
On the Power of Small-size Graph Neural Networks
for Linear Programming

Qian Li1,2,*, Tian Ding1,2,*, Linxin Yang2,3,*, Minghui Ouyang4, Qingjiang Shi5, Ruoyu Sun1,2,3,†

1 Shenzhen International Center For Industrial And Applied Mathematics, Shenzhen, China
2 Shenzhen Research Institute of Big Data, Shenzhen, China

3 School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
4 Peking University, Beijing, China

5 Tongji University, Shanghai, China

Abstract

Graph neural networks (GNNs) have recently emerged as powerful tools for ad-
dressing complex optimization problems. It has been theoretically demonstrated
that GNNs can universally approximate the solution mapping functions of linear
programming (LP) problems. However, these theoretical results typically require
GNNs to have large parameter sizes. Conversely, empirical experiments have
shown that relatively small GNNs can solve LPs effectively, revealing a significant
discrepancy between theoretical predictions and practical observations. In this
work, we aim to bridge this gap by providing a theoretical foundation for the effec-
tiveness of smaller GNNs. We prove that polylogarithmic-depth, constant-width
GNNs are sufficient to solve packing and covering LPs, two widely used classes
of LPs. Our proof leverages the capability of GNNs to simulate a variant of the
gradient descent algorithm on a carefully selected potential function. Addition-
ally, we introduce a new GNN architecture, termed GD-Net. Experimental results
demonstrate that GD-Net significantly outperforms conventional GNN structures
while using fewer parameters.

1 Introduction

Learning to Optimize (L2O) has emerged as a compelling research area, leveraging machine learning
techniques to enhance the efficiency of optimization processes. Unlike traditional theory-driven
optimization methods, L2O approaches are primarily data-driven, learning optimization strategies
from existing problem instances. This new paradigm has yielded notable advancements in both
continuous optimization [22] and combinatorial optimization [4, 21].

Recently, graph neural networks (GNN) have become increasingly popular in the field of L2O [6, 27].
GNNs are a class of neural networks specifically designed to process and analyze data structured
as graphs, leveraging the relationships between nodes to perform tasks such as node classification,
link prediction, and graph classification [35]. Due to their properties of permutation equivariance and
natural adaptation to varying input dimensions, GNNs are well-suited for graph-related optimization
problems such as minimum vertex covering [30] and traveling salesman [13]. Recent research has
demonstrated that GNNs can effectively accelerate the solving process for both linear programming
(LP) and mixed integer linear programming (MILP) problems, which are among the most important
and widely applied types of optimization problems. For instance, Li et al. [17] proposed a GNN-based
reformulation method for LP to enhance the solver performance. Furthermore, Chen et al. [8] and

*These authors contributed equally to this work.
†Corresponding Author. Email:sunruoyu@cuhk.edu.cn

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Qian et al. [29] explored the potential of GNNs to approximate the solution mapping of LP and
reported encouraging results. Additionally, several studies have proposed various approaches to guide
MILP solvers with GNNs [10, 11, 14, 18, 26, 32].

Despite the numerical success, the theoretical foundation of using GNN to solve optimization
problems remains less clear. Initial steps towards a theoretical understanding have been made by
Chen et al. [8] and Qian et al. [29]. They demonstrated that with a sufficient number of parameters,
GNNs can approximate the solution mapping of LPs with arbitrary precision. However, a significant
gap persists between the theoretical progress and empirical evidence. The proof in [8] relies heavily
on the universal approximation theorem for multi-layer perceptions (MLP), which necessitates a
large number of parameters in principle. Similarly, the result of [29] requires the depth of GNN to be
polynomial in the problem dimension. In practice, however, GNN with a modest width and fewer
than ten layers often suffice to achieve good performance in approximating the optimal solution of
LP with hundreds of nodes and constraints.

This gap between theory and practice raises an intriguing open question:

When and why can small-size GNNs effectively solve LPs?

As larger networks usually require more training examples and higher computational resources,
addressing this question is not only of theoretical interest but also provides potential guidance to L2O
practitioners. While current GNNs may not yet rival theoretically grounded LP solvers in precision,
they could still accelerate LP solving by providing high-quality initializations to warm-start traditional
solvers. Understanding the principles behind the success of small-sized GNNs can potentially lead to
more parameter-efficient models, thus reducing the computational resources required for LP solving.
Moreover, these insights could potentially enhance MILP solvers. Specifically, the leading approach
for MILP is the branch-and-bound framework, which involves selecting variables and dividing the
search space. A prevalent variable selection approach is strong branching, where variables are scored
by solving associated LPs to guide the branching decisions. Researchers have exploited GNNs to
score these variables, with GNNs essentially solving the associated LPs [9–11, 23, 31]. By uncovering
the mechanism behind the success of small-sized GNNs in solving LPs, these models could be further
improved, leading to more efficient MILP solving.

1.1 Our contribution

In this paper, we show that polylogarithmic-depth constant-width GNNs can approximate the solution
mapping for a broad class of LPs, namely packing LPs and covering LPs, with arbitrary precision
(Theorem 3 and Theorem 5). This result advances previous theoretical results on general LPs [8, 29],
narrowing the gap between existing theoretical progress and empirical evidence.

Packing and covering LPs and their norm form. A packing LP and its dual covering LP are
nonnegative LPs of the canonical form: max{cT · x | Ax ≤ b,x ≥ 0} and min{bT · y | ATy ≥
c,y ≥ 0} respectively. Here, A ∈ Rn×m

≥0 , b ∈ Rn
≥0, and c ∈ Rm

≥0. Packing LPs and covering LPs
are broad classes of linear programming problems that can be used to approximate or relax a wide
range of fundamental problems in combinatorial optimization. They include fractional versions of
the vertex cover problem, the set cover problem, the hypergraph matching problem, the dominating
set problem, and the maximum independent set problem. Without loss of generality, we assume
the packing and covering LPs are presented in their normal form [2], where the vectors b and c are
all-ones vectors and Aij is either zero or greater than 1. The details of the reduction to the normal
form can be found in the appendix.

Our results. We present a new theoretical explanation of the phenomenon that small-size GNNs can
solve general packing LPs and covering LPs, by unrolling gradient descent algorithms. Specifically,
we first propose a variant of the gradient descent (GD) algorithm proposed by Awerbuch and
Khandekar [2] for solving packing and covering LPs (Algorithms 1 and 2), so that our variant
can be more naturally simulated by GNNs, where one iteration of the algorithm can be simulated
by one GNN layer of constant width. Importantly, our variant of GD is guaranteed to output a
(1 + ϵ)-approximate solution in polylog(mnAmax/ϵ) iterations. Therefore, we affirm the feasibility
of solving general packing and covering LPs with polylogarithmic-depth constant-width GNNs. Here,
we remark that the polylogarithmic dependency on depth is also necessary. Specifically, Kuhn et

2

al. [16] showed that: for the fractional maximum matching problem, a special kind of packing LP,
every constant-factor approximation distributed algorithm requires at least Ω(

√
log n/ log log n)

rounds. Moreover, since one layer of GNNs can be naturally simulated by one round of distributed
LP algorithms (see, e.g., the second paragraph on page 5 in [16]), we conclude that GNNs need at
least Ω(

√
log n/ log log n) layers.

Building on our theoretical proof, we propose a new GNN architecture, termed GD-Net, for solving
packing and covering LPs. We empirically demonstrate that, when appropriately trained, GD-Net
can effectively adapt to given problem instance distributions. Experiments across various datasets
demonstrate that GD-Net outperforms classical graph convolutional network (GCN), a predominant
GNN architecture in L2O for LP and MILP solving. Specifically, GD-Net generates better solutions
with an order of magnitude fewer parameters than GCN. These performance enhancements become
increasingly significant as the problem dimensions expand. The numerical success of GD-Net not
only corroborates our theoretical framework but also suggests a potential direction for designing
more parameter-efficient GNNs for L2O. This direction involves developing architectures that can
simulate well-established, theoretically grounded algorithms, potentially leading to improvements in
both computational efficiency and solution quality.

1.2 Related works

The design of GD-Net is based on the concept of unrolling iterative algorithms as GNNs. Indeed,
there is a body of research that has explored this approach. For example, Velickovic et al. [33]
investigated solving basic graph problems (e.g., the shortest path, the minimum spanning tree) by
GNNs. By unrolling classical graph algorithms (e.g., breadth-first search, Prim’s algorithm) as GNNs,
they suggest that message-passing neural networks with a maximization aggregator may be best
suited for such graph problems. Aiming at mitigating oversmoothing, long-range dependencies, and
spurious edges issues of GNNs, Yang et al. [36] proposed a new family of GNN layers by unrolling
and integrating the update rules of two classical iterative algorithms, namely the proximal gradient
descent and iterative reweighted least squares. Papers [20, 38] showed that many existing GNN
models (such as GCN, GAT, APPNP) can be viewed as unrolling gradient descent serving specific
graph signal denoising problems. Chen et al. [7] proposed new GNNs to improve graph signal
denoising by unrolling sparse coding and trend filtering algorithms. Papers [24, 39, 37] bridge the gap
between graph convolution and iterative algorithms by providing a unified optimization framework
for GNNs.

2 Gradient descent algorithm for packing and covering LPs

Throughout the paper, we use boldface to represent vectors or matrices, e.g., x and A. Let 1p×q

denote the p × q-dimensional all-ones matrix, and 1p denote the p-dimensional all-ones column
vector. Similarly, we can define 0p×q and 0p.

Algorithm for packing LPs. Awerbuch and Khandekar [2] proposed a simple (1+ϵ)-approximation
algorithm for packing LPs of the normal form:

max{1T · x | Ax ≤ 1,x ≥ 0} (1)

where Aij , bi, cj are all non-negative and Aij is either 0 or ≥ 1. The algorithm is described as
follows: given parameters µ = 1

ϵ · ln
mAmax

ϵ , α = ϵ
4 , β = α

10µ , and δ = α
10µnAmax

;

– Start with x := 0m; Then, repeat the following procedure:

1. yi := exp[µ · (Aix− 1)] for each i ∈ [n];

2. For any j ∈ [m] do

(a) If AT
j y ≤ 1− α, then xj := max{xj · (1 + β), δ};

(b) If AT
j y ≥ 1 + α, then xj := xj · (1− β).

3

Algorithm 1: Our variant of Awerbuch-Khandekar algorithm for packing LPs
1 Input: A n×m matrix A where Aij is either zero or no less than 1, and ϵ > 0.
2 Parameter: µ := 1

ϵ · ln
mAmax

ϵ , α = ϵ
4 , β = α

10µ , and δ = α
10µnAmax

;
3 Initialize x0 := 0;
4 for k = 0 to K − 1 do
5 yki := exp[µ(Aix

k − 1)] for any i ∈ [n];
6 for each j ∈ [m] do
7 if AT

j y
k ≤ 1− α then xk+1

j := xk
j · (1 + β) + δ;

8 if AT
j y

k ≥ 1 + α then xk+1
j := xk

j · (1− β);

9 Output: xK .

The intuition behind this algorithm is that it can be viewed as applying gradient descent on a carefully
chosen potential function defined as

Φp(x) =

n∑
i=1

yi(x)

µ
−

m∑
j=1

xj =
n∑

i=1

exp[µ(Aix− 1)]

µ
−

m∑
j=1

xj ,

which enjoys the following nice properties [2]: (i) Φp(x) is differentiable and convex; (ii)∇Φp(x) =

ATy; and (iii) any stationary point of Φp is a nearly optimal solution to the packing LP (1): For any
x where ∇Φp(x) = 0, x is feasible and 1T · x ≥ (1− 4ϵ) ·OPT. It turns out that this algorithm
has polylogarithmic convergence [2]. Precisely, given any ϵ > 0, this algorithm always maintains a
feasible solution (i.e. x ≥ 0 and Ax ≤ 1 always hold), and returns a (1 + ϵ)-approximation solution
to the packing LP (1) in Õ(ln2(mAmax) · ln2(nAmax)/ϵ

5) iterations. Here Õ hides lower order
terms like ln ln(mnAmax) and ln(1/ϵ).

Algorithm for covering LPs. In the same paper [2], Awerbuch and Khandekar also considered
solving the dual covering LP of the normal form

min{1T · y | ATy ≥ 1,y ≥ 0}, (2)

and designed the following algorithm: given µ := 1
ϵ · ln

nAmax

ϵ , α = ϵ
4 , β = α

20µ , and δ = α
20µmAmax

,

– Start with y := 1n; Then repeat the following procedure:

1. xj := exp[µ · (1−AT
j y)] for each j ∈ [m];

2. For any i ∈ [n] do
(a) If Aix ≥ 1 + α, then yi := max{yi · (1 + β), δ};
(b) If Aix ≤ 1− α, then yi := yi · (1− β).

Similarly, this algorithm can also be thought of as applying a variant of gradient descent on a carefully
selected potential function [2]:

Φc(y) =

m∑
j=1

xj(y)

µ
+

n∑
i=1

yi =

m∑
j=1

exp[µ(1−AT
j y)]

µ
+

n∑
i=1

yi,

which satisfies that: (i) Φc(y) is differentiable and convex; (ii)∇Φc(y) = 1−Ax; and (iii) for any
y where ∇Φd(y) = 0, y is feasible and 1T · y ≤ (1 + 4ϵ) · OPT. This algorithm was shown to
enjoy polylogarithmic convergence as well [2]. Formally, this algorithm always maintains a feasible
solution (i.e. y ≥ 0 and ATy ≥ 1 always hold), and returns a (1 + ϵ)-approximation solution to the
covering LP (2) in Õ(ln2(nAmax) · ln2(mnAmax)/ϵ

5) iterations.

A variant of Awerbuch-Khandekar algorithms. We propose a variant of the Awerbuch-Khandekar
algorithms, specifically Algorithm 1 for solving packing LPs (1) and Algorithm 2 for covering LPs
(2). The motivation and advantage of our variant is that it can be simulated more naturally by GNNs.

4

Algorithm 2: Our variant of Awerbuch-Khandekar algorithm for covering LPs
1 Input: A n×m matrix A where Aij is either zero or no less than 1, and ϵ > 0.
2 Parameter: µ := 1

ϵ · ln
nAmax

ϵ , α = ϵ
4 , β = α

20µ , and δ = α
20µmAmax

;
3 Initialize y0 := 1;
4 for k = 0 to K − 1 do
5 xk

j := exp[µ(1−AT
j y

k)] for any j ∈ [m];
6 for each i ∈ [n] do
7 if Aix

k ≥ 1 + α then yk+1
i := yki · (1 + β) + δ ;

8 if Aix
k ≤ 1− α then yk+1

i := yki · (1− β) ;

9 Output: yK .

Basically, we replace xj ← max{xj(1 + β), δ} with xj ← xj(1 + β) + δ in their algorithm for
packing LPs, and yj ← max{yj(1 + β), δ} with yj ← yj(1 + β) + δ in their algorithm for covering
LPs. Through almost the same proof, one can verify that the polylogarithmic convergence still holds.

Theorem 1. Algorithm 1 always maintains a feasible solution and returns a (1 + ϵ)-approximation
solution to the packing LP (1) in Õ(ln2(mAmax) · ln2(nAmax)/ϵ

5) iterations.

Algorithm 2 always maintains a feasible solution and returns a (1 + ϵ)-approximation solution to the
covering LP (2) in Õ(ln2(nAmax) · ln2(mnAmax)/ϵ

5) iterations.

Connection to GNN. For LPs, an instance can be naturally encoded as a labeled bipartite graph
[1, 3, 15, 25], where (a) a left node represents a variable, (b) a right node represents a constraint
(and equivalently, the associated dual variable), and (c) a left node and a right node are connected
if the corresponding variable participates the corresponding constraint. In our GD algorithms, the
matrix-vector multiplication Ax (or ATy) can be interpreted as a message passing step from left
nodes to right nodes (or from right nodes to left nodes). In the next sections, we will demonstrate
how one iteration of our GD algorithms can be transformed into a single layer of GNN.

3 Design of packing GD-Net

By combining the idea of Algorithm 1 and techniques from graph neural networks, we design a graph
neural network architecture, named packing GD-Net, for solving packing LPs.

One iteration of Algorithm 1 consists of two steps: first, the algorithm updates y from x, and
calculates the gradient ∇Φp(x) = ATy − 1; second, using ∇Φp(x), it applies a variant of gradient
descent to update x. Our packing GD-Net modifies the second step by replacing it with a learnable
neural network block, while leaving the first step unchanged. Thus, the packing GD-Net can also be
viewed as utilizing a neural network block to accelerate the convergence of the gradient descent.

ELU activation for y-update. We apply the Exponential Linear Unit (ELU) activation function
to replicate the y-update: yki = exp[µ(Aix

k − 1)]. We will fix the parameter α in ELU to 1, then
ELU(t) + 1 = exp(t) for t ≤ 0. In addition, as mentioned in Theorem 1, Aix

k − 1 ≤ 0 always
holds in the execution of Algorithm 1. Thus the ELU function can exactly replicate the y-update.
Specifically, our packing GD-Net updates y as follows:

yki := ELU
[
µ(Aix

k − 1)
]
+ 1. (3)

Since α is fixed to 1 and µ is fixed to 1
ϵ · ln

mAmax

ϵ , no learnable parameters are involved here.

Learnable gradient descent procedure. The gradient descent in Algorithm 1 can be rewritten as

xk+1
j :=xk

j + f
(
AT

j y
k − 1

)
· xk

j + g
(
AT

j y
k − 1

)
= xk

j + f (∂Φp/∂xj) · xk
j + g

(
∂Φp/∂xj

)
5

Figure 1: The architectures of a single layer in packing (left) and covering (right) GD-Nets. Learnable
parameters are colored in red.

where f, g : R→ R are sums of Heaviside step functions defined as:

f(t) =

β, if t ≤ −α;
0, if − α ≤ t ≤ α;

−β, if t ≥ α.

and g(t) =

{
δ, if t ≤ −α;
0, otherwise.

(4)

As the Heaviside step function can be naturally approximated by the sigmoid function σ(t) =
1

1+exp(−t) , the packing GD-Net adopts the following learnable functions as substitutes for f and g:

fθk(t) =

L1∑
ℓ=1

[
θkℓ,1 · σ(θkℓ,2 · t+ θkℓ,3) + θkℓ,1 · σ(θkℓ,2 · t− θkℓ,3)− θkℓ,1

]
(5)

and

gθk(t) =

L2∑
ℓ=1

θkℓ,4 ·
[
σ(θkℓ,5 · t+ θkℓ,6)− σ(θkℓ,6)

]
. (6)

Note that it is guaranteed that fθk(t) = −fθk(−t), in particular fθk(0) = 0, and gθk(0) = 0. So if
the packing GD-Net reaches a stationary point of Φp, it will remain there. Additionally, the packing
GD-Net applies the ReLU activation to keep xk

j ≥ 0.

Channel expansion and architecture of packing GD-Net We integrate the channel expansion
technique to further strengthen the expressive power. Specifically, we expand the m-dimensional
column vector xk into a (m× d)-dimensional matrix Xk, and n-dimensional column vector yk into
a (n× d)-dimensional matrix Y k. Now, we are ready to present the packing GD-Net architecture:

– Initialize X0 := 0m×d and Y 0 = 0n×d.

– For k = 0, 1, 2, · · · ,K − 1

• Y k := ELU
[
µ(AiX

k − 1n×d)
]
+ 1n×d.

• Xk+1 = ReLU
({

Xk + fθk

[
ATY k − 1m×d

]
◦Xk + gθk

[
ATY k − 1m×d

]}
·W k

)
.

– Output xfinal := XK ·wK ∈ Rm.

Here, ◦ denotes entry-wise multiplication (a.k.a. Hadamard product), and fθk , gθk : R → R are
applied entrywise to the matrix ATY k − 1m×d. The learnable parameter is Θ := {θk,W k}K−1

k=0 ∪
{wK}, where θk = {θkℓ,1, θkℓ,2, θkℓ,3}

L1

ℓ=1 ∪ {θkℓ,4, θkℓ,5, θkℓ,6}
L2

ℓ=1, W k ∈ Rd×d, and wK ∈ Rd×1. So
the total number of parameters is K · (d2 + 3L1 + 3L2) + d. The following theorem reveals the
ability of the packing GD-Net to reproduce Algorithm 1 with arbitrarily small precision.

6

Theorem 2. Given any network depth K, any network width d ≥ 1, and any precison η > 0, there
exists a K-layer packing GD-Net with a specific choice of parameters such that, for any packing LP
instance (1), ∥xfinal − xalg∥ ≤ η. Here, xalg is the output of K-iteration Algorithm 1.

By combining Theorems 1 and 2, we conclude that the packing GD-Nets with polylogarithmic depth
and constant width are sufficient to solve packing LPs.

Theorem 3. Given any ϵ > 0 and η > 0, there exists a packing GD-Net of Õ(ln2(mAmax) ·
ln2(nAmax)/ϵ

5) depth and constant width, using the parameter assignment ΘGD, that satisfies the
following condition: For any packing LP instance (1), xfinal is η-close to being a (1+ϵ)-approximate
solution.
Remark 1. We can establish a similar theorem with general-purpose GNNs (such as GCNs) where we
can still derive polylogarithmic depth in the bound but constant width is no longer guaranteed. Specif-
ically, by the universal approximation theorem, the ELU function can be simulated with arbitrary
precision by a 2-layer and sufficiently wide perceptron. So if we replace each occurrence of ELU
with this 2-layer perceptron, we then obtain a GCNs. Note that this GCN still has polylogarithmic
depth but the required width is no longer a constant.

Network training. The training data set is a set I = {(A,x∗)} of packing LP instances in the
normal form. More specifically, the input of an instance is identified by the constraint matrix A, with
b and c being both all-ones vectors; the label x∗ represents the corresponding optimal solution. Let
xfinal(Θ,A) denote the output of the packing GD-Net parameterized by Θ running on the input A.
The goal of the training process is to find a parameter Θ∗ minimizing loss function defined as:

Lp(I;Θ) =
1

|I|
∑

(A,x∗)∈I

∥xfinal(Θ,A)− x∗∥2.

Feasibility resortation. Note that the xfinal returned by packing GD-Net may be infeasible. To
restore feasibility, we implement the following post-processing procedure:

– First, for each j ∈ [m], update xj := max(0,min(1, xj));

– Then, for i = 1 to n do

• If Aix ≥ 1, then update xj :=
xj

Aix
for each j with Aij ̸= 0.

4 Design of covering GD-Net

In one iteration of Algorithm 2, the process begins by updating x from y, followed by the calculation
of the gradient ∇Φd(y) = 1−Ax. Finally, it applies a variant of gradient descent to update y. Our
covering GD-Net retains the original x-update and gradient-calculation modules, but replaces the
gradient descent with a learnable neural network block to accelerate convergence.

Architecture of covering GD-Net. Similarly, we substitute the ELU activation with α fixed to 1
for the exp(·) function, and replace the x-update xk

j = exp[µ(1−AT
j y

k)] with

xk
j := ELU

[
µ(1−AT

j y
k)
]
+ 1. (7)

As we will show in Theorem 4, (7) can exactly simulate the x-update in Algorithm 2.

The gradient descent procedure in Algorithm 2 can be rewritten as

yk+1
i :=yki + f

(
1−Aix

k
)
· yki + g

(
1−Aix

k
)
= yki + f (∂Φd/∂yi) · yki + g

(
∂Φd/∂yi

)
where f, g : R→ R are the same functions as those defined in (4) for packing GD-Net. So, in the
covering GD-Net, we also substitute f and g with the learnable functions fθk and gθk defined in (5)
and (6) respectively. In addition, we also apply ReLU to keep yki ≥ 0.

Besides, the channel expansion technique is also incorporated: similarly, we expand xk ∈ Rm into
Xk ∈ Rm×d, and yk ∈ Rn into Y k ∈ Rn×d. Then, we propose our covering GD-Net architecture:

– Initialize Y 0 := 1n×d and X0 = 1m×d.

– For k = 0, 1, 2, · · · ,K − 1

7

• Xk := ELU
[
µ(1m×d −ATY k)

]
+ 1m×d;

• Y k+1 = ReLU
({

Y k + fθk

[
1n×d −AXk

]
◦ Y k + gθk

[
1n×d −AXk

]}
·W k

)
.

– Output yfinal := Y K ·wK ∈ Rn.

The learnable parameter is Θ := {θk,W k}K−1
k=0 ∪ {wK}, where θk = {θkℓ,1, θkℓ,2, θkℓ,3}

L1

ℓ=1 ∪
{θkℓ,4, θkℓ,5, θkℓ,6}

L2

ℓ=1, W k ∈ Rd×d, and wK ∈ Rd×1. So the total number of parameters is K · (d2 +
3L1 + 3L2) + d, the same as in packing GD-Net.

Theorem 4. Given any network depth K, any network width d ≥ 1, and any precison η > 0, there
exists a K-layer covering GD-Net with a specific choice of parameters such that, for any covering
LP instance (2), ∥yfinal − yalg∥ ≤ η. Here, yalg is the output of K-iteration Algorithm 2.

Theorems 1 and 4 together imply the capacity of polylogarithmic-depth constant-width covering
GD-Nets for solving covering LPs.

Theorem 5. Given any ϵ > 0 and η > 0, there exists a covering GD-Net of Õ(ln2(nAmax) ·
ln2(mnAmax)/ϵ

5) depth and constant width, using the parameter assignment ΘGD, that satisfies
the following condition: For any covering LP instance (2), yfinal is η-close to being a (1 + ϵ)-
approximate solution.

Remark 2. Similar to Remark 1, we can establish a similar theorem with general-purpose GNNs
where the polylogarithmic bound on the depth still holds but constant width is no longer guaranteed.

Network training. The training dataset is a set I = (A,y∗) consisting of instances where y∗ is
the optimal solution to the covering LP (2) with constraint matrix A. The goal of the training process
is to find a parameter Θ∗ minimizing the following loss function:

Lc(I;Θ) :=
1

|I|
∑

(A,y∗)∈I

∥yfinal(Θ,A)− y∗∥22,

Feasibility resortation. Since the yfinal may be infeasible, we implement the following post-
processing procedure to restore feasibility:

– First, for each i ∈ [n], update yi := max(0,min(1, yi));

– Then, for j = 1 to m do

• If AT
j y ≤ 1, then update yi :=

yi

AT
j y

for each i with Aij ̸= 0.

5 Experimental study

5.1 Experemental Setup

Datasets. We utilized four LP relaxations of publicly available mixed-integer optimization instances
as benchmarks. Specifically, we included the Maximal Independent Set (IS), Packing Problem
(Packing), Edge Covering Problem (ECP), and Set Covering (SC). The problem definitions are
adopted from [9, 29]. Each benchmark comprises four sets of problem instances with varying sizes,
including one set designated for the generalization experiment. Detailed information regarding the
problem sizes and data splitting ratios can be found in the appendix.

To construct datasets for training, each instance Mi ≡ {Ai, bi, ci} undergoes normalization to

M̃i ≡ {Â
i
,1n,1m}. Subsequently, via the optimization solver SCIP [5], we obtain the optimal

solution and optimal objective value pair {xi, obj∗i } for each instance M̃i. Finally, we utilize the

input-target pair to compose the dataset D ≡ {Â
i
,xi}|M |

i=1.

Models and Training settings. For comparison, our experiments also include the graph convo-
lutional network (GCN), a predominant GNN architecture in L2O for LP and MILP. Specifically,

8

we adopt the GCN implementation from [29], which is tailored for predicting the optimal solu-
tions for LPs. Both the GCN and the proposed GD-Net utilize a four-layer architecture with 64
hidden units in each layer. Consequently, the number of parameters is 1,656 for GD-Net and
34,306 for GCN. Note that our GD-Net has an order of magnitude fewer parameters compared
to GCN. For GD-Net, we set ϵ = 0.2. All models were trained using a learning rate of 10−3.
We trained each model for 10,000 epochs, and the checkpoint with the lowest validation loss was
saved for evaluation. For reproducibility, our code to conduct the experiments can be found at
https://anonymous.4open.science/r/GD-Net-6FC7/.

Metrics. To effectively evaluate the GNN’s ability to solve LP problems, we employed two distinct
metrics: the relative gap R. Gap = |õbji−obj∗i |/obj∗i and the absolute gap (A. Gap = |õbji−obj∗i |),
where õbji denotes the predicted objective value of the respective approach after feasibility restoration.

5.2 Comparing against GCNs

In this section, we assess the effectiveness of the proposed GD-Net and the GCNs adopted from [29]
in predicting the optimal solution for LP problems. As shown in Table 1, we report relative and
absolute gaps, along with validation and test errors, to evaluate the quality of solutions generated
by each model. The results indicate that GD-Net typically achieves narrower gaps compared

Table 1: Results of comparing the proposed GD-Net against GCNs from [29]. We report valid/test
errors measured by MSE (V.Err/T.Err) and the relative/absolute objective gap from the optimal
solution (R. Gap/A.Gap). Better performances are highlighted in bold. Results are averaged across
100 instances.

Dataset Size GD-Net GCNs [29]
V. Err T. Err R. Gap A. Gap V. Err T. Err R. Gap A. Gap

IS
S 0.062 0.062 4.41% 1.478 0.145 0.122 15.46% 5.155
M 0.156 0.135 3.55% 12.201 0.156 0.135 16.18% 55.318
L 0.085 0.085 6.84% 43.073 0.154 0.131 15.35% 96.785

Packing
S 3.40E-4 3.39E-4 16.53% 0.184 2.7E-4 2.6E-4 19.50% 0.220
M 6.53E-4 6.53E-4 10.68% 0.118 5.05E-4 5.09E-4 10.69% 0.118
L 2.18E-4 2.20E-4 7.35% 0.082 1.69E-4 1.69E-4 7.37% 0.082

ECP
S 0.099 0.097 7.84% 1.478 0.173 0.153 36.83% 12.41
M 0.129 0.115 21.51% 74.80 0.172 0.153 38.73% 134.50
L 0.123 0.115 18.28% 116.05 0.172 0.153 39.22% 249.06

SC
S 3.12E-4 2.91E-4 26.68% 0.297 2.53E-4 2.54E-4 21.91% 0.244
M 6.64E-6 6.50E-6 13.09% 0.145 5.05E-6 5.10E-6 10.91% 0.121
L 2.19E-6 2.19E-6 8.42% 0.094 1.81E-6 1.77E-6 8.90% 0.099

to GCNs. Even in instances where GD-Net does not surpass GCNs, the performance discrepancy
remains minimal, which is noteworthy given GD-Net’s significantly fewer parameters. Notably, in
scenarios like Packing-L, although GD-Net records a higher test error, it still outperforms GCNs.
This suggests that GD-Net may better capture the structural nuances of the problem. Overall, GD-Net
generally demonstrates superior performance over conventional GCNs.

5.3 Generalization to larger instances

In this section, we evaluate the generalization capability of our proposed GD-Net, trained on smaller
instances, to larger problem domains. We train GD-Nets on the largest dataset available for each
problem and subsequently test these models on problem instances with 10% more constraints and
variables. Table 2 presents the results, showcasing relative and absolute gaps, along with validation
and test errors. The results reveal that GD-Nets possess a notable ability to generalize to larger
problem instances with only minimal performance degradation. This suggests robustness in handling
increased problem complexity, underscoring the adaptability and scalability of the proposed GD-Nets.

9

https://anonymous.4open.science/r/GD-Net-6FC7/

Table 2: Results of generalizing GD-Nets trained on smaller instances to larger instances. All models
are trained on datasets of size L. We report valid/test errors measured by MSE (V.Err/T.Err) and
the relative/absolute objective gap from the optimal solution (R. Gap/A.Gap). Results are averaged
across 100 instances.

dataset n m V. Err T. Err R. Gap A. Gap

IS [1100, 1300] [1100, 1300] 0.085 0.085 6.81% 47.681
Packing [1100, 1300] [1100, 1300] 2.18E-4 1.85E-6 7.06% 0.078

ECP [1100, 1300] [1100, 1300] 0.123 0.115 17.48% 120.63
SC [1100, 1300] [1100, 1300] 2.19E-6 1.87E-6 10.68% 0.119

5.4 Comparing against more Baselines

To further demonstrate the effectiveness of the proposed framework, we include two additional
baselines: the traditional first-order solver PDLP [19] and the commercial solver Gurobi [12].
Specifically, we used Gurobi’s primal simplex method, which efficiently produces feasible primal
solutions. The table below shows the time taken by each method to achieve solutions with the same
precision level as GD-Net’s solutions. The experiment was conducted on both the SC and Packing
datasets across all three size variants.

Table 3: Performance comparison of GD-Net, Gurobi, and PDLP on achieving the same precision.

Instance #Vars. Optimal Obj. GD-Net Obj. GD-Net Time Gurobi Time PDLP Time

SC
1,000 3.334 3.701 0.105s 0.244s 0.919s
5,000 100.667 130.931 0.218s 9.401s 0.921s
10,000 407.386 546.666 0.335s 103.322s 1.001s

Packing
1,000 3.334 3.018 0.095s 0.208s 0.746s
5,000 100.88 78.994 0.216s 3.980s 0.756s
10,000 406.946 302.04 0.314s 8.593s 0.809s

As shown in Table 3, GD-Net consistently outperforms both general-purpose solvers on all datasets.
Notably, PDLP, a first-order method known for its fast early-stage convergence, is unable to produce
solutions of comparable quality to those of GD-Net in shorter time. This further highlights GD-Net’s
ability to efficiently generate high-quality solutions. Additionally, as previously mentioned, the
simplex method requires matrix factorization, which is computationally expensive. In this case, it
required up to 300× more time to converge to a solution of the same quality as GD-Net. These
findings strongly support the effectiveness of GD-Net, demonstrating its capability to consistently
generate high-quality solutions.

Moreover, we also include experiments under a more practical setting and compare the inference
time, which can be found in Appendix G and H.

6 Conclusion

Inspired by Awerbuch and Khandekar’s gradient descent algorithms for packing and covering LPs, we
introduce packing and covering GD-Net, and prove that they can approximate the solution mapping
of packing and covering LPs respectively. Importantly, they only need polylogarithmic depth and
constant width, significantly narrowing the gap between existing theoretical prediction and empirical
evidence. Experiments are also conducted to demonstrate their effectiveness. We list some directions
for future work: (1) How to further reduce the size of GNNs theoretically, since there is still a gap
between our theoretical progress and empirical evidence; (2) How low the size of GNNs can go for
solving general LPs, noting that our nets only work for packing and covering LPs; (3) To explore
our nets in L2O for MILP. Recall that GD-Nets can be viewed as unrolling the gradient descent on a
carefully selected potential function with some good properties. For (2) and (3), a natural direction is
to design other potential functions that still enjoy those good properties.

10

Acknowledgments

This paper is supported by the National Key Research and Development Project under grant
2022YFA1003900; Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation
Zone Project (No.HZQSWS-KCCYB-2024016); University Development Fund UDF01001491, the
Chinese University of Hong Kong, Shenzhen; Guangdong Provincial Key Laboratory of Mathemat-
ical Foundations for Artificial Intelligence (2023B1212010001); the Guangdong Major Project of
Basic and Applied Basic Research (2023B0303000001). Qian Li and Minghui Ouyang’s work was
additionally supported by the National Natural Science Foundation of China Grants No.62002229.
Tian Ding’s work was additionally supported by the Internal Project of Shenzhen Research Institute
of Big Data under Grant J00220240005.

References
[1] M. Ahmadi, F. Kuhn, and R. Oshman. Distributed approximate maximum matching in the

CONGEST model. In U. Schmid and J. Widder, editors, 32nd International Symposium on
Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121
of LIPIcs, pages 6:1–6:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[2] B. Awerbuch and R. Khandekar. Stateless distributed gradient descent for positive linear
programs. SIAM J. Comput., 38(6):2468–2486, 2009.

[3] Y. Bartal, J. W. Byers, and D. Raz. Global optimization using local information with applications
to flow control. In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97,
Miami Beach, Florida, USA, October 19-22, 1997, pages 303–312. IEEE Computer Society,
1997.

[4] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

[5] S. Bolusani, M. Besançon, K. Bestuzheva, A. Chmiela, J. Dionísio, T. Donkiewicz, J. van
Doornmalen, L. Eifler, M. Ghannam, A. Gleixner, C. Graczyk, K. Halbig, I. Hedtke, A. Hoen,
C. Hojny, R. van der Hulst, D. Kamp, T. Koch, K. Kofler, J. Lentz, J. Manns, G. Mexi,
E. Mühmer, M. E. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, M. Turner, S. Vigerske,
D. Weninger, and L. Xu. The SCIP Optimization Suite 9.0. Technical report, Opti-
mization Online, February 2024. URL https://optimization-online.org/2024/02/
the-scip-optimization-suite-9-0/.

[6] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Velickovic. Combinatorial
optimization and reasoning with graph neural networks. J. Mach. Learn. Res., 24:130:1–130:61,
2023.

[7] S. Chen, Y. C. Eldar, and L. Zhao. Graph unrolling networks: Interpretable neural networks for
graph signal denoising. IEEE Trans. Signal Process., 69:3699–3713, 2021. doi: 10.1109/TSP.
2021.3087905. URL https://doi.org/10.1109/TSP.2021.3087905.

[8] Z. Chen, J. Liu, X. Wang, and W. Yin. On representing linear programs by graph neural
networks. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[9] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi. Exact combinatorial optimization
with graph convolutional neural networks. Advances in neural information processing systems,
32, 2019.

[10] P. Gupta, M. Gasse, E. B. Khalil, P. K. Mudigonda, A. Lodi, and Y. Bengio. Hybrid models
for learning to branch. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[11] P. Gupta, E. B. Khalil, D. Chételat, M. Gasse, A. Lodi, Y. Bengio, and M. P. Kumar. Lookback
for learning to branch. Trans. Mach. Learn. Res. (TMLR), 2022, 2022.

11

https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://optimization-online.org/2024/02/the-scip-optimization-suite-9-0/
https://doi.org/10.1109/TSP.2021.3087905

[12] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

[13] B. Hudson, Q. Li, M. Malencia, and A. Prorok. Graph neural network guided local search for
the traveling salesperson problem. In International Conference on Learning Representations,
2021.

[14] E. B. Khalil, C. Morris, and A. Lodi. Mip-gnn: A data-driven framework for guiding combi-
natorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 10219–10227, 2022.

[15] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami,
Florida, USA, January 22-26, 2006, pages 980–989. ACM Press, 2006.

[16] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Local computation: Lower and upper bounds. J.
ACM, 63(2):17:1–17:44, 2016.

[17] X. Li, Q. Qu, F. Zhu, J. Zeng, M. Yuan, K. Mao, and J. Wang. Learning to reformulate for linear
programming. arXiv preprint arXiv:2201.06216, 2022.

[18] D. Liu, M. Fischetti, and A. Lodi. Learning to search in local branching. In Proceedings of the
aaai conference on artificial intelligence, volume 36, pages 3796–3803, 2022.

[19] H. Lu and J. Yang. A practical and optimal first-order method for large-scale convex quadratic
programming, 2024. URL https://arxiv.org/abs/2311.07710.

[20] Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah. A unified view on graph neural networks
as graph signal denoising. In G. Demartini, G. Zuccon, J. S. Culpepper, Z. Huang, and H. Tong,
editors, CIKM ’21: The 30th ACM International Conference on Information and Knowledge
Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, pages 1202–1211.
ACM, 2021. doi: 10.1145/3459637.3482225. URL https://doi.org/10.1145/3459637.
3482225.

[21] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev. Reinforcement learning for combinato-
rial optimization: A survey. Computers & Operations Research, 134:105400, 2021.

[22] V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep learning for
signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

[23] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Son-
nerat, C. Tjandraatmadja, P. Wang, R. Addanki, T. Hapuarachchi, T. Keck, J. Keeling, P. Kohli,
I. Ktena, Y. Li, O. Vinyals, and Y. Zwols. Solving mixed integer programs using neural networks.
CoRR, abs/2012.13349, 2020.

[24] X. Pan, X. Han, C. Wang, Z. Li, S. Song, G. Huang, and C. Wu. A unified framework for
convolution-based graph neural networks. Pattern Recognit., 155:110597, 2024. doi: 10.1016/J.
PATCOG.2024.110597. URL https://doi.org/10.1016/j.patcog.2024.110597.

[25] C. H. Papadimitriou and M. Yannakakis. Linear programming without the matrix. In S. R.
Kosaraju, D. S. Johnson, and A. Aggarwal, editors, Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages
121–129. ACM, 1993.

[26] M. B. Paulus, G. Zarpellon, A. Krause, L. Charlin, and C. Maddison. Learning to cut by looking
ahead: Cutting plane selection via imitation learning. In International conference on machine
learning, pages 17584–17600. PMLR, 2022.

[27] Y. Peng, B. Choi, and J. Xu. Graph learning for combinatorial optimization: a survey of
state-of-the-art. Data Science and Engineering, 6(2):119–141, 2021.

[28] A. Prouvost, J. Dumouchelle, L. Scavuzzo, M. Gasse, D. Chételat, and A. Lodi. Ecole: A
gym-like library for machine learning in combinatorial optimization solvers. In Learning Meets
Combinatorial Algorithms at NeurIPS2020, 2020. URL https://openreview.net/forum?
id=IVc9hqgibyB.

12

https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2311.07710
https://doi.org/10.1145/3459637.3482225
https://doi.org/10.1145/3459637.3482225
https://doi.org/10.1016/j.patcog.2024.110597
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB

[29] C. Qian, D. Chételat, and C. Morris. Exploring the power of graph neural networks in solv-
ing linear optimization problems. In International Conference on Artificial Intelligence and
Statistics, pages 1432–1440. PMLR, 2024.

[30] R. Sato, M. Yamada, and H. Kashima. Approximation ratios of graph neural networks for
combinatorial problems. Advances in Neural Information Processing Systems, 32, 2019.

[31] M. Seyfi, A. Banitalebi-Dehkordi, Z. Zhou, and Y. Zhang. Exact combinatorial optimization
with temporo-attentional graph neural networks. In D. Koutra, C. Plant, M. G. Rodriguez,
E. Baralis, and F. Bonchi, editors, Machine Learning and Knowledge Discovery in Databases:
Research Track - European Conference, ECML PKDD 2023, Turin, Italy, September 18-22,
2023, Proceedings, Part IV, volume 14172 of Lecture Notes in Computer Science, pages
268–283. Springer, 2023.

[32] Y. Shen, Y. Sun, A. Eberhard, and X. Li. Learning primal heuristics for mixed integer programs.
In 2021 international joint conference on neural networks (ijcnn), pages 1–8. IEEE, 2021.

[33] P. Velickovic, R. Ying, M. Padovano, R. Hadsell, and C. Blundell. Neural execution of graph
algorithms. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=SkgKO0EtvS.

[34] L. Wang, H. Wu, W. Wang, and K.-C. Chen. Socially enabled wireless networks: Resource
allocation via bipartite graph matching. IEEE Communications Magazine, 53(10):128–135,
2015.

[35] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. A comprehensive survey on graph
neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020.

[36] Y. Yang, T. Liu, Y. Wang, J. Zhou, Q. Gan, Z. Wei, Z. Zhang, Z. Huang, and D. Wipf. Graph
neural networks inspired by classical iterative algorithms. In M. Meila and T. Zhang, editors,
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 11773–
11783. PMLR, 2021. URL http://proceedings.mlr.press/v139/yang21g.html.

[37] H. Zhang, T. Yan, Z. Xie, Y. Xia, and Y. Zhang. Revisiting graph convolutional network on
semi-supervised node classification from an optimization perspective. CoRR, abs/2009.11469,
2020. URL https://arxiv.org/abs/2009.11469.

[38] Z. Zhang and Z. Zhao. Towards understanding graph neural networks: An algorithm unrolling
perspective. CoRR, abs/2206.04471, 2022. doi: 10.48550/ARXIV.2206.04471. URL https:
//doi.org/10.48550/arXiv.2206.04471.

[39] M. Zhu, X. Wang, C. Shi, H. Ji, and P. Cui. Interpreting and unifying graph neural networks
with an optimization framework. In J. Leskovec, M. Grobelnik, M. Najork, J. Tang, and L. Zia,
editors, WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April
19-23, 2021, pages 1215–1226. ACM / IW3C2, 2021. doi: 10.1145/3442381.3449953. URL
https://doi.org/10.1145/3442381.3449953.

13

https://openreview.net/forum?id=SkgKO0EtvS
https://openreview.net/forum?id=SkgKO0EtvS
http://proceedings.mlr.press/v139/yang21g.html
https://arxiv.org/abs/2009.11469
https://doi.org/10.48550/arXiv.2206.04471
https://doi.org/10.48550/arXiv.2206.04471
https://doi.org/10.1145/3442381.3449953

A Packing and covering LP: reduction to the normal form

Recall that a packing LP and its dual covering LP are nonnegative LPs of the canonical form:

max
x

cTx (Packing LP) min
y

bTy (Covering LP)

s.t. Ax ≤ b s.t. ATy ≥ c

x ≥ 0 y ≥ 0

where all Aij , bi, and cj are non-negative. Their norm forms are those where b and c are both all-ones
vectors and Aij is either zero or greater than 1.

max
x

1Tx min
y

1Ty

s.t. Ax ≤ 1 s.t. ATy ≥ 1

x ≥ 0 y ≥ 0

The reduction to the normal form proceeds as follows. First, we can assume that each bi > 0 since
otherwise all variables xj with Aij > 0 have to be zero and yi can be set to zero; similarly, we can
assume each cj > 0 since otherwise xj can be set to zero and all variables yi with Aij > 0 have to
be zero. Then, we can replace Aij by Âij =

Aij

bicj
, replace b and c by all-ones vector, and work with

variables x̂j = cjxj and ŷi = biyi. Finally, we replace Âij by Ãij =
Âij

min{Âi′j′ |Âi′j′>0}
and work

with x̃j = x̂j ·min{Âi′j′ | Âi′j′>0} and ỹi = ŷi ·min{Âi′j′ | Âi′j′>0}.

B Proof of Theorem 2

Proof. As increasing the network width d does not decrease the expressive power, it suffices to show
the theorem for d = 1. When d = 1 and wK = 1, then packing GD-Net reduces to

– Initialize x0 := 0m and y0 = 0n.

– For k = 0, 1, 2, · · · ,K − 1

• yki := ELU
[
µ(Aix

k − 1)
]
+ 1 for each i ∈ [n];

• xk+1
j := ReLU

[
xk
j + fθk

(
AT

j y − 1
)
· xk

j + gθk

(
AT

j y − 1
)]

for each j ∈ [m];

– Output xfinal := xK .

For the y-update part, recalling that in the execution of Algorithm 1, x is always feasible, thus Aix−
1 ≤ 0 (Theorem 1). Additionally, since α is fixed to 1, ELU(t) + 1 = exp[t] for t ≤ 0. Therefore, in
Algorithm 1, we can replace yki := exp[µ(Aix

k − 1)] with yki := ELU
[
µ(Aix

k − 1)
]
+ 1 without

altering the algorithm’s behavior.

For the x-update part, we rewrite this update in Algorithm 1 as

xk+1
j := xk

j + f
(
AT

j y − 1
)
· xk

j + g
(
AT

j y − 1
)
,

where f and g are defined in (4). Both f and g can be expressed as the sum of at most two Heaviside
step functions, which can be naturally simulated by a sigmoid function with arbitrarily small error.
Specifically, by setting L1 = 1, θ1,1 = −β, θ1,3 = α · θ1,2, and making θk1,2 sufficiently large, fθk

can approximate f with arbitrary precision. Similarly, by setting L2 = 1, θk1,4 = −δ, θk1,6 = α · θk1,5,
and making θk1,5 large enough, g can be approximated arbitrarily well by gθk . Therefore, in Algorithm
1, if we substitute

xk+1
j := xk

j + fθk

(
AT

j y − 1
)
· xk

j + gθk

(
AT

j y − 1
)
,

we will get the above reduced packing GD-Net, and the change of the output xK can be made
arbitrarily small by appropriately choosing the parameter Θ.

14

C Proof of Theorem 4

Proof. The proof is very similar to that of Theorem 2. First, we only need to show the theorem for
d = 1, because it does not decrease the expressive power to increase the network width d. When
d = 1, and by letting wK = 1, the covering GD-Net reduces to

– Initialize y0 := 1n and x0 = 1m.

– For k = 0, 1, 2, · · · ,K − 1

• xk
j := ELU

[
µ(1−AT

j y
k)
]
+ 1 for each j ∈ [m];

• yk+1
i := ReLU

[
yki + fθk (1−Aix) · yki + gθk

(
1−Aix

)]
for each i ∈ [n];

– Output yfinal := yK .

For the x-update part, recalling that in the execution of Algorithm 2, y is always feasible, thus 1−
AT

j y ≤ 0 (Theorem 1). Additionally, since α is fixed to 1, ELU(t)+1 = exp[t] for t ≤ 0. Therefore,
in Algorithm 2, we can replace xk

j := exp[µ(1 − AT
j y

k)] with xk
j := ELU

[
µ(1 − AT

j y
k)
]
+ 1

without altering the algorithm’s behavior.

For the y-update part, we rewrite this update in Algorithm 1 as

yk+1
i := yki + f (1−Aix) · yki + g

(
1−Aix

)
,

where f and g are defined in (4). As shown in the proof of Theorem 2, fθk and gθk can approximate
f and g respectively with arbitrary precision. Therefore, in Algorithm 1, if we substitute

yk+1
i := yki + fθk (1−Aix) · yki + gθk

(
1−Aix

)
,

then we will reach the above reduced covering GD-Net, and the change of the output yK can be
made arbitrarily small by appropriately choosing the parameter Θ.

D Dataset specification

For all experiments, involved models are trained with datasets split into 5,000 training instances, 100
validation instances, and 100 test instances. Each problem contains 4 different sizes, namely small
(S), medium (M), large (L), and generalization (Gen). The detailed sizes of each size can be found in
Table 4-7. For the IS benchmarks, we generated instances of specified sizes using the Ecole

Table 4: Sizes of Maximum Independent Set problems

Size # Row # Col.

S [50− 70] [50− 70]
M [500− 700] [500− 700]
L [1000− 1200] [1000− 1200]

Gen [1100− 1300] [1100− 1300]

Table 5: Sizes of Packing problems

Size # Row # Col. Density

S [50− 70] [50− 70] 60%
M [500− 700] [500− 700] 60%
L [1000− 1200] [1000− 1200] 60%

Gen [1100− 1300] [1100− 1300] 60%

library [28]. For ECP, we initially created IS instances, then converted these into their dual forms to
obtain ECP instances. Regarding the SC and Packing datasets, we produced matrices of size m× n
with a density of only density% non-zero entries. We then formulated the corresponding problems
by transposing the matrix A or leaving it as is, depending on the dataset requirements.

15

Table 6: Sizes of Edge Covering problems

Size # Row # Col.

S [50− 70] [50− 70]
M [500− 700] [500− 700]
L [1000− 1200] [1000− 1200]

Gen [1100− 1300] [1100− 1300]

Table 7: Sizes of Set Covering problems

Size # Row # Col. Density

S [50− 70] [50− 70] 60%
M [500− 700] [500− 700] 60%
L [1000− 1200] [1000− 1200] 60%

Gen [1100− 1300] [1100− 1300] 60%

E Hardware/Software specification

All experiments were performed on a server machine equipped with an Intel(R) Xeon(R) Platinum
8280 CPU @ 2.70GHz and 2.95 TB RAM. Data collection for training utilized Ecole 0.7.3 and
Pyscipopt 4.2.0 for generating and solving instances. Model implementations were developed using
PyTorch 2.1.

F Problem Definitions

In this section, we give the problem definitions and the specific formulations, as well as their LP
relaxations of the original mixed-integer optimization problems used to generate data.

Maximum Independent Set (IS). The goal is to select as many vertices as possible from an
undirected graph G = {V,E} such that, no two vertices form a edge.

max
x

∑
v∈V

xv (IS) max
x

∑
v∈V

xv (LP relaxation)

s.t. xu + xv ≤ 1,∀(u, v) ∈ E s.t. xu + xv ≤ 1,∀(u, v) ∈ E

x ∈ {0, 1}|V | x ≥ 0

Packing Problem. The goal is to maximize the profit from selecting from m items, while the
selected items must fit in n resources constraints.

max
x

m∑
j=1

cj · xj (Packing) max
x

m∑
j=1

cj · xj (LP relaxation)

s.t.
n∑

j=1

Aijxj ≤ bi,∀i ∈ [1, n] s.t.
n∑

j=1

Aijxj ≤ bi,∀i ∈ [1, n]

x ∈ {0, 1}m x ≥ 0

Edge Covering Problem (SC). This is the dual problem of the Maximum Independent Set problem,
which minimizes the number of chosen edges such that every vertice touches at least one edge.

min
y

∑
e∈E

ye (EC) min
y

∑
e∈E

ye (LP relaxation)

s.t.
∑
e∋v

ye ≥ 1,∀v s.t.
∑
e∋v

ye ≥ 1,∀v

y ∈ {0, 1}E y ≥ 0

16

Set Covering (SC). Given a family of subsets S = {s1, · · · , sm} where si ⊆ [n], the goal is to select
as few subsets as possible to cover all elements in [n].

min
y

∑
s∈S

ys (SC) min
y

∑
s∈S

ys (LP relaxation)

s.t.
∑
s∋i

ys ≥ 1,∀i ∈ [n] s.t.
∑
s∋i

ys ≥ 1,∀i ∈ [n]

y ∈ {0, 1}S y ≥ 0

G Practical Problem

For the sake of more practical settings, we also included the Bipartite Maxflow problem (BMP) [34],
which is a common model formulation applied to areas such as wireless communication. In our
dataset, each bipartite graph is obtained by deleting all edges between V ′ and U ′ from a fully
connected bipartite graph, and then randomly sample from the remaining edges with a probability
of 60%, V ′ (and U ′ resp.) is a random subset consisting of half of the left nodes (and the right
nodes). Based on the definition, we generated two sets of BMP problems with 1200 and 2000 nodes,
respectively. In Table 8, we report the performance of GD-Net and compare it against GCNs.

Table 8: Comparison of GD-Net and GCN on BMP dataset

#Nodes GD-Net GCNs
Obj A. Gap R. Gap Obj A. Gap R. Gap

1200 35398.62 429.8 1.20% 31206 4622.41 12.89%
2000 58844.8 943.33 1.58% 52085 7703.14 12.88%

Based on the results, GD-Net consistently achieves better predictions compared to GCN, with an
average of only a 1% optimality gap from the optimal solutions.

Additionally, we evaluated GD-Net against the conventional Ford-Fulkerson method, which is
specifically designed for solving Maxflow problems. In Table 9, we report the time for Ford-Fulkerson
to find solutions with the same quality of solutions predicted by GD-Net.

Table 9: Comparison of GD-Net and Ford-Fulkerson on different datasets

#Nodes GD-Net Obj GD-Net Time Ford-Fulkerson Time
1200 35398.62 0.592s 2.152s
2000 58844.80 1.691s 9.184s

The results highlight that GD-Net is significantly faster than the Ford Fulkerson heuristic in achieving
high-quality solutions, demonstrating its efficiency and effectiveness.

Table 10: Inference profiling of the proposed GD-Net and GCNs from [29]. Both the Inference time
and the number of parameters are reported. All times are reported in seconds. Results are averaged
across 100 instances.

Model # Parms. IS Packing ECP SC
S M L S M L S M L S M L

GCNs [29] 34,306 0.671 2.791 1.731 0.819 1.115 1.356 0.649 2.618 3.079 0.765 3.302 3.159
GD-Net 1,656 0.004 0.063 0.099 0.044 0.065 0.081 0.102 0.105 0.240 0.046 0.102 0.080

H Inference time profiling

To demonstrate the efficiency and scalability of GD-Nets, we present the average inference times
of two models in Table 10. We see that GD-Nets consistently achieve faster inference times than

17

GCNs do. Furthermore, GD-Nets display strong scalability; their inference times remain comparably
acceptable even as problem sizes increase. In contrast, GCNs require substantially more time to
process and predict for larger problem instances.

18

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In Sections 2, 3, and 4, we prove theoretical theorems and propose NN
architecture. In Section 5, we provide the experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 discusses the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

19

Justification: We put the proof of theoretical results in the appendix, and the algorithm we
cited was accurately described in Section 2 and followed by a brief explanation of why it is
correct.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all information of our GNN architectures in Sections 3 and 4, and
the experiment setting and code in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code can be found at https://anonymous.4open.science/r/GD-Net-6FC7/.
The dataset is provided in Section 5.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the training and test details in Section 5 and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not provide the error bar since the experiments are relatively expensive
to repeat for multiple runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 5 and the appendix provide sufficient information on the computer
resources needed to reproduce the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is about GNN’s ability to solve LPs, which doesn’t have a direct
societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

22

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

23

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing experiments nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

24

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Our contribution
	Related works

	Gradient descent algorithm for packing and covering LPs
	Design of packing GD-Net
	Design of covering GD-Net
	Experimental study
	Experemental Setup
	Comparing against GCNs
	Generalization to larger instances
	Comparing against more Baselines

	Conclusion
	Packing and covering LP: reduction to the normal form
	Proof of Theorem 2
	Proof of Theorem 4
	Dataset specification
	Hardware/Software specification
	Problem Definitions
	Practical Problem
	Inference time profiling

