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Figure Al: Qualitative comparisons with state-of-the-art methods on MVTec, VisA and Goods. In both two
sub-figures (left and right), (b) and (g) represent query images and their anomaly masks, while (a) represent
the corresponding normal image prompts. The predicted anomaly maps are shown using different methods,
including (c) WinCLIP+ [26], (d) AnomalyCLIP [76]], (¢) UniAD [[70] and (f) our MetaUAS. Best viewed in
color and zoom-in.
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Table Al: Quantitative results on MVTec with MetaUAS, MetaUAS* and MetaUAS*+.

Methods Categories Anomaly Classification Anomaly Segmentation
I-ROC I-PR I-Fl o P-ROC  P-PR P-Flmx  P-PRO
bottle 983408 995402  97.94+0.8 97.6+1.6 859426 779415 944415
cable 90.8+1.5 951409  86.5+1.8 952404 64.1+13 63.0+1.6 85.8+1.8
capsule 67.1452  89.843.0 914405 942407 23.6+65 337+43 543+7.0
carpet 99.84+0.3  99.94+0.1  99.3+0.7 974404 737415 68.1+17 944404
grid 94.6+12  98.1+05 927413 89.0+£12 251427 338+1.6 70.0+29
hazelnut ~ 97.9422 989+12 950432 98.10.7 662498 603184 87.9435
leather 99.94:02  100.0£0.0  99.740.3 99.74£0.0 712409 654408 95.840.8
MetaUAS ~ Metlnut 94439 O86+11 950412 950407 769440 709426 87.1+12
pill 923+14 985402 942411 96.44+0.6  70.142.9 63.8+23 88.6+2.1
screw 635450 844434 855403 92.143.1 81429 144439 724457
tile 95.6+0.6 98.5+0.1  94.4+1.1 95340.5 84.6+1.0 79.5+0.7 92.0+0.8
toothbrush ~ 92.2:1.8 972408  91.5+29 98.9+02 702+1.6 692404 81.0+36
transistor ~ 79.746.6 793168  71.94+42 824432 372451 377450  67.1436
wood 985403 99.5+0.1  96.74+0.8 94.1404  70.0£1.7 659421  89.0+1.1
zipper 959425 985413  96.1+12 945413 621422 595417 787422
mean 90.740.7 957406 925403 946402 593+14 575411  82.6+0.6
bottle 99.6 99.9 98.4 975 85.6 7715 954
cable 95.3 97.6 91.9 96.3 67.5 65.9 90.2
capsule 80.1 94.9 935 95.8 405 483 57.6
carpet 99.6 99.9 98.9 97.0 739 68.7 932
grid 96.2 98.7 94.8 90.8 287 37.1 75.6
hazelnut 993 99.6 97.9 98.8 747 68.0 89.1
leather 100 100 100 99.7 70.9 65.5 96.4
metal nut 96.2 99.1 95.2 96.3 81.4 73.3 91.0
MetaUASx o 953 99.2 94.7 94.8 64.8 59.9 86.3
screw 84.2 94.5 87.6 95.0 29.4 334 61.7
tile 95.1 98.3 934 94.6 83.3 78.8 912
toothbrush ~ 93.6 97.6 92.3 98.9 703 70.5 78.6
transistor 91.0 88.3 79.2 86.0 479 48.0 72.8
wood 98.8 99.6 96.8 94.3 73.0 68.4 88.2
Zipper 89.3 96.3 93.7 94.2 63.7 61.5 79.0
mean 94.2 97,6 93.9 953 63.7 61.6 83.1
bottle 99.6 99.9 98.4 98.8 87.5 78.1 96.8
cable 95.5 977 91.9 97.1 674 66.4 91.6
capsule 834 95.7 92.7 97.8 433 494 90.0
carpet 99.8 100 98.9 99.5 80.6 71.0 98.0
grid 99.6 99.9 98.2 98.2 36.5 39.4 947
hazelnut 100 100 100 99.1 79.1 74.1 927
leather 100 100 100 99.7 71.6 65.5 98.9
metalnut ~ 97.8 99.5 96.3 96.5 82.1 737 92.1
MetaUASx+ 953 993 95.0 9.8 68.5 60.9 94.1
screw 88.2 95.6 913 98.4 344 339 90.5
tile 96.1 98.6 94.0 98.1 88.4 793 95.4
toothbrush ~ 94.4 97.9 92.3 99.4 72.6 70.9 917
transistor  91.1 88.5 80.5 91.6 51.0 50.6 78.6
wood 99.0 99.7 96.8 96.7 774 69.9 95.0
zipper 89.4 96.4 934 96.0 64.7 61.0 87.9
mean 95.3 97.9 94.6 97.6 67.0 62.9 925

A Implementation Details.

Following UniAD [70], we extract multi-scale features from all 5 stages of EfficientNet-b4 [57]]
encoder. In the feature alignment module, the three highest-level features are used to perform query-
prompt alignment, and the channel number is reduced to half of one of the original channels before
calculating the similarity between query and prompt. Therefore, we derive three aligned features
of query and prompt using the feature alignment module. Finally, these three aligned features and
two original low-level query features from the first and second stages are fed into the decoder and
segmentation head for change segmentation. The model is trained with 30 epochs on 8 Tesla V100
GPUs with batch size 128. We freeze the encoder and optimize the feature alignment module, the
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Table A2: Quantitative results on VisA with MetaUAS, MetaUAS+ and MetaUAS«+.

Methods Categories Anomaly Classification Anomaly Segmentation
I-ROC I-PR I-Flmax P-ROC P-PR P-Flmax P-PRO
candle 84.7+£1.1 852+1.4 79.7£1.1 99.3+£0.1  60.0£2.3 57.3+1.7 63.0£3.2
capsules 77.7+£3.9 86.4+23 79.7£1.7 96.5+0.7 40.5+4.1 44.8+£34 769+£25
cashew 78.9£5.1 90.1+£2.4  822+£1.7 91.1+£19 494437 504+£24 51.8+4.2
chewinggum  95.84+0.2 98.24+0.1 93.5%1.1 98.5+04 852415 79.6+1.1 69.6+0.9
fryum 83.54+2.4 91.9+14 84.0%14 652454 149455 23.0+£6.6 239425
macaronil 73.0£6.0 77.0£54  71.2£2.0 824421 13.1£63 212480 31.5£4.0
MetaUAS macaroni2 60.8+4.2 59.8+£3.5  68.0£0.7 89.5+57 23%£1.1 7.5£2.9 56.4+13.7

pebl 754+£13.6 76.0£9.8 75.14+9.6 98.2+0.6 66.1+58 62.9+4.1 71.4+6.3
pcb2 76.0£2.9 76.6+£3.0 729+£3.5 94.5+£0.2 30.84+2.7 39.0+£2.7 66.4%4.0
peb3 77.1+3.4 79.842.6  72.8£2.7 97.0+£04 427434 429+19 585%£1.5
pcb4 952424 95.04+2.1 89.3%4.1 97.1£0.8 413432 45.6+24 69.3+3.4
pipe fryum 95.8+1.4 97.5+£12 939413 96.9+1.0 66.0£3.4 62.7£2.7 86.2+4.3
mean 81.24+1.7 84.5+1.4 80.2+0.7 922+40.7 427408 44.7+0.6 60.4=£1.5
candle 84.4 85.4 78.8 98.9 59.8 57.5 55.9
capsules 83.4 90.0 82.3 97.1 48.3 50.6 74.7
cashew 84.3 92.1 85.6 88.8 435 45.6 48.8
chewinggum  95.0 98.0 93.3 98.6 85.9 80.1 70.4
fryum 84.1 92.8 83.4 67.1 13.7 20.6 224
macaronil 71.6 743 71.1 81.0 4.7 10.4 24.6

MetaUASx  macaroni2 60.3 57.9 67.6 91.0 2.8 9.6 65.1
pebl 86.9 84.8 80.8 98.6 78.8 74.5 63.8
peb2 79.9 78.7 75.0 95.9 349 41.0 64.5
peb3 79.7 81.6 73.9 96.4 46.4 46.4 52.5
pcb4 96.1 95.3 91.1 95.4 43.7 46.9 62.8
pipe fryum 95.6 97.8 92.5 95.1 64.8 63.5 82.6
mean 834 85.7 81.3 92.0 43.9 45.6 573
candle 85.8 86.3 79.8 98.3 58.5 57.5 92.9
capsules 84.5 91.0 82.3 98.3 51.5 51.8 80.4
cashew 87.7 93.5 88.9 98.5 55.9 50.6 88.1
chewinggum  95.8 98.3 93.3 99.5 86.0 80.2 85.1
fryum 89.6 94.9 88.2 96.6 38.6 44.5 81.9
macaronil 73.1 76.3 70.8 96.9 7.8 12.5 81.1

MetaUASx+  macaroni2 62.6 64.4 67.6 97.7 4.6 10.5 89.6
pebl 87.9 86.0 81.7 99.3 81.8 75.7 82.4
peb2 80.4 79.1 75.4 97.4 35.1 41.8 774
pcb3 80.7 82.3 75.1 96.8 46.7 47.2 85.7
pcb4 96.6 95.8 91.6 97.2 43.6 47.1 84.3
pipe fryum 96.5 98.3 93.0 99.0 66.9 63.5 96.6
mean 85.1 87.2 82.3 98.0 48.1 48.6 85.5

decoder, and the segmentation head with AdamW [25] using weight decay 0.0005 and learning rate
0.0001. We conduct experiments based on the open-source framework PyTorch.

We follow CYWS [50] and use the same procedure for synthesizing the change segmentation dataset.
Specifically, given a labeled image from an existing instance segmentation dataset, i.e., MS-COCO,
we randomly selected one or several instances and then could make it disappear from the image
by inpainting the mask region [56]. It is worth noting that the binary change mask between the
inpainted and original images can be freely available because these selected instances have been
manually annotated at the pixel level. We keep the dataset setup as similar to CYWS [50] as possible.
Specifically, the change segmentation dataset is synthesized using the randomly selected 60,000
images from the MS-COCO training set. For each image, a synthesized image is generated by
inpainting a union mask of a random set of labeled instances. Then, all these 60,000 samples are
divided into training and validation sets with a ratio of 0.95:0.05. During training, we randomly
employ object-level change and local-region change with a probability of 0.5.

B Competing Methods.

To demonstrate the superiority of MetaUAS, we compare MetaUAS and its variants (MetaUAS« and
MetaUAS«+) with diverse state-of-the-art methods. Implementation and reproduction details are
summarized as follows:
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Table A3: Quantitative results on Goods with MetaUAS, MetaUAS« and MetaUASx+.

Methods Categories Anomaly Classification Anomaly Segmentation
I-ROC I-PR I-F1ax P-ROC P-PR P-Flpax P-PRO
cigarette box  58.9+3.8 63.24+3.6 74.2405 88.44+1.3 21.1£33 289429 62.9+£33
drink bottle 55.1£1.2  59.341.1  70.6+0.2 92.440.7 7.3+£1.6 12.84£2.0 64.6£0.7
MetaUAS drink can 521434 484+£2.0 66.71+0.0 86.6+14 7.6£l1.1 14.04+0.8 58.4+0.5
food bottle 55.0+1.4 644405 75.0+0.1 89.940.3 8.4+0.6 14240.6 59.441.0
food box 52942.6 65.6£25 77.7+0.3 86.4+1.7 4.4+0.7 8.341.1 57.2423
food package 52.7£1.7 504418 64.840.1 87.5+1.5 2.840.6 57+1.4 51.6+3.2
mean 545+1.0 585404 71.5+0.1 88.5+0.6 8.6+0.7 14.0+£0.7 59.0+1.3
cigarette box  98.9 99.2 96.0 98.7 78.0 73.8 88.0
drink bottle 85.2 86.7 80.9 98.9 62.2 61.3 68.1
MetaUAS drink can 96.7 97.1 91.5 93.8 44.9 53.7 57.9
food bottle 90.1 93.1 86.2 97.1 50.5 52.1 70.1
food box 86.9 924 84.5 98.3 54.6 54.8 67.5
food package  82.7 81.8 74.8 97.5 32.1 37.0 73.6
mean 90.1 91.7 85.7 97.4 53.7 55.5 70.8
cigarette box  97.5 96.3 96.4 98.6 74.9 74.0 95.3
drink bottle 85.4 86.8 81.3 98.8 58.7 61.4 87.6
MetaUASx+ drink can 97.2 97.5 91.8 96.7 42.8 54.9 86.5
food bottle 90.4 92.9 86.7 97.5 44.1 522 88.6
food box 85.2 87.4 84.1 97.8 46.5 54.6 85.5
food package  83.6 78.1 76.9 97.9 27.0 37.4 84.4
mean 89.9 89.9 86.2 97.9 49.0 55.8 88.0

CLIP [42] is a powerful vision-language model, and it has a strong zero-shot generalization ability.
Following previous works, we use two classes of text prompt templates, “A photo of a normal [cls]”
and “A photo of an anomalous [cls]”, where “cls” denotes the target class name. The anomaly score
is computed by cosine similarity between textual features and the class token of a query image. For
anomaly segmentation, we extend the above computation from class tokens to local patch tokens.

WinCLIP [26] is a zero-shot anomaly segmentation method based on CLIP. A large set of hand-
crafted textual prompts is designed for anomaly classification. A window scaling strategy is used
to obtain better anomaly segmentation. We keep all parameters the same as in their paper. Note
that no official implementation of WinCLIP is available, our results are based on an unofficial
implementation

WinCLIP+ [26] combines the complementary prediction from both language-guided and visual-
based for better anomaly classification and segmentation. The language-guided prediction is the same
as WinCLIP. For visual-based prediction, it first simply stores multi-scale features for given few-shot
normal images and retrieves the memory features based on the cosine similarity. The final anomaly
score is derived by averaging these two scores.

AnomalyCLIP [76] learns object-agnostic text prompts that capture generic normality and abnor-
mality in an image regardless of its foreground objects. But AnomalyCLIP requires fine-tuning on
an auxiliary domain dataset including normal and anomaly images. AnomalyCLIP is a zero-shot
anomaly classification and segmentation method, and it is capable of recognizing any anomalies. We
use the official model to report performance for anomaly classification and segmentation.

UniAD [70] is a unified unsupervised anomaly segmentation method for addressing multi-classes
anomalies with a single model. Different from most zero-/few-shot anomaly segmentation models,
UniAD learns feature reconstruction with a transformer-based encoder-decoder architecture on all
normal training images. We use the official code to train the specific model for each dataset.

PatchCore [47] is a popular unsupervised anomaly classification method that enjoys training-free.
For a fair comparison, we modify the official implementation in two folds. First, we replace the
original WideResNet-50 backbone with EfficientNet-b4. Second, the memory-bank construction is
limited to only one normal image for each class.

"https://github.com/zghang/Accurate-WinCLIP-pytorch
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