
(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

Figure A1: Qualitative comparisons with state-of-the-art methods on MVTec, VisA and Goods. In both two
sub-figures (left and right), (b) and (g) represent query images and their anomaly masks, while (a) represent
the corresponding normal image prompts. The predicted anomaly maps are shown using different methods,
including (c) WinCLIP+ [26], (d) AnomalyCLIP [76], (e) UniAD [70] and (f) our MetaUAS. Best viewed in
color and zoom-in.
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Table A1: Quantitative results on MVTec with MetaUAS, MetaUAS? and MetaUAS?+.

Methods Categories Anomaly Classification Anomaly Segmentation

I-ROC I-PR I-F1max P-ROC P-PR P-F1max P-PRO

MetaUAS

bottle 98.3±0.8 99.5±0.2 97.9±0.8 97.6±1.6 85.9±2.6 77.9±1.5 94.4±1.5
cable 90.8±1.5 95.1±0.9 86.5±1.8 95.2±0.4 64.1±1.3 63.0±1.6 85.8±1.8
capsule 67.1±5.2 89.8±3.0 91.4±0.5 94.2±0.7 23.6±6.5 33.7±4.3 54.3±7.0
carpet 99.8±0.3 99.9±0.1 99.3±0.7 97.4±0.4 73.7±1.5 68.1±1.7 94.4±0.4
grid 94.6±1.2 98.1±0.5 92.7±1.3 89.0±1.2 25.1±2.7 33.8±1.6 70.0±2.9
hazelnut 97.9±2.2 98.9±1.2 95.0±3.2 98.1±0.7 66.2±9.8 60.3±8.4 87.9±3.5
leather 99.9±0.2 100.0±0.0 99.7±0.3 99.7±0.0 71.2±0.9 65.4±0.8 95.8±0.8
metal nut 94.4±3.9 98.6±1.1 95.0±1.2 95.0±0.7 76.9±4.0 70.9±2.6 87.1±1.2
pill 92.3±1.4 98.5±0.2 94.2±1.1 96.4±0.6 70.1±2.9 63.8±2.3 88.6±2.1
screw 63.5±5.0 84.4±3.4 85.5±0.3 92.1±3.1 8.1±2.9 14.4±3.9 72.4±5.7
tile 95.6±0.6 98.5±0.1 94.4±1.1 95.3±0.5 84.6±1.0 79.5±0.7 92.0±0.8
toothbrush 92.2±1.8 97.2±0.8 91.5±2.9 98.9±0.2 70.2±1.6 69.2±0.4 81.0±3.6
transistor 79.7±6.6 79.3±6.8 71.9±4.2 82.4±3.2 37.2±5.1 37.7±5.0 67.1±3.6
wood 98.5±0.3 99.5±0.1 96.7±0.8 94.1±0.4 70.0±1.7 65.9±2.1 89.0±1.1
zipper 95.9±2.5 98.5±1.3 96.1±1.2 94.5±1.3 62.1±2.2 59.5±1.7 78.7±2.2

mean 90.7±0.7 95.7±0.6 92.5±0.3 94.6±0.2 59.3±1.4 57.5±1.1 82.6±0.6

MetaUAS?

bottle 99.6 99.9 98.4 97.5 85.6 77.5 95.4
cable 95.3 97.6 91.9 96.3 67.5 65.9 90.2
capsule 80.1 94.9 93.5 95.8 40.5 48.3 57.6
carpet 99.6 99.9 98.9 97.0 73.9 68.7 93.2
grid 96.2 98.7 94.8 90.8 28.7 37.1 75.6
hazelnut 99.3 99.6 97.9 98.8 74.7 68.0 89.1
leather 100 100 100 99.7 70.9 65.5 96.4
metal nut 96.2 99.1 95.2 96.3 81.4 73.3 91.0
pill 95.3 99.2 94.7 94.8 64.8 59.9 86.3
screw 84.2 94.5 87.6 95.0 29.4 33.4 61.7
tile 95.1 98.3 93.4 94.6 83.3 78.8 91.2
toothbrush 93.6 97.6 92.3 98.9 70.3 70.5 78.6
transistor 91.0 88.3 79.2 86.0 47.9 48.0 72.8
wood 98.8 99.6 96.8 94.3 73.0 68.4 88.2
zipper 89.3 96.3 93.7 94.2 63.7 61.5 79.0

mean 94.2 97.6 93.9 95.3 63.7 61.6 83.1

MetaUAS?+

bottle 99.6 99.9 98.4 98.8 87.5 78.1 96.8
cable 95.5 97.7 91.9 97.1 67.4 66.4 91.6
capsule 83.4 95.7 92.7 97.8 43.3 49.4 90.0
carpet 99.8 100 98.9 99.5 80.6 71.0 98.0
grid 99.6 99.9 98.2 98.2 36.5 39.4 94.7
hazelnut 100 100 100 99.1 79.1 74.1 92.7
leather 100 100 100 99.7 71.6 65.5 98.9
metal nut 97.8 99.5 96.3 96.5 82.1 73.7 92.1
pill 95.8 99.3 95.0 96.8 68.5 60.9 94.1
screw 88.2 95.6 91.3 98.4 34.4 33.9 90.5
tile 96.1 98.6 94.0 98.1 88.4 79.3 95.4
toothbrush 94.4 97.9 92.3 99.4 72.6 70.9 91.7
transistor 91.1 88.5 80.5 91.6 51.0 50.6 78.6
wood 99.0 99.7 96.8 96.7 77.4 69.9 95.0
zipper 89.4 96.4 93.4 96.0 64.7 61.0 87.9

mean 95.3 97.9 94.6 97.6 67.0 62.9 92.5

A Implementation Details.

Following UniAD [70], we extract multi-scale features from all 5 stages of EfficientNet-b4 [57]
encoder. In the feature alignment module, the three highest-level features are used to perform query-
prompt alignment, and the channel number is reduced to half of one of the original channels before
calculating the similarity between query and prompt. Therefore, we derive three aligned features
of query and prompt using the feature alignment module. Finally, these three aligned features and
two original low-level query features from the first and second stages are fed into the decoder and
segmentation head for change segmentation. The model is trained with 30 epochs on 8 Tesla V100
GPUs with batch size 128. We freeze the encoder and optimize the feature alignment module, the
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Table A2: Quantitative results on VisA with MetaUAS, MetaUAS? and MetaUAS?+.

Methods Categories Anomaly Classification Anomaly Segmentation

I-ROC I-PR I-F1max P-ROC P-PR P-F1max P-PRO

MetaUAS

candle 84.7±1.1 85.2±1.4 79.7±1.1 99.3±0.1 60.0±2.3 57.3±1.7 63.0±3.2
capsules 77.7±3.9 86.4±2.3 79.7±1.7 96.5±0.7 40.5±4.1 44.8±3.4 76.9±2.5
cashew 78.9±5.1 90.1±2.4 82.2±1.7 91.1±1.9 49.4±3.7 50.4±2.4 51.8±4.2
chewinggum 95.8±0.2 98.2±0.1 93.5±1.1 98.5±0.4 85.2±1.5 79.6±1.1 69.6±0.9
fryum 83.5±2.4 91.9±1.4 84.0±1.4 65.2±5.4 14.9±5.5 23.0±6.6 23.9±2.5
macaroni1 73.0±6.0 77.0±5.4 71.2±2.0 82.4±2.1 13.1±6.3 21.2±8.0 31.5±4.0
macaroni2 60.8±4.2 59.8±3.5 68.0±0.7 89.5±5.7 2.3±1.1 7.5±2.9 56.4±13.7
pcb1 75.4±13.6 76.0±9.8 75.1±9.6 98.2±0.6 66.1±5.8 62.9±4.1 71.4±6.3
pcb2 76.0±2.9 76.6±3.0 72.9±3.5 94.5±0.2 30.8±2.7 39.0±2.7 66.4±4.0
pcb3 77.1±3.4 79.8±2.6 72.8±2.7 97.0±0.4 42.7±3.4 42.9±1.9 58.5±1.5
pcb4 95.2±2.4 95.0±2.1 89.3±4.1 97.1±0.8 41.3±3.2 45.6±2.4 69.3±3.4
pipe fryum 95.8±1.4 97.5±1.2 93.9±1.3 96.9±1.0 66.0±3.4 62.7±2.7 86.2±4.3

mean 81.2±1.7 84.5±1.4 80.2±0.7 92.2±0.7 42.7±0.8 44.7±0.6 60.4±1.5

MetaUAS?

candle 84.4 85.4 78.8 98.9 59.8 57.5 55.9
capsules 83.4 90.0 82.3 97.1 48.3 50.6 74.7
cashew 84.3 92.1 85.6 88.8 43.5 45.6 48.8
chewinggum 95.0 98.0 93.3 98.6 85.9 80.1 70.4
fryum 84.1 92.8 83.4 67.1 13.7 20.6 22.4
macaroni1 71.6 74.3 71.1 81.0 4.7 10.4 24.6
macaroni2 60.3 57.9 67.6 91.0 2.8 9.6 65.1
pcb1 86.9 84.8 80.8 98.6 78.8 74.5 63.8
pcb2 79.9 78.7 75.0 95.9 34.9 41.0 64.5
pcb3 79.7 81.6 73.9 96.4 46.4 46.4 52.5
pcb4 96.1 95.3 91.1 95.4 43.7 46.9 62.8
pipe fryum 95.6 97.8 92.5 95.1 64.8 63.5 82.6

mean 83.4 85.7 81.3 92.0 43.9 45.6 57.3

MetaUAS?+

candle 85.8 86.3 79.8 98.3 58.5 57.5 92.9
capsules 84.5 91.0 82.3 98.3 51.5 51.8 80.4
cashew 87.7 93.5 88.9 98.5 55.9 50.6 88.1
chewinggum 95.8 98.3 93.3 99.5 86.0 80.2 85.1
fryum 89.6 94.9 88.2 96.6 38.6 44.5 81.9
macaroni1 73.1 76.3 70.8 96.9 7.8 12.5 81.1
macaroni2 62.6 64.4 67.6 97.7 4.6 10.5 89.6
pcb1 87.9 86.0 81.7 99.3 81.8 75.7 82.4
pcb2 80.4 79.1 75.4 97.4 35.1 41.8 77.4
pcb3 80.7 82.3 75.1 96.8 46.7 47.2 85.7
pcb4 96.6 95.8 91.6 97.2 43.6 47.1 84.3
pipe fryum 96.5 98.3 93.0 99.0 66.9 63.5 96.6

mean 85.1 87.2 82.3 98.0 48.1 48.6 85.5

decoder, and the segmentation head with AdamW [25] using weight decay 0.0005 and learning rate
0.0001. We conduct experiments based on the open-source framework PyTorch.

We follow CYWS [50] and use the same procedure for synthesizing the change segmentation dataset.
Specifically, given a labeled image from an existing instance segmentation dataset, i.e., MS-COCO,
we randomly selected one or several instances and then could make it disappear from the image
by inpainting the mask region [56]. It is worth noting that the binary change mask between the
inpainted and original images can be freely available because these selected instances have been
manually annotated at the pixel level. We keep the dataset setup as similar to CYWS [50] as possible.
Specifically, the change segmentation dataset is synthesized using the randomly selected 60,000
images from the MS-COCO training set. For each image, a synthesized image is generated by
inpainting a union mask of a random set of labeled instances. Then, all these 60,000 samples are
divided into training and validation sets with a ratio of 0.95:0.05. During training, we randomly
employ object-level change and local-region change with a probability of 0.5.

B Competing Methods.

To demonstrate the superiority of MetaUAS, we compare MetaUAS and its variants (MetaUAS? and
MetaUAS?+) with diverse state-of-the-art methods. Implementation and reproduction details are
summarized as follows:
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Table A3: Quantitative results on Goods with MetaUAS, MetaUAS? and MetaUAS?+.

Methods Categories Anomaly Classification Anomaly Segmentation

I-ROC I-PR I-F1max P-ROC P-PR P-F1max P-PRO

MetaUAS

cigarette box 58.9±3.8 63.2±3.6 74.2±0.5 88.4±1.3 21.1±3.3 28.9±2.9 62.9±3.3
drink bottle 55.1±1.2 59.3±1.1 70.6±0.2 92.4±0.7 7.3±1.6 12.8±2.0 64.6±0.7
drink can 52.1±3.4 48.4±2.0 66.7±0.0 86.6±1.4 7.6±1.1 14.0±0.8 58.4±0.5
food bottle 55.0±1.4 64.4±0.5 75.0±0.1 89.9±0.3 8.4±0.6 14.2±0.6 59.4±1.0
food box 52.9±2.6 65.6±2.5 77.7±0.3 86.4±1.7 4.4±0.7 8.3±1.1 57.2±2.3
food package 52.7±1.7 50.4±1.8 64.8±0.1 87.5±1.5 2.8±0.6 5.7±1.4 51.6±3.2
mean 54.5±1.0 58.5±0.4 71.5±0.1 88.5±0.6 8.6±0.7 14.0±0.7 59.0±1.3

MetaUAS?

cigarette box 98.9 99.2 96.0 98.7 78.0 73.8 88.0
drink bottle 85.2 86.7 80.9 98.9 62.2 61.3 68.1
drink can 96.7 97.1 91.5 93.8 44.9 53.7 57.9
food bottle 90.1 93.1 86.2 97.1 50.5 52.1 70.1
food box 86.9 92.4 84.5 98.3 54.6 54.8 67.5
food package 82.7 81.8 74.8 97.5 32.1 37.0 73.6

mean 90.1 91.7 85.7 97.4 53.7 55.5 70.8

MetaUAS?+

cigarette box 97.5 96.3 96.4 98.6 74.9 74.0 95.3
drink bottle 85.4 86.8 81.3 98.8 58.7 61.4 87.6
drink can 97.2 97.5 91.8 96.7 42.8 54.9 86.5
food bottle 90.4 92.9 86.7 97.5 44.1 52.2 88.6
food box 85.2 87.4 84.1 97.8 46.5 54.6 85.5
food package 83.6 78.1 76.9 97.9 27.0 37.4 84.4

mean 89.9 89.9 86.2 97.9 49.0 55.8 88.0

CLIP [42] is a powerful vision-language model, and it has a strong zero-shot generalization ability.
Following previous works, we use two classes of text prompt templates, “A photo of a normal [cls]”
and “A photo of an anomalous [cls]”, where “cls” denotes the target class name. The anomaly score
is computed by cosine similarity between textual features and the class token of a query image. For
anomaly segmentation, we extend the above computation from class tokens to local patch tokens.

WinCLIP [26] is a zero-shot anomaly segmentation method based on CLIP. A large set of hand-
crafted textual prompts is designed for anomaly classification. A window scaling strategy is used
to obtain better anomaly segmentation. We keep all parameters the same as in their paper. Note
that no official implementation of WinCLIP is available, our results are based on an unofficial
implementation 1.

WinCLIP+ [26] combines the complementary prediction from both language-guided and visual-
based for better anomaly classification and segmentation. The language-guided prediction is the same
as WinCLIP. For visual-based prediction, it first simply stores multi-scale features for given few-shot
normal images and retrieves the memory features based on the cosine similarity. The final anomaly
score is derived by averaging these two scores.

AnomalyCLIP [76] learns object-agnostic text prompts that capture generic normality and abnor-
mality in an image regardless of its foreground objects. But AnomalyCLIP requires fine-tuning on
an auxiliary domain dataset including normal and anomaly images. AnomalyCLIP is a zero-shot
anomaly classification and segmentation method, and it is capable of recognizing any anomalies. We
use the official model to report performance for anomaly classification and segmentation.

UniAD [70] is a unified unsupervised anomaly segmentation method for addressing multi-classes
anomalies with a single model. Different from most zero-/few-shot anomaly segmentation models,
UniAD learns feature reconstruction with a transformer-based encoder-decoder architecture on all
normal training images. We use the official code to train the specific model for each dataset.

PatchCore [47] is a popular unsupervised anomaly classification method that enjoys training-free.
For a fair comparison, we modify the official implementation in two folds. First, we replace the
original WideResNet-50 backbone with EfficientNet-b4. Second, the memory-bank construction is
limited to only one normal image for each class.

1https://github.com/zqhang/Accurate-WinCLIP-pytorch
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