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A Additional Experiments and Details

A.1 Model configuration.

We provide details about CRATE-o model configurations in Table 1.

Table 1: Model configurations for different sizes of CRATE-«, parameter counts, and comparisons to
CRATE models. L is depth, d is the hidden size, and K is the number of heads.

Model Size L d K CRATE-« # Params CRATE # Params
Tiny 12 192 3 4.8M 1.7M
Small 12 576 12 41.0M 13.1M
Base 12 768 12 72.3M 22.8M
Large 24 1024 16 253.8M 77.6M
Huge 32 1280 16 526.8M 159.8M

Table 2: The comparison between CRATE-« and ViT. FLOPs and throughput are calculated based on
an input size of 224x224 on an NVIDIA RTX A6000 graphics card.

Model FLOPs (G) #Params (M)  Throughput Model FLOPs (G) #Params (M) Throughput
CRATE-a-B/32 6.4 74.0 499 ViT-B/32 44 88.2 706
CRATE-a-B/16 25.8 72.3 233 ViT-B/16 17.6 86.5 375
CRATE-a-L/32 22.8 256.0 215 ViT-L/32 15.4 306.5 329
CRATE-a-L/14 119.7 253.7 56 ViT-L/14 81.1 304.1 85

A.2 Comparison of model structure with ViT.

We also compare CRATE-« to ViT in terms of computational costs, number of parameters, and
inference speed. These comparisons are summarized in Table 2, where CRATE-« matches ViT’s effi-
ciency while achieving similar accuracy. With the same number of layers and embedding dimensions,
CRATE-« has fewer parameters than ViT, and its FLOPs/Throughput is slightly higher.

To more accurately compare CRATE-« and ViT with larger model sizes, we conduct experiments on
CRATE-a-L/16 with an image resolution of 336, nearly matching the setup of ViT-L/16. Both models
use a similar amount of FLOPs: 210G for CRATE-«a-L/16 compared to 191G for ViT-L/16. The
throughput, or images processed per second, is also comparable at 35.53 for our model versus 35.56
for ViT-L/16. The accuracy of CRATE-«-L/16 reach 84.6%, closely approaching ViT’s 85.2% under
similar conditions. Meanwhile, combining the trend from Figure 1 (right) in the main paper, this
narrowing performance gap from Base to Large model size suggests that CRATE-« can nearly matche
ViT’s performance in large-scale settings. Besides, CRATE-« inherits the mathematical interpretability
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of the white-box models and can also achieve much better semantic interpretability evaluated by
zero-shot segmentation.

A.3 Training details of CRATE-a-CLIPA models.

When employing the CRATE-« architecture to replace the vision encoder in the CLIPA [2] framework,
we essentially follow the original CLIPA training recipe. The setup for the pre-training stage is
presented in Table 3. During the fine-tuning stage, we made some modifications: the input image size
is set to 224 x 224, the warmup steps are set to 800, and the base learning rate is set to 4e-7. When
calculating the loss, we use the classification token from the vision encoder as the image feature and
the last token from the text encoder as the text feature.

To explore the performance ceiling, we also train a ViT-CLIPA model from scratch. Most of the
hyperparameters remain the same as those in Table 3, but there are some modifications in the pre-
training stage. The batch size is set to 65,536, and the text length is set to 8 to speed up training. As
with the CLIPA setup, warm-up steps are set to 3,200. Additionally, we add color jitter and grayscale
augmentation, and use global average pooling instead of the classification token. These modifications
help stabilize training.

Config \ Value
optimizer AdamW [5]
optimizer momentum (0.9, 0.95)
batch size 32768
base Ir 8e-6
minimal Ir 0
warm-up steps 1600
schedule cosine decay [4]
weight decay 0.2
random crop area (40, 100)
resize method bi-linear
temperature init 1/0.07 [1, 3]

Table 3: Pre-training hyper-parameters for CLIPA.
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Figure 1: One layer of the CRATE-a model architecture (with more details for the three modifications

described in Section 3.



Visualization of self-attention maps of CRATE-«. We provide visualization of attention maps of
CRATE-« in Fig. 2.
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Figure 2: We visualize the self-attention maps of the CRATE-a Base model using 8 x 8 patches
trained using classification. Similar to the original CRATE [6], our model also demonstrates the
capability to automatically capture the structural information of objects. For each row, the original
image is displayed on the left, while the corresponding self-attention maps are shown on the right.
The number of self-attention maps corresponds to the number of heads in the CRATE-a model.

Visualization of loss curves. We visualize the training loss curves of the four models, including
CRATE and its three variants, in Fig. 3. We visualize the training loss curves of CRATE-a-Base with
different patch sizes in Fig. 4. In Fig. 5, we also visualize the training loss curves of models trained
with efficient scaling strategy described in Section 4.4 in the main paper.
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Figure 3: Training loss curves of different model architectures (mentioned in Fig. 1 in the main paper)
on ImageNet-21K. The patch size is 32 for all four models shown in this figure. (+O: +overcomplete
dictionary, +D: +decoupled dictionary, +R: +residual connection.)
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Figure 4: Comparing training loss curves across CRATE-«-Base with different patch sizes.
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Figure 5: Comparing training loss curves when using the efficient scaling strategy. The blue curve
corresponds to the CRATE-«a-Large/32 model (in the pre-training stage). After pre-training the CRATE-
a-Lage/32, we further fine-tune it with smaller patch sizes (longer token length), including patch size
14 (orange curve) and patch 8 (green curve).
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