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Figure 1: Comparison of our DiMoP3D with the SoTA baseline [5]. Purple meshes represent obser-
vations, and yellow meshes denote predictions. DiMoP3D produces high-fidelity, diverse sequences
tailored to real-world 3D scenes, while BeLFusion’s inadequate scene context integration leads to
issues such as object penetration, motion incoherence, and scene inconsistency.

Abstract

Diverse human motion prediction (HMP) is a fundamental application in computer
vision that has recently attracted considerable interest. Prior methods primarily
focus on the stochastic nature of human motion, while neglecting the specific
impact of the external environment, leading to the pronounced artifacts in predic-
tion when applied to real-world scenarios. To fill this gap, this work introduces
a novel task: predicting diverse human motion within real-world 3D scenes. In
contrast to prior works, it requires harmonizing the deterministic constraints im-
posed by the surrounding 3D scenes with the stochastic aspect of human motion.
For this purpose, we propose DiMoP3D, a diverse motion prediction framework
with 3D scene awareness, which leverages the 3D point cloud and observed se-
quence to generate diverse and high-fidelity predictions. DiMoP3D can compre-
hend the 3D scene and determine the probable target objects and their desired
interactive pose based on the historical motion. Then, it plans the obstacle-free
trajectories toward these interested objects and generates diverse and physically
consistent future motions. On top of that, DiMoP3D identifies deterministic fac-
tors in the scene and integrates them into stochastic modeling, making the di-
verse HMP in realistic scenes become a controllable stochastic generation pro-
cess. On two real-captured benchmarks, DiMoP3D has demonstrated significant
improvements over state-of-the-art methods, showcasing its effectiveness in gen-
erating diverse and physically consistent motion predictions within real-world 3D
environments. More details and the video demo are available at the webpage
https://sites.google.com/view/dimop3d.
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1 Introduction

Human motion prediction (HMP), i.e., forecasting future human poses based on observation, is cru-
cial for applications including autonomous vehicles and human-robot collaboration [15, 20, 39, 44,
54, 60, 66]. Many existing works [1, 22, 40, 49, 76, 89] formulate HMP as a deterministic problem,
aiming to generate a single future sequence. However, it fails to capture the inherent stochasticity
of human motion, where multiple plausible outcomes can arise from a single observation. Recent
research has shifted towards diverse or stochastic HMP, to achieve multiple plausible predictions
[3, 6, 30, 59, 72], which holds the potential in real-world applications and is the focus of our work.

Recent advances in diverse HMP primarily focus on stochastic predictions, where a random factor
from the latent space conditions the diversity of predictions alongside observed motions [3, 12, 30,
59, 71, 72, 82]. While these methods predict multiple plausible futures from a single past motion,
they typically disregard the 3D environment, operating within an idealized, context-free framework.
This limitation becomes apparent in real-world applications, where motion must conform to physical
and semantic scene constraints [29, 67, 68, 78, 90], leading to issues like obstacle penetration and
unrealistic interactions, as in Figure 1. This gap underscores the need for a new task that merges
diverse HMP within real-world 3D scenes, enhancing both practicality and applicability.

Recognizing existing limitations, this work introduces a novel task, making diverse HMP within
real-world 3D scenes. Its objective is to break the previous idealized context-free setup towarding a
realistic and practical setting, which involves several key challenges: (1) Harmonizing Stochastic-
ity and Determinism: This task necessitates a delicate harmonization between the stochastic nature
of human motion and the deterministic constraints from 3D scenes, thereby broadening the scope of
traditional HMP; (2) Scene-Motion Intermodal Coordination: It requires analyzing coordination
between human motion and scene dynamics to align predictions with contextual elements, which
involves identifying human intentions and potential interactive objects; (3) Behaviorally Coherent
Physical Consistency: The predictions must adhere to deterministic constraints, including physical
consistency (e.g., avoid collision) and behavior coherence (e.g., sitting on a chair, not lying).

To tackle these challenges, we introduce DiMoP3D (Diverse Motion Prediction in 3D Scenes), a
framework for generating diverse, physically consistent, and plausible human motion predictions
in real-world 3D scenes, which comprises three main components: (1) Context-aware Intermodal
Interpreter analyzes potential areas of human interest and goals, essentially intentions within a scene.
Our method enhances traditional scene understanding by integrating 3D point clouds with observed
motions for context-aware intermodal analysis. It first encodes the point cloud, segments object in-
stances, and then pinpoints potential interaction targets, emphasizing intended factors while filtering
out less probable ones. This strategy further transforms the task of diverse HMP into a control-
lable stochastic generation process; (2) Behaviorally-consistent Stochastic Planner then constructs
behaviorally consistent action plans, representing stochastic conditional factors. Recognizing that
human interaction with specific objects often follows deterministic patterns, we prioritize predicting
the final human pose upon reaching each target, and generate obstacle-free trajectories toward it; (3)
Self-prompted Motion Generator harmonizes the stochastic nature of human motion with determin-
istic constraints in a self-prompted manner to produce varied predictions based on the conditional
factor. To ensure coherence with this factor, it employs a denoising diffusion model, guiding the
motion denoising process toward a deterministic, obstacle-free final state.

Our contributions are threefold: (1) We introduce a novel and challenging task of predicting diverse
human motions within real-world 3D scenes, advancing beyond the traditional scope of diverse HMP
from an idealized context-free setting to a more realistic and practical one. (2) We propose DiMoP3D
to tackle this task. It harmonizes the deterministic constraints of 3D scenes with the stochastic nature
of human motion, enabling diverse and plausible motion predictions in real-world scenarios. (3)
Evaluations on two real-captured benchmarks, GIMO and CIRCLE, show that DiMoP3D significantly
outperforms existing SoTA methods, particularly in terms of physical consistency.

2 Related Work

2.1 Stochastic Human Motion Prediction

Human motion prediction diverges into deterministic and stochastic methods. Deterministic models
aim to predict a singular sequence that closely aligns with future movements [18, 19, 40, 49, 76],
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yet often encounter quality degradation over longer time spans (> 1-sec) due to the stochastic na-
ture of human movement. In contrast, stochastic HMP [2, 3, 5, 44, 82] embraces this variability by
generating a range of plausible future motions and modeling the distribution of human behaviors.
Notably, it also encompasses the most probable future sequence targeted by deterministic models,
as a likely scenario within its broader distribution. Such methodologies enhance applications across
autonomous driving [7, 33, 43], patient care [10, 42], and human flow prediction [32, 36], by embrac-
ing a wider range of potential scenarios and have become a focal point of contemporary research.

Dominant approaches include VAEs, GANs, flow networks, and diffusion models [3, 6, 12, 30, 38,
59, 71, 72, 82]. Despite promising progress in modeling stochastic human motions, a critical chal-
lenge persists: human motion is not only stochastic but also heavily influenced by the external en-
vironment. In real-world settings, human motion is intricately intertwined with surrounding scenes,
necessitating that future trajectories comply with the scene’s physical constraints (e.g., avoid object
penetration). Additionally, predicted motions should be semantically consistent with the expected
human-object interactions (e.g., sit for a chair, lie for a bed). Addressing these requirements calls for
a sophisticated approach to diverse HMP that balances the stochastic aspect of human motion with
the deterministic factors imposed by the surrounding 3D scenes, which is the focus of our work.

2.2 3D Scene Encoding and Scene-aware Motion Prediction

3D scene understanding is essential in various applications, prompting extensive research on rep-
resentations like RGB-D maps [9, 52, 61], scene graphs [77, 79, 84], 3D voxels [23, 48, 74], and
notably, 3D point clouds [55, 56, 65, 87]. Recognizing the importance of 3D scene information
in human motion prediction [14, 21, 26, 35, 80], our work integrates 3D point clouds as the scene
representation due to their direct derivation from sensing technologies.

To enhance fidelity of HMP in real-world scenarios, the connection between human actions and
scene context has made scene-aware motion generation a major research focus [8, 17, 28, 88]. Early
methods [8, 17, 67] relied on object bounding boxes, 2D images, and depth maps, which are insuffi-
cient for capturing real 3D environments. Recent advances use 3D point clouds for scene represen-
tation [29, 69, 88]: GIMO [88] employs a bidirectional transformer to fuse human motion and scene
features, [50] predicts future contact maps, and [46] extracts global and local salient points.

However, these methods predict a single sequence [4, 50, 88], whereas our approach models a dis-
tribution of potential outcomes. Some stochastic methods add diversity, but [8] relies on 2D inputs,
limiting 3D interactions, and [28] uses predefined objects without inferring targets. In contrast, our
model parses the 3D scene through cross-modal, object-specific human interest analysis and predicts
scene-aware motions in real 3D scenarios, greatly enhancing adaptability and authenticity.

2.3 Motion Synthesis in 3D Scenes

Recent advancements in paired scene-motion data [4, 27, 88] have sparked a new research direc-
tion in synthesizing motions in 3D scenes [29, 41, 47, 53, 69, 78]. Specifically, SAMP [28] em-
ploys a conditional variational autoencoder (cVAE) to generate one frame per forward pass within
a three-stage stochastic pipeline, COUCH [86] introduces a human-chair dataset with an auto-
regressive, contact-satisfying method, and DN-Synt [68] proposes a hierarchical framework for ef-
fective scene-aware human motion synthesis. With the rise of language models, methods utilizing
natural language prompts have emerged [16, 69, 75, 85]. HUMANISE [69] proposes an attention-
based language-prompted synthesis method. Additionally, diffusion models have shown significant
promise [16, 29, 37, 63, 64, 70]. Notably, AffordMotion [70] employs scene affordance as an inter-
mediate representation, achieving state-of-the-art performance in object interaction synthesis.

Our novel task of scene-aware diverse HMP is partly inspired by advances in motion synthesis but is
tailored for distinctly different applications and challenges. This task is further distinguished by key
innovations: (1) Temporal-Dependent Prompting. Contrary to motion synthesis, which often lacks
temporal context and follows static user instructions, our approach conditions predictions on the
unique prompt of historical human motion, enabling autonomous inference of human intentions. (2)
Context-Aware Scene Parsing. Moving beyond traditional scene understanding, our method infers
potential movement targets through the integration of context-aware intermodal insights. Utilizing
scene determinism to enhance the fidelity of diverse HMP predictions.
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Figure 2: The architecture of DiMoP3D. DiMoP3D incorporates two modalities of input, the past
motion and the 3D scene point cloud. Initially, the Context-aware Intermodal Interpreter encodes
the point cloud to features Fs, identifies interactive objects O, and uses a cross-modal InterestNet
to pinpoint potential interest areas, sampling a target instance Og according to interest map M .
Following this, the Behaviorally-consistent Stochastic Planner forecasts the interactive human end-
pose x̂L+∆L, and devises an obstacle-free trajectory τ̂ plan towards this pose. The sampled end-pose
and trajectory are incorporated as a stochastic conditional factor to prompt the Self-prompted Motion
Generator to generate physically consistent future motions.

3 Method

3.1 Problem Setup

Given L historical human poses X1:L = {x1,x2, · · · ,xL} within 3D scenes represented by
point clouds S ∈ Rnp×6, our goal is to predict K different scene-consistent future motions

{X̂
(i)

L:L+∆L}Ki=1. Here, np denotes the number of points, each described by 3D spatial coordinates
and RGB color information. L and ∆L denote the lengths of the observed and predicted sequences,
respectively. Each pose is described as the SMPL-X representation xl = (tl,ol,pl) [88], where
tl ∈ R3 denotes the global translation, ol ∈ SO(3) denotes the orientation, and pl ∈ R32 refers to
the body pose embedding. We set L = 3-sec and ∆L = 5-sec to achieve a long-term prediction
[40, 49]. Then, the task can be formulated as:

P (X̂L:L+∆L|X1:L,S) =

∫
max

θ
P (X̂L:L+∆L|X1:L,S, θ)P (θ|X1:L,S)dθ. (1)

The stochastic process θ is sampled jointly from the past motion X1:L and the scene S, and then
utilized to condition the prediction motion X̂L:L+∆L. We propose DiMoP3D to solve this novel
task, which involves the following novelties: Context awareness: unlike traditional diverse HMP
methods [12, 59, 71] that focus solely on human motion, our task is more challenging as it requires
harmonizing the stochastic nature of human motion with the deterministic constraints of the sur-
rounding 3D scenes. Autonomous intention estimation: different from motion synthesis, our task
requires independent intention estimation based on past motion, to prompt future motion prediction.

3.2 Context-Aware Intermodal Interpreter

Scene information plays a crucial role in predicting future motion [8, 17, 67]. Despite the stochastic
manner of human motion, it is still feasible to deduce human interests and likely goals within a
scene. For instance, in Figure 2, the door behind the person is unlikely to be the target based on
their trajectory away from it, while the sofa, coffee table, and distant chair may emerge as potential
points of interest. Diverging from traditional scene parsing methods, our approach integrates a
scene-motion intermodal coordination to better suppose human intentions in real-world settings.
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In machine vision, 3D point clouds sourced directly from sensing devices have become fundamental
for scene representation [55, 65, 87] and serve as the input for our scene interpreter. Acknowledging
the significant influence of past motions and scene context on future human movements, we empha-
size the need for a context-aware intermodal analysis that integrates historical motion with scene
point clouds to infer potential human intentions. Furthermore, since human movements typically
involve interactions with target objects [11, 24, 81], our approach identifies objects within the scene
and computes a human interest score for each, rather than analyzing isolated points. This helps
determine specific interactive targets, making the motion prediction process more controllable and
enabling diverse prediction by sampling different interactive targets.

To achieve this, our scene interpreter employs a UNet-like encoder-decoder architecture [58], com-
prising an instance segmenter for object recognition and an interest net for human interest inference.
These two modules share the same point cloud encoder for efficiency but use different decoders, as
illustrated in the yellow box in Figure 2. The shared encoder processes and downsamples the point
cloud S into a compact feature representation Fs ∈ Rn′

p×c, with n′p << np (8 ≤ n′p ≤ 50 in our
cases), and c represents the feature dimension. Subsequently, two decoders are employed to segment
objects O, and predict human interests M in the scene, respectively:

Fs = SceneEncoder(S), O = InstanceSegmenter(Fs), M = InterestNet(Fs,X1:L). (2)

Here, O = {O1,O2, ...,Ono
} denotes the set of no segmented objects, each being a subset of

the scene pointcloud (Oi ⊆ S). M ∈ Rnp×1 denotes the per-point interest map, with higher
values indicating a greater likelihood of targeting specific scene elements. Once M is obtained, we
compute the probability Pi of each object Oi ∈ O being selected as an interaction target:

Mi =
∑

M [p] / len(Oi), p ∈ Oi, (3)

{P1, P2, ..., Pno
} = Softmax({M1,M2, ...,Mno

};ϕ), (4)

where len(Oi) denotes the number of points in Oi, M [p] is the interest value of point p, and ϕ = 0.5
represents the temperature factor that controls randomness in sampling. During inference, we sam-
ple the target object Og(g∈{1, 2, ..., no}) based on the probability distribution {P1, P2, ..., Pno

}.

In cases where there is no human-object interaction or objects are beyond reach within ∆L, no
explicit target object exists. To handle this, we include the ground as a potential target, voxelized
into smaller patches to improve granularity. Each ground patch, treated as an individual object, has a
side length of s = 0.5 meters to balance accuracy and efficiency. The interest scores and interaction
probabilities for ground patches are then calculated similarly to other objects, as in Eq.3 and Eq.4.

Our scene interpreter aligns observed motions with scene context, filtering out less likely engage-
ment areas and identifying potential targets. We note that this approach makes the diverse HMP con-
trolled by those deterministic elements of the scene, thereby enhancing the physical consistency of
predictions. Representing human intention through scene-motion intermodal analysis, the selected
target object Og directs the subsequent planning process, as outlined below.

3.3 Behaviorally-Consistent Stochastic Planner

Ensuring collision-free and scene-consistent human behavior is crucial but often overlooked, while
learning these patterns directly requires impractically large datasets. To tackle these challenges, we
employ an action planner to plan obstacle-free trajectories toward the target Og and deterministi-
cally predict the interactive human end-pose x̂end associated with Og . These intermediate predic-
tions serve as stochastic conditional factors, guiding to craft future motions that respect physical
constraints and typical human-environment interactions while incorporating motion diversity.

To enable effective navigation and collision avoidance, we utilize a scene height map SH ∈ Rns×1

to delineate accessible areas and detect obstacles, inspired by [68, 73]. We first compute obstacle-
free trajectories toward the target object Og using a modified A* algorithm (details on generating
diverse trajectories are in Appendix B), and then employ a single-layer transformer ψ to predict
per-frame human velocity, sampling discretize points from the planned trajectory:

τ plan = A*(SH ;X1:L, x̂end), (τ̂ plan, tend) = Sample(τ plan, ψ(X1:L)). (5)

Here, τ plan denotes the continuous trajectory, τ̂ plan = {t̂planL+1 , t̂
plan

L+2 , ..., t̂
plan

L+∆L} represents the
sampled discretize trajectory points, and tend is the estimated timestamp for the end of the interactive
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motion. Since the length of this trajectory varies across sequences, the human may not reach the
target object exactly at the prediction horizon ∆L = 5-sec. In these cases, if the target object is too
distant to reach within ∆L (tend > ∆L), we truncate the trajectory τ plan to fit within ∆L and adjust
the target to the nearest ground patch. Conversely, if the target is reached too early (tend < ∆L),
we keep the subject relatively static after tend. This adjustment ensures that the planned trajectory
aligns with the prediction horizon. We then discretize the continuous trajectory to obtain the per-
frame global translation τ̂ plan to guide subsequent motion generation:

τ̂ plan = {t̂planL+1 , t̂
plan

L+2 , ..., t̂
plan

L+∆L}. (6)

In addition to physical constraints, human interactions with specific objects often follow determinis-
tic patterns despite potential action diversity. For instance, "set," and "wipe," are reasonable actions
for a table, whereas "sit" and "lie" are not. Traditional diverse HMP methods typically overlook
these Human-Object Interaction (HOI) patterns, leading to motion and scene inconsistencies. Dif-
fering from these methods, our approach predicts the target object Og in advance, enabling us to
predict the interactive HOI end-pose x̂end before the full-sequence prediction:

x̂end = HOI-Estimator(Og). (7)

This end-pose represents the final state of the prediction, secures appropriate human interaction with
the scene. To this end, our planner constructs an obstacle-free trajectory, and the predicted end-pose
(along with tend) as a stochastic conditional factor θ from a scene-motion intermodal perspective:

θ = (τ̂ plan, x̂end, tend). (8)

This factor further prompts the motion generator to predict behaviorally consistent motions.

3.4 Self-Prompted Motion Generator

By constructing a stochastic conditional factor θ in advance, DiMoP3D operates as a self-prompted
motion generator, which harmonizes the stochastic factor with deterministic motion generation
rooted in θ. To generate diverse predictions that closely align with the predicted conditional fac-
tor θ, we utilize a motion diffuser, taking advantage of the diffusion model’s ability to effectively
guide intermediate results [12, 59, 71]. Additionally, to further maintain semantic coherence and
physical consistency, we propose a semantic alignment inspector to supervise the denoising process.

For simplicity, we denote the sequence at noising step t as Xt. Diffusion is modeled as a Markov
noising process {Xt}Tt=0, with X0 drawn from the data distribution, and:

q(Xt|Xt−1) = N (
√
αtX

t−1, (1− αt)I). (9)

Here αt ∈ (0, 1). When αT approaches 0, we approximate XT
1:L+∆L ∼ N (0, I), where 0 and

I represent the zero matrix and the identity matrix, respectively. To effectively integrate scene
and motion features in our predictions, our diffusion model MD employs a transformer decoder
to model distribution akin to the reversed diffusion process, leveraging its capacity for cross-modal
attention. Instead of predicting noise, we predict the clean sample directly, following [63, 64, 83]:

X̄
0
= MD(X̂

t
,Fs, t), (10)

where X̄
0 represents the intermediate denoising result at each denoising step.

To align the predicted sequence with the observed X1:L, the planned trajectory τ̂ plan, and the
forecasted end-pose x̂end at time tend, we adjust the corresponding segments after each denoising
step. To be sepecific, for each frame x̄0

i = (t̄
0
i , ō

0
i , p̄

0
i ):

x̄0
i =


x0
i if i ≤ L,

(t̂
plan

i , ō0
i , p̄

0
i ) if L < i < L+ tend,

x̂L+∆L if i+ tend,

x̄0
i if i > L+ tend,

for each frame i. (11)

This modified prediction is then noised back before the next denoising step:

X̂
t−1

= N (
√
αtX

t−1, γtI), (12)
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where γt represents the posterior variance based on α at step t. Upon completing T denoising steps,
the motion generator yields a cohesive sequence X̂

0
, which integrates smoothly with the observed

sequence and aligns with the planned trajectory and goals.

To enhance the consistency between the predicted motion and the target object, we introduce a
semantic alignment inspector leveraging MotionCLIP [62]. It computes a HOI semantic loss via
natural language descriptions as follows:

Lsem =
1

L+∆L

L+∆L∑
l=1

(
1− cos

(
MCMotion(X̂

t

l:L+∆L),MCText(Dg)
))

. (13)

Here, MCMotion,MCText denote MotionCLIP’s motion and text encoders, respectively, with Dg

signifying the interaction description template related to the class of the sampled target object Og .
Acknowledging that HOI predominantly occurs later in motion sequences, our semantic loss formu-
lation weights later motion frames more heavily to accurately capture these interactions.

4 Experiment

4.1 Experimental Setup

Dataset-1: GIMO [88], which records motion sequences represented by full-body SMPL-X poses
with ≈ 129K frames. It consists of 14 scenes with 3D point clouds, each scene is captured by a 3D
LiDAR sensor, containing 10-20 objects with ≈ 500K vertices. For a fair comparison, we follow
the official split to divide the dataset into training and testing sets according to the scenes.

Dataset-2: CIRCLE [4] comprises 10 hours of high-fidelity full-body motion sequences from 5
subjects across nine apartment scenes. Utilizing a Vicon system with 12 cameras at 120 FPS and
the AI Habitat VR environment for virtual world simulation, CIRCLE achieves precise motion and
scene capture. It offers an integrated apartment mesh, designating each room as an individual scene.
The dataset encompasses motion sequences for 128 tasks, totaling over 7,000 sequences.

We also notice other related datasets [27, 28, 50], yet find limitations precluding their use (e.g.,
jittering, sequence length, absence of human meshes).

Baselines. Our DiMoP3D is compared with four contemporary methods: DLow [82], SmoothDMP
[72], BeLFusion [5], and BiFU [88]. DLow [82] applies a flow network, SmoothDMP [72] is VAE-
based, and BeLFusion [5] is diffusion-based, which achieves SoTA performance in diverse HMP.
These three, however, do not focus on scene-aware diverse HMP, setting BiFU [88], a deterministic
scene-aware method, apart as an essential control for our analysis.

Metrics. To align with existing literature that evaluates human skeleton metrics, we utilize the SMPL
model [45] to convert body parameters X1:L+∆L into skeletons J1:L+∆L = {j1, j2, ..., jL+∆L},
where each ji ∈ Rnj×3 represents a skeleton with nj = 22 joints, following [25].

DiMoP3D is evaluated for diversity, accuracy, and physical consistency in scene-aware predictions.
We begin with the well-established pipeline in [82]: Prediction diversity is quantified using the
Average Pairwise Distance (APD) by computing the L2 distance across predicted sequences. The
Average Displacement Error (ADE) measures the reconstruction accuracy among the whole pre-
dicted sequence, while the Final Displacement Error (FDE) measures accuracy of the furthest frame,
alongside their multimodal counterparts, MMADE and MMFDE, for diverse HMP scenarios.

To measure the physical consistency of the predicted motion within 3D scenes, an additional metric,
the Average Cumulated Penetration Depth (ACPD) is introduced, following [78, 83]:

ACPD(J) =
1

∆L

L+∆L∑
l=L+1

nj∑
n=1

max
(
−SDF(jl[n],S), 0

)
, (14)

where j[n] denotes the position of the n-th joint in the skeleton, and SDF(·,S) refers to the signed
distance function [51] of the scene point cloud S. For training details, please refer to Appendix A.
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Table 1: Comparison of DiMoP3D with baselines on GIMO [88] and CIRCLE [4] datasets. The
best outcomes are highlighted in bold. Given that BiFU [88] employs a deterministic prediction
approach, diversity metrics such as APD, MMADE, and MMFDE are not applicable.

Method APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ ACPD ↓

G
IM

O
[8

8] Dlow [82] 55.12 13.70 16.88 15.96 17.31 14.55
SmoothDMP [72] 68.80 11.17 14.51 13.67 15.42 15.08

BeLFusion [5] 38.04 9.69 11.19 11.28 12.02 13.73
BiFU [88] – 7.11 8.39 – – 3.73
DiMoP3D 48.30 5.66 6.81 6.57 7.44 0.98

C
IR

C
L

E
[4

] Dlow [82] 49.37 11.70 14.46 13.49 14.95 12.52
SmoothDMP [72] 57.38 9.75 12.04 11.31 13.57 13.92

BeLFusion [5] 39.46 7.91 9.30 9.56 10.04 14.06
BiFU [88] – 5.80 6.99 – – 2.11
DiMoP3D 42.24 5.09 6.12 5.95 6.48 0.87

Table 2: Ablation of four main components in DiMoP3D over the sequences of the GIMO [88].
Ablation APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ ACPD↓

w/o InterestNet 52.63 6.17 7.48 7.20 8.09 1.00
w/o HOI-Estimator 46.97 5.95 7.27 6.72 7.84 1.53

w/o TrajectoryPlanner 57.29 6.39 6.81 7.28 7.45 3.29
w/o SemanticInspector 47.79 5.82 6.82 6.75 7.46 1.06

DiMoP3D 48.30 5.66 6.81 6.57 7.44 0.98

4.2 Main Results

Table 1 demonstrates DiMoP3D’s superiority over the baseline methods across nearly all evaluation
metrics on both datasets. The non-scene-aware methods (Dlow, SmoothDMP, BeLFusion) exhibit
limited motion accuracy (ADE, FDE, MMADE, MMFDE) and physical scene consistency (ACPD),
which we hypothesize is due to (1) lack of scene awareness, resulting in notable inconsistency in
real-world applications, and (2) the absence of explicit motion goals, which hinders precise long-
term (5-sec) motion forecasting. Despite their higher scores in diversity (APD), this is attributed to
their erratic and unpredictable predictions, disregarding the scene context (detailed in Sec 4.4).

DiMoP3D’s enhanced performance stems from three key factors: (1) Diversity. The stochastic
conditional factor introduces diversity through multiple mechanisms: the intermodal interpreter sets
broad motion objectives, the stochastic planner generates a variety of end-poses and trajectories, and
the motion generator achieves diverse motion poses. This multi-faceted approach ensures a breadth
of plausible actions are considered, enabling DiMoP3D to achieve a considerable APD score. (2)
Accuracy. DiMoP3D outperforms every baseline in ADE, FDE, MMADE, and MMFDE for a large
margin, even the deterministic BiFU. By estimating future human action based on a scene-motion
intermodal analysis, DiMoP3D implicitly infers the subject’s intent. This boosts the probability of
accurately identifying the subject’s genuine intent as the basis for prediction, thereby improving
the prediction precision. The combination of accurate intermodal scene interpreting and stochastic
planning ensures precise motion prediction for each sequence. (3) Physical consistency. Our motion
generator employs a diffusion model, prompted by the predicted stochastic factors. It also ensures
motion coherence through priors overwrite at each denoising step. This dual focus on deterministic
constraints enables DiMoP3D to achieve superior motion-scene consistency.

This superior performance demonstrates the efficacy of our DiMoP3D in predicting diverse human
motion in 3D scenes, as further evidenced by subsequent ablation studies and visualizations.

4.3 Ablation Studies

In Table 2, we dissect the impact of excluding four pivotal components from DiMoP3D. First, elim-
inating InterestNet markedly decreases performance across ADE, FDE, MMADE, and MMFDE
(first row). This decline stems from the process of selecting the target object Og from O, which
reverts to random sampling without scene-motion crossmodal analysis, impairing DiMoP3D’s abil-
ity to deduce human intentions. Consequently, the accuracy of predicting real actions diminishes,
highlighting the significance of integrating multimodal scene-motion analysis for scene-aware HMP.
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Figure 3: Visual comparisons between DiMoP3D and SoTA BeLFusion in bedroom and semi-
nar room scenarios. BeLFusion’s predictions, which rely solely on past human motion without
considering 3D scene context, are shown on the left. In contrast, DiMoP3D, displayed on the
right, incorporates interactive goals and designs obstacle-free trajectories for each sequence. Pur-
ple meshes depict observed motions, while yellow ones signify predicted future motions. For clarity,
distortions in BeLFusion’s predictions are marked: red boxes for object penetration, green boxes for
motion incoherence, and yellow boxes for scene inconsistency.

Addressing the role of stochastic planner, its absence undermines the planning of actions, including
the prediction of end-poses by the HOI-Estimator and trajectory planning via the A* TrajectoryPlan-
ner. Without these two components, the motion generator struggles to predict end-poses or future
trajectories with scene consistency. Notably, omitting the HOI-Estimator results in imprecise in-
teractive end-poses, often causing the subject to intersect with the target object in later frames, as
evidenced by increased ACPD and reduced FDE and MMADE (second row). Similarly, excluding
the TrajectoryPlanner significantly elevates ACPD (third row), indicating frequent subject penetra-
tions into the scene context while approaching the end-pose. These findings underscore the vital role
of coordinated end-pose and trajectory prediction in predicting motion within 3D scenes effectively.

Finally, the SemanticInspector enhances the scene-motion alignment through natural language, with
its omission resulting in higher ADE and MMADE. Please refer to Appendix C for further ablations.

4.4 Visualization

To delve deeper into DiMoP3D, in Figure 3, we showcase DiMoP3D’s predictions across two sce-
narios, contrasting them with the SoTA baseline BeLFusion [5].

In bedroom scenario, the subject stands still behind the door. BeLFusion’s predictions show no-
table issues with object and wall penetrations. Furthermore, sample-1 and 3 are marked by abrupt,
illogical movements, and sample-3 and 4 display glaring scene inconsistencies: sample-3 has the
subject sitting on the bare floor, and sample-4 involves the subject reaching for non-existent items.
Conversely, DiMoP3D ensures physical consistency, directing each prediction towards a specific
movement goal: opening a window, lying on the bed, accessing a cabinet, and sitting on a chair.

In the seminar room scene, the subject is moving forward. BeLFusion struggles again, with sample-
1, 3, and 4 depicting the subject unrealistically exiting the room, and sample-2 showing an inconsis-
tent motion of picking up a curtain. DiMoP3D, however, delivers high-fidelity predictions, depicting
the subject walking through a door, grasping items, sitting, and pulling down curtains, respectively.

To emphasize DiMoP3D’s predictive diversity, we further visualize various end-poses generated
by the HOI-Estimator in Figure 4. Overall, DiMoP3D consistently delivers diverse, realistic, and
physically-consistent motion predictions with clear objectives, benefiting from our conditional factor
prediction schema which models human-object interactions and navigates obstacle-free trajectories.
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Figure 4: Visualizations of diverse predicted end-poses across five object point clouds. The HOI-
Estimator can generate a variety of human-object interactive poses tailored to specific scenarios.

Table 3: Comparison of DiMoP3D with scene-aware motion synthesis methods.
Method APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ FID ↓ ACPD ↓

SAMP [28] 31.73 9.83 9.28 11.16 10.13 1.493 1.69
DN-Synt [68] 44.60 9.71 7.16 11.29 7.83 1.026 1.21

AffordMotion [70] 52.54 8.96 8.14 10.38 8.95 0.687 1.26
DiMoP3D 48.30 5.66 6.81 6.57 7.44 0.769 0.98

4.5 Compared with Motion Synthesis Methods

In this section, we compare our DiMoP3D with three scene-aware motion synthesis approaches on
GIMO [88]: SAMP [28], DN-Synt [68], and AffordMotion [70]. SAMP and DN-Synt utilize VAE
architectures, while AffordMotion employs a diffusion-based model.

To adapt these methods for our diverse HMP task, we initialize motion synthesis from the last
observed frame xL and encode the complete observed sequence X1:L into a unified embedding for
historical motion conditions using a 2-layer transformer encoder, similar to the embedding technique
in [57]. Additionally, we introduce the FID metric, commonly used in motion synthesis, to evaluate
the discrepancy between the distributions of generated and original dataset motions.

The results in Table 3 reveal an intriguing pattern: synthesis methods exhibit higher ADE than FDE.
This occurs because, although these methods include explicit end-pose estimators yielding accurate
final pose predictions, they struggle to condition on past motion. Consequently, they produce motion
incoherence and significant prediction errors along the trajectory from the observation to the final
pose. Notably, AffordMotion achieves the best APD and FID scores, which we attribute to its design
that prioritizes fidelity over accuracy and allows a higher degree of freedom. Meanwhile, DiMoP3D
also demonstrates competitive performance in these metrics. These findings underscore DiMoP3D’s
capability to harmonize the stochastic nature of human motion and the deterministic constraints
from the scene and the past motion, achieving superior performance in diverse scene-aware HMP,
and maintaining competitive diversity and fidelity even when compared to SoTA synthesis method.

5 Conclusion and Limitation

This work introduces a novel task of predicting diverse human motion in 3D scenes, along with
a novel framework, DiMoP3D, to address it. By incorporating multimodal motion-scene analysis,
DiMoP3D identifies areas or objects the subject is likely to interact with, enabling diverse, accurate,
and physically consistent human motion prediction. Evaluated on the GIMO and CIRCLE datasets,
DiMoP3D reduces ADE and FDE by nearly half compared to the state-of-the-art baseline BeLFu-
sion, while maintaining high physical consistency. These results underscore the importance of scene
awareness in diverse human motion prediction for real-world applications.

Despite its strong performance, DiMoP3D predicts motion in a fixed sequence length. When the
actual sequence length differs, it either keeps the subject relatively static or truncates the sequence.
Future work could explore variable-length motion prediction or end-to-end prediction, where the
motion generator predicts sequence length and generates motion simultaneously.
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A Traning Details

Training DiMoP3D encompasses separate phases for InterestNet, HOI-Estimator, and the self-
prompted motion generator. This section delineates the specific training methodologies for each
component. All training is conducted on a single NVIDIA RTX3090 GPU, with the complete
pipeline converging in ∼ 8 hours.

Training InterestNet. We adopt the ScanNet [21] pretrained SoftGroup model as our encoder and
segmenter to enhance performance, and a transformer decoder for the interest net to achieve cross-
modal analysis. The original datasets [4, 88] lack annotations for the interest map M ; hence, we
enrich them with such annotations for each motion clip. InterestNet is employed to elucidate the
relationship between the observed motion and the scene, facilitating the prediction of human inter-
ests, including likely destinations and objects of interaction. To ensure the interest map accurately
represents these aspects, we annotate the human interest map M based on three critical factors:
the contact area between humans and objects (M cont), the proximity of humans to scene elements
(Mdist), and the spatial relationship between each object Oi and the target object Og (Mobj):

M cont = fN (0,σ1)(Dist3D(S, pcont)), (15)

Mdist =
1

∆L
·
L+∆L∑
l=L+1

(l − L)2

(∆L)2
· fN (0,σ2)(Dist2D(S, tl)), (16)

Mobj =
∑
Oi∈O

fN (0,σ3)(Dist2D(Oi,Og)) ·Oi, (17)

M = λcontM cont + λdistMdist + λobjMobj . (18)

Here, pcont denotes the human-object contact position, fN (µ,σ)(·) denotes the Gaussian function
with mean µ and standard deviation σ. Smaller σ concentrates the interest map while larger σ
distributes attention more broadly. We set σ1 = 0.3 and σ2 = σ3 = 1.0 for balance. Dist3D(·)
and Dist2D(·) are the 3D and X-Z 2D distance functions (Y-axis denotes height). Hyperparameters
λcont = 3, λdist = 10, λobj = 1 are adjusted to maintain a balance among the factors.

Upon annotating the interest map M , InterestNet is trained using a KL divergence loss to minimize
the discrepancy between the distributions of the predicted interest map and the annotated M :

LInterest = KL(M || InterestNet(Fs,X1:L)). (19)

Training HOI-Estimator. The HOI-Estimator employs an autoregressive conditional variational
autoencoder (cVAE) [34] architecture, designed to predict a range of feasible end-poses. It predicts
interactive end-poses x̂end based on the target object’s point cloud Og . Initially, we centralize the
object on the X-Z plane (assume the Y-axis denotes height) by normalizing its position to the origin:

ONorm
g = Og −

1

len(Og)

∑
p∈Og

pxz, (20)

where len(Og) indicates the point count in Og and pxz is the X-Z coordinates of point p. The
HOI-Estimator utilizes a conditional Variational Autoencoder (cVAE) [34] for encoding-decoding:

µ, σ = Encoder(ONorm
g ,X1:L), (21)

x̂end = Decoder(ONorm
g ; µ, σ). (22)

The HOI-Estimator is trained to minimize the L2 loss between the reconstructed interactive pose
x̂end and the ground-truth xend:

LHOI = ||x̂end − xend||22. (23)

Training motion generator. The motion generator is pre-trained on the HumanML3D dataset [25].
We predict the clean sample X̄

0 directly instead of predicting noise following [63, 64, 83], consist-
ing of the basic diffusion loss:

Lbase = ||X̄0 −X||22, (24)
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Table 4: Description template of semantic inspector among 18 objects in the ScanNet dataset [21].
[OBJ] [ACT]
ground walks on stands on
cabinet opens searches reaches hands to picks things from

bed sits on lies on
chair sits on
sofa sits on
table sets wipes reaches hands to picks things from
door opens closes reaches hands to passes

window opens closes reaches hands to
bookshelf arranges leans on reaches hands to picks things from

picture hangs takes down reaches hands to
counter wipes leans on reaches hands to

desk wipes organizes reaches hands to picks things from
curtain opens closes reaches hands to

refrigerator opens closes reaches hands to picks things from
shower curtain opens closes reaches hands to

toilet sits on flushes reaches hands to
sink washes reaches hands to picks things from

bathtub flushes reaches hands to takes a shower in
other furniture uses checks reaches hands to interacts with

supplemented by the semantic alignment loss (detailed in Section 3.4 of the main paper), forming
the total training loss for motion generator:

Ldiff = Lbase + Lsem. (25)

Description Template of Semantic Inspector. The semantic inspector incorporates language de-
scription to supervise the predicted motion to be consistent with target objects. To enable this super-
vision, we design a language description template for each class of objects in the format of:

The person walks forward then [ACT ] the [OBJ ], (26)

where [ACT ] and [OBJ ] are placeholders for the action and object, respectively. There are a total
of 18 classes of objects (excluding wall and floor) in the pre-trained ScanNet dataset [21], and we
design corresponding [ACT ] for each class, detailed in Table 4.

B Modified A* Trajectory Planner

To facilitate diverse trajectory prediction, we enhance the conventional A* trajectory planner, allow-
ing for the iterative generation of valid paths while penalizing previously traversed positions.

Initially, we generate the scene height map SH as described in Alg. 1. To streamline height analysis
and A* pathfinding, we voxelized the scene point cloud S along the X and Z axes (with the Y-axis
representing height) into a grid of 0.02-meter resolution. We then identify the maximum height
within each grid cell, omitting ceilings and tall cabinets, which, despite their height, do not impede
movement and would otherwise be inaccurately marked as obstacles.

Leveraging the generated height map SH , we outline our modified dynamic A* trajectory planner
in Alg. 2. Our method transcends traditional one-hot encoding for marking obstacles by enabling
navigation over lower barriers through a continuous cost function derived from SH . We adopt a
power function to model the cost, with cell height acting as the exponent. To ensure smoother
trajectories and reduce sudden changes, an L2 penalty on angular velocity is integrated into the cost
framework. Additionally, to prevent the selection of repetitive paths, we increase the cost of cells
once traversed. The modified A* algorithm then iteratively generates paths until the cumulative cost
exceeds a predefined threshold or the maximum path count is attained, as in Figure 5.

C Additional Ablation Studies
Scene feature for baselines. To assess the influence of scene features on baseline methods, we con-
duct supplemental experiments integrating scene features into these methods. Despite the baseline
models mentioned in the main paper [5, 72, 82] not inherently accommodating scene features, we
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Algorithm 1 get_heightmap(S):
# S: Scene point cloud with shape (Np, 3), where Np is the point count

invalid = -10000, grid = 0.02, h_th = 1.2
Sg = VoxelGridXZ(S, grid) # X,Z coordinates are gridded, while Y is not
H = ones((Sg.maxx-Sg.minx)/grid, (Sg.maxz - Sg.minz)/grid) * invalid
For p in Sg:

If p.y < h_th: # Excluding the ceiling and high cabinets
x, z = Sg.grid(p.x, p.z)
H[x, z] = max(Hmap[x, z], p.y)

return H

Algorithm 2 dynamic_astar(X, d, H):
# X: Observed motion trajectory with shape (L, 2), where L is the input length
# d: Destination position with shape (2)
# H: Scene height map with shape (lenX, lenZ)

def cost_function(lastcost, p, path):
return lastcost + C[p] + angular_vel(path)

invalid = -10000, grid = 0.02, h_th = 1.2, noise = 1.0
costbase = 1000, costth = 1000, costinc = 10
H[H==invalid] = h_th
C = costbase ** H
paths = []
For npath in range(MAX_PATHS):

path, cost = astar(C + randlike(C)*noise, X[-1], d, cost_function)
If cost > mincost + costth: break
C[path] += costinc
paths.append(bessel_smoothing(path))

return paths

Table 5: Results of appending scene features for the baseline methods on GIMO [88].
Method scene APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ ACPD↓

Dlow [82] 55.12 13.70 16.88 15.96 17.31 14.55
SmoothDMP [72] 68.80 11.17 14.51 13.67 15.42 15.08

BeLFusion [5] 38.04 9.69 11.19 11.28 12.02 13.73
Dlow [82] ✓ – – – – – –

SmoothDMP [72] ✓ 66.36 11.02 14.49 13.43 15.37 14.71
BeLFusion [5] ✓ 36.89 9.55 11.04 11.12 11.76 13.52

DiMoP3D ✓ 48.30 5.66 6.81 6.57 7.44 0.98

augmented their input by appending the scene feature Fs along the temporal dimension for [5, 82],
and along the joint dimension for [72], to explore potential performance.

The results in Table 5 reveal that Dlow failed to convergence, likely attributed to its recursive ar-
chitecture, wherein the concatenated scene features diverge significantly from the distribution of
motion features, making the network difficult to learn. Both SmoothDMP and BeLFusion exhibit
marginal improvements, suggesting that the direct integration of scene features into the motion gen-
erator yields limited effectiveness. Conversely, these results underscore the efficacy of DiMoP3D’s
strategy of predicting the conditional factor, highlighting its superiority in harmonizing the scene
and the observed motion.

Ablation on the scene segmenter. To evaluate DiMoP3D’s robustness across various point cloud
instance segmentation methods, we performed additional experiments with different segmentators.
Higher-quality segmenters yield more precise object delineations, enabling the selection of more
accurate targets and reducing object boundary violations. Table 6 illustrates that DiMoP3D main-
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Table 6: Results of DiMoP3D with various scene segmenters. "mAP50" denotes the mean average
precision at 50 IoU threshold for each segmenter on the ScanNetv2 dataset [21]. Higher "mAP50"
represents better segmenter performance.

Segmentator mAP50 APD↑ ADE↓ FDE↓ MMADE↓ MMFDE↓ ACPD↓
PointGroup [31] 63.6 46.22 5.70 6.93 6.63 7.56 1.05

HAIS [13] 69.9 46.97 5.67 6.87 6.61 7.50 1.02
SoftGroup [65] 76.1 48.30 5.66 6.81 6.57 7.44 0.98

Table 7: Results of DiMoP3D with various trajectory planners. Trajectory planner has no effect on
FDE and MMFDE as they are end-pose errors, so we omit them in this table.

Planner APD↑ ADE↓ MMADE↓ ACPD↓
Naive A* 39.26 5.93 6.82 0.98

ours w/o continuous cost 45.59 5.77 6.72 0.98
ours w/o angular penalty 50.17 5.91 6.88 0.97

ours 48.30 5.66 6.57 0.98

tains stable performance even when the quality of the segmentation method declines, underscoring
its robustness to variations in segmentation.

Ablation on the trajectory planner. To validate the significance of our enhanced A* trajectory plan-
ner, we conducted an ablation study. Results presented in Table 7 show that the naive A* method
underperforms due to its deterministic nature. Excluding the continuous cost model results in a
binary scene representation, disregarding traversable lower obstacles and thus reducing path diver-
sity. Additionally, omitting the angular velocity penalty leads to paths with abrupt turns, detracting
from prediction accuracy. These outcomes significant the critical role of our modified A* trajectory
planner in achieving nuanced and reliable path predictions.

D More Visualizations

Instance segmentation and interest map. Exploring our multimodal scene parser, we present
visualizations of 3D scene instance segmentation alongside the corresponding interest maps M
for three distinct samples. Figure 6 (upper) showcases the segmented instances within the scene,
while Figure 6 (lower) evidences our multimodal InterestNet’s capacity to deduce potential human
intentions.

In the bedroom setting, with the person initially stationary and then beginning to move forward,
the future action remains ambiguous. Consequently, almost all objects are highlighted as potential
targets in M , except for the door situated behind the individual. In the living room scene, as the
person navigates the narrow gap between a chair and a table, the sofa, an additional chair, and the
table emerge as points of interest. Conversely, the proximate chair and a distant door garner lesser
attention, aligning with the observed motion pattern. A similar observation is noted in a laboratory
environment.

These results underscore our multimodal scene parser’s adeptness at inferring potential human in-
tentions, and the generated interest map M can accurately reflect anticipated human interests and
interactions.

Multiple samples with single target. To further explore DiMoP3D’s capacity for predicting diverse
motions toward a deterministic target object, additional visualizations are presented.

The left panel of Figure 7, showcases predicted sequences where the person navigates different paths
to reach the destination, performing varied actions such as looking down and reaching toward the
target. The right panel illustrates sequences of the person adopting different positions for lying and
sitting on the bed. These results affirm DiMoP3D’s adeptness at generating varied and coherent
human motions aimed at a specific target object, further ensuring diversity.

Comparison with synthesis methods. To further explore the performance of synthesis methods in
diverse scene-aware HMP tasks, we present visual comparisons between DiMoP3D and the SoTA
synthesis method AffordMotion in Figure 8. AffordMotion’s predicted sequences tend to remain
relatively static at the onset of prediction, which we attribute to its method of smoothly synthesiz-
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Figure 5: Visualization samples of the modified A* trajectory planner. Black lines denote the
observed trajectory, while colored lines represent the generated paths.

Figure 6: Visualization of 3D scene instance segmentation (upper) and the corresponding interest
map (lower). Red points in the interest map denote higher interest, while blue points denote lower
interest. Leveraging the insight provided by the predicted interest map enables the exclusion of im-
probable or illogical targets, thereby enhancing the reliability and scene congruency of predictions.

ing human motion irrespective of prior motion states, resulting in significant errors along the paths.
Particularly in samples 3 and 4, AffordMotion shows notable motion incoherence, characterized by
abrupt changes at the transition between prediction and observation. In contrast, DiMoP3D con-
siders past motion, predicting coherent and plausible sequences, thereby demonstrating its superior
performance in diverse scene-aware HMP tasks. While motion synthesis methods show promise in
handling diverse scene-aware HMP, they face the critical challenge of integrating deterministic cues
from past motions effectively.

E Potential Broader Impacts

The proposed DiMoP3D introduces a novel diverse scene-aware motion prediction framework,
which may involve the following broader impacts:
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Figure 7: Visualization of multiple samples with fixed target object. DiMoP3D is able to predict
motions with diverse trajectories and actions (or end poses) toward a deterministic target object,
while maintaining each motion sequence to be consistent with the observation and the scene.

Figure 8: Visualization comparisons between DiMoP3D and SoTA synthesis method AffordMotion.
The results from AffordMotion demonstrate significant motion incoherence.

• Enhanced Safety in Robotics and Automation. DiMoP3D can improve the interaction
between humans and robots. By predicting human motions accurately, robots can avoid col-
lisions and unsafe interactions, making environments safer for both humans and machines.

• Improved VR and Gaming Experiences. In VR and video games, this framework can
lead to more realistic and responsive interactions with virtual characters and environments.
By understanding and predicting how a human might move within a scene, VR systems can
offer more immersive and natural experiences, enhancing user engagement and satisfaction.

• Advancements in Assistive Technologies. For people with disabilities or the elderly, as-
sistive technologies equipped with human motion prediction can anticipate needs or ac-
tions (like falling or reaching for an object) and provide timely assistance or interventions,
thereby enhancing independence and quality of life.

• Applications in Autonomous Vehicles. Integrating this framework into autonomous vehi-
cle systems can improve pedestrian safety and traffic management. By predicting human
movements, autonomous vehicles can better navigate complex urban environments where
interactions with pedestrians are frequent and unpredictable.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Section 3 tell the method, Section 4 demonstrates results, proving the effec-
tiveness of the method.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Secon 5 analyzes the efficiency limitation of the proposed DiMoP3D.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means

that the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Section 3 explains the assumptions, theorems, and formulas in detail.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix A tells the training details and the supplemental material provides
our source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Appendix A tells the training details and the supplemental material provides
our source code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix A tells the training details and the supplemental material provides
our source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Appendix A tells the training details and the supplemental material provides
our source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A, we conduct all the experiments on single NVIDIA RTX3090
GPU within 8 hours.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our research
conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The proposed DiMoP3D may have broader impacts on robotics, autonomous
vehicles, video games, assistive technologies, etc., as detailed in Appendix E.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no high risk for misuse in the data or models.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The licenses and terms of use are explicitly mentioned and properly respected.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: There are no new assets introduced in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: There is no crowdsourcing experiments and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There is no research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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