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A Data Configuration

A.1 Data for Training Diffusion Model

In our work, acquiring image restoration capability depends on pre-training a conditional diffusion
model, which needs paired clean and degraded data. The clean data are used to build the loss
function for supervision, while the degraded data act as conditioning inputs for the denoising network.
Therefore, we use existing supervised datasets and additionally simulate a portion of the data to
meet the requirements of mixed degradation. Our method primarily addresses three common types
of degradation in the fusion scenario: improper lighting, color distortion, and noise. For improper
lighting, we use 2, 220 image pairs from the MIT-Adobe FiveK Dataset [2], covering images with
varying exposures and their corresponding ground truth manually adjusted by photography experts.
For color distortion, we use 1, 031 image pairs from the Rendered WB dataset[1], including color-
biased images under various light sources such as fluorescent, incandescent, and daylight, as well as
corresponding reference images manually calibrated under the Adobe standard. For noise, we add
Gaussian noise, pulse noise, Poisson noise, Rayleigh noise, and uniform noise to 2, 220 clean images
from the MIT-Adobe FiveK Dataset and 2, 220 clean images from the MSRS dataset [4] to obtain
noised images. All these image pairs constitute the complete dataset for training our diffusion model,
driving our model’s learning for compound degradation removal.

A.2 Clean Data for Training Fusion Module

Constructing Eqs. (9) and (10) actually involves very stringent data requirements. Specifically,
they require a pair of degraded multi-modal images describing the same scene, along with their
corresponding clean versions. Unfortunately, such a dataset is currently not available. To alleviate
this challenge, we adopt a two-step strategy. Specifically, we first pre-train the diffusion model to
learn the image restoration capability. In this step, we only need degraded-clean image pairs, without
the need for paired multi-modal images that describes the same scene. Once the diffusion model is
trained, it can be used to process existing degraded multi-modal image fusion datasets, to generate
the required clean multi-modal image pairs. At this point, all the data required for constructing Eqs.
(9) and (10) has been obtained.
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B Limitation

Although our method shows advanced performance in multiple scenarios, it still has certain limitations.
Specifically, the efficiency of our method is relatively low. To display it more intuitively, we implement
an efficiency evaluation, including parameter number, and runtime, as reported in Table s1. It can be
seen that our method has a relatively large number of parameters and a relatively long runtime. This
is because the diffusion model requires multiple iterations of sampling. One piece of evidence is that
another method based on the diffusion model, DDFM, also exhibits a large number of parameters and
long runtime. In the future, we will study the acceleration strategy of the diffusion model and further
improve its integration in multi-modal image fusion to increase operating efficiency.

Table s1: Statistical results of parameters and runtime.
RFN-Nest GANMcC SDNet U2Fusion TarDAL DeFusion LRRNet DDFM MRFS Ours

Parameter/M 30.10 2.28 0.07 0.66 0.30 7.87 0.20 552.66 134.96 157.35
Runtime/Second 1.28 4.83 1.01 3.46 0.58 0.29 0.27 131.74 4.39 31.63

C More Visual Comparisons

As the length of the main text is limited, we provide more visual comparisons here to demonstrate the
advantages of our Text-DiFuse, involving infrared and visible image fusion, and medical image fusion.
We first provide the visual results of infrared and visible image fusion in Fig. s1. Clearly, our method
can recover scene information from degraded environments and remove composite degradations
including color deviation, improper lighting, noise, etc. On the contrary, competitors cannot do these,
which will inevitably lead to the loss of useful features in the subsequent multi-modal information
fusion. Besides, the visual results of medical image fusion are presented in Fig. s2. It can be seen that
our method is the best at highlighting the body tissue structure. At the same time, it is also the best
in maintaining the functional distribution characterized by colors. In comparison, the comparative
methods either weaken the tissue structure or lead to inaccurate functional distribution. Overall,
these visual results show that our Text-DiFuse achieves state-of-the-art performance for the task of
multi-modal image fusion.

Figure s1: Visual results of infrared and visible image fusion.
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Figure s2: Visual results of medical image fusion.

Figure s3: Visual results on extended polarization image fusion.
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Figure s4: Visual results on extended polarization image fusion.

Table s2: Quantitative results on extended application scenarios.

Sce. Polarization Fusion RGB-NIR Fusion
EN AG SD SCD VIF EN AG SD SCD VIF

RFN. 6.54 2.45 33.05 1.70 0.55 6.99 3.47 43.93 0.56 0.96
GANM. 6.23 2.84 28.63 1.54 0.51 6.88 4.65 39.73 0.46 0.94

SDN. 5.44 3.37 18.89 1.04 0.49 7.00 6.55 48.06 0.91 1.11
U2F. 5.97 3.54 28.00 1.52 0.50 6.77 6.49 39.92 0.40 0.92
Tar. 4.19 4.45 21.74 0.66 0.24 5.42 10.19 49.08 0.42 0.51
DeF. 6.53 2.87 35.87 1.36 0.63 6.99 4.45 43.66 0.45 1.16
LRR. 6.30 2.79 33.30 0.86 0.45 6.53 4.20 39.11 0.30 0.81

DDFM 6.55 3.61 32.87 1.76 0.65 7.02 4.80 44.94 0.79 1.26
MRFS 7.08 3.33 47.58 1.59 0.64 7.50 5.05 57.37 0.95 0.96
Ours 7.19 5.39 48.85 1.78 0.55 7.52 6.61 63.04 1.42 1.16

D Extended Application

We extend our Text-DiFuse to the polarization image fusion scenario and the near-infrared and
visible image fusion scenario. Firstly, the purpose of polarization image fusion is to fuse polarization
information and intensity images, to produce images with more clearly visible textures and a more
comprehensive description of objects in the scene. The visual results of the polarization image
fusion are presented in Fig. s3. It can be observed that our method still exhibits good performance.
It effectively integrates the structure contained in the polarization information into the intensity
image, demonstrating enhanced visualization that far exceeds that of other competitors. Secondly,
the visual results of near-infrared and visible image fusion are shown in Fig. s4, where our method
effectively integrates texture details from the near-infrared band with those from the visible image,
while preserving natural color attributes of the visible image. Notably, the inherent image restoration
capability of our method allows it to produce vivid fused images in underexposed scenes without
causing overexposure like MRFS, as seen in the results of the first row. In addition, we conduct
quantitative experiments to evaluate the objective application performance, as presented in Table s2.
The proposed Test-DiFuse demonstrates good quantitative performance in these two application
scenarios, ranking first in most metrics. Overall, our method can be generalized to the polarization
image fusion and the near-infrared and visible image fusion scenarios with promising performance.
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Figure s5: Visual results of three-channel direct processing.

Table s3: Quantitative results of three-channel direct processing.
MSRS EN↑ AG↑ SD↑ SCD↑ VIF↑ CIECAM16↓

3-channel 6.84 3.66 39.18 1.39 0.72 3.15
Ours 7.08 3.31 47.44 1.44 0.76 1.59

Infrared    Visible     TarDAL   DeFusion  LRRNet      DDFM     MRFS         Ours

Figure s6: Visual comparison of InstructIR plus Fusion.

E Brightness-Chrominance Separation

Image fusion requires a high level of color fidelity to the scene. Taking the infrared and visible image
fusion as an example, the colors in the fused image are required to be as consistent as possible with
those in the visible image. Therefore, by independently purifying and preserving the chrominance
components in the visible image, our method can effectively and conveniently achieve color fidelity.
Next, we discuss why our method does not directly process three-channel images. Firstly, from the
perspective of image restoration alone, directly processing color images is entirely feasible. However,
our method requires embedding information fusion into the latent layers of the diffusion model
used for image restoration. This means that features from the gray infrared image could potentially
interfere with the color distribution of features from the visible image. In particular, this interference
occurs in the highly nonlinear latent space, where some small changes can be amplified by the
decoder to produce large color distortions. In this case, ensuring the expected color fidelity is very
difficult. Second, the interference is directly related to the way multi-modal features are fused. In our
method, we use a nonlinear neural network called the Fusion Control Module to perform information
aggregation, which is guided to retain significant thermal radiation objects while preserving rich
background textures. These two goals correspond to the similarity loss functions (see Eqs. (9) and
(10)) based on the indicators of pixel intensity and gradient. Under such optimization guidance, it is
difficult to avoid disrupting the color distribution in the features from the visible image. For verifying,
we adapt our proposed method to directly process three-channel images without separating brightness
and chrominance components, and the results are presented in Fig. s5. Clearly, color distortion
occurs. Furthermore, we implement quantitative evaluation in Table s3. The direct processing strategy
decreases the color score CIECAM16 and also negatively affects other metrics to varying degrees

F All-in-One Restoration Plus Fusion

We conduct comparisons using the all-in-one restoration method InstructIR [3] followed by several
advanced image fusion methods. First, we input different text prompts into InstructIR to address
improper lighting, noise, and color distortion. The restored images are then fused with advanced
fusion methods. Visual results are shown in Fig. s6. Our method which deeply couples image
restoration and fusion, shows better performance than these methods following a concatenation
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Table s4: Quantitative comparison of InstructIR plus Fusion.

Methods MSRS Dataset
EN ↑ AG ↑ SD ↑ SCD ↑ VIF ↑

InstructIR

RFN-Nest 6.62 2.20 31.63 1.39 0.74
GANMcC 6.27 1.94 26.52 1.20 0.63

SDNet 5.44 2.62 18.24 1.09 0.56
U2Fusion 6.43 3.19 33.79 1.38 0.76
TarDAL 4.53 2.99 24.87 0.96 0.29

DeFusion 7.03 2.86 43.76 1.03 0.84
LRRNet 6.86 2.73 37.91 0.76 0.74
DDFM 6.67 2.39 31.55 1.32 0.81
MRFS 7.40 3.28 45.98 0.96 0.89

Ours 7.08 3.31 47.44 1.44 0.76
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Figure s7: Visual results with different sampling steps.
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Figure s8: Metric changes with different sampling steps.

strategy. In particular, our method can balance thermally salient object retaining and degradation
removal, while competitors cannot. Furthermore, the quantitative results in Table s4 also prove the
advantages of our method.

G Analysis of Sampling Steps

In our method, image restoration and information integration are mutually coupled. This is reflected
in the physical connection, where a fusion control module is embedded within the internal structure
of the diffusion model. Once all the networks are trained, we can follow the standard diffusion model
testing procedure, which involves performing T steps of continuous sampling. It is worth noting
that information fusion needs to be performed at each sampling step. In this case, the only factor
affecting the final fusion result is the number of sampling steps. More sampling steps mean better
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performance, but they also result in significant time consumption. Therefore, setting an appropriate
number of sampling steps is a matter worth discussing. In tasks where the ground truth is available,
the number of sampling steps can be well determined by checking whether the generated results are
sufficiently close to the ground truth. However, for the image fusion task, where ground-truth data do
not exist, we rely on visual perception and multiple no-reference metrics to make the assessment.
Specifically, we set the number of sampling steps to 2, 3, 4, 5, 10, 25, 500, and 1000, with qualitative
and quantitative results shown in Figs. s7 and s8. Notably, each metric is normalized along the step
dimension for easier presentation. It can be observed that as the number of steps increases, noise
is gradually removed and the scene texture becomes increasingly refined. Corresponding to the
quantitative results, 25 steps achieve good performance saturation, with subsequent increases in the
number of steps resulting in only slight fluctuations in scores. Note that the only exception is AG,
as it is affected by noise during the diffusion process. Therefore, in our experimental section, the
number of sampling steps is set to 25.

H Broader Impacts

This paper is devoted to solving the problem of multi-modal image fusion under degraded scenes to
provide high-quality fused results suitable for human and machine perception. Therefore, it can be
expected that this work will demonstrate positive social impacts in many fields. For example, it can
help drivers better perceive the road conditions ahead in environments with poor visibility through
information fusion, such as at night, to improve driving safety. For another example, it can help
poor areas that only have low-quality medical imaging equipment to enhance the perception of the
body’s condition through information recovery and fusion, thereby assisting in disease diagnosis and
treatment. As far as we know, this work does not appear to have any negative social impacts and the
risks are extremely low.
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