trajectory divergence in chaotic systems, mean-squared prediction errors rapidly grow even for
well-trained systems, and hence are only of limited suitability for evaluating DSR quality [108, 67].
Thus, we prioritize the geometric agreement between true and reconstructed attractors, quantified
by a Kullback-Leibler divergence (Dstsp, Appx. A.2) [51]. Additionally, we examine the long-term
temporal agreement between true and reconstructed time series by evaluating the average dimension-
wise Hellinger distance (DH) between their power spectra (Appx. A.2). We first confirmed that the
AL-RNN is at least on par with other SOTA methods for DSR. We then tested AL-RNNs on two
commonly employed benchmark DS for which minimal PWL representations are known, the famous
Lorenz-63 model of atmospheric convection [61] and the chaotic Rössler system [85]. We finally
explored the suitability of our approach on two real-world examples, human electrocardiogram (ECG)
and human functional magnetic resonance imaging (fMRI) data.

5.1 SOTA performance

While our goal here is a technique that constructs topologically minimal, interpretable DS representa-
tions, at the same time we do not want to compromise on DSR performance which should still be
within the same ballpark as existing SOTA methods. We checked this on the Lorenz-63, Rössler and
ECG data noted above, and in addition on the higher-dimensional chaotic Lorenz-96 system [62] and
on human electroencephalogram (EEG) data. Table 1 in the Appx. confirms that the AL-RNN is not
only on par with, but indeed outperforms most other techniques when trained with sparse teacher
forcing (which may be rooted in its simple and parsimonious design).

5.2 Reconstructed Systems Occupy a Small Number of Subregions

Fig. 3 illustrates reconstruction performance for varying numbers of ReLU nonlinearities at constant
network size M . We found that a small number of PWL units already significantly improves perfor-
mance, especially for the Lorenz-63 and Rössler systems, and that beyond that number performance
starts to plateau (or even briefly decrease again). Additionally, some linear units are necessary to
sufficiently expand the space, but they cannot compensate for an insufficient number of PWL units
(Fig. 10).5 Moreover, as shown in Fig. 4 (left), the number of linear subregions explored by the

5Note that the number of linear units does not affect the interpretability or symbolic coding of the model.
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Figure 3: Quantification of DSR quality in terms of attractor geometry disagreement (Dstsp, top row)
and disagreement in temporal structure (DH, bottom row) as a function of the number of ReLUs (P )
in the AL-RNN (Rössler: M = 20, Lorenz-63: M = 20, ECG: M = 100, fMRI: M = 50). The
little humps at P = 3 for the Lorenz-63 indicate that performance may sometimes first degrade again
when passing the number of minimally necessary PWL units (see also Fig. 9). Error bars = SEM.

Figure 4: Left: Number of linear subregions traversed by trained AL-RNNs as a function of the
number P of ReLUs. Theoretical limit (2P ) in red. Right: Cumulative number of data (trajectory)
points covered by linear subregions in trained AL-RNNs (Rössler: M = 20, P = 10, Lorenz-63:
M = 20, P = 10, ECG: M = 100, P = 10), illustrating that trajectories on an attractor live in a
relatively small subset of subregions.

trained dynamics saturates well below the theoretical limit of 2P once this performance threshold
is reached. Within this already small subset of explored subregions, generated network activity is
furthermore concentrated within an even smaller number of dominant subregions: For instance, for
the Rössler system 4 out of 45 subregions used cover 80% of the data (Fig. 4, right). This substantial
reduction of necessary linear subregions strongly facilitates the analysis of trained models with respect
to fixed points and k-cycles, which naively would require examining 2P and 2kP combinations of
subregions, respectively. To select the optimal number of PWL units, the point where performance
starts plateauing (as in Fig. 3) may be chosen. Alternatively, one may restrict the number of linear
subregions employed through regularization, adding a penalty for ReLU nonlinearities. This approach,
as Fig. 9 illustrates, results in the same number of selected PWL units.

5.3 Minimal PWL Reconstructions of Chaotic attractors

Topologically minimal reconstructions Investigating reconstructions with the minimal number
of PWL units needed for close-to-optimal performance (Fig. 3), we found that the AL-RNN would
deliver reconstructions capturing the overall structure of the attractor using only three (Lorenz-63
system) or two (Rössler system) linear subregions (Fig. 5a), explaining the strong performance gains
in Fig. 3 for 2 and 1 PWL units, respectively. These representations, and their symbolic coding (Fig.
5c), expose the mechanisms of chaotic dynamics (Fig. 5b). Notably, these closely agree with the
minimal topologically equivalent PWL representations of the two chaotic DS as described in Amaral
et al. [5]: The Lorenz-63 system has at its core two unstable spiral points in the two lobes, separated
by the saddle node in the center (Fig. 5b). For the Rössler system, the topologically minimal PWL
representation indeed consists of just two subregions [5], one containing an unstable spiral in the
x-y plane and the other a ‘half-spiral’ almost orthogonal to that plane (Fig. 5b). The AL-RNN
automatically and robustly discovers these representations from data: across multiple training runs,
performance values are very similar (Figs. 23, 25), the assignment of subregions to different parts
of the attractor remains almost the same (Figs. 24 & 25), and the regions with linear dynamics
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Figure 5: a: Color-coded linear subregions of minimal AL-RNNs representing the Rössler (top)
and Lorenz-63 (bottom) chaotic attractor. b: Illustration of how the AL-RNN creates the chaotic
dynamics. For the Rössler, trajectories diverge from an unstable spiral point (true position in gray,
learned position in black) into the second subregion, where after about half a cycle they are propelled
back into the first. For the Lorenz-63, two unstable spiral points (true: gray; learned: black) create
the diverging spiraling dynamics in the two lobes, separated by the saddle node in the center. c:
Topological graphs of the symbolic coding. While for the Rössler it is fully connected, for the
Lorenz-63 the crucial role of the center saddle region in distributing trajectories onto the two lobes
is apparent. d: Geometrical divergence (Dstsp) among repeated trainings of AL-RNNs (n = 20),
separately evaluated within each subregion, shows close agreement among different training runs.
Likewise, low e: normalized distances between fixed point locations and f: relative differences
in maximum absolute eigenvalues σmax across 20 trained models indicate that these topologically
minimal representations are robustly identified.

closely agree both in terms of their topology and geometry (in fact, the topological graphs remained
identical). This is in contrast to the standard PLRNN, where assignments strongly varied among
multiple training runs (Figs. 23, 25). We quantified this further by computing across training runs
separately for each subregion Dstsp (Fig. 5d), the normalized distances between fixed points (Fig. 5e),
and the normalized differences between the maximum absolute eigenvalues σmax of the AL-RNN’s
Jacobians (Fig. 5f), obtaining values close to zero in all three cases (see Fig. 22 for absolute values).
While Amaral et al. [5] explicitly handcrafted such minimal PWL representations, the AL-RNN
extracts them automatically without the provision of any prior knowledge about the system.

Geometrically minimal reconstructions While these reconstructions capture the topology of the
underlying DS, they do not yet capture the full geometry and temporal structure of the attractor (Fig.
3). Fig. 6 illustrates for the Rössler system that as the number of PWL units is further increased to
P = 10, the geometrical agreement becomes almost perfect. Although the mapping from latent to
observation space is not 1:1 (since M > N ), points close in observation space still tended to fall into
the same latent subregion, such that the observed system’s attractor still decomposed into distinct
subregions, as confirmed by proximity matching (see Appx. A.1). For the Rössler system there is just
one nonlinearity, the x · z term in the temporal derivative of z (eq. 14). Accordingly, the AL-RNN
devotes most of its subregions to the lobe along the z coordinate, while dynamics in the (x, y) plane
is geometrically faithfully represented by only 4 subregions. Hence, the AL-RNN utilizes additional
subregions to express finer geometric details where dynamics are more nonlinear. This is apparent
from a more geometrical graph representation (see Fig. 2, right), where – in addition to topological
information – transition probabilities among subregions are being used to construct node distances
via the graph Laplacian (see Appx. A.1), see Fig. 6 for the Rössler and Fig. 11 for the Lorenz-63.

5.4 PWL Reconstructions of Real-World Systems

Topologically minimal reconstructions We next considered two experimental datasets, human
ECG data (with 1d membrane potential recordings delay-embedded into N = 5, see Appx. A.3)
and fMRI recordings (with N = 20 time series extracted, cf. Appx. A.3) from human subjects
performing three different types of cognitive task [50, 52].
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Figure 6: Geometrically minimal reconstruction and graph representation of the Rössler attractor
(M = 30, P = 10, Dstsp = 0.08, DH = 0.06). a: Provided a sufficient number of linear subregions,
the geometry of the attractor is almost perfectly captured. b: Reconstruction with linear subregions
color-coded by frequency of visits (dark: most frequently visited regions, yellow: least frequent re-
gions). c: Corresponding geometrical graph, which contains information about transition frequencies
via node distances, visualized using the spectral layout in networkx. Note that self-connections were
omitted in this representation. d: Connectome of relative transition frequencies between subregions.

Figure 7: a: Freely generated ECG activity using an AL-RNN with 3 linear subregions (color-coded
according to subregion) and ground truth time series in black. b: After activation of the Q wave in the
third subregion, the second PWL unit is driven far below 0, whose activity, consistent with the known
physiology [89], mimics the latent de- and re-polarization process of the interventricular septum. c:
Symbolic graph representation of the trained AL-RNN.

As for the Lorenz-63, for the ECG data we observed a strong performance gain for just P = 2
PWL units, see Fig. 3. Indeed, Fig. 7a confirms that the complex activity pattern and positive max.
Lyapunov exponent (λmax = 1.96 s−1, ground truth: λtrue

max = 2.19 s−1 [39]) of the ECG time series
could be achieved with P = 2 in only 3 linear subregions. These subregions corresponded to distinct
parts of the ECG activity: ramping-up phases (light blue, node #1), declining activity (dark blue, node
#2), represented by two unstable spirals with shifted phases (Fig. 12), and the Q wave (medium blue,
node #3). The activity in the third region (σmax ≈ 1.34, other two: σmax ≈ 1.02, Fig. 12) caused
a strong inhibition in the second PWL unit (Fig. 7b) that captures the critical transition initiated
by the Q wave. The Q wave triggers the depolarization of the interventricular septum during the
QRS complex [89], indicating that this latent depolarization process is captured by the model. These
results suggest that the AL-RNN cannot only learn dynamically but also biologically interpretable
latent representations. The core aspects of this representation were furthermore consistent across
successful reconstructions (Fig. 13). The symbolic sequences corresponding to the graph in Fig. 7
reveal the nearly periodic yet chaotic dynamics of the ECG (Fig. 14).6

For the short (T = 360) fMRI time series, P = 3 often resulted in reconstructions matching the
complex activity patterns reasonably well (cf. Fig. 3, right). Fig. 15 illustrates results for an example
subject using 8 linear subregions. The second most visited subregion implemented an unstable spiral,
while the most visited region had a stable virtual fixed point also located in the second subregion.
These two regions covered over 50% of the data and were strongly connected (Fig. 15b). This balance
between stable and unstable activity suggests a mechanism through which the network implements
chaotic dynamics, with the stable virtual fixed point pulling activity into the second subregion from
which it then diverges again (Fig. 15d).

6In general, we also found that quantities computed from symbolic sequences like the topological entropy
correlated highly with the maximum Lyapunov exponent, Fig. 16.
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Figure 8: Reconstructions from human fMRI data using an AL-RNN with M = 100 total units and
P = 2 PWL units. a: Mean generated BOLD activity color-coded according to the linear subregion.
Background color shadings indicate the task stage. b: Generated activity (trajectory points) in the
latent space of PWL units with color-coding indicating task stage as in a.

Task stages align with linear subregions To integrate the fMRI signal with cognitive (task-stage)
information, in addition to the linear decoder for the BOLD signal, we coupled the PWL units zp

t
to a categorical decoder model (eq. 12) which predicts the three cognitive task stages and the ’Rest
and Instruction’ period, as in [52, 12]. Using only P = 2 PWL units on the fMRI data made it
challenging to capture the complex, chaotic long-term activity patterns in the freely generated activity
of the AL-RNN. However, the dynamics were still well-approximated locally (Fig. 17). To maintain
temporal alignment with the task stages when sampling from the AL-RNN, the AL-RNN’s readout
units were reset to the observations every 7 time steps (Fig. 8a). Fig. 8a-b show that in this setup,
the four linear subregions of the AL-RNN often closely aligned with the different task stages of the
experimental time series. Similar results were obtained across different subjects, with an average
classification accuracy of p = 0.78 ± 0.05 (mean ± SEM) (see Appx. A.4 for details). While the
categorical decoder aids in separating latent states according to task stage, there is nothing that would
bias this separation to align with the linear subregions. The observed alignment therefore suggests
that the AL-RNN learns to leverage distinct linear dynamics in each subregion to represent differences
across cognitive tasks. Furthermore, as shown in Fig. 18, the network weights of the PWL units were
significantly larger than those of other units, indicating their critical role in modulating the dynamics
and representing task-related variations in brain activity. This approach also demonstrates how local
context-aligned linear approximations can be achieved using the AL-RNN, which is useful in areas
such as model-predictive control [72, 23, 58].

6 Conclusion

Here we introduced a novel variant of a PLRNN, the AL-RNN, which learns to represent nonlinear DS
with as few PWL nonlinearities as possible. Despite its simple design and the minimal hyperparameter
tuning required, the AL-RNN robustly and automatically identifies highly interpretable, topologically
minimal representations of complex nonlinear DS, reproducing known minimal PWL forms of chaotic
attractors [5]. Such minimal PWL forms that allow for an interpretable symbolic and graph-theoretical
representation were discovered even from challenging physiological and neuroscientific data. They
also profoundly ease subsequent model analysis. For instance, with only a few linear subregions to
consider, the search for fixed points or cycles becomes very fast and efficient [26].

Limitations While this seems promising, how to determine whether a topologically minimal and
valid reconstruction from empirical data has truly been achieved remains an open topic. Performance
curves as in Fig. 3 or Fig. 9 give an indication of how many PWL units may be required to yield an
optimal minimal representation, but whether there is a more principled way of automatically inferring
the optimal number P of PWL nonlinearities from data may be an interesting future direction. Finally,
the current finding that even for empirical ECG and fMRI data a few linear subregions (≤ 8) suffice
for faithful reconstructions is encouraging. Whether this more generally will be the case in empirical
scenarios is another interesting and open question. Not all types of (empirically observed) dynamical
systems may easily allow for such topologically minimal representations.

All code created is available at https://github.com/DurstewitzLab/ALRNN-DSR.
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A Appendix

A.1 Graph Representation

The symbolic graph construction followed the rules given in Sect. 3.2: Most generally, each
linear subregion Ui is assigned a node (symbol), and a directed edge is drawn between nodes
i, j, i → j, whenever Fθ(Ui) ∩ Uj ̸= ∅. Here, however, we are mostly interested in the topological
graphs representing particular chaotic attractors (like the Lorenz-63 or Rössler attractor), and hence
restrict the graph representation to the nodes corresponding to subregions visited by trajectories
on the attractor B, and edges drawn when Fθ(Ui ∩ B) ∩ Uj ̸= ∅. More specifically, we first
sampled a long trajectory Z = {z1, · · · , zT } with T = 100, 000 time steps, removed the first
1000 time steps as transients, and counted all transitions between any two subregions Ui, Uj . To
obtain a more nuanced geometrical/ statistical picture, we also evaluated the relative number of
time steps the trajectory spent in each subregion Ui (i.e., an estimate of the occupation measure),
|{zt ∈ Ui, t > 1000}|/(100, 000−1000), as well as the relative frequency of transitions between any
two subregions Ui, Uj , |{zt, zt+1|t > 1000, zt ∈ Ui, Fθ(zt) ∈ Uj}|/(100, 000− 1001), yielding a
weight for each edge, or a distance between nodes through the graph’s Laplacian (see below). To
enhance the readability of the larger graphs in Figs. 6, 11, 15 and 21, we removed self-connections
(time steps where the trajectory remained within a single subregion).

Laplacian matrix The Laplacian matrix of a graph is defined as L = D − A where A is the
adjacency matrix of the graph containing the weights (transition probabilities), and D is the out-
degree matrix, which is a diagonal matrix where each element is the sum of the outgoing edge weights
of node i, Dii =

∑
j Aij . The spectral layout in networkx uses the eigenvectors of the Laplacian

matrix corresponding to the smallest non-zero eigenvalues as positions for the nodes. This tends
to group more tightly connected nodes closer together. The Laplacian is more widely used as a
dimensionality reduction technique in ML, for example in Laplacian eigenmaps [7], and has also
been used to represent discretizations of PDEs as graphs [90].

Proximity matching The mapping from latent space to observation space is not unique because
M > N , and hence the nullspace of the linear observation model is non-empty (does not contain just
the 0 vector). For the AL-RNN this is evident from the fact that the non-readout neurons, particularly
the PWL neurons, do not contribute to the observations. However, in practice, for the freely generated
activity of trained AL-RNNs, points that fall into the same linear subregion in latent space also were
close in observation space. This implies that attractors are segmented into different subregions in
latent space in accordance with the observable dynamics. To numerically confirm this, we found
that proximal points in observation space were typically related to the same linear subregion when
generating activity from trained AL-RNNs: We conducted proximity matching by defining a threshold
distance (e.g. d = 0.05, corresponding to 5% of the data variance) and assessing whether generated
latent trajectory points proximal in observation space fall into the same or different subregions. We
found that for the geometrically minimal reconstruction of the Rössler system (Fig. 6), only 6% of
proximal data points (within d) belonged to different subregions, while for the Lorenz-63 attractor
(Fig. 11) 4% of proximal data points (within d) belonged to different subregions, confirming that the
attractors were segmented into relatively distinct patches.

A.2 Methodological Details

Training method Our training method rests on a variant of sparse teacher forcing. This approach
has recently been proven to effectively tackle gradient divergence when training on observations
from chaotic DS [67] and has shown SOTA performance on benchmark and real-world systems in
DSR [11, 39]. In sparse teacher forcing, the idea is to directly replace latent states (or a subset of
them) with states inferred from observations at intervals τ while leaving the network to evolve freely
otherwise. To obtain forced states, the observation model needs to be ‘pseudo-inverted’. Here we
employ a specific variant of sparse teacher forcing called identity teacher forcing [67, 11], where this
pseudo-inversion becomes trivial by adopting an identity mapping as the observation model:

x̂t = Izt, (7)
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with I ∈ RN×M , and Irr = 1 for the N read-out neurons, r ≤ N , and zeroes elsewhere. During
training, the read-out states are replaced with observations every τ time steps:

zt+1 =

{
Fθ(z̃t) if t ∈ T
Fθ(zt) else

(8)

with T = {lτ + 1}l∈N0
, and z̃t = (xt, zN+1:M,t)

T . Employing identity teacher forcing splits the
AL-RNN into essentially three types of units, the N linear readout-neurons zr

t which are equivalent
to the predicted observations and teacher-forced during training, the remaining M − P −N linear
neurons zl

t, and the P nonlinear neurons zp
t . The overall model and architecture are illustrated in Fig.

1. The AL-RNN can be trained using Mean Squared Error (MSE) loss over model predictions and
observations:

ℓMSE(X̂,X) =
1

N · T

T∑
t=1

∥x̂t − xt∥22 , (9)

where X̂ are the model predictions and X denotes the training sequence of length T . We found
that performance was better when the read-out neurons were linear rather than ReLU-based.
Note that the M − N non-readout neurons, including the PWL neurons, do not explicitly con-
tribute to the loss function. We used rectified adaptive moment estimation (RADAM) [59] as
the optimizer, with L = 50 batches with S = 16 sequences per epoch. Further, we chose
M = {20, 20, 100, 100, 100, 130}, τ = {16, 8, 10, 7, 20, 10}, T = {200, 300, 50, 72, 50, 100},
initial learning rates ηstart = {10−3, 5 · 10−3, 2 · 10−3, 5 · 10−3, 10−3, 10−3}, ηend = 10−5 and
epochs = {2000, 3000, 4000, 2000, 3000, 2000} for the {Lorenz-63, Rössler, ECG, fMRI,Lorenz-
96,EEG} dataset, respectively. Parameters in W were initialized using a Gaussian initialization
with σ = 0.01, h as a vector of zeros, and A as the diagonal of a normalized positive-definite
random matrix [11, 97]. The initial latent state z1 = [x1,Lx1]

T is estimated from x1 using a matrix
L ∈ R(M−N)×N which is jointly learned with the other model parameters. Additionally, for the
Rössler and Lorenz systems, we added 5% observation noise during training. Across all training
epochs of a given run, we consistently selected the model with the lowest Dstsp. Each individual
training run of the AL-RNN was performed on a single CPU. Depending on the training sequence
length, a single epoch took between 0.5 to 3 seconds.

Geometric agreement For evaluating attractor geometries, we use a state space measure Dstsp
based on the Kullback-Leibler (KL) divergence, which assesses the (mis)match between the ground
truth spatial distribution of data points, ptrue(x), and the distribution pgen(x|z) of trajectory points
freely generated by the inferred DSR model. These probability distributions can be approximated in
different ways from the observed/ generated trajectories. Here, we usually sampled long trajectories
corresponding to the test set length (usually T = 100, 000 time steps, but sometimes shorter for the
empirical time series) from trained systems, removing transients to ensure that the system has reached
a limit set. For low-dimensional systems, the KL divergence can be straightforwardly calculated
through a discrete binning approximation [11]:

Dstsp (ptrue(x), pgen(x | z)) ≈
K∑

k=1

p̂
(k)
true(x) log

(
p̂
(k)
true(x)

p̂
(k)
gen(x | z)

)
, (10)

where K = mN is the total number of bins, with m bins per dimension and N being the dimension of
the ground truth system. A bin number of m = 30 per dimension was chosen as a good compromise
for distinguishing between successful and bad reconstructions for 3d systems. Since the number
of data required to fill the bins scales exponentially with N , for the ECG time series (N = 5) we
reduced the number of bins to m = 8, as suggested in [38].

Temporal agreement To assess temporal agreement, we computed Hellinger distances DH between
power spectra [67, 39]. We first simulated long time series T = 100, 000 (as with Dstsp above). After
standardization, we computed dimension-wise Fast Fourier Transforms (FFT). The power spectra
were smoothened using a Gaussian kernel and normalized, and the extended, high-frequency tails,
which predominantly contained noise, were truncated. The Hellinger distance between smoothed
ground-truth spectra F (ω) and generated spectra G(ω) is given by:

H(F (ω), G(ω)) =

√
1−

∫ ∞

−∞

√
F (ω)G(ω)dω ∈ [0, 1] (11)
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Maximum Lyapunov exponent The maximum Lyapunov exponent of a system quantifies how
fast nearby trajectories diverge, and for a flow map can be computed in the limit T → ∞ from the
system’s product of Jacobians. To approximate the maximum exponent numerically, we first iterated
a trained model forward from some randomly drawn initial condition and discarded transients. Given
that for chaotic systems the product of Jacobians itself explodes [67], we employed a numerical
algorithm from [107, 103] that re-orthogonalizes the series of Jacobian products at regular intervals
using a QR decomposition.

Categorical decoder We coupled categorical observations to the P PWL neurons via a link function
given by

πi =
exp

(
βT
i z

p
t

)
1 +

∑K−1
j=1 exp

(
βT
j z

p
t

) ∀i ∈ {1 . . .K − 1} (12)

πK =
1

1 +
∑K−1

j=1 exp
(
βT
j z

p
t

) .
The regression weights βi ∈ RP×1 are learned for each category i = 1 . . .K − 1, while the
normalization ensures that the total probability over all categories sums to one,

∑K
i=1 πi = 1.

A.3 Benchmark datasets

Lorenz-63 The Lorenz-63 system, formulated by Edward Lorenz in 1963 [61] to model atmospheric
convection, is defined by

dx
dt

= σ(y − x) (13)

dy
dt

= x(ρ− z)− y

dz
dt

= xy − βz,

where σ, ρ, β, are parameters that control the dynamics of the system (here set to σ = 10, β = 8
3 ,

and ρ = 28, in the chaotic regime). The system was solved numerically with integration time step
∆t = 0.01 using scipy.integrate with the default RK45 solver.

Rössler The Rössler system, intended by Otto Rössler in 1976 [85] as a further simplification of
the Lorenz model, produces chaotic dynamics using a single nonlinearity in one state variable:

dx
dt

= −y − z (14)

dy
dt

= x+ ay

dz
dt

= b+ z(x− c),

where a, b, c, are parameters controlling the dynamics of the system (here set to a = 0.2, b = 0.2,
and c = 5.7, in the chaotic regime). The system was solved with integration time step ∆t = 0.08
using scipy.integrate with the default RK45 solver.

Human electrocardiogram The electrocardiogram (ECG) time series was taken from the PPG-
DaLiA dataset [82]. With a sampling frequency of 700Hz, the recording duration spanned 600
seconds, yielding a time series of T = 419, 973 time points. Initially, a Gaussian smoothing filter
with σ = 6 was applied, resulting in a filter length of l = 8σ + 1 = 49. We standardized the
time series and applied temporal delay embedding using the DynamicalSystems.jl Julia library,
resulting in an embedding dimension of m = 5. For model training, the first T = 100, 000 time steps
(approximately 143 seconds) were used, downsampled to every 10th datapoint.
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Human fMRI data The functional magnetic resonance imaging (fMRI) data from human subjects
performing three cognitive tasks is publicly available on GitHub [52]. We followed Kramer et al.
[52] and selected the first principal component of BOLD activity in each of the 20 brain regions.
Subjects underwent five rounds of three cognitive tasks (‘Choice Reaction Task [CRT]’, ‘Continuous
Delayed Response Task [CDRT]’ and ‘Continuous Matching Task [CMT]’), together with a ‘Rest’
and ‘Instruction’ period. The time series per subject were short (T = 360) and reconstructions in [52]
exhibited a positive maximum Lyapunov exponent, indicating the chaotic nature of the underlying
system.

Lorenz-96 The Lorenz-96 system, formulated by Edward Lorenz in 1996 [62], is defined by

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, (15)

with system variables xi, i = 1, ..., N , and forcing term F (here, F = 8, in the chaotic regime).
Furthermore, cyclic boundary conditions are assumed with x−1 = xN−1, x0 = xN , xN+1 = x1, and
the system was solved with integration step ∆t = 0.04 using scipy.integrate with the default
RK45 solver.

Human EEG data Electroencephalogram (EEG) data were taken from a study by Schalk et al.
[87]. These are 64-channel EEG recordings obtained from human subjects during different motor
and imagery tasks. The signal was standardized and smoothed using a Hann function and a window
length of 15, as in [11].

A.4 Further Results

Table 1: Comparison of AL-RNN to different SOTA models for dynamical systems reconstruction.
Comparison values, datasets and evaluation measures as in [39], based on code provided on GitHub
by the authors. id-TF: identity teacher forcing, GTF: generalized teacher forcing, Dstsp: state space
divergence, DH : Hellinger distance across power spectra. Reported values are median ± median
absolute deviation.

Dataset Method Dstsp ↓ DH ↓ |θ|

Lorenz-
63 (3d)

AL-RNN + id-TF 0.34± 0.05 0.081± 0.012 360
shPLRNN + GTF 0.26± 0.03 0.090± 0.007 365
dend-RNN + id-TF 0.9± 0.2 0.15± 0.03 361
Reservoir Computer 0.52± 0.12 0.19± 0.04 603
LSTM-TBPTT 0.46± 0.22 0.11± 0.03 1188
SINDy 0.24± 0.00 0.091± 0.000 30
Neural-ODE 0.63± 0.2 0.15± 0.05 353
Long Expressive Memory 0.39± 0.24 0.12± 0.05 360

ECG

AL-RNN + id-TF 3.0± 0.7 0.29± 0.04 2808
shPLRNN + GTF 4.3± 0.6 0.34± 0.02 2785
dendPLRNN + id-TF 5.8± 0.6 0.37± 0.06 3245
Reservoir Computer 5.3± 1.7 0.39± 0.05 5000
LSTM-TBPTT 15.2± 0.5 0.73± 0.02 5920
SINDy diverging diverging 3960
Neural-ODE 12.2± 0.7 0.7± 0.03 4955
Long Expressive Memory 16.3± 0.2 0.56± 0.04 4872

Lorenz-
96 (20d)

AL-RNN + id-TF 1.64± 0.03 0.089± 0.001 4623
shPLRNN + GTF 1.68± 0.06 0.072± 0.001 4540
dendPLRNN + id-TF 1.65± 0.05 0.083± 0.005 5740
Reservoir Computer 2.40± 0.15 0.14± 0.02 12000
LSTM-TBPTT 5± 1 0.31± 0.04 10580
SINDy 1.59± 0.00 0.06± 0.00 4620
Neural-ODE 1.77± 0.07 0.076± 0.01 4530
Long Expressive Memory 7.2± 2.3 0.54± 0.13 4620

EEG
(64d)

AL-RNN + id-TF 2.6± 0.3 0.14± 0.03 17955
shPLRNN + GTF 2.1± 0.2 0.11± 0.01 17952
dendPLRNN + id-TF 3± 1 0.13± 0.04 18099
Reservoir Computer 14± 7 0.54± 0.15 28672
LSTM-TBPTT 30± 21 0.2± 0.1 51584
SINDy diverging diverging 133120
Neural-ODE 20± 0.5 0.47± 0.01 17995
Long Expressive Memory 10.2± 1.5 0.38± 0.06 18304
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Figure 9: Top: DSR quality (assessed by Dstsp) as a function of strength of regularization on the
number of nonlinearities for the AL-RNN trained on Lorenz-63. Bottom: Number of selected
piecewise-linear units P as a function of regularization strength. As in Fig. 3, a first optimum
consistently occurs for P = 2. To select the number of nonlinear units through regularization, we
replaced the standard ReLU by a leaky ReLU max(αizi, zi), αi ∈ (0, 1), for each of the i = 1 . . .M
units. The slope αi = σ(γi) is determined through a steep sigmoid, σ(γi) = 1/(1 + exp(−500(γi −
0.5))), via trainable parameter γi, ensuring that it is either close to 0 or close to 1. To encourage
linearity, we include a loss term Llin = λlin

∑M
i=1 |αi − 1|, pushing slopes towards 1. After training,

units with αi ≈ 1 are classified as linear, while all remaining units were considered nonlinear to
provide an estimate for P .

Task stages align with subregions To test the alignment of the reconstructed AL-RNN activity in
the subspace of the P = 2 PWL units with the 4 task stages, we trained 10 models on each of the 10
subjects without visible movement artifacts (yielding 100 trained models). We then checked which
assignment of the four subregions (00, 01, 10, and 11) to the four task stages (Rest and Instruction,
CRT, CDRT, and CMT) gave the highest alignment (Fig. 8), and used this to determine the average
classification accuracy as the percentage of time points correctly assigned to their respective task
stage based on the four subregions.

Geometrically minimal reconstructions of empirical time series Increasing the number of PWL
units also improved geometric agreement for the empirical time series (Fig. 3, P = 10 for the ECG
data), while dynamics remained confined to a relatively small subset of linear subregions (Fig. 4).
This confinement within only a few subregions allows for the efficient computation of dynamical
objects like fixed points. For the ECG data, real and virtual fixed points in the linear subregions
were primarily located within a 3d hyperplane of the 5d data. Principal component analysis showed
that this hyperplane harboring the fixed points aligned with the first principal component of the data,
explaining approximately 40% of the data’s variance (Fig. 20a/b). A similar pattern was observed in
the fMRI data, where fixed point locations often aligned with PC1 of the data (Fig. 21).

23



Figure 10: Reconstruction performance on Lorenz-63 system for an AL-RNN (M = 20) as a function
of the number of linear units, once for the case where the number of PWL units was insufficient for
a topologically accurate reconstruction (P = 1, top), and once for the case where it was sufficient
(P = 2, bottom). Results indicate performance cannot be improved by adding more linear units if
P is too small, but can be – up to some saturation level – when P is sufficiently large. Error bars =
SEM.

Figure 11: Optimal geometric reconstruction of a Lorenz-63 using the AL-RNN with P = 8 PWL
units. Left: reconstruction with subregions color-coded by frequency of trajectory visits (dark: most
frequently visited regions, yellow: least frequent regions). Center: Resulting geometrical graph
structure (using transition probabilities for placing the nodes) visualized using the spectral layout in
networkx. Note that self-connections and directedness of edges were omitted in this representation.
The resulting graph shadows the layout of the reconstructed system. Right: Connectome of transitions
between subregions.

Figure 12: ‘Linearized’ dynamics (i.e., considering the linear map from each subregion) within the
three linear subregions of the AL-RNN trained on the ECG data from Fig. 7. The first two subregions
host weakly unstable spirals with shifted phase, corresponding to the excitatory/ inhibitory phases of
the ECG. The strongly divergent activity in the third subregion induces the Q wave.
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Figure 13: Freely generated ECG activity using an AL-RNN with 3 linear subregions (color-coded)
shows consistent assignment of the Q wave to a distinct subregion across multiple successful recon-
structions.

a

b c
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3

2

1

Figure 14: a: Freely generated ECG activity by the AL-RNN with M = 100 total units and P = 2
PWL units. b: Symbolic coding of the dynamics (with each shade of blue a different symbol/ linear
subregion), reflecting the QRS phase with alternating excitation/inhibition (lighter shades of blue)
following the short Q wave burst (dark blue). c: Time histogram of distinct symbols along the
symbolic trajectory, exposing the mildly chaotic nature of the reconstructed ECG signal [39].
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Figure 15: Freely generated fMRI activity using an AL-RNN with M = 100 total units and P = 3
PWL units. a: Mean generated activity color-coded according to linear subregions, with background
shading highlighting the most frequently visited subregion. b: Geometrical graph representation of
connections between linear subregions, with edge weights representing relative transition frequencies
(self-connections omitted). c: Time series of the symbolic coding of dynamics according to linear
subregions. d: Dynamics in the two most frequently visited linear subregions in the subspace of
the three PWL units, with the boundary between subregions in gray. The dark blue trajectory bit in
the first subregion moves towards a virtual stable fixed point located near the center of the saddle
spiral in the second subregion. The yellow trajectory illustrates an orbit cycling away from this spiral
point and eventually crossing into the first subregion. From there, trajectories are pulled back into the
second subregion through the virtual stable fixed point located close to the saddle spiral (see also
activity with background shading in a). This dynamical behavior is similar to the one observed in the
chaotic benchmark systems, where locally divergent activity of the AL-RNN is propelled back into
the center of an unstable manifold within another subregion.

Figure 16: Topological entropy computed from symbolic sequences (Figs. 14 & 15) versus λmax,
calculated from corresponding topologically minimal AL-RNNs (Figs. 5 & 7).
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Figure 17: Generated fMRI activity using an AL-RNN with M = 100 total units and P = 2 PWL
units, with the readout unit states replaced by observations every 7 time steps.

Figure 18: a: Weights of the reconstructed AL-RNN. b: Histogram of the absolute weight distributions
for the different types of AL-RNN units. On average, weight magnitudes of the PWL units are much
higher than those of the other unit types. c: The correlation structure among the weights of the
N = 20 readout units (rows in a, top) reflects the correlation structure within the observed time series
variables (correlation between both matrices r ≈ 0.76).
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Figure 19: Top row: Activity of the PWL units for the topologically minimal representations of the
Rössler (a) and Lorenz-63 attractor (b) from Fig. 5. Center row: Time histogram of discrete symbols
of the symbolic trajectory. Bottom row: Time series of the symbolic trajectory.

a b

𝜎𝑚𝑎𝑥 > 1
𝜎𝑚𝑎𝑥 < 1

Figure 20: a: Variation in the location of the analytically computed real and virtual fixed points of the
linear subregions aligns with the first PC of the data (generated trajectories in bluish, color-coded
according to linear subregion). b: Fixed point location along the first principal component (with
corresponding dynamics within (x1,x2)-plane of observation space on top) at different characteristic
stages of training. At the early stages of training, fixed points of the linear subregions are distributed
along the data manifold within the subspace of readout units. Around epoch 20, the maximum
absolute eigenvalues σmax of the Jacobians in many subregions become larger than one, inducing
local divergence necessary for producing the observed chaotic dynamics.
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Figure 21: a: Analytically computed real and virtual fixed points of the linear subregions of a
geometrically minimal AL-RNN (M = 100, P = 10) align with the first PC of the data within the
subspace of readout units. The BOLD time series for different brain regions were highly correlated,
so PC1 accounted for approximately 80% of the data variance. b: Geometrical graph representation
with relative frequency of transitions between linear subregions indicated by line thickness of edges,
showing a central highly connected subgraph of frequently visited (bluish) dominant subregions, as
in Fig. 4. c: Example freely generated activity from ten simulated brain regions.

Figure 22: Same as Fig. 5d-f, but showing absolute instead of relative deviations (for Dstsp, values
< 1.0 indicate tight agreement).

Figure 23: Pairwise differences in sorted (from lowest to highest probability) cumulative trajectory
point distributions across linear subregions across all valid pairs from 20 training runs (quantified
by the Kolmogorov–Smirnov distance, DKS) for the AL-RNN vs. PLRNN, revealing much higher
consistency for AL-RNN. Note the log-scale on the y-axis.
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Figure 24: Linear subregions (color-coded) mapped to observation space of the Rössler system,
showing a robust representation of the individual subregions across multiple training runs/ models.

Figure 25: Top row: Robust placing of linear subregions (color coded) mapped to observation space
across training runs using the AL-RNN. Model recovery experiments further confirmed the robustness
of the model solutions, with very similar overall performance measures across different experiments
(original: Dstsp = 3.14, DH = 0.28; recovered: Dstsp = 3.38± 0.18, DH = 0.28± 0.03; 3 linear
subregions in all cases). Bottom row: In contrast, for the PLRNN linear subregions are differently
assigned (with varying boundaries) on each run.

30



B Proofs of Theorems

Define a shift space of finite type (AF , σ) such that each symbol of the alphabet of A is associated
with exactly one set Ue of the topological partition of S, i.e. we have a total of |U| symbols in A.
Further define for a ∈ AF the sets [54]

Dl(a) =

l⋂
k=−l

ϕ−k(Uak
) ⊆ S, (16)

where ak is the kth symbol in the sequence a: Think of this as building the intersection of Ua0

with k-times forward iterates of subsets associated with a−k and k-times backward iterates of
subsets associated with ak, such that in the limit l → ∞ hopefully we end up with a single point
corresponding to a unique trajectory in S, i.e. considering D(a) =

⋂∞
l=0 Dl(a) (see Lind and

Marcus [54] for details). We now define [54]
Definition 1. A symbolic representation of an invertible DS (S, ϕ) with topological partition U =
{U0 . . . Un−1} is a shift space (AF , σ) with alphabet A = {0 . . . n − 1}, such that each symbol
ak ∈ A is associated with exactly one subset Uk ∈ U , and D(a) =

⋂∞
l=0 Dl(a) contains exactly

one point x ∈ S for each a ∈ AF . If AF is a finite shift, we call this a Markov partition.

Ideally, we would like our symbolic coding of the DS to be a symbolic representation or Markov
partition according to this definition, but in practice this may entail other unfavorable properties (e.g.,
too fine-grained) and we contend here with the properties given by Theorems 1 - 3.

In the statement of our theorems, we further used the terms ‘eventually periodic’ and ‘asymptotically
periodic’. Let us now strictly define them (according to Alligood et al. [3]):
Definition 2. An orbit {z1, . . . ,zn, . . .} of the map ϕ is said to be asymptotically periodic if
it converges to a periodic orbit as n → ∞. This implies that there is a periodic orbit Γk =
{y1,y2, . . . ,yk,y1,y2, . . .} such that lim

n→∞
d(zn,Γk) = 0.

For instance, any orbit that is attracted to a stable fixed point or to a saddle fixed point (evolving on
its stable manifold) is asymptotically periodic (fixed).
Definition 3. A point z is called eventually periodic with period p for the map ϕ, if for some positive
integer N , ϕn+p(z) = ϕn(z) for all n ≥ N , and p is the smallest positive integer with this exact
property. This means that the orbit of z eventually maps exactly onto a periodic orbit.

Note: The term ‘eventually periodic’ describes the extreme case where an orbit coincides precisely
with a periodic orbit. Thus, any eventually periodic orbit is also asymptotically periodic, but the
reverse is not always true: An asymptotically periodic orbit comes arbitrarily close to a periodic orbit,
but may not land precisely on it.

With these definitions we are now ready to prove the theorems.

Proof of Theorem 1

Proof. “⇒”: Suppose that the orbit ΩS = {z1, . . . ,zn, . . .} is asymptotically fixed. Hence, there
exists a fixed point z∗ ∈ Ua∗ of the AL-RNN Fθ (i.e., z∗ = Fθ(z

∗)) such that lim
n→∞

zn = z∗.

Let a = (a1a2a3 . . .) be the corresponding symbolic sequence of the orbit ΩS with zn ∈ Uan ,∀n.
Since lim

n→∞
zn = z∗, so there exists some N ∈ N such that for every n ≥ N the points zn will

remain arbitrarily close to z∗. This means the points zn eventually enter the same linear subregion
that contains z∗ and will remain there for all future iterations. Thus, a = (a1a2a3 . . . aN−1)(a

∗)∞

is eventually fixed.

“⇐”: Assume a = (a1a2a3 . . . aN−1)(a
∗)∞ is an eventually fixed sequence of the symbolic

encoding. This means for all the corresponding orbits ΩS = {z1, . . . ,zn, . . . } of Fθ, there exists
an index N such that for every n ≥ N the orbit points zn must remain in the same subregion,
say Ua∗ . Since by assumption the map Fθ is non-globally-diverging and hyperbolic, the system
cannot be expanding in all directions in any of the subregions. Thus, there must be at least one
contracting or stable direction in Ua∗ . Consequently, there must be at least one corresponding orbit
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{z1, . . . ,zn, . . . } that converges toward some stable structure in Ua∗ as n → ∞. Since Fθ is a
linear hyperbolic map in each subregion, there cannot be any k-cycle, k ≥ 2, with all periodic points
contained within a single subregion. Therefore, the corresponding orbit converges to a (saddle) fixed
point z∗ ∈ Ua∗ in the stable manifold along stable directions. If all directions in Ua∗ are contracting
or stable, then all corresponding orbits will converge to a stable fixed point within that subregion.

Proof of Theorem 2

Proof. “⇒”: Let ΩS = {z1, . . . ,zn, . . .} be an asymptotically p-periodic orbit of Fθ. Then there
is a periodic orbit ΩS,p = {z∗

1 , . . . ,z
∗
p} (i.e., such that all points z∗

k ∈ ΩS,p are distinct and
z∗
k+p = F p

θ (z
∗
k) = z∗

k, k = 1 . . . p) and

lim
n→∞

d(zn,ΩS,p) = 0. (17)

Since Fθ is a linear and hyperbolic map in each subregion, there cannot be any p-periodic orbit with
p ≥ 2 where all periodic points are contained within a single subregion. On the other hand, due to
the definition of the symbolic coding for each trajectory, each point zt at time step t is assigned its
own symbol at, depending on its associated linear subregion. Hence, the corresponding symbolic
sequence of the periodic orbit ΩS,p is (a∗1a

∗
2 . . . a

∗
p)

∞ with zk ∈ Ua∗
k
, k = 1 . . . p . Moreover, due

to eq. 17, for some large enough index N ∈ N, the points zn of the orbit ΩS become arbitrarily
close to the orbit ΩS,p. Thus, for n ≥ N , the itinerary of ΩS will follow the same repeating
pattern as the periodic orbit’s itinerary and will revisit the same subregions as the periodic orbit
points z∗

k , k = 1 . . . p. Therefore, the corresponding symbolic sequence of the orbit ΩS is a =
(a1a2 . . . aN−1)(a

∗
1a

∗
2 . . . a

∗
p)

∞, which is an eventually p-periodic orbit of the shift map σ.

“⇐”: Assume that a = (a1a2 . . . aN−1)(a
∗
1a

∗
2 . . . a

∗
p)

∞ ∈ AU,Fθ
is an eventually p-periodic orbit

of the shift map σ. Consequently,

∃N ∈ N ∀ n ≥ N : an+p = an, (18)

which says that the symbolic sequence is repeating every p steps. Therefore, for all the corresponding
orbits ΩS = {z1, . . . ,zn, . . . } of Fθ, there exists an index N such that for every n ≥ N the
orbit points zn will stay in the same p linear subregions, say Ua∗

1
, Ua∗

2
. . . , Ua∗

p
, and revisit each

Ua∗
i
(i = 1, 2, . . . , p) after exactly p time steps:

∃N ∈ N ∀ n ≥ N : Ua∗
n+p

= Ua∗
n
. (19)

Since by assumption the map Fθ is non-globally-diverging and hyperbolic, the system cannot be
expanding in all directions in any of the subregions. Thus, there exists at least one contracting
direction in each of the subregions Ua∗

1
, Ua∗

2
. . . , Ua∗

p
, and therefore at least one corresponding orbit

ΩS = {z1, . . . ,zn, . . . } that converges toward some stable structure within Ua∗
1
, Ua∗

2
. . . , Ua∗

p
as

n → ∞. Furthermore, as Fθ is a linear and hyperbolic map in each subregion there cannot be any k-
cycle, k ≥ 2, with all periodic points contained within only one of the subregions. Similarly, it cannot
be chaotic or quasi-periodic within just one subregion. Now, due to eq. 19, for the corresponding
orbit ΩS

∀n ≥ N ∀ zn ∈ Ua∗
i
(i = 1 . . . p) : zn+p = F p

θ (zn) = Wazn + ha ∈ Ua∗
i
, (20)

with fixed parameters Wa := W
Ω

a∗
p · · ·WΩa∗

2
W

Ωa∗
1

and ha :=
∑p

i=2

∏i
j=2 WΩap−j+2h + h.

Since F p
θ is strictly affine, for n ≥ N , any sub-sequence {zn+mp}∞m=1 of ΩS cannot be convergent

to an aperiodic (i.e., chaotic or quasi-periodic) orbit. Therefore, the corresponding orbit ΩS converges
to a (saddle) p-periodic orbit, with all periodic points within the sub-regions Ua∗

1
, Ua∗

2
. . . , Ua∗

p̄
, in

the stable manifold along stable directions. If all directions in Ua∗ are contracting or stable, then
all corresponding orbits will converge to a stable p-periodic orbit with all periodic points within the
subregions Ua∗

1
, Ua∗

2
. . . , Ua∗

p̄
.

Proof of Theorem 3

Proof. “⇒”: Let ΩS = {z1, z1, . . . ,zn, . . . } of Fθ be an asymptotically aperiodic orbit of Fθ.
Then, there is an aperiodic orbit Ω = {z̄1, z̄2 . . . } (i.e., with z̄k ̸= F p

θ (z̄k)∀k, p > 0) and

lim
n→∞

d(zn,Ω) = 0. (21)
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According to the proof of Theorem 2 (second part), this orbit cannot have an eventually periodic
symbolic representation (a1a2 . . . aN−1)(a1a2 . . . ap)

∞, because if it had, it would need to be
asymptotically periodic as well.

“⇐”: Assume an aperiodic symbolic sequence a = (a1, . . . , an, . . .), where there is no p > 0
such that ak = σp(ak)∀k. This will correspond to an aperiodic succession Ua1

. . . Uan
. . . of linear

subregions Uak
visited, since each subregion has its unique symbol. However, from the proof of

Theorem 2 (first part) we know that any asymptotically periodic orbit of Fθ must have an eventually
periodic symbolic encoding, so the orbit ΩS corresponding to a cannot be asymptotically periodic.
Consequently, it cannot be (eventually) periodic either, which implies that it must be aperiodic.
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model well-specification, asymptotic approximations only holding locally). The authors
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper includes formal proofs of all theorems Appx. B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed hyperparameter settings for the results in the paper are given in Sect.
A.2, which combined with the codebase allow for replication of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A link to a github repository is provided that contains the implementation of
the network architecture that was used for the main results in the paper (https://github.
com/DurstewitzLab/ALRNN-DSR).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All hyperparameter settings are provided in Sect. A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported in figures and with numerical results, i.e. Figs. 3, 4 and
5. The settings for the random initialization of the network architecture are specified in Sect.
A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details on computational resources are provided in Sect. A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All datasets considered here were publically available. The research is aimed
at facilitating interpretability of machine learning models. We believe our approach has
primarily positive ethical implications. Although we have not identified specific ethical
concerns, the wide range of potential applications means that possible misuses cannot be
entirely ruled out.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work constitutes foundational research. As such, we do not foresee any
direct negative societal impact.

37

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not foresee a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All code and results were created by us. Datasets were publically sourced and
the respective authors cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A fully documented version of the code is published on github.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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