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Abstract

The field of face recognition (FR) has undergone significant advancements with
the rise of deep learning. Recently, the success of unsupervised learning and
graph neural networks has demonstrated the effectiveness of data structure infor-
mation. Considering that the FR task can leverage large-scale training data, which
intrinsically contains significant structure information, we aim to investigate how
to encode such critical structure information into the latent space. As revealed
from our observations, directly aligning the structure information between the
input and latent spaces inevitably suffers from an overfitting problem, leading to
a structure collapse phenomenon in the latent space. To address this problem,
we propose TopoFR, a novel FR model that leverages a topological structure
alignment strategy called PTSA and a hard sample mining strategy named SDE.
Concretely, PTSA uses persistent homology to align the topological structures of
the input and latent spaces, effectively preserving the structure information and
improving the generalization performance of FR model. To mitigate the impact of
hard samples on the latent space structure, SDE accurately identifies hard samples
by automatically computing structure damage score (SDS) for each sample, and
directs the model to prioritize optimizing these samples. Experimental results
on popular face benchmarks demonstrate the superiority of our TopoFR over the
state-of-the-art methods. Code and models are available at: https://github.
com/modelscope/facechain/tree/main/face_module/TopoFR.

1 Introduction

Face recognition (FR) is a critical biometric authentication technique that is widely applied in various
applications. In recent years, convolutional neural networks (CNNs) have achieved remarkable
success in FR task, thanks to their powerful ability to autonomously extract face features from images.
Existing studies on FR primarily focuses on constructing more discriminative face features by
developing margin-based loss functions [1, 2, 3, 4, 5] and powerful network architectures [6, 7, 8, 9].
Recently, the success of unsupervised learning [10, 11, 12, 13, 14] and graph neural networks [15, 16,
17] has demonstrated the importance of data structure information in improving model generalization.
However, to the best of our knowledge, how to effectively mine the potential structure information in
large-scale face data has not investigated. Thus, in this paper, we extend our interests on building a
cutting-edge FR framework through exploiting such powerful and substantial structure information.

First, we use Persistent Homology (PH) [20, 21], a mathematical tool used in topological data
analysis [22] to capture the underlying topological structure of complex point clouds, to investigate
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Figure 1: We sample 1000 (a), 5000 (b), 10000 (c) and 100000 (d) face images from the MS1MV2
dataset respectively, and compute their persistence diagrams using PH, where Hj represents the j-th
dimension homology. Persistence diagram [18] is a mathematical tool to describe the topological
structure of space, where the j-th dimension homology Hj in persistence diagram represents the j-th
dimension hole in space. In topology theory, if the number of high-dimensional holes in the space
is more, then the underlying topological structure of the space is more complex [19]. As shown in
Figure 1(a)-1(d), as the amount of face data increases, the persistence diagram of the input space
contains more and more high-dimensional holes (e.g., H3 and H4). Therefore, this phenomenon
demonstrates a growing complexity in the topological structure of the input space.

the evolution trend of structure information in existing FR framework and illustrate 3 interesting
observations: (1) as the amount of data increases, the topological structure of the input space becomes
more and more complex, as verified in Figures 1a-1d; (2) as the amount of data increases, the
topological structure discrepancy between the input space and the latent space becomes increasingly
larger, as verified in Figure 2a; (3) The results in Figure 2b demonstrate that as the depth of the
network increases, the topological structure discrepancy becomes progressively smaller. This finding
also provides an explanation for why models with more complex structure achieve higher FR accuracy.
Based on the above observations, we can infer that in FR tasks with large-scale datasets, the structure
of face data will be severely destroyed during training, which limits the generalization ability of FR
models in practical application scenarios. To this end, we propose to improve the generalization
performance of FR models by preserving the structure information.

However, we experimentally find that directly using PH to align the topological structures of the
input space and the latent space may cause the model to suffer from structure collapse phenomenon.
Concretely, under this experimental setting, we have 2 following quantitative results: (1) As shown in
Figure 2c, the topological structure discrepancy drops to 0 dramatically during early training. (2)
As depicted in Figure 2d, when evaluating on the IJB-C benchmark [23], there exists a significant
structure information gap between the input space and the latent space. These typical overfitting phe-
nomena indicate the latent space fails to preserve the structure information of input space accurately.

To remedy this issue, we propose a superior FR model named TopoFR that leverages a Perturbation-
guided Topological Structure Alignment (PTSA) strategy to adequately preserve the topological
structure information of the input space in corresponding latent face features. PTSA first employs a
random structure perturbation (RSP) mechanism perturb the latent space and effectively increase its
structure diversity. Then PTSA utilizes an invariant structure alignment (ISA) mechanism to align
the topological structures of the original input space and the perturbed latent space, resulting in face
features with stronger generalization ability

Moreover, in practical FR scenarios, the training dataset typically includes some low-quality face
samples (i.e., hard samples) that are prone to being encoded into abnormal positions close to the
decision boundary in the latent space [24, 6, 25, 26], significantly destroying the topological structure
of the latent space and affecting the alignment of structure. To address this issue, we propose a novel
hard sample mining strategy named Structure Damage Estimation (SDE). SDE adaptively assigns
structure damage score (SDS) to each sample based on its prediction uncertainty and prediction
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Figure 2: (a): We investigate the relationship between the amount of data and the topological
structure discrepancy by employing ResNet-50 ArcFace model [1] to perform inferences on MS1MV2
training set. Inferences are conducted for 1000 iterations with batch sizes of 256, 1024, and 2048,
respectively. Histograms are used to approximate these discrepancy distributions. (b): We investigate
the relationship between the network depth and the topological structure discrepancy by performing
inference on MS1MV2 training set (batch size=128) using ArcFace models with different backbones.
(c): We investigate the trend of topological structure discrepancy during training (batch size=128) and
found that i) directly using PH to align the topological structures will cause the discrepancy to drops
to 0 dramatically; ii) whereas using our PTSA strategy promotes a smooth convergence of structure
discrepancy. (d): Aligning the topological structures directly using PH will lead to significant
discrepancy when evaluating on IJB-C benchmark. Our PTSA strategy effectively mitigates this
overfitting issue, resulting in smaller structure discrepancy during evaluation.

probability. By prioritizing the optimization of hard samples with significant structure damage,
SDE can gradually guide these samples back to their reasonable positions, thereby improving the
generalization ability of FR model.

In summary, the main contributions are listed as follows:

1) To the best of knowledge, we are the first to explore the topological structure alignment in FR
task. We propose a novel topological structure alignment strategy called PTSA to effectively align
the structures of the original input space and the perturbed latent space.

2) A novel hard sample mining strategy named SDE is introduced to mitigate the adverse impact of
hard samples on the latent space structure.

3) Experimental results show that the proposed method outperforms SOTA methods on various face
benchmarks. Notably, our TopoFR has secured the second place in the ICCV21 MFR-Ongoing
challenge [27] until the submission of this work (May 22 ’24, academic track): http://iccv21-mfr.
com/#/leaderboard/academic, indicating the robustness and generalization of our method.

2 Related Works

Face Recognition (FR). Convolutional Neural Networks (CNNs) [28, 29] have achieved remarkable
advancements in tasks related to facial recognition [30, 31, 32, 1, 33, 34]. Notably, the extraction
of robust deep facial embeddings has raised considerable interest within the research community.
Among them, CNNs framework are representative methods, using two primary methods: metric
learning-based and margin-based softmax approaches. The former utilizes loss functions like Triplet
loss [7], Tuplet loss [35], and Center loss [36] to learn discriminative face features, while the latter
aims to incorporate margin penalty into the softmax loss framework, including methods such as
ArcFace [1], CosFace [2], AM-softmax [37], and SphereFace [38]. Recent studies have explored
various techniques, including adaptive parameters [3, 5], mining [4, 39, 40], learning acceleration
[41, 42, 43], vision transformer architecture [9, 8], and data uncertainty [25, 6, 26] to further enhance
models’ performance on large-scale datasets.

Persistent Homology (PH). Over the past decade, PH has shown significant advantages in multiple
various such as signal processing[44], video analysis [45, 46], neuroscience [47, 48], disease diagnosis
[49] and evaluation of embedding strategies [50, 51]. In the field of machine learning, some studies
[52, 53, 54] have shown that integrating topological representations into network can enhance model’s
recognition/segmentation performance. [55] proposes a topology distance for the evaluation of GANs.
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Figure 3: Global overview of our proposed TopoFR.
⊗

represents the multiplication operation. ξ
denotes the probability of applying RSP to each training sample.

3 Background: Persistent Homology

PH is a computational topology method that quantifies the changes in the topological invariants of
a Vietoris-Rips complex as a scale parameter ρ is varied. In this section, we introduce some key
concepts of PH. Further details on PH can be found in Refs. [20, 56].

Notation. X := {xi}ni=1 represents a point cloud and µ : X × X → R denotes a distance metric
over X . Matrix M represents the pairwise distances (i.e., Euclidean distance) between points in X .

Vietoris-Rips Complex. The Vietoris-Rips complex [57] is a special simplicial complex constructed
from a set of points in a metric space, and it can be used to approximate the topology of the underlying
space. For 0 ≤ ρ < ∞, we represent the Vietoris-Rips complex of point cloud X at scale ρ as Vρ(X ),
which contains all simplices (i.e., subsets) of X , and each component of point cloud X satisfies
a distance constraint: µ(xi, xj) ≤ ρ for any i, j. Moreover, the Vietoris-Rips complex satisfies a
nesting relation, i.e., Vρi

⊆ Vρj
for any ρi ≤ ρj , which allows us to track the evolution progress of

simplical complex as the scale ρ increases. It is worth noting that Vρ(X ) and Vρ(M) are equivalent
because constructing the Vietoris-Rips complex only requires distance.

Homology Group. The homology group [58] is an algebraic structures that analyzes the topological
features of a simplicial complex in different dimension j, such as connected components (H0),
cycles (H1), voids (H2), and higher-dimensional features (Hj , j ≥ 3). By tracking the changes in
topological features (Hj) of the Vietoris-Rips complex as the scale ρ increases, it is possible to gain
insight into the multi-scale topological information of the underlying space.

Persistence Diagram and Persistence Pairing [59]. The persistence diagram D is a multi-set of
points (b, d) in the Cartesian plane R2, which encodes information about the lifespan of topological
features. Specially, it summarizes the birth time b and death time d of each topological feature, where
birth time b signifies the scale at which the feature is created and death time d refers to the scale at
which it is destroyed. The persistence pairing γ contains indices (i, j) corresponding to simplices
ri, rj ∈ Vρ(X ) that create and destroy the topological features identified by (b, d) ∈ D, respectively.

4 Methodology

In this paper, we propose a novel framework named TopoFR for constraining the FR model to preserve
the topological structure information of the input space in their latent features. The architecture
of our TopoFR model is depicted in Figure 3. It consists of two components: a feature extractor
F and an image classifier C. Mathematically, given an input image x, the latent feature extracted
by F is denoted as f = F(x) ∈ Rl, and the classification probability predicted by C is denoted as
g = C(f) ∈ RK , where l represents the feature dimension and K denotes the number of classes. The
entropy of the classification prediction probability g can be represented as E(g) = −

∑K
k=1 g

k log gk,
where gk is the probability of predicting a sample to class k.
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4.1 Perturbation-guided Topological Structure Alignment

As mentioned in Section 1, directly applying PH to align the topological structures of the input space
and the latent space can cause the FR model to encounter structure collapse phenomenon. To remedy
this problem, we propose a Perturbation-guided Topological Structure Alignment (PTSA) strategy
that includes two mechanisms: random structure perturbation and invariant structure alignment.

Random Structure Perturbation (RSP). PTSA first utilizes the RSP mechanism to randomly perturb
the structure of the latent space. Specially, it utilizes a data augmentation list A = {A1,A2,A3,A4}
that includes four common data augmentation operations, namely Random Erasing A1, GaussianBlur
A2, Grayscale A3 and ColorJitter A4. For each training sample xi, RSP will randomly select an
operation Ar from A to perturb it, i.e., x̃i = Ar(xi). Then the perturbed sample x̃i will be fed into
the model for supervised learning, which effectively increases the structure diversity of the latent
space. In our model, we adopt ArcFace loss [1] as the basic classification loss:

Larc(x̃i, yi) = − log
es(cos(θ

y
i +m))

es(cos(θ
y
i +m)) +

∑K
k=1,k ̸=y e

s cos θk
i

, (1)

where yi is the class label of the original image xi, s is a scaling parameter, θki is the angle between
the k-th class center and feature, and m denotes an additive angular margin. During training, we
apply the RSP mechanism to each sample xi with a probability ξ of 0.2.

Invariant Structure Alignment (ISA). Given a mini-batch of original training samples X = {xi}ni=1,
we denote the perturbed batch samples as X̃ = {x̃i}ni=1. For the perturbed samples, we denote

the latent features extracted by F as Z̃ =
{
f̃i

}n

i=1
. During forward propagation, we can construct

the Vietoris-Rips complexes Vρ(X ) and Vρ(Z̃) for point clouds X and Z̃ respectively, based on
their respective pairwise distance matrix MX and MZ̃ . Then we can utilize persistent homology to
analyze the topological structures of Vρ(X ) and Vρ(Z̃), and obtain their corresponding persistence

diagrams
{
DX ,DZ̃

}
and persistence pairings

{
γX , γZ̃

}
, respectively.

Ideally, no matter how the face image is perturbed, the position of the encoded face feature in the
latent space should remain unchanged, and the topological structure of the perturbed latent space
should also be consistent with the original input space. To this end, we choose to align the original
input space X with the perturbed latent space Z̃ to achieve this goal. Prior studies usually utilize
bottleneck distance or Wasserstein distance to measure the topological structure discrepancy [60, 18]
between two spaces by comparing the differences in persistence diagrams. However, these two
metrics are sensitive to outliers in persistence diagrams [55, 61] and will significantly increase
models’ training time, rendering them unsuitable for FR tasks with extremely large-scale datasets, as
verified in Table 8 in the Appendix.

To mitigate this issue, we turn to retrieve the persistence diagrams values by subsetting the corre-
sponding pairwise distance matrix with edge indices provided by the persistence pairings [62, 63, 64],
i.e., DX ≃ MX [γX ] and DZ ≃ MZ̃ [γZ̃ ]. By comparing the difference between two topologically
relevant distance matrices from both spaces, we can quickly and stably compute the discrepancy
between their persistence diagrams, providing an efficient solution for structure alignment of FR
models driven by large-scale datasets. We formulate the ISA loss as follows:

Lsa(DX ,DZ̃) =
1

2

(∥∥∥MX [γX ]−MZ̃ [γX ]
∥∥∥2 + ∥∥∥MZ̃ [γZ̃ ]−MX [γZ̃ ]

∥∥∥2) (2)

Notably, in the field of FR, most existing works do not include any data augmentation operations,
as this would introduce more unidentifiable face images (i.e., destroying the fidelity of each face),
which generally hurts the FR model’s generalization ability, as verified in Refs. [3, 65]. In this work,
we do not employ these data augmentations to simply augment data scale. Instead, we use them to
increase the latent space’s structure diversity, effectively addressing the structure collapse problem.
As a result, our PTSA strategy can reap the benefits of data augmentations while mitigating their
potential negative effects (see Figure 2, Table 3, and Figure 5 for further analysis.).
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4.2 Structure Damage Estimation

In practical FR scenarios, low-quality face samples, also known as "hard samples", are commonly
included in the training set. These hard samples tend to be encoded in abnormal positions near
the decision boundary in the latent space [25, 6, 66, 67], which will disrupt the latent space’s
topological structure and further hinder the alignment of structures. To address this issue, we propose
a novel hard sample mining strategy called Structure Damage Estimation (SDE). SDE is specifically
designed to identify hard samples with serious structure damage within the training set accurately.
By prioritizing the learning of these hard samples and guiding them back to the reasonable positions
during optimization, SDE aims to mitigate the adverse impact of hard samples on the latent space’s
topological structure.

Prediction Uncertainty. Hard samples are typically distributed near the decision boundary, thus have
a high prediction uncertainty (i.e., large entropy of the classifier prediction) and are more likely to be
misclassified by the classifier [68, 69, 70, 71]. Conversely, easy samples are usually located far from
the decision boundary and have relatively low prediction uncertainty. To model the difficulty of each
sample, we introduce a binary random variable ui ∈ {0, 1} for each sample x̃i to indicate whether the
sample is hard or easy by values of 1 and 0, respectively. Then the probability that sample x̃i belongs
to hard samples (i.e., with large prediction uncertainty) can be defined as hφ(x̃i) = Pφ (ui = 1|x̃i),
where φ represents the parameter set. According to the cluster assumption [72, 73], we believe that
samples with higher prediction entropy are more disruptive to the latent space’s topological structure.
Therefore, we propose to model the distribution of the entropy E(g̃i) for each training sample x̃i

using the Gaussian-uniform mixture (GUM) model, a statistical distribution that is robust to outliers
[74, 75, 76]:

p (E(g̃i)|x̃i) = πN+(E(g̃i)|0,Σ) + (1− π)U(0,Ω), (3)

where

N+(a|0,Σ) =
{
2N (a|0,Σ), a ≥ 0.

0, a < 0.
(4)

U(0,Ω) is a uniform distribution defined on [0,Ω], π is a prior probability, and Σ is the variance
of Gaussian distribution N (a|0,Σ). In this mixed model, the uniform distribution term U and the
Gaussian distribution term N+ respectively model the hard samples and easy samples. Then the
posterior probability that the sample x̃i to be hard (i.e., high-uncertainty) can be computed as follows:

hφ(x̃i) = Pφ (ui = 1|x̃i) =
(1− π)U(0,Ω)

πN+(E(g̃i)|0,Σ) + (1− π)U(0,Ω)
. (5)

In Equation (5), when the classifier prediction is close to uniform distribution or when the prediction
probabilities for multiple classes are nearly equal, the posterior probability of a sample belonging to
hard data will be very high, i.e., (g̃i → [ 1K , 1

K , · · · , 1
K ], hφ(x̃i) → 1), otherwise it is relatively low.

Hence, the prediction uncertainty of sample xi can be measured by a quantitative probability hφ(x̃i).

Assume Ê(g̃i) = (−1)ϵiE(g̃i), ϵi ∼ B(1, 0.5), where B is a Bernoulli distribution [77], then the
variable Ê(g̃i) obeys the following statistical distribution:

p
(
Ê(g̃i)|x̃i

)
= πN (Ê(g̃i)|0,Σ) + (1− π)U(−Ω,Ω). (6)

In this way, the maximum likelihood model of Equation (6) can be formulated as:

max
π,Σ,Ω

n∏
i=1

p
(
Ê(g̃i)|x̃i

)
. Then, the parameter set φ = {π,Σ,Ω} of GUM can be estimated via

the Expectation-Maximization (EM) algorithm [78] with the following iterative formulas:

h(t+1)
φ (x̃i) =

(1− π(t))U(−Ω(t),Ω(t))

π(t)N (Ê(g̃i)|0,Σ(t)) + (1− π(t))U(−Ω(t),Ω(t))
, π(t+1) =

∑n
i=1(1− h

(t+1)
φ (x̃i))

n
,

Σ(t+1) =

∑n
i=1(1− h

(t+1)
φ (x̃i))(Ê(g̃i))

2∑n
i=1(1− h

(t+1)
φ (x̃i))

,Ω(t+1) =
√
3(η2 − η21), (7)

6



where

η1 =

∑n
i=1

h(t+1)
φ (x̃i)

1−π(t+1) Ê(g̃i)∑n
i=1(1− h

(t+1)
φ (x̃i))

, η2 =

∑n
i=1

h(t+1)
φ (x̃i)

1−π(t+1) (Ê(g̃i))
2∑n

i=1(1− h
(t+1)
φ (x̃i))

.

Specifically, at each iteration, EM alternates between evaluating the expected log-likelihood (E-step)
and updating the parameter set φ (M-step). In Equation (7), the E-step aims to evaluate the posterior
probability h

(t+1)
φ of an sample x̃i to be hard sample using the iterative formula h

(t+1)
φ (x̃i), where

(t+ 1) denotes the EM iteration index. The M-step updates the parameter set φ using the iterative
formulas π(t+1), Σ(t+1) and Ω(t+1).

Structure Damage Score (SDS). Compared to correctly classified samples, misclassified samples
usually have larger difficulty and have greater destructive effects on the latent space’s topological
structure. Therefore, misclassified samples need to receive more attention during training. Inspired by
the Focal loss [79], we design a probability-aware scoring mechanism ω(x̃i) that combines prediction
uncertainty hφ(·) and prediction accuracy to adaptively compute SDS for each sample x̃i:

ω(x̃i) = ω1(x̃i)× ω2(x̃i) = (1 + hφ(x̃i))
λ × (1− g̃gti ), (8)

where λ is a temperature coefficient, and g̃gti represents the prediction probability of ground truth.
Specifically, SDE assigns higher SDS to hard samples and lower SDS to easy samples, which
effectively balances the contribution of each sample to the objective. By assigning higher scores to
hard samples, the model is encouraged to focus more on learning these challenging samples, boosting
the FR system’s generalization. Formally, the SDS weighted classfication loss Lcls is defined as:

Lcls = ω(x̃i)× Larc(x̃i, yi) (9)

During training, to minimize the objective Lcls, the model needs to optimize both the SDS ω and the
loss Larc, which brings two benefits: (1) Minimizing Larc can encourage the model to capture face
features with greater generalization ability from diverse training samples. (2) Minimizing SDS ω can
alleviate the damage of hard samples to the latent space’s topological structure, which is beneficial to
the preservation of topological structure information and the construction of clear decision boundary.

4.3 Model Optimization

To summarize, the overall objective of TopoFR can be formulated as follows:

min
F,C

Lcls + αLsa (10)

where α is hyper-parameter that balances the contributions of the loss Lcls and the loss Lsa. Detailed
parameter sensitivity analysis can be found in Figure 6 in the Appendix.

5 Experiments

5.1 Datasets.

i) For training, we employ three distinct datasets, namely MS1MV2 [1] (5.8M facial images, 85K
identities), Glint360K [41] (17.1M facial images, 360K identities), and WebFace42M [80] dataset
(42.5M facial images, 2M identities). ii) For evaluation, we adopt LFW [81], AgeDB-30 [82],
CFP-FP [83], CPLFW [84], CALFW [85], IJB-C [23], IJB-B [86] and the ICCV-2021 Masked Face
Recognition Challenge (MFR-Ongoing) [27] as the benchmarks to test the performance of our
models.

Notably, the MFR-Ongoing [27] is the most authoritative and comprehensive competition for evaluat-
ing FR models’ generalization performance. It contains not only the existing popular test sets, such
as IJB-C, but also its own MFR benchmarks, such as Mask, Children, and Multi-Racial test sets. Due
to page size limitation, more training settings and experimental results are placed on Appendix.

5.2 Results on Mainstream Benchmarks

Results on MFR-Ongoing. We employ WebFace42M as training set, and compare our TopoFR with
SOTA competitors on MFR-Ongoing challenge, as reported in Table 1. For a fair comparison, all
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Table 1: Verification accuracy (%) on the MFR-Ongoing benchmark.

Method Training Data Venue MFR IJB-C
Mask Children African Caucasian South Asian East Asian MR-All 1e-5 1e-4

R200, Partial FC [43] CVPR22 91.87 - 97.79 98.70 98.54 89.52 97.70 96.93 97.97
R200, UniFace [87] WebFace42M ICCV23 92.43 93.11 98.14 98.98 98.84 90.01 97.92 96.68 97.91
R200, TopoFR NeurIPS24 93.96 93.57 97.97 98.71 98.98 92.85 98.13 97.10 98.01

Table 2: Verification accuracy (%) on LFW, CFP-FP, AgeDB-30, IJB-C and IJB-B benchmarks.

Training Data Method Venue LFW CFP-FP AgeDB-30 IJB-C IJB-B
1e-5 1e-4 1e-4

R50, ArcFace [1] CVPR19 99.68 97.11 97.53 88.36 92.52 91.66
R50, MagFace [5] CVPR21 99.74 97.47 97.70 88.95 93.34 91.47
R50, AdaFace [3] CVPR22 99.82 97.86 97.85 - 96.27 94.42

R50, TopoFR† NeurIPS24 99.83 98.24 98.23 94.79 96.42 95.13
R50, TopoFR NeurIPS24 99.83 98.24 98.25 94.71 96.49 95.14

R100, CosFace [2] CVPR18 99.78 98.26 98.17 92.68 95.56 94.01
R100, ArcFace [1] CVPR19 99.77 98.27 98.15 92.69 95.74 94.09

R100, MV-Softmax [88] AAAI20 99.80 98.28 97.95 - 95.20 93.60
R100, URL [65] CVPR20 99.78 98.64 - 95.00 96.60 -

R100, BroadFace [89] ECCV20 99.85 98.63 98.38 94.59 96.38 94.97
MS1MV2 R100, CurricularFace [4] CVPR20 99.80 98.37 98.32 - 96.10 94.80

R100, MagFace+ [5] CVPR21 99.83 98.46 98.17 94.08 95.97 94.51
R100, SCF-ArcFace [25] CVPR21 99.82 98.40 98.30 94.04 96.09 94.74

R100, DAM-CurricularFace [90] ICCV21 - - - - 96.20 95.12
R100, ElasticFace-Cos+ [91] CVPR22 99.80 98.73 98.28 - 96.65 95.43

R100, AdaFace [3] CVPR22 99.82 98.49 98.05 - 96.89 95.67
TransFace-B [9] ICCV23 99.82 98.39 98.27 94.15 96.55 -
R100, TopoFR† NeurIPS24 99.85 98.83 98.42 95.28 96.96 95.70
R100, TopoFR NeurIPS24 99.85 98.71 98.42 95.23 96.95 95.70

R200, ArcFace [1] CVPR19 99.79 98.44 98.19 94.67 96.53 95.18
R200, AdaFace [3] CVPR22 99.83 98.76 98.28 94.88 96.93 95.71

TransFace-L [9] ICCV23 99.83 98.65 98.23 94.55 96.59 -
R200, TopoFR† NeurIPS24 99.85 99.09 98.54 95.19 97.12 95.77
R200, TopoFR NeurIPS24 99.85 99.05 98.52 95.15 97.08 95.82

R50, ArcFace [1] CVPR19 99.78 98.77 98.28 95.29 96.81 95.30
R50, AdaFace [3] CVPR22 99.82 99.07 98.34 95.58 96.90 95.66

R50, TopoFR NeurIPS24 99.85 99.28 98.47 95.99 97.27 95.96
R100, ArcFace [1] CVPR19 99.81 99.04 98.31 95.38 96.89 95.69
R100, AdaFace [3] CVPR22 99.82 99.20 98.58 96.24 97.19 95.87

Glint360K TransFace-B [9] ICCV23 99.85 99.17 98.53 96.18 97.45 -
R100, TopoFR NeurIPS24 99.85 99.43 98.72 96.57 97.60 96.34

R200, ArcFace [1] CVPR19 99.82 99.14 98.49 95.71 97.20 95.89
R200, AdaFace [3] CVPR22 99.83 99.24 98.61 95.96 97.33 96.12

TransFace-L [9] ICCV23 99.85 99.32 98.62 96.29 97.61 -
R200, TopoFR NeurIPS24 99.87 99.45 98.82 96.71 97.84 96.56

compared models adopt ResNet-200 as the backbone. Specially, our TopoFR surpasses the SOTA
competitors UniFace and Partial FC in multiple metrics, implying the superiority of our method. Until
the submission of this work (May 22 ’24), the proposed TopoFR ranks second place on the academic
track of the MFR-Ongoing leaderboard: http://iccv21-mfr.com/#/leaderboard/academic.

Results on LFW, CFP-FP and AgeDB-30. We adopt MS1MV2 and Glint360K to train our models,
respectively. The results are reported in Table 2. To showcase the universality of our method, we
also provide detailed experimental results of TopoFR† model trained by CosFace [2]. As stated
in Refs.[3, 5], the performances of existing FR models on these three benchmarks have reached
saturation. 1) On MS1MV2 training set, we note that our TopoFR and TopoFR† models still obtain
accuracy improvement and outperform SOTA competitors (e.g., AdaFace [3] and TransFace [9]). 2)
On Glint360K training set, our TopoFR become SOTA models and surpass AdaFace and TransFace.

Results on IJB-C and IJB-B. We train our TopoFR on MS1MV2 and Glint360K respectively,
and compare with SOTA methods on IJB-C and IJB-B benchmarks, as reported in Table 2. 1) On
MS1MV2 training set, our models obtain the best results under different backbones. For instance, our
R50 TopoFR and R50 TopoFR† models greatly surpass SOTA method AdaFace and even beat most
R100-based competitors. 2) On Glint360K training set, all our models significantly outperform the
cutting-edge competitor AdaFace and achieve SOTA performance. More importantly, our TopoFR
even works better than ViT-based SOTA method TransFace, implying the superiority of our method.
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(a) R50, MS1MV2 (b) R50, Glint360K (c) R100, MS1MV2 (d) R100, Glint360K

Figure 4: The estimated Gaussian density (blue curve) w.r.t the entropy of classification prediction.
Green marker ⋆ and black marker × represent the entropy of correctly classified sample and misclas-
sified sample, respectively.

(a) R100, MS1MV2 (b) R200, MS1MV2 (c) R50, Glint360K (d) R100, Glint360K

Figure 5: The topological structure discrepancy of TopoFR and variant TopoFR-A under different
backbones and training datasets (i.e., [Backbone, Training dataset]). Variant TopoFR-A directly
utilizes PH to align the topological structures of two spaces. Notably, our TopoFR models trained
with Glint360K dataset almost perfectly align the topological structures of the input space and the
latent space on the IJB-C benchmark (i.e., the blue histogram almost converges to a straight line).

5.3 Analysis and Ablation Study

Due to the limitation of page size, more ablation experiments and analysis are placed on Appendix.

Table 3: Ablation study.

Training Data Method IJB-C(1e-4)
R50, ArcFace 92.52

R50, TopoFR-R 92.44
R50, TopoFR-A 93.26

MS1MV2 R50, TopoFR-P 95.34
R50, TopoFR-F 95.40
R50, TopoFR-G 96.23

R50, TopoFR 96.49

1) Contribution of Each Component: To investigate the
contribution of each component in our model, we employ
MS1MV2 as the training set, and compare ArcFace (baseline),
and four variants of TopoFR on the IJB-C benchmark. The
variants of TopoFR are as follows: (1) TopoFR-R, the variant
only adds RSP mechanism to ArcFace. (2) TopoFR-A, based
on ArcFace, the variant simply aligns the structure of input
space and latent space without using RSP. (3) TopoFR-P,
the variant fully introduces the PTSA strategy into ArcFace.
(4) TopoFR-G, based on TopoFR-P, the variant only uses
prediction uncertainty ω1 modeled by GUM to re-weight each sample. (5) TopoFR-F, based on
TopoFR-P, the variant simply applies Focal loss ω2 to re-weight each sample.

The results gathered in Table 3 reflect some observations: (1) Compared with ArcFace, the accuracy
of TopoFR-R is clearly reduced due to the addition of more unidentifiable face images, which hurts
the FR model’s generalization ability. (2) TopoFR-A outperforms ArcFace, indicating that directly
aligning the two spaces can slightly boost model’s performance, but it inevitably encounters structure
collapse issue. (3) TopoFR-P greatly surpasses TopoFR-R and TopoFR-A, implying that preserving
the structure information can greatly improve FR model’s generalization. (4) TopoFR outperforms
TopoFR-F and TopoFR-G, which not only demonstrates the effectiveness of SDE strategy, but also
indicates that the prediction uncertainty ω1 is complementary to Focal loss ω2 in mining hard samples.

2) Effectiveness of GUM: To visually demonstrate the effectiveness of GUM in mining hard samples,
we present the estimated Gaussian density of the prediction entropy during training in Figure 4. These
curves show that the entropy of misclassified face samples (represented by black crosses) usually
have rather low Gaussian density (i.e., high posterior probability hφ), thus can be easily detected.
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Note that even if some misclassified samples have small entropy (i.e., high Gaussian density and low
posterior probability hφ), their SDS ω can still be corrected by the Focal loss ω2.

3) Generalization of PTSA: To show the superior generalization ability of our PTSA strategy in
preserving structure information, we investigate the topological structure discrepancy between the
input and the latent spaces of TopoFR and its variant TopoFR-A on IJB-C benchmark. Note that
TopoFR-A directly utilizes PH to align the topological structures of two spaces. The results in
Figure 5 indicate that: 1) Directly using PH to align the topological structures of two spaces does
not effectively reduce the structure discrepancy, as the model encounters the structure collapse issue;
2) PTSA strategy can effectively align the topological structures of two spaces and address this
structure collapse issue. Remarkably, Figures 5c and 5d show that our TopoFR models trained on
Glint360K almost perfectly preserve structure information of input spaces in their latent features,
thereby verifying the generalization of PTSA strategy.

6 Conclusion

This paper proposes a novel FR framework called TopoFR that aims to encode the critical structure
information in large-scale face dataset into the latent space. Specially, TopoFR leverages a structure
alignment strategy PTSA and a hard sample mining strategy SDE. PTSA employs PH to reduce the
topological structure discrepancy between the input and latent spaces, effectively mitigating structure
collapse phenomenon and preserving structure information. SDE accurately identifies hard samples
and guides the model to prioritize optimizing these samples, mitigating their adverse impact on the
latent space’s structure. Comprehensive experiments validate the superiority of our TopoFR.

7 Broader Impacts

It would be good to mention that the utilization of face images do not have any privacy concern given
the datasets have proper license and users consent to distribute biometric data for research purpose.
We address the well-defined face recognition task and conduct experiments on publicly available face
datasets. Therefore, the propose method does not involve sensitive attributes and we do not notice
any negative societal issues.
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A Appendix

A.1 Implementation Details

Training Details. For MS1MV2 and Glint360K, our models are trained using Pytorch on 4 NVIDIA
Tesla A100 GPUs, and a mini-batch of 128 images is assigned for each GPU. In the case of
WebFace42M, we train our models (ResNet-200 backbone) using 64 NVIDIA Tesla V100 GPUs. We
crop all images to 112×112, following the same setting as in ArcFace [1, 34]. For the backbones,
we adopt ResNet-50, ResNet-100 and ResNet-200 [92] as modified in [1]. We follow [1] to employ
ArcFace (s = 64 and m = 0.5) as the basic classification loss to train the TopoFR model. For the
TopoFR† model trained by CosFace [2], we set the scale s to 64 and the cosine margin m of CosFace to
0.4. To optimize the models, we use Stochastic Gradient Descent (SGD) optimizer with momentum of
0.9 for both datasets. The weight decay for MS1MV2 is set to 5e-4 and 1e-4 for Glint360K. The initial
learning rate is set to 0.1 for both datesets. In terms of the balance coefficient α, we choose α = 0.1
for experiments on R50 TopoFR, and α = 0.05 for experiments on R100 TopoFR and R200 TopoFR.
During training, we apply RSP mechanism with a certain probability. Specially, for an original input
sample x, the probability of it undergoing RSP is ξ, and the probability of it remaining unchanged is
1− ξ. For the hyper-parameter ξ, we choose ξ = 0.2. Notably, in our method, we focus on preserving
the 0-dimension homology H0 in the topological structure alignment loss Lsa. Because preliminary
experiments demonstrated that using the 1-dimension or higher-dimension homology only increases
model’s training time without clear performance gains. Code and pre-trained models are available at:
https://github.com/modelscope/facechain/tree/main/face_module/TopoFR.

Evaluation Protocol on MFR-Ongoing Challenge. In the MFR-Ongoing Challenge, the trained
models are submitted to and evaluated by the online server. Specially, "TAR@FAR=1e-4" and
"TAR@FAR=1e-5" are reported on the IJB-C. Furthermore, we report "TAR@FAR=1e-4" for Mask
and Children test sets, and "TAR@FAR=1e-6" for MR-ALL test set. The academic track of the
ongoing MFR challenge leaderboard can be found on http://iccv21-mfr.com/#/leaderboard/
academic. More details about the MFR-Onoging Challenge can be found in Ref. [27].

A.2 More Results

A.2.1 Experiments on Other Benchmarks

Results on CPLFW and CALFW. We utilize MS1MV2 as the training set, and compare our TopoFR
with SOTA methods on CPLFW and CALFW benchmarks, as reported in 4. As can be seen, the
proposed R50 TopoFR and R50 TopoFR† greatly outperform the SOTA competitor R50 AdaFace on
two benchmarks. Furthermore, under the ResNet-100 backbone, our TopoFR also achieves SOTA
performance and surpasses AdaFace by 0.26% and 0.36% on CPLFW and CALFW respectively.

Table 4: Verification accuracy (%) on CPLFW and CALFW.
Training Data Method Venue CPLFW CALFW

R50, ArcFace [1] CVPR19 91.76 95.14
R50, MagFace [5] CVPR21 92.49 95.88
R50, AdaFace [3] CVPR22 92.83 96.07

R50, TopoFR† NeurIPS24 93.36 96.24
R50, TopoFR NeurIPS24 93.38 96.25

R100, CosFace [2] CVPR18 92.26 95.75
R100, ArcFace [1] CVPR19 92.10 95.47

R100, MV-Softmax [88] AAAI20 92.83 96.10
MS1MV2 R100, BroadFace [89] ECCV20 93.17 96.20

R100, CurricularFace [4] CVPR20 93.13 96.20
R100, MagFace [5] CVPR21 92.87 96.15

R100, SCF-ArcFace [25] CVPR21 93.16 96.12
R100, ElasticFace-Arc+ [91] CVPR22 93.28 96.17
R100, ElasticFace-Cos+ [91] CVPR22 93.23 96.18

R100, AdaFace [3] CVPR22 93.53 96.08
R100, IIC-AdaFace [93] ICLR24 93.48 96.18

R100, TopoFR† NeurIPS24 93.78 96.42
R100, TopoFR NeurIPS24 93.79 96.44
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A.2.2 Experiments on Light-weight Network

To demonstrate the universality of our method, we conduct some experiments on a lightweight
network MobileFaceNet-0.45G [94], as shown in Table 5. We can observe that with the help of
SDE and PTSA strategies, the MobileFaceNet-0.45G model can achieve higher recognition accuracy,
implying the effectiveness and universality of our method.

Table 5: Verification performance (%) on IJB-C. MobileFaceNet refers to the MobileFaceNet-0.45G
backbone [94].

Training Data Method IJB-C (1e-6) IJB-C (1e-5) IJB-C (1e-4)
MS1MV2 MobileFaceNet 81.75 90.13 93.42
MS1MV2 MobileFaceNet + PTSA + SDE 83.14 91.01 94.48
Glint360K MobileFaceNet 83.67 92.49 94.86
Glint360K MobileFaceNet + PTSA + SDE 85.44 93.35 95.79

A.3 More Ablation Experiments and Analysis

1) Does Structure Information Improve Intra-class and Inter-class Relationships?: We conduct
two pairs of ablative experiments to validate the relationships between topological structure alignment
and intra-class distance constraint as well as inter-class distance constraint. The results are gathered
in Table 6.

We can find that integrating topological structure alignment with single inter-class or intra-class
distance constraint can both obtain additional significant performance gains. This indicates that
topological structure alignment can provide the extra structure information of intra-class and inter-
class relationships, thereby establishing clearer decision boundaries. Overall, these improved results
demonstrate topological structure alignment implicitly encourages intra-class compactness and
inter-class separability in the deep feature space.

Table 6: Verification performance (%) on IJB-C. Relationships between Topological Structure
Information and Intra-class/ Inter-class constraints.

Training Data Method IJB-C (1e-6) IJB-C (1e-5) IJB-C (1e-4)
MS1MV2 R100, ArcFace (w/o intra-class) 82.37 89.13 94.16

R100, ArcFace(w/o intra-class) + topological constraint 83.69 91.48 94.86
MS1MV2 R100, ArcFace(w/o inter-class) 82.72 89.51 94.47

R100, ArcFace(w/o inter-class) + topological constraint 84.53 92.36 95.12

2) Comparison with Previous Hard Sample Mining Strategies: To further demonstrate the
superiority of our SDE strategy in mining hard samples, we compare it with existing hard sample
mining strategies, including MV-Softmax [88], ATk [95] loss, Focal loss [79] and the recently
proposed EHSM [9].

The results are gathered in Table 7. We can observe that the proposed SDE strategy clearly outperforms
than previous hard sample mining strategies, indicating that our SDE strategy is better able to
measure sample difficulty and improve the model’s generalization performance. This is because the
SDE comprehensively considers the prediction uncertainty and label information (i.e., prediction
probability of ground truth) when mining hard samples.

3) Effectiveness of ISA: Previous works often use Bottleneck distance and p-Wasserstein dis-
tance to measure the distance between persistence diagrams DX and DZ̃ [18, 60]. Concretely,
the Bottleneck distance is defined as L∞(DX ,DZ̃) = infκ:DX→DZ̃ supϖ∈DX ∥ϖ − κ(ϖ)∥∞,
with κ ranging over all bijections between sets of persistent intervals in diagrams DX and
DZ̃ , and ∥·∥∞ denotes the ∞−norm. Equivalently, the p-Wasserstein distance is defined as
Lp(DX ,DZ̃) = (infκ:DX→DZ̃

∑
ϖ∈DX ∥ϖ − κ(ϖ)∥p∞)1/p. However, the Bottleneck distance

metric and p-Wasserstein distance metric are sensitive to outliers [55, 61, 96] and will significantly
increase the training time of FR models. This makes them unsuitable for FR tasks with extremely
large-scale datasets.
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Table 7: Comparison with Previous Hard Sample Mining Strategies.
Training Data Method IJB-C (1e-6) IJB-C (1e-5) IJB-C (1e-4)

R100, ArcFace 85.65 92.69 95.74
R100, ArcFace + ATk 85.93 93.04 95.89

R100, ArcFace + MV-Softmax 86.47 93.38 95.94
MS1MV2 R100, ArcFace + Focal Loss 87.58 93.87 96.11

R100, ArcFace + EHSM 88.30 94.19 96.18
R100, ArcFace + SDE 89.23 94.65 96.49

Table 8: Comparison of TopoFR using Different Metrics.
Training Data Method Average Training Time / Epoch IJB-C (1e-4)

R100, TopoFR-B 4312.56s 96.76
MS1MV2 R100, TopoFR-W 4127.29s 96.81

R100, TopoFR 2729.28s 96.95

To demonstrate the stability and computational efficiency of our ISA strategy, we employ MS1MV2
as the training set, and compare TopoFR and its two variants on the IJB-C benchmark. The variants
of TopoFR are as follows: (1) TopoFR-B, the variant uses Bottleneck distance to compute the
discrepancy between persistence diagrams. (2) TopoFR-W, the variant adopts 1-Wasserstein distance
to measure the discrepancy between persistence diagrams.

We provide the average training time per epoch of these models and their recognition performance on
"TAR@FAR=1e-4" of the IJB-C benchmarks. The results presented in Table 8 reflect the following
observations: (1) TopoFR outperforms TopoFR-B and TopoFR-W on "TAR@FAR=1e-4", indicating
the robustness of our ISA to outliers. (2) Compared with TopoFR-B and TopoFR-W, our proposed
TopoFR has a shorter training time, demonstrating the computational efficiency of ISA.

4) Effect of Batch Size: We investigate the model’s performance under different batch size, and the
results are gathered in Table 9.

We find that increasing the batch size does not lead to a significant improvement in model’s recognition
accuracy. Additionally, larger batch size imposes a greater workload on GPUs. Therefore, to strike a
balance between model’s accuracy and and GPU computational load, we choose to set the batch size
to 128 in our TopoFR model.

Table 9: The Performance of TopoFR Model Under Different Batch Size.
Training Data Method Batch Size IJB-C (1e-5) IJB-C (1e-4)

R100, TopoFR 128 95.23 96.95
MS1MV2 R100, TopoFR 256 95.22 96.91

R100, TopoFR 512 95.20 96.93

5) Training Time: For detailed training time analysis, please refer to the Table 10. Due to the
introduction of the structure alignment strategy PTSA and hard sample mining strategy SDE, our
TopoFR models require longer training time (1.16x). Specially, compared to the vanilla R50 ArcFace
model, our R50 TopoFR model requires about 2 seconds more training time per 100 steps, which does
not significantly increase the training time but brings a large performance gain. And our R100 topoFR
model requires about 3 seconds extra training time per 100 steps than the vanilla R100 ArcFace
model, which is not a major increase in traing time but leads to a significant performance advantage.

While for inference computation head, our method performs consistently with that of vanilla ArcFace
model, since we adopt the same network architecture and data pre-process module.

Moreover, the results in Table 10 indicate that introducing SDE strategy (i.e., GUM) leads to
significant performance improvements with only a small increase in training time (i.e., R50 backbone:
0.2s / 100 steps, R100 backbone: 0.25s / 100 steps), which is reasonable. Therefore, the addition of
GUM does not bring too much computational burden and does not significantly increase the training
time.
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Table 10: Detailed Training Time of FR models.

Training Data Method Average Training Time / 100 steps Average Training Time / Epoch IJB-C (1e-4)
R50, ArcFace 15.33s 1743.32s 92.52

MS1MV2 R50, ArcFace + PTSA 17.57s 1999.19s 96.25
R50, ArcFace + PTSA + SDE (R50, TopoFR) 17.77s 2020.80s 96.49

R100, ArcFace 20.16s 2292.59s 95.74
MS1MV2 R100, ArcFace + PTSA 23.10s 2626.93s 96.68

R100, ArcFace + PTSA + SDE (R100, TopoFR) 23.35s 2655.36s 96.95

6) Parameter Sensitivity: To demonstrate the effect of the hyper-parameters α (i.e., the balance
coefficient of the ISA loss Lsa) and ξ (i.e., the probability of RSP mechanism), we conduct additional
experiments by setting different values of α and ξ, respectively. We use MS1MV2 dataset to train the
R50 TopoFR and R100 TopoFR models, and evaluate their performance on the IJB-C benchmark.
The results on "TAR@FAR=1e-4" are shown in Figures 6a and 6b.

We can observe that as α increases, the accuracy first rises and then falls. This is because an overly
large α will cause the model to focus more on the structure alignment and less on the classification
learning of the samples during training. Additionally, setting the parameter ξ to a high value may
introduce more unidentifiable face images and severely disturb the topological structure of the latent
space, making it difficult for the ISA loss function Lsa to converge.
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Figure 6: Parameter sensitivity analysis. (a) The effect of the hyper-parameter α. (b) The effect of
the hyper-parameter ξ.

7) Comparison of Structure Discrepancy: To further demonstrate the effectiveness of our PTSA
strategy in preserving structure information, we utilize the Bottleneck distance metric [60, 18] to
investigate the topological structure discrepancy between the input space and the latent space of
ArcFace and TopoFR on IJB-C benchmark, as illustrated in Figure 7.

We can observe that our TopoFR model significantly reduces the structure discrepancy (i.e., measured
by the Bottleneck distance metric) between two spaces compared to the vanilla ArcFace model, and
effectively preserves the structure information hidden in the large-sclae dataset.

8) Visualization of Hard Samples: We conduct a visual comparison experiment to visualize some
hard samples that can be correctly classified by our method but cannot be correctly classified by
existing method.

The visualization results illustrated in Figure 8 reflect the following observations: (1) Hard samples
are usually blurry, low-contrast, occluded, or in unusual poses, so they are easily misclassified by
existing method such as ArcFace model. (2) The ArcFace model assigns equal weight (i.e., 1) to each
sample. While our TopoFR model utilizes SDE strategy to adaptively assign weight (i.e., SDS ω )
to each sample based on its prediction uncertainty ω1 and prediction accuracy ω2. Specially, SDE
will assign higher SDS ω to hard samples, which can encourage the model to extract robust face
features from these challenging samples, thereby effectively improving the model’s generalization
performance.

9) Is the topological structure constructed in the input space robust enough? i) In the input space,
we first flatten the face images into vector features and then calculate their pair-wise distance matrix
in order to construct Vietoris-Rips complex. And the dimension of face features in the pixel space
is significantly higher than that of the features in the latent layer space. Notably, the expected k-th
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Figure 7: The topological structure discrepancy (i.e., measured by the Bottleneck distance metric)
of R50 TopoFR and R50 ArcFace on the IJB-C benchmark.
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Figure 8: Visualization of hard samples.
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d)2k+1 ( n: data size, d: data dimension, ck: constant) [97, 98]
in topology theory also demonstrates that as long as the dimension of the data is sufficiently high, its
underlying topological structure can be well constructed. Therefore, this can effectively capture the
topological structure information hidden in the large-scale face datasets. ii) More importantly, during
training, our RSP mechanism also effectively simulates the influence of multiple factors, such as
lighting, occlusion, blur, etc., on the training samples, making the constructed topological structure
robust enough to noise.

Overall, based on the analysis above, we believe that the topological structure constructed in the input
space is sufficiently robust and can effectively guide the learning of the latent space structure.

A.4 Limitation

Our model might has the following two limitations:

(i) Due to the introduction of the structure alignment strategy PTSA and hard sample mining strategy
SDE, our TopoFR model requires longer training time (1.16x). For detailed training time analysis,
please refer to the Table 10 in our appendix.

(ii) This work aims to improve the generalization performance of FR models by leveraging the
inherent structure information in large-scale face training data. However, large-scale face training
datasets in real-world scenarios inevitably contain a small amount of noisy labels. Our loss function
does not assign any special treatment to these mislabeled samples. Since our hard sample mining
strategy SDE assigns larger weights to hard samples that are misclassified or have high prediction
uncertainty, mislabeled images may be wrongly emphasized. We believe that future works will be
able to simultaneously address the challenges of structure alignment and label noise.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction section include the main claims made in the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of this work. Please refer to the Section A.4
in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This work does not involve any novel theoretical findings.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the required code and pre-trained model for this paper.
Please refer to the GitHub link provided at the end of the abstract.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided detailed implementation details (i.e., Section A.1 in the
Appendix) and provided the data and source code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed implementation details (i.e., Section A.1 in the
Appendix) and provided the data and source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the standard experimental principles of previous FR works and
report the best results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided detailed implementation details and training settings (i.e.,
Section A.1 in the Appendix)

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper fully adheres to the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: It would be good to mention the utilization of face images do not have any
privacy concern given the datasets have proper license and users consent to distribute
biometric data for research purpose.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data and code used in this paper have obtained legal permissions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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