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Abstract

This work focuses on the active learning in video captioning. In particular, we
propose to address the learnability problem in active learning, which has been
brought up by collective outliers in video captioning and neglected in the literature.
To start with, we conduct a comprehensive study of collective outliers, exploring
their hard-to-learn property and concluding that ground truth inconsistency is one
of the main causes. Motivated by this, we design a novel active learning algorithm
that takes three complementary aspects, namely learnability, diversity, and uncer-
tainty, into account. Ideally, learnability is reflected by ground truth consistency.
Under the active learning scenario where ground truths are not available until
human involvement, we measure the consistency on estimated ground truths, where
predictions from off-the-shelf models are utilized as approximations to ground
truths. These predictions are further used to estimate sample frequency and reli-
ability, evincing the diversity and uncertainty respectively. With the help of our
novel caption-wise active learning protocol, our algorithm is capable of leveraging
knowledge from humans in a more effective yet intellectual manner. Results on
publicly available video captioning datasets with diverse video captioning models
demonstrate that our algorithm outperforms SOTA active learning methods by a
large margin,e.g.we achieve about 103% of full performance on CIDEr with 25%
of human annotations on MSR-VTT.

1 Introduction

Video captioning, which aims to understand videos in the form of describing them in natural lan-
guage Abdar et al. (2023), becomes a heated task Lin et al. (2022) with the emergence of a large
amount of data Li et al. (2023a) as well as transformer-based models Liu et al. (2022). Despite
the superior performance, existing methods suffer heavily from the need for time-consuming and
labor-intensive human annotations Chan et al. (2020) because of their learning-based nature.

Approaches such as active learning Tharwat and Schenck (2023), semi-supervised learning Yang
et al. (2023), and domain adaptation Yu et al. (2023) are proposed to address the above-mentioned
data issue. This paper takes the active learning approach where we assume there exists a small
amount of labelled data together with a large number of unlabelled ones. Our goal is to select the
most informative samples from the unlabelled set and have them annotated by humans such that the
video captioning model can achieve the best performance with the minimum human effort. Though
uncertainty and diversity have been exploited to investigate the properties of unlabelled data, the
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Figure 1: We provide examples of collective outliers as well as their causes in (a). (b) illustrates the
Dataset Maps based on the SPICE score for the MSR-VTT training set, with the y-axis representing
the average SPICE score over training epochs and the x-axis showing their variability. The consistency
score is also measured on ground truth captions. The entire space is divided into four sub-regions
based on x,y coordinates, with examples in each region demonstrating different levels of learnability.

potential problem from human annotations is largely neglected in active learning literature as these
annotations are not available during the selection process.

In this paper, we first and foremost propose to analyze problems of human annotations in video
captioning tasks (see Fig. 1.(b)). With the help of Dataset Maps, we are able to observe the problem,
or collective outliers, in human annotations, and conclude its severity by the amount of outliers. Such
an amount will further aggravate the learning process due to their hard-to-learn nature, thus worth
exploring. We observe that inconsistency in human annotations is one of the main causes of collective
outliers, which can be divided into the abstraction and granularity inconsistency (refer to Fig. 1.(a)).
The former highlights instances where humans offer different abstractions for videos with complex
contents, while the latter reveals that humans may describe the same object at varying semantic levels.

To this end, we incorporate our observations into active learning frameworks. We re-phrase the
problem introduced by collective outliers as learnability and aim to address it in our active learning
design. Due to the lack of access to human annotations in active learning, directly identifying
collective outliers is implausible. Nevertheless, we turn to their main property, or inconsistency,
as our breakthrough and propose to estimate the abstraction and granularity inconsistencies in
unlabelled data. Concretely, existing image-based large Vision-Language Models (LVLMs) are
used to approximate human annotations. Instead of directly using predictions from LVLMs as
pseudo ground truths, which would deteriorate the overall performance because of domain gaps, we
propose to measure the consistency not only internally among per-frame predictions but externally
between predictions from a video captioning model and those per-frame predictions. The internal
measurement captures the abstraction consistency and the external one counts on the granularity
consistency. Combining both provides us an estimation of sample learnability, or how likely this
sample belongs to collective outliers. Diversity and uncertainty are also leveraged in our active
learning scheme where we rank samples based on their frequency in the entire dataset and reliability
respectively. Our algorithm is able to select reliable, diverse yet learnable samples, and achieves SOTA
trade-offs between accuracy and human efforts. Motivated by the causes of collective outliers, we
propose a caption-wise active learning protocol such that only a limited number of human-annotated
captions are acquired if one video is selected by our active learning algorithm. Our protocol is capable
of avoiding inconsistency and providing a more intellectual way to allocate human effort to more
diverse videos. In all, our contribution can be summarized as follows:

• To the best of our knowledge, we are the very first in terms of exploring collective outliers on video
captioning tasks and providing comprehensive studies on them.

• A novel active learning algorithm that explicitly takes learnability, diversity, and uncertainty into
account. Specifically, the learnability is designed to tackle collective outliers, inspired by their
abstraction and granularity inconsistency.

• A novel caption-wise active learning protocol that effectively leverages knowledge from humans.
• State-of-the-art performances on video captioning datasets under diverse model backbones.
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2 Related Work

Visual Captioning Based on Deep Learning Visual captioning Sharma et al. (2023) is a task
that automatically generates textual grammatical and semantically appropriate descriptions for a
given visual content. While this task is easy for humans, it is extremely difficult for deep learning
models. To perform visual captioning, models are required to have multiple capabilities: including
but not limited to detection and recognition capabilities to extract objects in visual content, visual
semantic understanding capabilities to determine the attributes and relationships of objects, and
enriching language knowledge to describe information with grammatically correct sentences. Visual
captioning can be classified into image captioning Ming et al. (2022) and video captioning Abdar et al.
(2023). Deep-learning-based image captioning starts with the encoder-decoder framework combining
convolutional neural networks and recurrent neural networks Kiros et al. (2014); Vinyals et al. (2015).
It is further developed by extracting fine object region features Anderson et al. (2018); Karpathy
and Fei-Fei (2015), attribute features Yao et al. (2017), semantic relation features Yao et al. (2018);
Yang et al. (2022) and introducing attention mechanisms Xu et al. (2015); Pan et al. (2020); Yu et al.
(2020). With breakthroughs in vision-and-language pre-training approaches Radford et al. (2021);
Zhang et al. (2021a); Alayrac et al. (2022); Li et al. (2023a), applications in image captioning Li
et al. (2020); Mokady et al. (2021); Li et al. (2023c) have emerged in recent years, benefit from
the power of LVLMs (e.g.rich knowledge and strong recognition ability). The recently proposed
BLIP2 Li et al. (2023a) has achieved superior performance on major image-text tasks with a simple
pre-training method. Unfortunately, LVLMs focusing on video-text-related tasks have not yet come
out. Video captioning still faces many challenges. Video captioning is more difficult than image
captioning due to the many frames the video contains, which carry massive amounts of information.
This raises the necessity of abstracting semantic information from the temporal dimension and
describing content from the spatial dimension with different granularity. Video captioning started
with the encoder-decoder framework Venugopalan et al. (2015). Subsequent researchers continued
to design new encoders Wang et al. (2019); Pan et al. (2016) and decoders Jin et al. (2020); Guo
et al. (2016). Some work is also actively trying to introduce scene graphs Hou et al. (2020); Zhang
et al. (2020b), text corpus Shi et al. (2023); Zhang et al. (2021b), and pre-training models Li et al.
(2023b); Seo et al. (2022); Tang et al. (2021). Among them, Lin et al.proposed the end-to-end
video captioning method Lin et al. (2022) for the first time and achieved significant performance
improvement. Unlike existing video captioning methods, we focus on underlying data issues. Unlike
existing video captioning methods, our work focuses on underlying data issues. We are committed to
exploiting knowledge to measure video consistency scores for active learning.

Active Learning Due to the high cost of manually annotating data, active learning Tharwat and
Schenck (2023) has attracted widespread attention from academia and industry. Active learning
aims to use as few, high-quality samples as possible to achieve the best possible performance of the
model. Active learning has many mature works in closed tasks such as image classification Parvaneh
et al. (2022), object detection Wu et al. (2022), semantic segmentation Xie et al. (2022), and natural
language processing Zhang et al. (2022). Among them, Coreset Sener and Savarese (2018) can
minimize the distance between an example in the unlabeled pool to its closest labeled example, and
can effectively capture the diversity in the dataset. However, active learning for video captioning
remains to be explored. Chan et al. Chan et al. (2020) tries to migrate conventional active learning
methods to video captioning, and has proposed a new method based on ensemble and clustering.
Besides, active learning has been observed to fail on open-ended tasks such as visual question
answering due to the presence of collective outliers Karamcheti et al. (2021). There is currently no
literature that attempts to address the impact of collective outliers. In this work, we focus on the
problem of collective outliers in video captioning. We point out possible causes of collective outliers
and attempt to mitigate their impact on active learning methods.

3 Method

As the very first work that explores data learnability in active learning for video captioning, we start
our method with a comprehensive analysis of their causes and various forms in Sec. 3.1. According
to our analysis, we then propose a novel active learning scheme that in particular considers the
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learnability during the unlabelled data selection process in Sec. 3.2, together with novel designs of
uncertainty and diversity. Our overall active learning method can be found in Fig. 2.

3.1 Data Learnability in Video Captioning

Motivation The order of training samples is shown to be important in curriculum learning Matiisen
et al. (2020). Specifically, it found that feeding models with examples of successively increasing
difficulty produces better performances than providing full examples immediately. Though posing a
more severe problem in active learning as selecting far more difficult samples at early stages is a waste
of human efforts, measuring sample difficulty is largely neglected in the literature as neither ground
truth nor the definition itself can be easily obtained. To this end, our goal is to first identify difficult
examples in video captioning task, and then perform analysis on them so that our observations can be
beneficial for our active learning selection scheme.

Methodology Collective outliers are a group of data objects that fall extremely far from well-defined
norms of a data set or given concepts of expected behavior in data-mining Lai et al. (2021), which are
much harder to detect as they are more generic yet harder to identify as individuals. Not surprisingly,
one important property of collective outliers is learnability, e.g., they are more likely to be hard-to-
learn samples compared to normal data Karamcheti et al. (2021). Concretely, we exploit Dataset
Maps to diagnose datasets with training dynamics Swayamdipta et al. (2020); Dagan et al. (2013);
Sakaguchi et al. (2020). Compared to conventional Dataset Map that exploits two model-specific
metrics (i.e.average confidence assigned to the correct answer and the variance of these values) to
measure the learnability of training examples, we propose to utilize SPICE Anderson et al. (2016) to
approximate the confidence score on the correct answer. On the one hand, the confidence score is
not a reliable criterion as it can be largely affected by random-length text sequences generated by
autoregressive models Zhang et al. (2020a). On the other hand, SPICE measures the F1 score between
scene graphs generated by predictions and ground truths. It has the useful property of being defined
over tuples that are easy to subdivide into meaningful categories, providing a more semantic-centric
evaluation in a human-interpretable manner by abstracting away most of the lexical and syntactic
idiosyncrasies of natural language compared to CIDEr Vedantam et al. (2015).

Observation We provide an example of Dataset Map of SwinBERT Lin et al. (2022) trained on
MSR-VTT Xu et al. (2016) in Fig. 1.(b), where the y-axis and x-axis plots the average SPICE score
over training epochs and their variability respectively. Clearly, samples that fall into the upper left
area of this figure are easy-to-learn ones whose SPICE scores are consistently high. While the lower
left area is occupied with hard-to-learn samples where no observable improvements can be found
with longer training time. Unlike conventional close-end tasks where only a small proportion of
samples are hard to learn, we observe that a noticeable amount of samples fall into the lower left area.

Analysis Taking a closer look at collective outliers, we observe that the video captioning model
struggles when learning from samples with inconsistent human annotations. As shown in Fig. 1.(a),
these inconsistencies can be divided into two categories, abstraction and granularity. The inconsistency
in abstraction summarizes cases where humans tend to provide not only the description of video
contents, but also high-level reasoning behind it. For instance, a boy is walking to the beach to surf
versus a movie about a man who likes to surf. On the other hand, inconsistency in granularity consists
of samples with human annotations at different graininess,e.g.people might coarsely describe the
video as a cartoon character talking on the phone while a fine-grained description summarizes the
same video with Krabs talks on the phone while SpongeBob freaks out. We argue that collective
outliers are not impossible to learn. Instead, they can be exploited with more consistent descriptions
or learned at a later stage of the training process when general principles from easier examples
are already learned by models. Our observations and analysis align well with the philosophy of
curriculum learning, encouraging our active learning design in the following paragraphs.

3.2 Our Active Learning Scheme

Denoting the labeled set as L = {Vm,Cm}Mm=1, consisting of M video sequences and their human
annotated captions Cm, our video captioning model f is initially trained with L. We further denote
another set of N unlabelled videos as U = {Vn}Nn=1. Mathematically, U ∩ L = ∅. Our goal of active
learning is to select a subsect St ∈ U at each selecting step t ∈ {1, . . . , T} such that the overall
performance of f can be maximally boosted once annotations on St are obtained from humans.
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Figure 2: Our method explicitly introduces learnability to reflect the collective outliers in video
captioning. Together with uncertainty and diversity, our active learning scheme ranks unlabelled
videos and parses them to humans. Our caption-wise protocol further provides an intellectual yet
effective way to allocate human efforts, leading to 103% full performances at 25% human annotations.

As stated above, collective outliers can be regarded as a group of hard-to-learn samples in an active
learning framework where inconsistencies in human annotations are one of the main causes. Due
to the lack of access to these annotations when selecting from U , we propose to mimic them to
measure those inconsistencies on the mimicked annotations. In particular, we exploit LVLMs since
they provide powerful tools to generate human-like captions at the same granularity. On the one hand,
one can approximate the abstraction inconsistency among predictions from LVLMs. On the other
hand, by comparing the predictions from f and LVLMs, granularity inconsistency can be further
approached. Rather than leveraging foundation models for videos, we utilize the predicted per-frame
captions from image-based LVLMs for the following three reasons. Firstly, the image-based LVLMs
are more mature and well-exploited compared to the former. Moreover, inconsistency in abstraction
occurs more frequently when video samples are complex, e.g., contents vary a lot temporally. Such
variety can be better captured by measuring the consistency between frame-wise predictions. Lastly,
our design provides a lower bound when measuring the inconsistency in granularity as frame-wise
predictions from LVLMs and video captions predicted by f look at videos from different perspectives
to the maximum extent, leading to more reliable approximations.

To this end, we uniformly sample I = 32 frames from Vn and refer to the i-th frame as V i
n. Then

we apply BLIP2 Li et al. (2023a) on all sampled frames, leading to a set of {bin}Ii=1. bin is the
predicted caption on V i

n. Meanwhile, we can obtain the video captions on Vn by f(Vn) and further
denote the one with the highest confidence as b∗n. Inspired by SPICE Anderson et al. (2016), we
convert captions to scene graphs and measure the consistency over graphs. Specifically, we denote
Gi

n = {Oi
n, A

i
n, R

i
n} as the scene graph generated from bin, which consists of objects Oi

n, attributes
Ai

n, and their relations Ri
n. Then Gn = {Gi

n}Ii=1 is the set of all scene graphs generated from
{bin}Ii=1. Similarly, we can obtain scene graph G∗

n from b∗n. We further denote On =
⋃I

i=1 O
i
n,

An =
⋃I

i=1 A
i
n and Rn =

⋃I
i=1 R

i
n. In the next few paragraphs, we will introduce our active

learning scheme that aims to capture the learnability, diversity and uncertainty in video captioning.

Our scheme is composed of four terms. The first two of them focus on learnability, namely
abstraction and granularity inconsistencies. The first term L1

n focuses on the scene graphs generated
by per-frame BLIP2, or Gn, and measures their internal prediction consistency. Our L1

n is defined as:

L1
n =

∑
k∈On

Hk(Gn)

|On|
+

∑
k∈An

Hk(Gn)

|An|
, (1)

where Hk(Gn) counts the number of times that an object, an attribute, or a relationship k appears in
Gn. |On| and |An| capture the number of unique objects and attributes in Gn, respectively. Intuitively,
Eq. 7 prefers {bin}i when they agree with each other. In other words, the higher the L1

n is, the more
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consistent bin should be w.r.t. predictions from other frames. We purposely neglect relations Ri
n in

experiments as the relationship is less reliable in current LVLMs (e.g. BLIP2).

Our second term L2
n focuses on granularity inconsistency where human annotations are at different

graininess. To this end, we approximate the potential granularity inconsistency between Gn and G∗
n

as predictions from image-based LVLMs and that from video captioning model f tend to capture
different aspects of Vn to the maximum extent. In particular, granularity inconsistency can be
measured by SPICE between two types of predictions, where a lower SPICE value indicates higher
inconsistency. Instead of relying solely on SPICE, which tends to select well-learned samples and
undermines the active learning scheme, we focus on the time-variant changes in SPICE for each
Vn to simulate the expected changes in granularity consistency. Denoting the absolute distance
between the SPICE on an unlabelled sample Vn at time step t − 2 and t − 1 as

a
sn, we have

L2
n = g(

a
sn) log g(

a
sn), where g is a min-max normalization function over all N samples. Our

L2
n prefers samples with moderate changes, based on our observation that large and small changes

are associated with less informative and hard-to-learn examples, respectively.

The third term L3
n is designed for diversity. Specifically, we prefer unlabelled samples in which

contents are beyond the current model f yet of great importance. In practice, we apply the concept
of the Term Frequency Inverse Document Frequency (TF-IDF) Robertson (2004) to measure the
importance of video content, in which we further incorporate our observation that longer descriptions
tend to co-occur more with diverse videos by re-weighting the TF with long captions. Let’s denote G∗

as the set that includes predictions of the highest confidence on L ∪ U , or G∗ = {G∗
m, G∗

n}
N,M
n=1,m=1.

Similarly, the BLIP2 predictions on full dataset is denoted as G = {Gj}M+N
j=1 = {Gi

j}
I,M+N
i=1,j=1.

Mathematically, L3
n = F (On) + F (An) where F (·) is defined as:

F (x) =
∑
k∈x

I[k /∈ G∗]

(
Hk(Gn)× log

N +M∑N+M
j I[Hk(Gj) > 0]

)
(2)

where I[·] is a binary indicator function and equals to 1 iff · is valid. Mathematically, L3
n focuses

only on contents beyond the current model. Meanwhile, it values distinctive samples with important
contents. Overall, a higher L3

n indicates greater diversity in Vn.

Uncertainty is captured by our last term L4
n. Intuitively, inaccurate predictions provide valuable

information in active learning. Therefore, we introduce L4
n = |O∗

n ∩On|+ |A∗
n ∩ An|+ |R∗

n ∩ Rn|.
Specifically, L4

n counts shared objects, attributes, and relationships between G∗
n and Gn, where Gn

serves as human annotations to measure how well the prediction of highest confidence G∗
n is. A

higher L4
n reflects more certainty in Vn.

Finally, the overall active learning score on sample Vn ∈ U is defined as Ln = −λ1L
1
n + λ2L

2
n −

λ3L
3
n + L4

n, where λ1, λ2, λ3 are hyper-parameters. At the t-th step of the active learning algorithm,
the top unlabelled samples St from U are selected w.r.t. Ln, where the lower Ln signifies greater
informativeness. These samples are then fed to human annotators to acquire annotations CSt . Then
we update our labelled and unlabelled set with L ← L ∪ {St,CSt} and U ← U \ St. Later on, our
video captioning model f is re-trained with the updated L. Our overall active learning algorithm
iterates until either the maximum time stamp T or human annotation effort is reached.

3.3 Caption-wise Selection Protocol

Conventional captioning-related active learning algorithms are video-based where all the human
annotations from one video sequence are acquired if this video is selected at step t. In practice, there
are multiple annotations associated with one video sequence, e.g., we have 20 captions for one video
sequence in MSR-VTT dataset Xu et al. (2016). We argue that the current video-based selection
protocol is prone to collective outliers, leading to inferior active learning performance. Instead, we
propose a caption-wise selection scheme such that not all annotations of one video sequence are
acquired if this video has been selected. In practice, we acquire at most 2 2 captions for each selected
video at the t-th step. Such a design reflects two of our observations. Firstly, the fewer annotations
are acquired from humans, the less likely they are inconsistent with each other, leading to fewer
collective outliers. Moreover, including more videos with fewer annotations rather than fewer videos
with more annotations boosts the diversity of St. The superiority of our protocol is shown in Sec. 4.

2This number is chosen by experiment.
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4 Experiment

We validate our ideas with various backbones on two publicly available datasets MSVD Chen and
Dolan (2011a) and MSR-VTT Xu et al. (2016), and demonstrate SOTA performances on both.

4.1 Dataset and Experimental Setup

Datasets We conduct our experiments on two datasets, MSVD Chen and Dolan (2011a) and MSR-
VTT Xu et al. (2016). Specifically, MSVD consists of 1970 open-domain videos collected from
a commercial video search engine, each of which is associated with about 41 human-annotated
captions. Similarly, there are 10K open-domain videos in MSR-VTT and each of them has 20
human-labelled annotations. For each dataset, we follow their standard splits and report our active
learning performance on their test sets. To mimic the learning process, we initialize L with 5% of data
randomly selected from the training set, including both videos and their annotations. Consequently,
U is composed of videos from the remaining 95% training set. At each selecting step, the annotation
budget ∥CSt

∥ is set to 5% captions of the full training set. More details can be found in the appendix.

Baselines Active learning for video captioning is under-explored in literature. We follow the existing
work Chan et al. (2020) and compare our algorithms with the baselines described below:
• Random Sampling serves as a very competitive baseline in open-ended tasks. Basically, it

performs random sampling in U to obtain St.
• Maximum Entropy Chan et al. (2020) is a conventional uncertainty-based active learning algorithm

where samples with the highest entropy will be selected. In video captioning tasks, the entropy of
sample Vn is approximated by the averaged entropy over multiple predictions in f(Vn). For each
prediction, its entropy is computed over word output distributions at each new word.

• Minimum Likelihood Chan et al. (2020) is another uncertainty-based active learning algorithm.
Typically, samples with the lowest log-likelihood will be selected. In practice, the averaged
log-likelihood over multiple predictions in f(Vn) is used to rank each unlabelled video Vn.

• Core-Set Selection Sener and Savarese (2018) is a classical diversity-based active learning algo-
rithm. Specifically, it works on the representation space and aims to select samples that are spread
out in the feature space. In practice, features from Liu et al. (2022) are used to select samples that
minimize the distance between the unlabelled pool to its closest labeled sample.

• Clustered-Divergence Chan et al. (2020) ensembles multiple models and computes the KL-
divergence between the conditional distributions of the ensemble members to measure sample
uncertainty. Diversity is also implicitly considered as it already ensembles a clustering-based active
learning regularization method.

Implementation Details In our experiment, we employ SwinBERT Lin et al. (2022) and CoCap Shen
et al. (2023) as our f as they provide good trade-offs between accuracy and efficiency. In contrast,
other SOTA video captioning methods or video-based foundation models, such as COSA Chen et al.
(2023) and mPLUG-2 Xu et al. (2023), require extensive pre-training or finetuning when adapting to
downstream tasks to achieve SOTA video captioning performances. To further speed up the training
process, each video is uniformly sampled with 32 frames and these frames are parsed to f . The
batch size is set to 4. We refer to the performance of f that trained with the entire training set on
the test set as full performance. And we are able to achieve comparable performance compared
to the official release. As for BLIP2 Li et al. (2023a), we choose an open-sourced version 3. All
experiments are conducted on 4 RTX 3090 GPUs and 4 RTX 4090 GPUs with Pytorch Paszke et al.
(2019), Huggingface transformers Wolf et al. (2020). T is set to 4 . For other hyper-parameters, we
keep the same configuration as in Das et al. (2022). More details can be found in the appendix.

Evaluation Metrics We provide detailed comparisons using a diverse set of performance metrics,
including BLEU4 Papineni et al. (2002), METEOR Banerjee and Lavie (2005), ROUGE-L Lin and
Och (2004), CIDEr Vedantam et al. (2015), and SPICE Anderson et al. (2016).

4.2 Main Active Learning Performances

We report the active learning performances of all methods with either SwinBERT or CoCap on
MSVD in Fig. 3. To ensure more reliable results, all methods were conducted three times. This figure
reports both the average performance and the variance.

3Checkout the pre-trained model at https://huggingface.co/Salesforce/blip2-flan-t5-xl
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Figure 3: Active learning performances on the MSVD. Ours significantly outperforms other methods.

There are several interesting observations. First and foremost, it is noteworthy that our method
consistently outperforms all other baselines across all five evaluation metrics with two backbones,
highlighting our superiority. Predictably, random sampling usually ranks as the second-best option,
aligning with findings from other open-ended tasks Karamcheti et al. (2021). More importantly,
we observe that our method surpasses the full performance of f trained with 100% annotations
with SwinBERT out of 4 evaluation metrics, as indicated by the dotted horizontal line, with less
than 25% of annotations. For example, we achieve full performance with about 10% and 15% of
annotations when measured by BLEU4 and ROUGE-L, respectively. Regarding CIDEr, our method
attains 103.65% of the full performance with 25% of annotations. Even with CoCap, we can almost
always achieve more than 95% of full performance with 25% annotations. This observation supports
our concerns about the negative impacts of collective outliers during the training process. Clearly,
our method effectively reduces the impact of collective outliers, leading to significant performance
improvements over existing methods and even surpassing full performance. Results on MSR-VTT
are reported in the appendix. In summary, our method significantly outperforms the SOTA methods
and achieves an averaged 103% full performance with 25% annotations on all metrics.

Cross-dataset Performance To simulate the scenario where people tend to exploit a large unannotated
dataset to benefit a small annotated dataset, we use the small annotated dataset MSVD (1,200 videos
with 40 captions per video) and treat MSR-VTT as the large unannotated dataset, which includes
6,513 videos paired with 20 captions each. The results using the official SwinBERT implementation
are provided in Tab. 1.

Table 1: Starting from fully-annotated MSVD training samples, exploiting data from MSR-VTT with
our AL algorithm can further boost the performances on the MSVD test set.

Method Data Per. BLEU_4 METEOR ROUGE_L CIDEr SPICE

Starting Point 0 55.71 39.70 75.73 109.39 6.97

Random 20 62.15 42.58 78.66 123.26 7.63
Ours 20 63.70 43.69 79.86 127.41 7.80

Ours 5 63.68 43.34 79.73 126.32 7.57
Ours +5 63.10 43.64 79.98 130.96 7.89
Ours +5 63.51 43.80 79.81 129.63 7.93
Ours +5 64.88 44.25 80.43 129.08 7.77

We report the overall performance on the MSVD test set. "Data Per." is the percentage of human
annotations on MSR-VTT. We also report the performance of directly selecting 20% of MSR-VTT
(Row 4) and iteratively adding 5% of MSR-VTT four times (Rows 5-8). As shown in the table, our
AL algorithm significantly improves the overall performance of MSVD and is a more effective choice
compared to random selection. Furthermore, directly selecting 20% of data is slightly less effective
than iterative selection, demonstrating the benefits of curriculum learning. Notably, the overall
performance peaks at two iterations, or 10% of human annotations on MSR-VTT, according to CIDEr
and SPICE. Beyond this point, the performance saturates and slightly declines. This is expected,
as 20% of MSR-VTT includes 26K captions and at least 1.3K videos, which is comparable to the
original training set of MSVD. Adding more data from a different dataset can degrade performance,
as the training may deviate from the original dataset.
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4.3 Ablation Study on Learnability, Uncertainty, and Diversity

Table 2: Ablation study on MSVD.
AUCCIDEr AUCSPICE

Random .574 .560

L4
n .583 .578

+L3
n .589 .585

+L2
n .594 .592

+L1
n .603 .600

+CP (Ours) .738 .678

To demonstrate the effectiveness of individual com-
ponents of our design, we conduct a thorough ab-
lation study by incrementally integrating various
components into our active learning scheme. The
steps are as follows: 1) L4

n (uncertainty); 2) +L3
n

(diversity); 3) +L2
n (learnability); 4) +L1

n (learnabil-
ity); 5) + Caption-wise Protocol (CP); Specifically,
we report the Area-Under-Curve(AUC) score over
CIDEr and SPICE curve in Tab. 2. Evidently, in-
corporating any of these components will enhance
overall active learning performance, demonstrating
their effectiveness. For example, our designed terms
outperform Random Sampling significantly, indicat-
ing the effectiveness of our active learning scheme without CP. Notably, we observe a significant
performance boost after integrating the CP, which is reasonable as it directly reduces the impact of
collective outliers and improves overall diversity.

3.3% 5.0%

8.3%

1.7%

90.0%

86.7% 85.0%
Uncertainty Diversity

Learnability

Figure 4: The percentage
of overlapped selections
in S1.

To further demonstrate that learnability, uncertainty, and diversity each
reflect distinct aspects of active learning, we report the percentage of
overlapped selections in S1 under active learning schemes focused on
individual aspects, as shown in Fig. 4. As expected, our design targeting
learnability, uncertainty, and diversity addresses various unlabelled sam-
ples, leading to limited overlap in their output S1. Together with Tab. 2,
we conclude that all aspects are complimentary and mutually informative.

4.4 More Analysis

Are we celebrating from more annotations per video? As summarized
in Sec. 3.1, ground truth inconsistency is one of the main causes of
collective outliers. We further showcase in Fig. 3 that fewer human
annotations bring in better performance. Then a natural question to ask
is whether we are celebrating from more annotations per video.

To answer this question, we conduct a caption-wise random sampling experiment with SwinBERT
on MSR-VTT. Specifically, SwinBERT is trained with all training videos on MSR-VTT where each
video is associated with k ∈ {1, 3, 5, 7, 9} captions that are randomly sampled from a full set of 20
human annotations. We visualize the CIDEr and SPICE score on the test set of MSR-VTT in Fig. 5.
As shown in the figure, full performance is achieved with approximately 35% of the annotations
(equivalent to k=7). Overall performance improves with up to nine annotations. We argue that the
performance degradation with the full training set is not due to overfitting, as techniques such as
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Figure 5: The performance of SwinBERT when
trained on samples equipped with different num-
bers k of annotation captions.

regularization, data augmentation, and early stop-
ping have been applied to mitigate it. Instead, we
hypothesize that it is related to collective outliers,
where inconsistency increases with the number of
annotations. Additionally, we observe that caption-
wise random sampling performs worse than ours
with the same amount of human annotations, high-
lighting the effectiveness of the Ln design.

Can we truly reduce the impact of collective
outliers? Though we leverage the knowledge
from LVLMs to approximate human annotations
and thus identify collective outliers, it remains un-
known how well such approximation or identifica-
tion is. To address this, we first divide unlabelled
samples into different groups w.r.t. their learnabilities, and then we obtain the distribution of St

according to these groups. Ideally, our method should select fewer samples that belong to collective
outliers. Specifically, we divide unlabelled samples into four discretized groups according to their
x, y coordinates in Dataset Maps in Fig. 1. (b). Easy samples are those whose y > 0.07 and x < 0.03.
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Moderate ones fall into the region with y > 0.07 and x ≥ 0.03. For these samples whose y ≤ 0.07
and x > 0.17, we call them hard samples. The remaining samples are then collective outliers.

23.93%

26.38%

11.96%

24.54%

38.34%

21.47%

27.30%

19.33%

18.10%

27.61%

25.15%

23.31%

33.44%

30.98%

16.56%

29.45%

23.01%

35.28%

26.38%

17.48%
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Entropy
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Ours

Easy Moderate Hard Collective Outliers

Figure 6: The distribution of samples in S1 on MSR-VTT.

We report the data distribution
of S1 of all methods in Fig. 6.
Again, results are obtained on
MSR-VTT with SwinBERT as f .
First and foremost, we observe that
our method is able to select the
least collective outliers compared
to other baselines, which fulfills
our goal as expected. Another in-
teresting observation is that our
method prefers to select more easy
samples at S1. It is an effective
strategy to select easy and moder-
ate samples for learning in the early stage of model training, which greatly improves the efficiency
and effect of training. By avoiding collective outliers and more reliable samples, it’s no wonder ours
achieves SOTA performance. We refer the readers to the appendix for more analysis.

Can we exploit the knowledge from LVLMs more? Another way to utilize the predictions from
LVLMs is to directly apply them as pseudo ground truths to update f in a semi-supervised learning
setup. Specifically, this simple approach achieves 0.31 and 0.07 for CIDEr and SPICE on MSR-VTT,
which are worse than the starting points. Adding additional control, e.g.including only videos when
predictions from LVLMs are highly consistent, achieves 0.5185 and 0.0712 for CIDEr and SPICE,
which is worse than our algorithm. We refer the readers to the appendix for more details.

Are inconsistencies in ground truths our illusions? To validate our hypothesis that inconsistency
in human annotations genuinely exists and is not merely due to subjective judgments, we utilize
ChatGPT Radford et al. (2019) as an objective tool. We observe that ChatGPT believes that 49% of
all captions are inconsistent on average. Such inconsistency rate increases when moving from easy to
collective outlier sub-regions. More details can be found in the appendix.

Does the reduction of human annotation costs justify the extensive computational cost? Our
additional computational costs arise from the active learning algorithm, primarily due to applying
BLIP2 to the unlabelled dataset and generating scene graphs from its predictions. This process occurs
only once on the unlabelled set. On our hardware, consisting of 4 RTX 4090 graphics cards with
a power capacity of 2000 kWh, it takes no more than 9 minutes to run BLIP2 and 5 minutes for
scene graph generation on the MSVD training dataset. In contrast, annotating the full dataset in 2010
required hundreds of annotators, around 2 months, and less than 5000 USD in total Chen and Dolan
(2011b). Therefore, we argue that active learning is more efficient in terms of both time and cost.

Limitations There are several limitations that we believe are worth further exploration. Firstly,
our paper only briefly touches on the relationship between curriculum learning and learnability.
Beyond provoking the design of the learnability term, we believe curriculum learning can enhance
the interpretability of learnability terms and even active learning. Secondly, we found that current
evaluation metrics, such as CIDEr, do not always align with human evaluations. More human analysis
is needed for video captioning tasks. Thirdly, we made some preliminary attempts to combine
knowledge from LVLMs in a semi-supervised learning manner. Although we did not see a significant
improvement, we believe further efforts are warranted. Lastly, our experiments with ChatGPT-4 can
be improved with more refined designs. We will include these limitations in our final version.

5 Conclusion

In this work, we propose a novel active learning algorithm for video captioning tasks, which
effectively leverages learnability, diversity, and uncertainty. To the best of our knowledge, our
algorithm is the very first one that targets collective outliers in video captioning and further proposes
to reduce their impacts by measuring sample learnability, as well as introducing a caption-wise
protocol. Results on two datasets demonstrate the superiority of our algorithm over SOTA methods,
e.g.we can achieve 103% of full performance with 25% of human annotations on MSR-VTT.

10



6 Acknowledgement

This work was supported in part by the National Natural Science Foundation of China (No. 62125201,
62020106007).

References
Moloud Abdar, Meenakshi Kollati, Swaraja Kuraparthi, Farhad Pourpanah, Daniel McDuff, Mohammad

Ghavamzadeh, Shuicheng Yan, Abduallah Mohamed, Abbas Khosravi, Erik Cambria, and Fatih Porikli. A
review of deep learning for video captioning. CoRR, abs/2304.11431, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur
Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han,
Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick, Sebastian Borgeaud, Andy Brock, Aida
Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman,
and Karén Simonyan. Flamingo: a visual language model for few-shot learning. In NeurIPS, 2022.

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. SPICE: semantic propositional image
caption evaluation. In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part V, pages 382–398. Springer, 2016.

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and visual question answering. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pages 6077–6086. Computer Vision Foundation / IEEE Computer Society, 2018.

Satanjeev Banerjee and Alon Lavie. METEOR: an automatic metric for MT evaluation with improved correlation
with human judgments. In Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization@ACL 2005, Ann Arbor, Michigan, USA, June 29, 2005, pages
65–72. Association for Computational Linguistics, 2005.

David M. Chan, Sudheendra Vijayanarasimhan, David A. Ross, and John F. Canny. Active learning for video
description with cluster-regularized ensemble ranking. In Computer Vision - ACCV 2020 - 15th Asian
Conference on Computer Vision, Kyoto, Japan, November 30 - December 4, 2020, Revised Selected Papers,
Part V, pages 443–459. Springer, 2020.

David L. Chen and William B. Dolan. Collecting highly parallel data for paraphrase evaluation. In The
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies,
Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 190–200. The Association
for Computer Linguistics, 2011a.

David L. Chen and William B. Dolan. Collecting highly parallel data for paraphrase evaluation. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics, 2011b.

Sihan Chen, Xingjian He, Handong Li, Xiaojie Jin, Jiashi Feng, and Jing Liu. Cosa: Concatenated sample
pretrained vision-language foundation model. arXiv preprint arXiv:2306.09085, 2023.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto. Recognizing Textual Entailment: Models
and Applications. Morgan & Claypool Publishers, 2013.

Gyanendra Das, Xavier Thomas, Anant Raj, and Vikram Gupta. Mavic: Multimodal active learning for video
captioning. CoRR, abs/2212.11109, 2022.

Zhao Guo, Lianli Gao, Jingkuan Song, Xing Xu, Jie Shao, and Heng Tao Shen. Attention-based LSTM with
semantic consistency for videos captioning. In Proceedings of the 2016 ACM Conference on Multimedia
Conference, MM 2016, Amsterdam, The Netherlands, October 15-19, 2016, pages 357–361. ACM, 2016.

Jingyi Hou, Xinxiao Wu, Xiaoxun Zhang, Yayun Qi, Yunde Jia, and Jiebo Luo. Joint commonsense and relation
reasoning for image and video captioning. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 10973–10980. AAAI Press, 2020.

Tao Jin, Siyu Huang, Ming Chen, Yingming Li, and Zhongfei Zhang. SBAT: video captioning with sparse
boundary-aware transformer. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, pages 630–636. ijcai.org, 2020.

11



Siddharth Karamcheti, Ranjay Krishna, Li Fei-Fei, and Christopher D. Manning. Mind your outliers! investi-
gating the negative impact of outliers on active learning for visual question answering. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event,
August 1-6, 2021, pages 7265–7281. Association for Computational Linguistics, 2021.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015,
pages 3128–3137. IEEE Computer Society, 2015.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel. Multimodal neural language models. In Proceedings
of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,
pages 595–603. JMLR.org, 2014.

Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st Annual
Meeting of the Association for Computational Linguistics, 7-12 July 2003, Sapporo Convention Center,
Sapporo, Japan, pages 423–430. ACL, 2003.

Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, Guanchu Wang, and Xia Ben Hu. Revisiting time series
outlier detection: Definitions and benchmarks. In Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual,
2021.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven C. H. Hoi. BLIP-2: bootstrapping language-image pre-
training with frozen image encoders and large language models. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, pages 19730–19742. PMLR, 2023a.

Linjie Li, Zhe Gan, Kevin Lin, Chung-Ching Lin, Zicheng Liu, Ce Liu, and Lijuan Wang. LAVENDER: unifying
video-language understanding as masked language modeling. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pages 23119–23129. IEEE,
2023b.

Wei Li, Linchao Zhu, Longyin Wen, and Yi Yang. Decap: Decoding CLIP latents for zero-shot captioning via
text-only training. In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023c.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li
Dong, Furu Wei, Yejin Choi, and Jianfeng Gao. Oscar: Object-semantics aligned pre-training for vision-
language tasks. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XXX, pages 121–137. Springer, 2020.

Chin-Yew Lin and Franz Josef Och. Automatic evaluation of machine translation quality using longest common
subsequence and skip-bigram statistics. In Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics, 21-26 July, 2004, Barcelona, Spain, pages 605–612. ACL, 2004.

Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe Gan, Zicheng Liu, Yumao Lu, and Lijuan Wang.
Swinbert: End-to-end transformers with sparse attention for video captioning. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages
17928–17937. IEEE, 2022.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022, pages 3192–3201. IEEE, 2022.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learning. IEEE
Trans. Neural Networks Learn. Syst., 31(9):3732–3740, 2020.

Yue Ming, Nannan Hu, Chunxiao Fan, Fan Feng, Jiangwan Zhou, and Hui Yu. Visuals to text: A comprehensive
review on automatic image captioning. IEEE CAA J. Autom. Sinica, 9(8):1339–1365, 2022.

Ron Mokady, Amir Hertz, and Amit H. Bermano. Clipcap: CLIP prefix for image captioning. CoRR,
abs/2111.09734, 2021.

Pingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, and Yueting Zhuang. Hierarchical recurrent neural encoder for
video representation with application to captioning. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 1029–1038. IEEE Computer
Society, 2016.

12



Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei. X-linear attention networks for image captioning. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 10968–10977. Computer Vision Foundation / IEEE, 2020.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, July 6-12, 2002, Philadelphia, PA, USA, pages 311–318. ACL, 2002.

Amin Parvaneh, Ehsan Abbasnejad, Damien Teney, Reza Haffari, Anton van den Hengel, and Javen Qinfeng Shi.
Active learning by feature mixing. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 12227–12236. IEEE, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035, 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable
visual models from natural language supervision. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, pages 8748–8763. PMLR, 2021.

Stephen Robertson. Understanding inverse document frequency: on theoretical arguments for IDF. J. Documen-
tation, 60(5):503–520, 2004.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 8732–8740. AAAI Press, 2020.

Sebastian Schuster, Ranjay Krishna, Angel X. Chang, Li Fei-Fei, and Christopher D. Manning. Generating
semantically precise scene graphs from textual descriptions for improved image retrieval. In Proceedings of
the Fourth Workshop on Vision and Language, VL@EMNLP 2015, Lisbon, Portugal, September 18, 2015,
pages 70–80. Association for Computational Linguistics, 2015.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Paul Hongsuck Seo, Arsha Nagrani, Anurag Arnab, and Cordelia Schmid. End-to-end generative pretraining for
multimodal video captioning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, pages 17938–17947. IEEE, 2022.

Dhruv Sharma, Chhavi Dhiman, and Dinesh Kumar. Evolution of visual data captioning methods, datasets, and
evaluation metrics: A comprehensive survey. Expert Syst. Appl., 221:119773, 2023.

Yaojie Shen, Xin Gu, Kai Xu, Heng Fan, Longyin Wen, and Libo Zhang. Accurate and fast compressed video
captioning. In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October
1-6, 2023, pages 15512–15521. IEEE, 2023.

Yaya Shi, Haiyang Xu, Chunfeng Yuan, Bing Li, Weiming Hu, and Zheng-Jun Zha. Learning video-text aligned
representations for video captioning. ACM Trans. Multim. Comput. Commun. Appl., 19(2):63:1–63:21, 2023.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith, and
Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training dynamics. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 9275–9293. Association for Computational Linguistics, 2020.

Mingkang Tang, Zhanyu Wang, Zhenhua Liu, Fengyun Rao, Dian Li, and Xiu Li. Clip4caption: CLIP for video
caption. In MM ’21: ACM Multimedia Conference, Virtual Event, China, October 20 - 24, 2021, pages
4858–4862. ACM, 2021.

13



Alaa Tharwat and Wolfram Schenck. A survey on active learning: State-of-the-art, practical challenges and
research directions. Mathematics, 11(4820), 2023.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image description
evaluation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pages 4566–4575. IEEE Computer Society, 2015.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond J. Mooney, Trevor Darrell, and Kate
Saenko. Sequence to sequence - video to text. In 2015 IEEE International Conference on Computer Vision,
ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 4534–4542. IEEE Computer Society, 2015.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image caption
generator. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pages 3156–3164. IEEE Computer Society, 2015.

Jiangliu Wang, Jianbo Jiao, Linchao Bao, Shengfeng He, Yunhui Liu, and Wei Liu. Self-supervised spatio-
temporal representation learning for videos by predicting motion and appearance statistics. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages
4006–4015. Computer Vision Foundation / IEEE, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System Demonstrations, EMNLP 2020 -
Demos, Online, November 16-20, 2020, pages 38–45. Association for Computational Linguistics, 2020.

Jiaxi Wu, Jiaxin Chen, and Di Huang. Entropy-based active learning for object detection with progressive
diversity constraint. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 9387–9396. IEEE, 2022.

Binhui Xie, Longhui Yuan, Shuang Li, Chi Harold Liu, and Xinjing Cheng. Towards fewer annotations: Active
learning via region impurity and prediction uncertainty for domain adaptive semantic segmentation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA,
June 18-24, 2022, pages 8058–8068. IEEE, 2022.

Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin Bi, Qi Qian, Wei
Wang, Guohai Xu, Ji Zhang, Songfang Huang, Fei Huang, and Jingren Zhou. mplug-2: A modularized
multi-modal foundation model across text, image and video. ArXiv, abs/2302.00402, 2023.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A large video description dataset for bridging video and
language. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
NV, USA, June 27-30, 2016, pages 5288–5296. IEEE Computer Society, 2016.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, pages 2048–2057. JMLR.org, 2015.

Xu Yang, Hanwang Zhang, and Jianfei Cai. Auto-encoding and distilling scene graphs for image captioning.
IEEE Trans. Pattern Anal. Mach. Intell., 44(5):2313–2327, 2022.

Xiangli Yang, Zixing Song, Irwin King, and Zenglin Xu. A survey on deep semi-supervised learning. IEEE
Trans. Knowl. Data Eng., 35(9):8934–8954, 2023.

Ting Yao, Yingwei Pan, Yehao Li, Zhaofan Qiu, and Tao Mei. Boosting image captioning with attributes. In
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages
4904–4912. IEEE Computer Society, 2017.

Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual relationship for image captioning. In Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part XIV, pages 711–727. Springer, 2018.

Jun Yu, Jing Li, Zhou Yu, and Qingming Huang. Multimodal transformer with multi-view visual representation
for image captioning. IEEE Trans. Circuits Syst. Video Technol., 30(12):4467–4480, 2020.

Zhiqi Yu, Jingjing Li, Zhekai Du, Lei Zhu, and Heng Tao Shen. A comprehensive survey on source-free domain
adaptation. CoRR, abs/2302.11803, 2023.

14



Beichen Zhang, Liang Li, Li Su, Shuhui Wang, Jincan Deng, Zheng-Jun Zha, and Qingming Huang. Structural
semantic adversarial active learning for image captioning. In MM ’20: The 28th ACM International Conference
on Multimedia, Virtual Event / Seattle, WA, USA, October 12-16, 2020, pages 1112–1121. ACM, 2020a.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng
Gao. Vinvl: Revisiting visual representations in vision-language models. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 5579–5588. Computer Vision
Foundation / IEEE, 2021a.

Wenqiao Zhang, Xin Eric Wang, Siliang Tang, Haizhou Shi, Haochen Shi, Jun Xiao, Yueting Zhuang, and
William Yang Wang. Relational graph learning for grounded video description generation. In MM ’20: The
28th ACM International Conference on Multimedia, Virtual Event / Seattle, WA, USA, October 12-16, 2020,
pages 3807–3828. ACM, 2020b.

Ziqi Zhang, Zhongang Qi, Chunfeng Yuan, Ying Shan, Bing Li, Ying Deng, and Weiming Hu. Open-book
video captioning with retrieve-copy-generate network. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021, pages 9837–9846. Computer Vision Foundation / IEEE,
2021b.

Zhisong Zhang, Emma Strubell, and Eduard H. Hovy. A survey of active learning for natural language processing.
In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 6166–6190. Association for Computational
Linguistics, 2022.

15



A Appendix

In our appendix, we first share our quantitative results on the MSR-VTT Xu et al. (2016) dataset
in Sec. A.1, followed by more details about our implementation in Sec. A.2. We further include
our comprehensive analysis of the property of Dataset Maps, knowledge from LVLMs, and results
with ChatGPT in Sec. A.3, Sec. A.4, and Sec. A.5, respectively. Our code and model will be made
available.

A.1 Results on MSR-VTT

We report the overall performances on MSVD in Fig 7 where methods are visualized with different
colors. As can be found in this figure, results on MSR-VTT share similar trends with those on
MSVD. First and foremost, our proposed method consistently surpasses all baselines under all
evaluation metrics. Among them, random sampling remains the safest choice as it almost always is
the second-best. Both observations verify our motivation for tackling collective outliers in open-ended
tasks. Remarkably, our proposed active learning method quickly achieves full performance using
only a few annotations. For example, our method achieves more than 90% of the full performance
under four evaluation metrics including BLEU4, METEOR, ROUGE, and CIDEr, with only 10%
annotations. Moreover, it achieves 107% of the full performance under CIDEr, when only 25%
of the full annotations are exploited. We would like to note that our hyper-parameters in Ln are
learned on MSR-VTT only and directly applied to MSVD, which further showcases the robustness
and generalizability of our proposed method.

A.2 Implementation Details

A.2.1 More Details of Baselines

As described in our main paper, we include two uncertainty-based active learning baselines as
suggested in Chan et al. (2020), or Maximum Entropy and Minimum Likelihood, for video captioning
tasks. More details of them are provided in the following.

Given a video input Vn, the output of the video captioning model f , or f(Vn), comprises a set
of K generated captions Yn with length W . We denote the k-th caption in Yn as yn,k and the
w-th word in yn,k as ywn,k. Therefore, Yn = {ywn,k}

K,W
k=1,w=1. During inference, these W words

are obtained in a sequential manner, where the prediction of the w-th word relies on its w −
1 predecessors. Mathematically, we can obtain the conditional probability of the w-th word in
the k-th caption P (ywn,k|y

w−1
n,k , · · · , y1n,k, Vn; f), representing the likelihood of generating the w-th

word given the previous words as well as the input video. Before introducing the two baselines,
let’s further denote the joint distribution of the W -th word in the k-th caption by P (yWn,k) =∏W

w=1 P (ywn,k|y
w−1
n,k , · · · , y1ni, Vn; f).
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Figure 7: Active learning performances on MSR-VTT with Swinbert. The y-axis shows the percentage
of the full performance under various evaluation metrics, which is obtained by training f with 100%
training data. Our proposed algorithm outperforms all other methods by a large margin. Similar
to what we observed on MSVD, our algorithm surpasses the full performance with only 25% of
annotations. Numbers of Clustered-Divergence Chan et al. (2020) come from the original paper [6].
In particular, it is able to achieve 95% of the full performance with 25% of the annotations with
Transformer mode Chan et al. (2020).
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Maximum Entropy To approximate the expected entropy of Vn in video captioning tasks, the
averaged entropy over Yn is utilized. For each prediction yn,k ∈ Yn, its entropy is computed over
word output distributions at each new word. Mathematically, the acquisition function of Maximum
Entropy Chan et al. (2020) is defined as:

Ln =
1

|Yn|

K∑
k=1

W∑
w=1

−P (ywn,k) lnP (ywn,k), (3)

At each time step t, Maximum Entropy selects the unlabelled videos with high Ln, reflecting the
intuition that samples with high uncertainty are more likely to be informative.

Minimum Likelihood In contrast, Minimum Likelihood directly focuses on the averaged probabilities
rather than entropy. Specifically, we follow the literature Chan et al. (2020) and define the acquisition
function of Minimum Likelihood as:

Ln =
1

|Yn|

K∑
k=1

W∑
w=1

lnP (ywn,k|yw−1
n,k , · · · , y1n,k, Vn; f), (4)

Similarly, Minimum Likelihood favors unlabelled samples with low Ln, which is well-aligned with
the assumption that uncertain samples are more valuable.

A.2.2 More Details of Our Method

Post-processing Steps
• Simplify quantificational modifiers

• Resolve pronouns

Dependency Parsing

Linguistic Rules
• Adjectival modifiers

• Subject-predicate-object 

constructions

• Copular constructions

• Prepositional phrases

• Possessive constructions

• Passive constructions

• Clausal modifiers of nouns

······

a cartoon character falls and breaks both of his legs

Caption his legsbothbreaksandfallscharactercartoona of

det

compound nsubj cc

nsubj

conj:and

obj

case

nmod:poss

nmod:of

Dependency Parse Tree

legsbothbreaksandfallscharactercartoona of

det

compound nsubj cc

nsubj

conj:and

mwe

det:qmod

obj

nmod:poss

Semantic Graph

Object: {(character), (leg)}

Attribute: {(character, cartoon), (character, fall), (leg, two)}

Relation: {(character, have, leg), (character, break, leg)}

leg

fall

character

cartoon two

break

have

Scene Graph

Figure 8: Pipeline of the scene graph parser.

Scene Graph Parser Scene graphs are of great importance to our method as our learnability,
uncertainty, and diversity are all measured upon them. Therefore, we describe the scene graph parser
in length here. Specifically, We reused the pipeline of SPICE Anderson et al. (2016) to generate
scene graphs from caption predictions, in which a Stanford Scene Graph Parser Schuster et al. (2015)
is adopted. In particular, given a caption bin or b∗n, a Probabilistic Context-Free Grammar (PCFG)
dependency parser Klein and Manning (2003) aims to firstly translate it into dependency parse
trees. Then a semantic graph can be obtained by simplifying quantificational modifiers and resolving
pronouns. After parsing the semantic graph through some simple linguistic rules, a scene graph Gi

n
or G∗

n, which consists of objects, their attributes, and relationships, can be obtained. We provide an
example of one caption and its scene graph in Fig.8.

Selection Protocols As formulated in the main paper, our acquisition function for the unlabelled
sample Vn is:

Ln = −λ1L
1
n + λ2L

2
n − λ3L

3
n + L4

n, (5)
where λ1, λ2, λ3 are hyper-parameters. Let’s further denote the annotation budget, or the amount
of annotations to be obtained, at the t-th step of the active learning algorithm as At. In our case,
At = ∥CSt∥.
Video-wise Selection Under conventional video-wise selection protocol, once Vn ∈ U is selected
by active learning algorithms, all annotations in Vn will be acquired. Assuming that each Vn is
associated with D captions, the video-wise selection protocol then selects the top ∥St∥ = At

D videos
from U and get all their captions. In practice, D equals to 20 and 40 in MSR-VTT Xu et al. (2016)
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and MSVD Chen and Dolan (2011a). As a reference, we denote the annotations for the m-th labelled
video Vm as Cm. Denoting the d-th caption as Cd

m, our Cm can be represented as Cm = {Cd
m}Dd=1.

Caption-wise Selection Rather than assuming that all D captions will be acquired once Vn is chosen
by active learning algorithms, our caption-wise selection scheme allows more flexibility w.r.t. Eq. 5.
Specifically, at each selection step, the video that has been least annotated with lower Eq. 5 will be
chosen to get captions. Mathematically, we make the following revision:

L̂n = Ln +
|Cn|
q

, (6)

where Cn denotes the number of annotations that already obtained on Vn. And q is a dataset-specific
hyper-parameter served as a re-ranking factor. Eq. 6 reflects our intuition that videos that have
not been annotated are more informative due to both diversity and inconsistent annotations from
collective outliers. Consequently, we will rank all Vn according to L̂n as long as |Cn| ≠ D with our
caption-wise selection scheme.

After ranking all Vn that has not been fully annotated, we then start to acquire human annotations
w.r.t. At. Instead of equally allocating human efforts to top-ranking videos, which neglects the
learnability property, we further introduce an intellectual design where more budgets are provided
to topper-ranking videos. Compared to their peers, these topper-ranking ones are less likely to be
collective outliers. Therefore it is safer and more effective to spend more effort on them. Specifically,
we propose a stage-wise acquisition scheme by dividing the ranked videos into R consecutive
and exclusive regions according to their Ln. If the ranked Vn belongs to the r-th region, where
r ∈ {1, . . . , R}, then we allocate At,r annotations to it. Let’s denote annotations Vn get at time step
t as Ct

n. In this case, At,r = |Ct
n|. As a reference, we have At =

∑
n |C

t
n| and Cn =

⋃
t Ct

n. Our
full caption-wise algorithm is summarized in Alg. 1.
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Figure 9: We divide the data in Dataset Maps on
MSR-VTT into four regions according to their
learnability. Specifically, we have EASY, MOD-
ERATE, HARD, and COLLECTIVE OUTLIER
colored in blue, orange, green, and red, respec-
tively.

Hyper-parameter Setting We set the number
of sampled frames I , the total active learning step
T , and the per-step annotation budget At to 32, 4,
and 5% of full annotations in each dataset. The
hyper-parameters λ1, λ2, λ3 in Eq. 5 are 3, 1, and
2, respectively. And they are chosen based on
experiments on the validation set via grid search.
Our re-ranking factor q in Eq. 6 is set to 10 on
MSR-VTT. Meanwhile, R is set to 3, dividing
the ranked videos into 3 regions according to L̂n.
Specifically, both the first and last regions consist
of 2000 videos. At,r equals to 2, 1, and 0 with
r = {1, 2, 3}. On the MSVD dataset, q and R are
set to 20 and 5. These 5 regions in MSVD consist
of 250, 250, 250, 188, and 262 unlabelled videos,
respectively. With increasing r, we have At,r set
to 4, 3, 2, 1, 0.

We would like to note that hyper-parameters re-
lated to the Caption-wise Selection Protocol are
not optimal due to the lack of tuning. We might
expect performance boosts with a more careful
search.

A.3 Analysis on Dataset Maps

To the best of our knowledge, we are the very first to address the collective outliers in video captioning
tasks. As described in our paper, we adapt Dataset Maps Swayamdipta et al. (2020) to perform
analysis on collective outliers. We provide Dataset Maps on the training set of MSR-VTT in Fig. 9.
In particular, y and x axis are the averaged SPICE score over all training epochs and their variance.
Intuitively, the average SPICE score reflects sample difficulty, while the variance represents its

18



Algorithm 1: Our Caption-wise Algorithm

Input: The labeled set L = {Vm,Cm}Mm=1, the unlabelled set U = {Vn}Nn=1, a video
captioning model f , a foundational model f ′, the number of sampled frames I , the total
active learning step T , number of stages R and stage-wise budget At,r

Output: Updated video captioning model f
1 Initialize f by training it on L;
2 Generate frame-wise captions {bij}

I,M+N
i=1,j=1 with the foundational model f ′;

3 Parse {bij}i,j into scene graphs G = {Gi
j}i,j ;

4 for t = 1 to T do
5 Generate predicted captions b∗j with f for each video on U ∪ L;
6 Parse {b∗j}j into a scene graph G∗;
7 Compute L̂n based on Eq. 6 ∀Vn ∈ U ;
8 Ranking videos in U ;
9 for Vn ∈ U do

10 for r = 1 to R do
11 if Vn belongs to the r-th region then
12 Acquire At,r annotations Ct

n for Vn

13 end
14 end
15 if |Ct

n| ≠ 0 then
16 St ← St ∪ Vn;
17 CSt

← CSt
∪ Ct

n

18 end
19 if

∑
t |C

t
n| == D then

20 U ← U \ Vn;
21 end
22 end
23 L ← L ∪ {St,CSt

};
24 Update the video captioning model f with L;
25 end

Table 3: Results of SwinBERT on MSR-VTT test set. Specifically, SwinBert is trained with 25% of
training data in MSR-VTT. Among them, Ours and Random are active learning methods where
data is chosen based on various acquisition functions. The remaining four are decided by Dataset
Maps.

BLEU_4 METEOR ROUGE_L CIDEr SPICE

Ours 43.86 29.93 62.57 55.74 7.39
Random 40.95 29.02 60.63 50.20 7.14

Easy 40.23 27.93 59.50 45.76 6.53
Moderate 39.76 27.93 59.71 46.07 6.74
Hard 32.29 25.49 55.66 31.75 5.84
Collective Outliers 28.92 25.87 54.39 29.43 5.71

ambiguity. Combining both would provide us with a way to capture data learnability. Dataset Maps,
to this end, provide an interpretable way to identify collective outliers w.r.t. data learnability.

To verify our assumption that Dataset Maps helps in terms of figuring out collective outliers, we
propose to divide samples according to their learnability. Specifically, samples are firstly divided
into two halves based on the average SPICE score. Then the two halves are equally divided into
four regions (i.e.Easy, Moderate, Hard, and Collective Outliers) based on variance. Each region
exclusively contains 25% of the samples from the full training set to avoid the interference of data
size on the results. We then train f with data from each region and show the overall performance on
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• people look from an overlook toward a hillside village 

and a lake below on a cloudy day.

• an overlook that can see for miles lots of forest area to 

the left and a small town to the right.

• a drone is flying over a green forest.

• a man is flying over a lake and a city.

• in a kitchen a man is frying meat in a pan turning it on 

the other side.

• big meat pieces after cooking are fried in the pan care 

to take fry both sides.

• a person is preparing a chicken in a pan.

• an older man is cooking in the kitchen.

Human-annotated GTs

BLIP2 Predictions

Unlabelled Video

Figure 10: Qualitative comparisons between BLIP2 predictions and human-annotated ground truths.

Table 4: Results of SwinBERT trained with different mixed MVR-VTT datasets combined with 5%
ground truths (i.e.initial seed set) and BLIP2 captions filtered by threshold th.
th 4 8 12 16 20 24 28

Number of BLIP2 captions 92765 58050 28880 12561 4509 1406 391
CIDEr 31.92 32.82 32.88 33.39 34.96 39.32 39.90
SPICE 7.09 6.99 6.92 6.65 6.56 6.24 5.70

the test set in Tab. 3. In short, We can draw the following two conclusions: (1) There exist obvious
gaps between regions of various averaged SPICE scores (e.g. Easy v.s. Collective Outliers, Moderate
v.s. Hard), indicating that simple samples bring in more performance boosts. (2) When the difficulty
of samples is close, samples of higher variances lead to better performance (e.g.. Moderate v.s. Easy,
Hard v.s. Collective Outliers). In our active learning scenario, this observation can be interpreted as
simple and learnable samples with certain uncertainty (e.g.samples in the Moderate region) are of
greater informativeness.

We further conduct another baseline where f is trained with 25% randomly sampled data from the
full training set. Compared to results from data with various learnability, we observe that this new
baseline gives better performance. We argue that such inferiority comes from a lack of data diversity
and uncertainty. As a reference, we also report the performance of our active learning method with
25% training data, which clearly gives the best performance with the same amount of data.

A.4 Efforts to Combine Knowledge from LVLMs

Given the observation that LVLM predictions provide satisfactory approximations to human-
annotated ground truths, one might wonder whether they can be directly used to either replace
the human annotations or enrich them.

Motivated by this idea, we conduct a simple semi-supervised learning experiment where the initial
setup is the same w.r.t. our active learning scheme, e.g., 5% and 95% split for labelled and unlabelled
sets. For each video in the unlabelled set, we obtain its pseudo ground truth from BLIP2 by randomly
selecting 16 captions from 32 frame-wise predictions. We then update our f with these pseudo
ground truths and report its performance on the MSR-VTT test set in Fig. 10. Apparently, there
exist clear differences in language style between captions generated by BLIP2 and human-annotated
ground truths. Specifically, this simple semi-supervised learning method achieves 0.31 and 0.07 for
CIDEr and SPICE, which are worse than the starting points. Such performance drop might be caused
by domain gaps between video and image captioning tasks, as well as the lack of ability to capture
temporal information.

Can the gap between human-annotated video captions and predictions from image-based foundational
models become smaller if the Vn is so simple that video caption degenerates to image caption? Since
there is no way to recover the temporal information from frame-wise image caption, we propose to
address this factor from another perspective. Specifically, we believe that the impact of temporal
information can be minimized if videos are highly coherent among frames. Such coherency can be
further approximated by frame-wise consistency. To this end, we propose to include videos whose
frame-wise BLIP2 captions are of high abstraction consistency. Mathematically, let’s denote P (bin)
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as follows:

P (bin) =

∑
k∈Oi

n
Hk(Gn)

|Oi
n|

+

∑
k∈Ai

n
Hk(Gn)

|Ai
n|

, (7)

Then the abstraction consistency of each BLIP2 caption in unlabelled videos is defined as follows:

P̂ (bin) = P (bin) +

∑
k∈Ri

n
Hk(Gn)

|Ri
n|

. (8)

As long as its score P̂ (bin) is not lower than a threshold th, a BLIP2 caption will be counted as a pseudo
ground truth. Later on, these pseudo ground truths will be used to re-train f , which is initialized with
5% of training data only. We report the performance of f in Tab. 4 with th ∈ {4, 8, 12, 16, 20, 24, 28}.
Noticeably, CIDEr score increases with the increasing th. This observation validates our hypothesis
that videos of highly consistent content generally have a smaller domain gap in terms of video and
image captioning, thanks to the neglectable impact of temporal information. In contrast, including
more captions generated by BLIP2 brings higher SPICE. This is mainly because of the semantic-
centric property of SPICE. In short, captions that are semantically similar but grammatically different
will be regarded as correct ones in SPICE.

Since semi-supervised learning is beyond the scope of our paper, we do not include more experiments
in this section. Though not observing performance improvements by introducing BLIP2 predictions
as pseudo ground truths, we still believe that domain adaption methods with much more delicate
designs would help. We look forward to seeing more work in this direction.

A.5 Results with ChatGPT

To validate our hypothesis that inconsistency in human annotations genuinely exists and is not merely
due to subjective judgments, we utilize ChatGPT as an objective tool.

Specifically, we randomly sample 500 videos from each sub-region from MSR-VTT, and then
randomly select 2 ground truth captions for each sample. We then ask ChatGPT whether it believes
these 2 captions describe the same content. ChatGPT will respond with one of three answers: yes,
no, or undecided. There are two main observations. First of all, we notice that ChatGPT can provide
reasonable answers to our provided examples. Here we provide one pair of examples for each answer
from ChatGPT:

• Yes: "two teams play soccer on a field" & "a man gives commentary for a soccer game"
• No: "there is a man talking in front of his computer" & "there are some tips to use your

computer"
• Undecided: "a video showcasing a modded jeep" & "a person gets his lifted jeep stuck in

the dirt"

Noticeably, based on the feedback of ChatGPT, there are 49.5% and 22.5% of inconsistent data
and hard-to-decide among all 2000 samples respectively, indicating the severity of inconsistency
in human-annotated ground truths. Moreover, when comparing the percentage of data among sub-
regions, we observe a clear trend of consistency increases when moving from collective outliers to
easy. For instance, 22.4% and 33% of captions from easy and collective outliers are believed to be
consistent. This observation aligns well with our arguments and supports our hypothesis as well as
motivation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately introduce the proposed active learning
method.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification: The limitations of this article may come from the capabilities of LVLMs.
Experiments have proven that the capabilities of LVLMs can initially meet the needs.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [No]

Justification: This paper does not contain theorems that require rigorous proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides sufficient experimental details and the code will be
published upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be published after this paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides detailed experimental details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiments were run in triplicate and averages and variances are reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This paper describes the computing resources used to run the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted conformed in all respects to the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] the paper does not use existing assets.
Justification: the paper state which version of the asset is used. The authors cite the original
paper that produced the code package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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