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Abstract

Test-time adaptation (TTA) is the most realistic methodology for adapting deep
learning models to the real world using only unlabeled data from the target do-
main. Numerous TTA studies in deep learning have aimed at minimizing entropy.
However, this necessitates forward/backward processes across the entire model
and is limited by the incapability to fully leverage data based solely on entropy.
This study presents a groundbreaking TTA solution that involves a departure from
the conventional focus on minimizing entropy. Our innovative approach uniquely
remodels the stem layer (i.e., the first layer) to emphasize minimizing a new learn-
ing criterion, namely, uncertainty. This method requires minimal involvement of
the model’s backbone, with only the stem layer participating in the TTA process.
This approach significantly reduces the memory required for training and enables
rapid adaptation to the target domain with minimal parameter updates. Moreover,
to maximize data leveraging, the stem layer applies a discrete wavelet transform to
the input features. It extracts multi-frequency domains and focuses on minimizing
their individual uncertainties. The proposed method integrated into ResNet-26
and ResNet-50 models demonstrates its robustness by achieving outstanding TTA
performance while using the least amount of memory compared to existing studies
on CIFAR-10-C, ImageNet-C, and Cityscapes-C benchmark datasets. The code is
available at https://github.com/janus103/L_TTA.

1 Introduction

From the inception of deep learning research, the problem of overfitting, where a model’s performance
becomes biased towards its training dataset, has been a persistent issue. Various solutions such as
normalization and regularization have been proposed to address these issues [26, 56, 30]. Additionally,
the need for trained models to adapt to the diversity of data distributions in the real world has also
emerged recently. This phenomenon, known as domain shift, has resulted in the proposal of various
scenarios and practical studies [63]. Scenarios for addressing model domain shifts are generally
introduced with the key themes of domain adaptation (DA) or domain generalization (DG). These are
differentiated by their capability to access the data in the target domain. To clarify, DA can access
all domains but can only use unlabeled data in the target domain [16, 64, 58, 2], whereas DG can
only train in the source domain [66, 34, 49, 35]. Recent source-free DA has indicated that accessing
source domain data is generally infeasible. It has proposed a scenario where the target domain adapts
using a teacher model that generates pseudo labels [48, 31, 12]. However, this approach involves the
significant cost of maintaining the large memory required for the teacher model.
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Figure 1: Diagram comparing the forward/backward flow and update process with TENT [59] and
EcoTTA [55], illustrated as representative algorithms for entropy minimization and memory-efficient
methods, respectively. The red lock icon indicates the absence of TTA execution.

Within our current understanding, the most realistic research topic for deploying deep learning models
in the domain shift field at present is test time adaptation (TTA) [39]. This approach relies solely
on pre-trained model parameters and data from the target domain without generating pseudo labels.
Typically, TTA research focuses on two critical observations: (1) the variation in batch normalization
(BN) statistics when domain shift occurs [52, 42] and (2) the possibility of adaptation when the
models are trained to minimize the entropy of predictions [59]. Notably, recent studies based on
entropy minimization improved the performance by simultaneously passing various augmentations
through the input at test-time and either minimizing the average entropy [65] or filtering out noisy data
points with high entropy that hinder training [45]. Although these studies enhanced the adaptation
performance, they were limited by the substantial training costs and memory usage (which reduced
their practicality). For these reasons, TTA performance improvement must be achieved, but in
practical terms, there is a need to simultaneously eliminate unnecessary processes and conserve
memory resources as much as possible due to gradient, which causes the largest power consumption
in training.

We summarize the fundamental problems of such studies into three main aspects: (1) Forwarding
the entire model process to obtain the entropy involves a cost. (2) To enable the backward process,
a substantial cost would be incurred to reach the initial normalization layer. (3) The absence of a
method to ensure data independence may result in biased learning in the incorrect direction if noisy
data are not identified, and even if such data are identified, this process can increase the training time.

Our research begins with the hypothesis that fine-tuning the first convolutional (CONV) layer, known
as the stem layer, can significantly impact the TTA results. This is based on the understanding
that domain shifts in input images affect model outcomes. To overcome the drawbacks of the
aforementioned entropy minimization, we introduce a new paradigm for fast and high-performance
TTA. This is achieved using a reconstructed stem layer that incorporates a Gaussian channel attention
layer (GCAL) constructed on the squeeze and excitation (SE) block [25] and domain embedding
layer (DEL) based on a two-dimensional discrete wavelet transform (2D DWT) [29]. Our main
contributions can be summarized as follows:

• To implement lightweight TTA, we minimize the uncertainty of channel-wise attention in
intermediate features extractable from GCAL rather than an entropy minimization strategy.
As depicted in Fig. 1, this involves omitting both forward and backward processes for all
the parameters except those in the reconstructed stem layer. Using this stem layer as a pivot
point without storing additional gradients provides the fastest training and significantly
reduces training costs.

• We propose the integration of DEL as a component within the stem layer to maximize the
training effect of a single data point. 2D DWT in the stem layer helps collect domain-invariant
edge information efficiently and improves model generalization by providing multi-views
with redundant content information before CONV operations. Furthermore, forwarding
features extracted from multiple frequency domains to GCAL enables the calculation of
uncertainty on an individual basis, thereby maximizing data utilization.

• Additionally, DEL includes inverse DWT (IDWT), thereby enabling a non-invasive design.
This yields a shape identical to the intermediate feature obtained from the existing stem
layer’s CONV operation. This, in turn, enables a convenient integration into any model
utilizing a convolutional neural network (CNN)-based backbone for image classification
and a wide range of applications (i.e., high scalability).
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Experimentally, our method surpasses the state-of-the-art (SOTA) with a 5.4% higher prediction
accuracy on CIFAR-10-C, including 15 types of corruptions. On the large dataset, ImageNet-C [22],
it displays an accuracy lower than that of the SOTA model by 2.7%; however, it achieves a significant
performance with only 1.7% of memory usage compared to the SOTA model. Furthermore, compared
with EcoTTA [55], which is the SOTA in terms of memory efficiency, our approach uses 5.9% of
memory and displays a marginal decrease in accuracy, by only 0.3%. These results highlight our
method’s effectiveness in balancing performance and memory efficiency. In terms of scalability,
compared with EcoTTA, our method achieved a 4.6% improvement in mean intersection over union
(mIoU) with 0.04% of memory usage in a semantic segmentation task under four weather conditions
(e.g., brightness, foggy, rainy, and snow).

2 Backgrounds

2.1 Domain Shift Scenarios

Deep learning models learn from high-dimensional data such as images and natural language. These
models are influenced significantly by the data distribution [18]. Data derived from the source domain,
denoted as Ds = {(xsi , ysi )}i∈{0...N−1}, and target domain, denoted as Dt = {(xti, yti)}i∈{0...N−1},
generally exhibit significantly different distributions. Therefore, it could be challenging for a model
trained and fitted on data from Ds to infer data from Dt. Scenarios designed to address this domain
shift are classified into DG and DA depending on whether there is direct access to the Dt distribution
during training. Both strategies primarily aim to align the feature space with domain-invariant content
information and style information sensitive to variations. In DG, where access to Dt is unavailable,
auxiliary networks are frequently employed to learn the adjustment of means and standard deviations
to fit the domain [15] or use generative models to create Dt adversarial to the distribution of Ds and
train simultaneously [49, 35]. Recently, multiple augmentations were employed in conjunction with
an equal number of meta-networks to comprehend meta-knowledge regarding the domain directly.
This secured superior generalization performance [6]. However, this competitive trend increases the
load regarding training costs and inference, thereby necessitating improvements in practicality and
efficiency. In DA, where direct access to Dt is feasible, model generalization is more convenient.
However, a significant characteristic is the unavailability of labels. Early DA research involved
training with labeled data from Ds [16, 58, 64]. However, in practical applications, storing and
utilizing the Ds dataset in memory is considered unrealistic. To overcome this issue, source-free DA
employs pseudo-labeling techniques by dually leveraging pre-trained models [48, 31]. Nonetheless,
these approaches still have the burden of maintaining the dual models in real-world application
deployment as well as the problem of confirmation bias.

2.2 Test Time Adaptation

Like DG and DA research, TTA is a scenario developed to solve domain shifts. The focus is on more
efficient learning during test-time [39]. TTA essentially assumes training using only data xti without
the corresponding label yti . Within these constraints, TTA adapts to the distribution of Dt by partially
fine-tuning the layers of a pre-trained model.

BN STAT [42] indicates the widespread covariate shift across all the domains that need to be addressed
and adjusts the fixed parameters of BN layers, specifically, the mean and variance, at test-time. TENT
[59] is the baseline for many TTA approaches. It proposes a strategy to minimize the prediction
entropy and significantly improve the performance by updating statistics and affine transformation
parameters for each batch. MEMO [65] applies multiple augmentations to the input at test-time and
minimizes the average (marginal entropy) of entropies obtained by passing the model through, thereby
demonstrating better adaptation effects. EATA [45] extends TENT as the baseline. It expounds that
data points with high entropy do not contribute to adaptation and proposed criteria for establishing
a threshold. SAR [46] advances further by addressing realistic mixed distribution variations, small
batch sizes, and imbalanced label distribution variations. It aims for a stable TTA by allocating
the same class to all the samples and proposes a strategy to minimize the sharpness of the loss
surface. REALM [53] achieves the highest performance among entropy minimization-based studies.
Unlike other methodologies, REALM introduces a framework based on self-supervised learning
that enables the inclusion of noise samples in training without skipping. However, based on existing
research, achieving TTA through entropy minimization incurs the basic training cost for performing
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forward/backward operations globally in the model. Moreover, it has limitations in assessing whether
the data is suitable for TTA through entropy.

For these reasons, there is a growing interest in whether the proposed methods can be applied
efficiently in the real world. In particular, EcoTTA [55] introduces a pioneering method to minimize
memory consumption during the TTA process. This is achieved by partially placing auxiliary networks
for TTA outside the main network. The approach ensures that only the BN layers included in the
main and auxiliary networks pass through during backpropagation, significantly shortening the path.
This simultaneously reduces the memory required for gradients and the time consumed. MECTA
[24] follows a training flow similar to EcoTTA, where all layers of the model are forwarded and a
specialized normalization layer is introduced to minimize memory usage, particularly within the
cache. However, it relies on methodologies like TENT and EATA to perform TTA. SFT [33] based
on MEMO divides the model into subsets and introduces a method of learning only certain layers
based on the distribution of Dt. This provides insight into the fact that learning the initial layers is
more effective in supporting adaptation learning than the subsequent ones. Notwithstanding these
efforts, it is necessary to forward the entire model for TTA, owing to the training based on entropy.
Moreover, during backpropagation, the problem of reaching batch normalization at the beginning of
the backbone remains while the gradients of many layers are still being calculated.

Therefore, approaches that can adapt at test time without relying on entropy minimization have also
been introduced. DDA [17] has proposed a method that directly projects inputs obtained from Dt to
Ds using a generative model without performing expensive retraining. However, this can yield more
expensive results in maintaining additional systems, similar to augmentation.

2.3 Discrete Wavelet Transform

The wavelet transform (WT) provides a flexible time–frequency resolution by analyzing signals at
multi scales, making it a more effective tool than the Fourier transform in signal processing [4].
Moreover, owing to the short and localized characteristics of wavelet functions, WT is suitable for
processing non-stationary signals [54]. Based on these advantages, 2D DWT [28] is commonly used
to extract detail and edge information in the spatial domain. Additionally, it allows for multi-level
decomposition until both the width and height of the input image are powers of two. This enables
aggressive summarization and extraction of essential information. Through the inverse transform,
the original image can be reconstructed highly accurately with minimal information loss. The 2D
DWT process involves sequentially applying a one-dimensional DWT (1D DWT) [44] to the rows
and columns of the input data. For 1D DWT, we operate using the simplest wavelet family, i.e.,
the Haar wavelet [36]. It should be noted that Haar can be performed conveniently through CONV
operations [47]. In the first stage, the horizontal direction decomposition is performed to split a
single original feature map into two components: the low-frequency component (LFC), which
generally contains visually intuitive information and represents the basic image structure, and the
high-frequency component (HFC), which includes finer details of the image and a small amount of
edge information. In the second stage, a vertical decomposition is performed as the two filters are
transposed, as illustrated in Fig. 2. The detailed 2D DWT process is presented in Appendix B.

3 Proposed Method

3.1 Overview

Motivation: To improve the performance of TTA, numerous studies have focused on efficiently
minimizing the entropy of model predictions obtained from unlabeled data xti. Although this has
enhanced the accuracy, efforts to reduce the memory consumption, which significantly impacts the
power consumption, and perform TTA faster have been relatively few. Nevertheless, these research
areas are essential for applying TTA in real-world scenarios. In practice, using augmentation in image
pre-processing during training, dynamically filtering data advantageous for training, or replicating pre-
trained weights generates a significant load. Furthermore, we identify a key drawback in most existing
TTA studies that adopt entropy. Even without parameter updates, calculating entropy necessitates
forward/backward passes through the entire model layers. This imposes a fundamental training cost.
This limitation motivates us to resolve the existing issues in TTA.
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Figure 2: Overview of our method including the reconstructed stem layer. ⊗ and ∗ denote element-
wise multiplication and CONV operation, respectively, while ψ+

k and ψ−
k respectively denote the low

and high filters for DWT, described in Appendix B.

Goal: To eliminate existing drawbacks and minimize training costs, we aim to provide an alternative
to entropy minimization as a TTA solution. Specifically, our design goals are summarized as follows:
1) Practicality in training: Minimizing the resources required for training, such as memory and
data, to attain acceptable a reasonable prediction accuracy in Dt. 2) Scalability: Designing to be
non-invasively and conveniently applicable in CNN-based tasks without modifying other layers. 3)
Data leveraging: Maximizing usability from independent data to achieve TTA within constraints,
even with small batch sizes or a single batch.

Approach: The sequential influence of CNN layers results in significant variations in prediction
quality across different input image domains. By fine-tuning the first representation of the input
image, fast adaptation to Dt is possible. Therefore, instead of expensive entropy, we extract and
minimize the channel-wise uncertainty from the reconstructed stem layer to adapt to Dt.

Workflow: As shown in Fig. 2, the reconstructed stem layer comprises the original CONV layer
and two key architectures in this study, GCAL and DEL. The reconstructed stem layer follows the
sequence of DWT, CONV, GCAL, and IDWT. The processes of DWT and IDWT are encompassed in
DEL. As depicted in Fig. 2, GCAL is the only key architecture that enables adaptation and outputs
channel-wise attention and its associated uncertainty in an end-to-end manner. Similarly, as with
an SE block, the extracted attention is scalar and applied to each feature on a per-channel basis.
Meanwhile, the uncertainty is minimized through negative log-likelihood (NLL) loss. In DEL, DWT
decomposes the input feature map into multiple frequency domains while maintaining spatiality. This
step is performed before CONV. It allows for capturing more diverse features from independent data,
thereby better grasping the differences between Ds and Dt. By performing IDWT at the end of the
stem layer, the shape of the features is restored to its original state before the stem layer is modified.
This enables the non-invasive application of the stem layer in pre-trained models and synthesizes
important redundant information from multiple views to enhance the generality. While injecting the
stem layer into a pre-trained model for warm-up, we jointly train it to reduce task-specific prediction
errors using suitable loss terms (i.e., cross-entropy) in conjunction with the uncertainty extracted
from GCAL minimized through NLL loss. It should be noted that since uncertainty is minimized
only during training, in the TTA setting, the procedures after IDWT are not required.

3.2 GCAL: Gaussian Channel Attention Layer

GCAL is a key architecture that enables TTA using only the stem layer. It remodels the SE block
to predict uncertainty. Please note that the SE block [25] is not incorporated into other layers and
is trained end-to-end. It dynamically extracts channel-wise attention γscale defined below from
intermediate features and performs recalibration. This enhances the representational capacity of the
CONV and, ultimately, the prediction accuracy.

γscale = Fse(X̃,W ) = σ(W2δ(W1, X̃)), (1)
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where X̃ represents the intermediate feature obtained after performing global average pooling, which
in ResNet [20] comprises 64 channels. The weight W1 reduces the channel size of X̃ based on a
predetermined hyperparameter, whereas W2 conversely expands it back to its original channel size. σ
and δ denote the sigmoid and ReLU functions [43], respectively.

In Gaussian Yolov3 [8, 9], rather than predicting variables such as the bounding box coordinates,
the model is designed to extract the mean and variance of a Gaussian distribution to quantify the
uncertainty. Similarly, in this study, the output of the SE block, γscale, is represented by Gaussian
parameters, namely, mean γµ and variance γ∑. The probability density function for quantifying the
uncertainty of γscale is defined as follows:

p(µ; γµ, γ∑) =
√

1

2πγ∑ e
− (γµ−µ)2

2γ∑
. (2)

For implementation, without significantly altering the Fse structure, we obtain γµ and γ∑ by increas-
ing the channel size by 100%. This is shown in Fig. 2. These two Gaussian parameters are defined as
follows:

γµ = σ(Wµ
2 δ(W1, X̃)), γ∑ = σ(W

∑
2 δ(W1, X̃)). (3)

To perform TTA, we minimize the Gaussian parameter γ∑ to reduce the uncertainty of γscale, which
is multiplied channel-wise. It should be noted that γscale = γµ. However, because γµ is determined
dynamically based on the input, it is challenging to determine the ground-truth (GT) µ in the TTA
setting. Therefore, we aim to modify the SE block to function primarily as an extractor of uncertainty
for TTA. In all the training settings, we set the GT of γµ to the maximum value of the sigmoid
function (= 1) to enable training. Reflecting this approach, we redefine the NLL loss to minimize
γ∑ (an uncertainty) in conjunction with Eq. 2:

Luncertainty =
1

C

C−1∑
i=0

−log(pi(µgt; γµ, γ∑)), (4)

where C represents the total number of channels in intermediate features. Eq. 4 means minimizing
uncertainty for all channels, which applies equally to pretraining and TTA processes.

3.3 DEL: Domain Embedding Layer

In recent TTA scenarios, the entropy minimization model is traditionally learned by filtering out data
that is evaluated to have low entropy. However, contrary to this trend, [61] experimentally shows that
HFC derived from input images helps generalize the model. This means that high entropy actually
contributes significantly to improving prediction accuracy. This entropy ambiguity must be avoided
to improve the individual usability of single input data xt. However, to solve this problem, it is clearly
challenging to determine the entropy threshold and control strength without additional training costs
at test time.

To alleviate entropy ambiguity, we propose DEL, which encapsulates GCAL and CONV layers
with DWT and IDWT layers, as shown in Fig. 2. This decomposes the independent xt into various
frequency domains and allows for end-to-end learning of uncertainty for each channel. Accordingly,
we redefine the loss term for uncertainty with Eq. 4 as follows:

Luncertainty =
1

C

1

N

C−1∑
i=0

N−1∑
j=0

−log(pi,j(µgt; γµ, γ∑)), (5)

where N represents the number of frequencies decomposed into DWT. As shown in Fig. 3(a), the
DWT layer maintains spatiality without resynthesis even after frequency decomposition, unlike the
well-known transformation method [4, 51], even after decomposition. This makes learning spatial
structures, such as edges or patterns, possible without additional computation. The IDWT layer,
located last, makes the input of the subsequent layer have the same shape as when there is no DEL
and maintains the spatiality of the feature. As a result, DEL enables non-invasive design.

Furthermore, we propose omnidirectional decomposition (ODD), which additively decomposes LFC
and HFC simultaneously. As shown in Fig. 3(a), when DWT is performed once, it can be observed
that edge information overlapping with LFC still remains in HFC. We decompose edge and noisy
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Figure 3: (a) visualizes the proposed ODD process in detail on a given input. (b) shows the variance
of uncertainty according to the domain shift of LFC (=LFCLL) and HFC (=HFCLH ).

information as much as possible at a level that maintains spatiality, making it possible to calculate
the uncertainty of a single input xt more sensitively. Additionally, as a side effect, generalization
performance is further enhanced by the model concretely identifying noisy data contained in HFC.

Fig. 3(b) visualizes the changes in the uncertainty map for each of the 64 channels for LFC and HFC
as we perform our proposed TTA. Denoted ∆γ∑ and ∆γ̂∑ are defined as follows:

∆γ∑ = |log(Fse(X̃s;W )− Fse(X̃t;W ))|, ∆γ̂∑ = |log(Fse(X̃s;W )− Fse(X̃t; Ŵ ))|. (6)

In ∆γLFC∑ , there is a clear difference in the uncertainty for each channel obtained with X̃s and
X̃t even before performing TTA. On the other hand, ∆γHFC∑ shows that FSE(·) does not have
the capability to properly obtain uncertainty about X̃t. Therefore, we prove through ∆γ̂HFC∑ that
uncertainty can be correctly extracted by performing TTA.

3.4 Interval Training for Continual Setting

For performance assessment of TTA, achieving high prediction performance with low training cost is
important, but it is also important to design it to enable continuous training. To overcome catastrophic
forgetting, existing studies [55, 62] make this possible by maintaining a teacher model of the same
shape as the target model or applying regularization techniques for each layer. Instead of these
complicated strategies, we reload the weights of the pre-trained stem layer and update them according
to Dt at every short interval. This is an efficient scenario when initialized weights consume less
memory and simultaneously perform fast TTA, and the proposed reconstructed stem layer realizes
this. The short interval setting allows for natural adaptation even when the domain shifts frequently
and preserves the generalization performance of the pre-trained model.

4 Experimental Results

In this section, we quantitatively and qualitatively demonstrate three contributions related to TTA
obtained by applying stem layers reconstructed by DEL and GCAL to CNN-based models. We
evaluate the practicality in training (i.e., comparison of accuracy and memory efficiency with SOTA
TTA methods in Tab. 1 and Fig. 4), scalability (i.e., applicability on image classification and semantic
segmentation in Tab. 2), and data leveraging (i.e., assessment of the TTA performance at small batch
sizes in Fig. 7). In Appendices C,D,E and F, we further rigorously evaluate the proposed method
by extending the model, using challenging datasets, and exploring generalization scenarios (i.e.,
source-free DA), along with an ablation study for hyperparameters.

4.1 Implementation Details

In all the experimental settings, the model backbones use ResNet-26 and ResNet-50 [20]. These are
pre-trained with ImageNet [14]. To evaluate the robustness of the model in the existing TTA setting,
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Table 1: Comparisons of prediction error (%) with prior TTA methods on CIFAR-10-C with ResNet-26
and ImageNet-C with ResNet-50.

Method Noise Blur Weather Digital
Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

Avg.

CIFAR-10-C

Source 86.9 82.6 81.8 11.4 50.2 18.9 9.1 16.4 26.4 18.4 7.1 24.5 22.8 64.0 28.3 36.6
Ours w/o GCAL 62.4 55.4 48.5 12.1 51.7 15.5 8.5 16.6 26.4 21.7 6.4 31.0 21.3 61.7 22.5 30.8

TENT[59] 39.4 38.8 47.9 19.9 45.0 23.2 20.6 28.1 32.1 24.5 16.1 26.7 32.4 30.6 35.5 30.7
MEMO[65] 43.5 39.9 43.3 26.4 44.4 25.1 25.0 20.9 28.3 22.8 11.9 28.3 21.1 42.8 21.7 29.7
SFT[33] 31.9 26.7 28.9 17.7 44.2 18.4 20.2 20.8 23.4 20.7 13.9 25.4 24.5 21.9 25.1 24.2
EATA[45] 33.9 32.8 41.4 19.4 42.4 20.5 20.1 22.4 27.1 22.7 13.8 24.0 24.0 29.3 26.5 26.7
SAR[46] 46.4 40.9 50.1 20.2 47.0 21.7 20.8 22.9 29.5 23.9 13.8 25.5 24.3 39.5 27.4 30.3

REALM[53] 27.8 25.4 35.5 15.5 37.7 17.4 16.9 20.4 22.3 19.0 12.9 18.0 23.1 22.0 24.2 22.5

Ours w/o DEL 33.1 29.1 31.3 10.0 36.9 11.4 7.3 12.8 13.1 11.6 5.7 6.9 18.4 15.7 24.5 17.8
Ours 31.0 26.8 30.5 9.2 34.9 11.4 7.1 13.1 13.8 12.2 5.7 7.5 18.4 12.6 22.6 17.1

ImageNet-C

Source 97.8 97.1 98.2 82.1 90.2 85.2 77.5 83.1 76.7 75.6 41.1 94.6 83.1 79.4 68.4 82.0
Ours w/o GCAL 82.7 82.6 86.2 79.1 89.1 84.2 75.7 74.8 67.3 73.1 37.5 84.6 74.1 43.2 55.2 72.6

TENT[59] 97.5 97.1 97.5 86.5 96.4 81.4 82.4 84.7 77.0 98.6 29.6 57.8 93.8 50.8 46.2 78.5
MEMO[65] 81.5 79.5 81.6 82.9 87.4 78.2 73.1 59.6 53.0 65.6 30.5 63.5 80.8 67.9 46.7 68.8
DDA[17] 57.6 56.7 57.7 83.4 80.4 78.1 74.0 64.3 59.9 86.3 38.8 74.8 62.5 53.4 45.9 64.9
EATA[45] 75.2 71.7 74.3 81.9 82.7 71.5 70.7 55.5 55.7 58.4 29.1 55.4 73.0 53.2 44.3 63.5
SAR[46] 76.6 73.4 76.1 81.6 84.6 71.4 69.6 55.1 55.3 74.3 27.7 55.5 85.2 53.0 43.9 65.5

REALM[53] 73.1 70.1 72.0 81.6 81.8 70.4 68.9 54.4 56.4 54.5 28.8 55.6 71.1 50.3 44.5 62.2
Ours w/o DEL 75.8 75.0 76.7 85.1 88.3 76.0 68.1 62.0 58.7 53.0 30.3 82.7 63.4 62.5 58.0 67.7
Ours 79.4 78.8 82.2 75.8 81.1 72.4 63.5 68.8 58.5 53.5 33.4 73.1 57.0 41.4 54.5 64.9

we use the benchmark dataset with the well-established 15 types of corruptions (e.g., noise, blur,
weather, and digital) [22]. Each corruption is applied to the validation set of the original dataset and
has identical content information. These are called CIFAR-10-C, CIFAR-100-C, and ImageNet-C,
respectively. The severity of the corruption is divided into five levels. We conventionally apply the
most severe level (= 5) for an unbiased comparison with the other methods. Additionally, to measure
the memory reliably, we refer to the officially provided code of TinyTL [5]. It is identical to that
measured by EcoTTA [55]. This considers the memory for storing model parameters and gradients.
The gradient size increases exponentially according to the batch size. A detailed evaluation setting of
image classification and semantic segmentation models is presented in Appendix A.

Figure 4: Comparison of memory usage in a sin-
gle iteration on CIFAR-100-C and ImageNet-C
datasets.

Figure 5: Training time comparison of various
TTA methods on ResNet-50.

4.2 Main Results

Tab. 1 reports prediction errors with regard to accuracy for the image classification task. As mentioned
in Sec. 3, DEL included in the stem layer can display generalization performance without additional

8



Table 2: Comparison of mIoU (%) for semantic segmentation in Cityscapes-C using DeepLabV3Plus
with prior TTA methods.

Method Bright. Foggy Frost Snow Avg. Mem. (MB)
Source 60.4 54.3 30.0 4.1 37.2 -
Ours w/o GCAL 69.9 62.9 47.2 41.6 55.4 -

BN STAT[42] 69.1 61.0 44.8 39.1 53.5 280
TENT[59] 70.1 62.1 46.1 40.2 54.6 2721
EcoTTA[55] 70.2 62.4 46.3 41.9 55.2 918

Ours w/o DEL 72.0 65.7 49.6 45.3 58.1 0.4
Ours 70.6 63.5 53.1 52.0 59.8 0.4

assumptions regarding learning, and this exhibits an average improvement of 5.8% and 9.4% in
CIFAR-10-C and ImageNet-C, respectively, compared with the baseline (i.e., source - Ours w/o
GCAL). It should be noted that we apply the proposed interval training to meet the continual TTA
condition. In these experiments, the weights of the reconstructed stem layer are re-initialized to the
pre-trained weights every 20 iterations for CIFAR-10-C and every 10 iterations for ImageNet-C.
As shown in Tab. 1, for CIFAR-10-C, it shows a 5.4% higher improvement on average than SOTA.
Meanwhile, although the results of ImageNet-C in Tab. 1 do not exceed the SOTA performance, it
achieves accuracy comparable to SOTA with significantly less memory usage as can be seen in Fig. 4.
In addition, it is noteworthy that the proposed method achieves 3.9% better performance than MEMO
[65], which performs entropy minimization using various augmentations in ImageNet-C.

Ultimately, the goal of injecting the stem layer is to demonstrate an efficient TTA scenario that
considers the trade-off between efficient prediction and memory consumption, and our method
displayed an overwhelming performance advantage in terms of memory-saving compared with prior
works. In Fig. 4, we illustrate the memory usage for ResNet-50, with a focus on BN STAT, entropy
minimization-based research, and memory-saving EcoTTA [55]. Herein, TENT [59], EATA [59],
and REALM [53] displayed equal memory consumption with the result of entropy minimization-
based research. Compared to these three approaches, our proposed approach consumes only 28.6%,
2.8%, and 8.8% memory for CIFAR-100-C and 28.6%, 1.7%, and 5.9% memory for ImageNet-C,
respectively, for performing TTA.

In Fig. 5, we compare the proposed method with three representative approaches from entropy
minimization-based TTA (i.e., TENT), diffusion-driven TTA (i.e., DDA), and memory-efficient TTA
(i.e., EcoTTA) methodologies in terms of latency on a general heterogeneous system (i.e., CPU and
GPU). Our method demonstrates 4.25×, 49.56×, and 1.76× faster performance in total latency,
respectively, indicating that the proposed L-TTA achieves significantly faster training times than
existing TTA methods. It is also important to note that since TENT and EcoTTA perform the TTA
process using a single independent model, their latency tends to depend on memory usage. In contrast,
DDA shows considerable CPU usage due to the image preprocessing tasks such as noise synthesis,
which are not handled by the GPU. These CPU-intensive processes can lead to substantial power
consumption unless dedicated hardware is available. Therefore, despite lower memory usage, using
such methodologies for field applications should be avoided as much as possible.

The proposed stem layer can be conveniently expanded regardless of the task because only the initial
parts of the entire network are changed. To demonstrate this, Tab. 2 provides additional results in the
semantic segmentation task. Even without performing TTA (i.e., Ours w/o GCAL), mIoU is improved
by an average of 18.2% and 0.8% compared with the source model and TENT, respectively. When
TTA is applied (i.e., Ours), it improves mIoU by 4.6% compared to EcoTTA with only 0.04% of
memory usage.

4.3 Ablation Studies

Interval adjustment in the continual scenario. As discussed in Subsection 3.4, we propose interval
training to satisfy the continuous TTA scenario. Accordingly, we conduct an ablation study to observe
the prediction error variations using the ResNet-26 model, as reported in Tab. 1. In this experiment,
we adjust the iteration interval for performing one round of the TTA process and observe the resulting

9



prediction error. In Fig. 6, 0 and Full iter. on the x-axis represent the cases of no TTA and completing
1 epoch, respectively, with the intermediate values showing results for iteration increments of 5
steps. The results demonstrate that applying GCAL and DEL to the stem layer consistently yields
better outcomes, with a steady decline in error rate as iterations increase. Furthermore, both methods
also outperform REALM, a SOTA approach, after 10 iterations. Notably, the proposed L-TTA
(=DEL+GCAL) achieves a 5.7% performance improvement after completing 1 epoch.

Evaluation on small batch sizes. By implementing DWT in DEL, we provide a foundation for
generalization and maximize our capabilities by minimizing individual uncertainties across various
frequency domains with spatial properties. We contend that this approach assists data in conveniently
adapting independently to the target domain. In Fig. 7, we present the results of performing TTA on
ImageNet-C for small batch sizes (=1, 2, 4, 8), in conjunction with the representative methods of
entropy minimization (i.e., TENT [59], EATA [45] and SAR [46]). The conventional methods exhibit
a near-complete loss of classification capability, with an average prediction error of 99.89% when the
batch size is one. Meanwhile, our proposed method demonstrates a higher performance, with a predic-
tion error of 75.16%. Additionally, it is visually evident that our method is less sensitive to variations
in batch size, with a difference of 8.37% between batch sizes of one and eight, whereas TENT, EATA
and SAR exhibit instability with differences of 31.45%, 22.67% and 30.86%, respectively. This is
interpreted as a result of the significant dependency of the conventional methods on BN layers.

Figure 6: Comparison of prediction error (%)
across increasing TTA iterations on CIFAR-10-C
with ResNet-26.

Figure 7: Assessment of TTA effectiveness for
small batch sizes in comparison with entropy min-
imization baselines on ImageNet-C.

5 Conclusion

We propose a novel method for lightweight TTA that utilizes the stem layer reconstructed with DEL
and GCAL to minimize the uncertainty across multiple frequency domains rather than the entropy.
This architecture improves the model’s generalization performance without assumptions regarding
training and can be applied conveniently and non-invasively to models with a CNN as the backbone.
Our approach demonstrates a performance equivalent to or superior to those in SOTA studies with
well-known robust benchmark datasets, showcasing the fastest and most memory-efficient results
suitable for real-world scenarios.
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A Appendix: A Detailed Implementation Setting of the Proposed Models

The image classification process includes applying a reconstructed stem layer followed by 10 epochs
of warm-up training using cross-entropy loss [57]. In both TTA and warm-up settings, the batch size
and learning rate are set to 128 and 0.05, respectively. For CIFAR-10 and CIFAR-100, the model
utilizes weights pre-trained on ImageNet and is trained for 150 epochs, using the same batch size
and learning rate configuration as in the ImageNet training setup. The optimizer used is standard
SGD [1], consistent across all datasets. This indicates the non-necessity for additional search for
hyperparameters in real fields. The only different parameter is the reduction size of the SE block,
which was determined experimentally through ablation studies in Appendix D. CIFAR-10-C and
CIFAR-100-C have a relatively small number of classes and are assigned a reduction of eight.
ImageNet-C is assigned a reduction of 32.

To evaluate the performance of TTA in semantic segmentation, Cityscapes-C was generated by
synthesizing four weather corruptions with a severity of 5 out of 15 corruptions in the Cityscapes
dataset [13]. Additionally, for an unbiased comparison with the settings of EcoTTA [55], we use
the DeepLabV3Plus model [7] with the backbone of ResNet-50 and pre-train this model with the
instance selective whitening strategy proposed in RobustNet [10]. To warm up the stem layer, 32,000
iterations are trained with Cityscapes with a batch size of 8. For TTA, Cityscapes-C is learned with a
batch size of 2, and the performance metrics mIoU and memory usage are compared with those of
existing methods.

The source code is available for reproducibility at the GitHub link provided in the abstract. The
seed for random number generator is commonly used as 42. However, please note that this does not
significantly affect the accuracy of the model. We conducted experiments on 15 main corruptions
using 10 additional seeds (i.e., 3, 10, 21, 22, 43, 99, 318, 500, 565, 777), along with the previously
used seed (42). Each experiment was run for 10 iterations in a single batch per seed, resulting in an
average accuracy of 64.85% with a standard deviation of 0.02. All experiments were conducted on a
system equipped with an Intel® Xeon® Gold 5218R CPU and an NVIDIA Tesla A100 80G GPU.
However, the minimum GPU memory required to conduct the single experiment was measured to be
approximately 12GB.

B Appendix: Operation Process of 2-D Discrete Wavelet Transform

The 2D DWT involves sequentially applying a 1D DWT to the rows and columns of the input data.
For example, in the case of the Haar wavelet [36], the low and high filter banks are defined as follows:

ψ+
k =

{
1√
2
,
1√
2

}
, ψ−

k =

{
1√
2
,− 1√

2

}
. (7)

In the first stage, it is formulated in the horizontal direction decomposition as follows:

Li,j =

H−1∑
n=0

W−1∑
m=0

(X2m,n ∗ψ+
0 +X2m+1,n ∗ψ+

1 ), Hi,j =

H−1∑
n=0

W−1∑
m=0

(X2m,n ∗ψ−
0 +X2m+1,n ∗ψ−

1 ).

(8)

This describes the splitting of a single original feature map into two components: the LFC and the
HFC. Here, Xm,n denotes the pixels of the input image. W and H denote the width and height of X ,
respectively. ∗ denotes the CONV. From a CONV perspective, the two filter banks denote the kernel
weights, and m and n denote the stride in the horizontal and vertical directions, respectively.

In the second stage, a vertical decomposition is performed as the two filters are transposed to operate
in Eq. 8. The exception is that each X is replaced by L and H , respectively, and because it is
decomposed vertically for L and H , the indices m and n are interchanged in Eq. 8. Because of the
decomposition, L is divided into LH and HL, and H is decomposed into HL and HH . The LFC
(LL) generally contains visually intuitive information such as the overall image brightness. It exists
in the range [0, +2Pmax]. Herein, Pmax is the maximum value of image pixels (8 bits = 255). This
area’s information represents the basic image structure. It is significantly correlated with the HFCs.
Meanwhile, HFCs (i.e., LH , HL, HH) include finer details of the image and a small amount of edge
information including information regarding diagonal variations and the image texture or pattern.
The range of values is within [-Pmax/2, +Pmax/2]. These obtained frequency domains have been
variously analyzed and applied for image processing purposes [38, 50, 37].

15



C Appendix: Rigorous Assessments of Model Robustness

To demonstrate that the proposed method can adapt not only to the introduced corruptions but also
to challenging domain shifts, we conduct experiments on three well-known rigorous datasets with
challenging themes separated from ImageNet. This experiment is reported as prediction error (%), the
same as all experiments. As shown in Tab. 3, it is almost impossible to have classification ability on
the test datasets of Imagenet-Sketch [21], ImageNet-R [60] and ImageNet-A [23] even though they
have already been pre-trained with the same domain. However, this can be alleviated by applying the
proposed DEL structure to ResNet-50, and when TTA is performed in real time with the proposed
method, the model accuracy can be improved to 2.84%, 40.91%, and 5.49% for each ImageNet series.

Table 3: Evaluation of the proposed method using ResNet-50 on challenging ImageNet series.

Dataset Source Ours w/o GCAL Ours

ImageNet-Sketch[21] 75.84 73.93 73.00 (-2.84)

ImageNet-R[60] 99.43 62.77 58.52 (-40.91)

ImateNet-A[23] 99.58 94.35 94.09 (-5.49)

D Appendix: Ablation Studies on Architectural Exploration

In our experiments, we assign a DWT level of two for DEL as mentioned in Sec. 3.3. To experimentally
demonstrate the advantages of ODD, in Tab. 4, we describe the results according to the DWT level
on the CIFAR-10-C, CIFAR-100-C, and ImageNet-C datasets. To summarize, providing a more
varied multi-view through ODD rather than only decomposing one time with DWT yields higher
generalization performance and prediction accuracy in TTA. The average improvement is 1.5%.

Table 4: Comparison of TTA results in terms of
average prediction errors for source, DWT level
1, and level 2 decompositions using ResNet-50 on
CIFAR-10-C, CIFAR-100-C, and ImageNet-C.

Method CIFAR-10-C CIFAR-100-C ImageNet-C

Source 36.6 53.6 82.0

DWT Level 1 33.3 52.4 72.9
+ TTA 20.5 39.3 65.2

DWT Level 2 30.8 50.8 72.6
+ TTA 18.0 37.5 64.9

Table 5: Comparison TTA results in terms of aver-
age prediction errors using ResNet-50 on CIFAR-
10-C, CIFAR-100-C, and ImageNet-C, focusing
on the influence of the SE block’s reduction scale.

REDUCTION CIFAR-10-C CIFAR-100-C IMAGENET-C

4 18.0 37.5 67.4

8 17.9 39.2 67.2

16 19.2 38.2 66.5

32 18.0 39.4 64.9

Tab. 5 presents an ablation study on the reduction size, a hyperparameter of the SE block that
constitutes GCAL. In the three datasets used for the experiments (i.e., CIFAR-10-C, CIFAR-100-C,
and ImageNet-C datasets), 8, 4, and 32 display the best results, respectively. However, no significant
difference exists except when the reduction size is 16 in CIFAR-10-C. It should be noted that
regardless of the reduction size, we exceed the SOTA results. Meanwhile, for large datasets with many
classes such as ImageNet-C, minimizing the reduction appears to yield linearly better advantages.
Therefore, we empirically assign a reduction size of 32 for ImageNet-C.

E Appendix: Further Case Studies

In Sec. 4, we compare our results primarily with studies that show significant improvements in
accuracy by performing complicated processes. In Tab. 1, we demonstrate that our accuracy is
reasonable by presenting the prediction errors on CIFAR-10-C and ImageNet-C using ResNet-26 and
ResNet-50 models, respectively. For a comprehensive performance comparison, including memory
usage, Tab. 6 compares our proposal on CIFAR-10-C and CIFAR-100-C using ResNet-50 against
existing TTA methodologies. Notably, it shows superiority even over methods like CoTTA, which
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Table 6: Comparisons of prediction error (%) with prior TTA methods on ResNet-50.

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg. Mem. (MB)
CIFAR-10-C

Source 65.6 60.7 74.4 28.9 79.9 46.0 25.7 35.0 49.4 54.7 13.0 83.2 41.2 46.7 27.7 48.8 -
BN STAT[42] 18.0 17.2 29.3 10.7 27.2 15.5 8.9 16.7 14.6 21.0 9.3 12.7 20.9 12.4 14.8 16.6 91
TENT[59] 16.6 15.7 25.7 10.0 24.8 13.8 8.3 14.9 13.8 17.6 8.7 10.0 19.1 11.5 13.8 15.0 925
TTT++[40] 18.2 16.9 28.7 10.5 26.5 14.5 8.9 16.5 14.5 20.9 9.0 9.0 20.4 12.3 14.7 16.1 1877
SWRNSP[11] 17.3 16.1 26.1 10.6 25.6 14.1 8.7 15.6 13.6 18.6 8.8 10.0 19.3 12.0 14.2 15.4 1971
EATA[45] 17.2 14.9 23.6 10.2 23.3 13.2 8.5 14.0 12.5 16.6 8.6 9.4 17.2 11.0 12.7 14.2 925
CoTTA[62] 16.2 15.0 21.2 10.4 22.8 13.9 8.4 15.1 12.9 19.8 8.6 11.3 17.5 10.5 12.2 14.4 2066
EcoTTA (Mem+)[55] 16.5 14.5 24.3 9.7 23.7 13.3 8.8 14.7 12.9 17.0 9.1 9.4 17.6 11.4 13.1 14.4 296
EcoTTA (Acc+)[55] 16.6 14.4 23.6 9.8 23.4 12.7 8.6 14.5 12.6 16.6 8.7 9.0 17.0 11.3 12.6 14.1 498
Ours 22.4 18.8 28.3 7.8 30.4 9.9 6.5 8.6 9.3 9.2 4.2 5.6 17.3 11.6 22.1 14.1 6.4

CIFAR-100-C
Source 84.7 83.5 93.3 59.6 92.5 71.9 54.8 66.6 77.6 81.8 44.3 91.2 72.2 76.6 56.5 73.8 -
BN STAT[42] 48.1 46.7 60.6 35.1 58.0 41.8 33.2 47.3 43.5 54.9 33.5 35.3 49.8 38.4 40.8 44.5 91
TENT[59] 44.1 42.7 53.9 32.6 52.0 37.5 30.5 43.4 40.2 45.7 30.4 31.4 45.1 35.0 37.6 40.1 926
TTT++[40] 48.1 46.5 60.8 35.1 57.8 41.6 32.9 46.8 43.3 55.0 33.3 34.0 50.0 38.1 40.6 44.3 1876
SWRNSP[11] 48.3 46.5 60.5 35.1 57.9 41.7 32.9 47.1 43.5 54.7 33.5 35.1 49.9 38.3 40.7 44.4 1970
EATA[45] 44.8 41.9 52.6 33.0 51.1 37.8 30.3 43.0 40.1 45.1 30.1 31.8 45.2 35.2 37.4 40.0 926
CoTTA[62] 43.6 42.8 50.4 34.2 51.6 39.2 31.4 43.4 39.6 47.4 31.3 32.2 43.4 35.8 36.7 40.2 2064
EcoTTA (Mem+)[55] 44.8 40.3 49.2 32.3 50.1 36.3 29.5 41.0 39.9 44.6 31.5 33.7 45.3 36.3 37.7 39.5 296
EcoTTA (Acc+)[55] 44.9 40.4 48.9 32.7 49.7 36.9 29.3 40.8 39.0 44.4 31.1 33.6 44.0 35.7 37.8 39.3 498
Ours 52.4 49.9 55.7 25.8 56.8 27.4 23.6 31.2 30.7 31.9 18.6 23.5 41.2 31.8 50.6 36.7 6.4

maintain dual models during training. Additionally, our method improves the average prediction error
by 2.6% while using 98.71% less memory compared to EcoTTA, which is designed to use more
memory to enhance accuracy on CIFAR-100-C.

In all experiments of this paper, results are presented using ResNet. To address concerns regarding
the applicability to other architectures, we reconstruct the stem layer of the MobileViT[41], which
combines a vision transformer and a CONV structure, using our proposed method to perform TTA.
We use MobileViT-XXS, the most suitable model for mobile environments, which sets the kernel size
to 3×3, unlike the vanilla ResNet series. As shown in Tab. 7, we conduct an ablation study for three
cases (i.e., Ours w/o GCAL, Ours w/o DEL, and Ours) and observe similar trends to those in Tab 1.
By applying the proposed stem layer, the average accuracy is improved by 15.7%.

Additionally, we discuss two studies similar to our approach and compare performance with source-
free DA (SFDA) studies similar to the TTA scenario. SFDA generates learning criteria such as
pseudo-labels or prototypes to update the target model, requiring dual maintenance of a well-trained
model, resulting in higher memory consumption compared to TTA. To address this, T3A [27] and
LAME [3] propose classifier adjustment-based methods similar to our approach. However, since they
only update the last layer, the learning cost for criterion generation and forwarding is continuously
required. Tab. 8 and 9 compare our experimental results with similar approaches, representative
TTAs, and SFDA studies on both CIFAR-10-C and CIFAR-100-C using ResNet-50 and ResNet-18,
demonstrating better performance with extremely low memory consumption. It should be noted that
the SFDA scenario consumes approximately twice as much memory as TENT [59].

Table 7: Ablation Study of Prediction Errors (%) on the CIFAR-10-C using MobileViT-XXS.

Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
Source 78.9 75.4 78.1 11.3 49.3 15.9 8.5 13.7 23.4 17.6 6.1 15.6 20.6 50.6 25.7 32.7
Ours w/o GCAL 78.0 73.6 79.9 10.6 48.9 16.2 8.1 13.4 22.5 17.6 6.4 16.0 20.2 24.9 24.9 30.8
Ours w/o DEL 34.2 29.0 32.6 8.8 33.2 10.6 8.5 12.2 13.9 11.8 6.0 8.7 18.3 14.9 26.7 18.0
Ours 32.3 27.9 41.2 8.1 30.4 10.5 7.3 10.0 11.6 11.3 5.6 8.4 16.4 10.7 23.7 17.0
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Table 8: Comparison of Prediction Errors (%) be-
tween the proposed method and high-cost method-
ologies on ResNet-50.

Method CIFAR-10-C CIFAR-100-C
Source 29.15 60.34
TENT[59] 14.27 40.72
T3A[27] 15.44 42.72
CoTTA[62] 14.4 40.2
Ours 14.1 36.7

Table 9: Comparison of Prediction Errors (%) be-
tween the proposed method and high-cost method-
ologies on ResNet-18.

Method CIFAR-10-C CIFAR-100-C
Source 42.3 66.6
Pseudo-Label[32] 21.6 43.1
TENT[59] 18.8 40.3
LAME[3] 44.1 68.8
CoTTA[62] 17.8 44.3
NOTE[19] 17.6 41.0
Ours 15.8 39.5

F Appendix: Limitations and Discussions

Our proposed lightweight TTA approach reconstructs the stem layer to extract the channel-wise
uncertainty and updates the parameters before the BN layer by minimizing the uncertainty. It quickly
adapts the initial representation to be robust to Dt by consuming less memory by not learning
subsequent layers. However, it can be observed that the stem layer has less impact on improving
the robustness of the model as the number of classes increases, as shown in the experimental result
of this paper (e.g., Tab. 1). This is considered a curse of dimensionality. Furthermore, Fig. 8 shows
the mean prediction errors of four corruption themes (i.e., noise, blur, weather, and digital) as the
number of training iterations increases. Here we do not apply the interval training strategy proposed
in Sec. 3.4. As shown in ImageNet-C, the iteration that yields the best performance for each theme
is different, and continuously minimizing uncertainty will cause the model to diverge. To prevent
this, we perform interval training. These observations are not observed in datasets with a relatively
small number of classes like CIFAR-100-C, which converges stably even without interval training.
Moreover, as described in Tab. 2, we demonstrate its practicality by showing sufficient performance
improvement in autonomous driving scenarios such as semantic segmentation.

To address these challenges, several unexplored potential solutions could be considered. The issue
of handling a large number of classes, as identified in this study, may be mitigated by applying the
channel attention uncertainty minimization strategy not only in the stem layer but also selectively in
subsequent layers. Additionally, the overfitting-related regularization problem could be tackled by
actively filtering out data to enhance generalization performance, as seen in methods like EATA[45]
and REALM[53], or by adapting to input data rather than unconditionally minimizing uncertainty.
However, such an approach should be designed to enable the network to autonomously adjust to
independent data, aligning with our research philosophy.

Figure 8: Mean error rates (%) by corruption type on ImageNet-C and CIFAR-100-C with increasing
TTA iterations in ResNet-50.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: It is provided in Sec. 3.1 as well as in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: It is provided in Appendix F

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Since the evidence supporting our proposal is closer to empirical analysis
rather than theoretical results, it is explained along with Fig. 3(b) in Sec. 3.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All major details required for reproduction are reported. (with code in the
supplementary materials)

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have created a README file and provide pytorch code as supplementary
materials. Additionally, we provide shared links to well-known repositories for downloading
pre-trained weight files.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include all the important information needed for experiments. (see the Sec.
4 and Appendix A.)
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We compare the performance of commonly proposed methods and various
studies using prediction error (%). Additionally, Appendix F explains fixed intervals based
on statistical evidence.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Our proposal is a memory minimization technique in TTA, which is shown
with the Tab. 6 and Fig. 4. We also report our experimental environment (i.e., CPU and
GPU) and minimum required amount of memory in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Note that our code can be used under normal circumstances without special
consideration.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We note that our paper does not specifically consider broader impacts unrelated
to security or social issues.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Note that our paper does not specifically consider safeguards.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We utilize code published by us, as well as code from publicly accessible
repositories like GitHub, and we explicitly acknowledge this usage.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Note that our paper does not need to consider new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Note that our paper does not need to consider Crowdsourcing and Research
with Human Subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: In our paper, we note that there are no potential factors that could be significant
enough to require notification to the IRB.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

24

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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